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Abstract 
Numerical simulation of system dynamics is today a standard in the design of 
railway vehicles their typical applications are the suspension kinematics, 
handling performance and ride comfort as well as the generation of load data for 
lifetime prediction. One of the key points in this type of simulations is the model 
of the wheel/rail interaction, in other terms the definition of the forces exchanged 
between the wheels and the rail in the contact points.  The direction and the 
magnitude of the contact forces  depends on the number and the location of the 
contact points. The procedure that allows to define the geometry of the contact 
has then a significant effect on the reliability of the simulation. The component 
of the contact force normal to the contact surfaces can be defined as a function of 
the relative indentation between the surfaces. The component of the contact force 
tangent to the contact surfaces depends on the relative speeds between the 
surfaces in the contact area (wheel sliding). The authors have been working on 
the definition of efficient and reliable models of the interactions between the 
wheels and the rails and in particular for the definition of the contact points. 
Different algorithms have been analyzed and compared, they are based on semi 
analytical approaches and on neural networks. The paper will summarize the 
proposed methods and the results obtained from the simulation of two different 
sceneries.  Two different models have been used in this test: the first one was 
realized with a commercial software, while the second one was developed and 
implemented by the authors. There is a global agreement between the models, 
some differences can be seen during the transients, due to the different methods 
for the determination of the contact points for the integration. 
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1 Introduction 

Numerical simulation of system dynamics is today a standard in the design of 
railway vehicles. The multibody analysis is applied for example to suspension 
kinematics and compliant kinematics, handling performance and ride comfort as 
well as to the generation of load data for lifetime prediction. These simulation 
tasks are usually carried out as off-line simulations performed by means of 
commercial or customized software.  



In the last years Hardware in- the-Loop (HIL) simulation has extensively been 
introduced in the design of vehicle control systems and the test of electronic 
control units, both in the automotive and in the railway field. The reliability of 
this type of tests is strictly related to the properties of the numerical model that 
simulates the condition that the tested device would meet in real operative 
conditions. The numerical model is a representation of the dynamics of the 
system in which the tested unit is inserted (single vehicle, entire train etc.). In 
order to obtain on this type of test rigs reliable results the availability of a 
realistic real time model of the system dynamics is then necessary. 
Over the last years the MBS (Multibody Simulation) method has then been 
established in the real-time simulation domain, typically for the design of vehicle 
control systems and the test of electronic control units [1,2].  
The numerical model described in this paper reproduces the complete three 
dimensional dynamics of a railway vehicle running on a generic track, it has 
been developed with the objective of a real time implementation, in order use its 
results to control the actuators of Hardware In the Loop test rigs.   
One of the key point in this study was the definition of a reliable and efficient 
model describing the forces arising in the wheel/rail interaction areas. The 
contact force vector is composed by a normal component, resulting from the 
weight of the vehicle, and by a tangential component that results from the 
friction between the wheel and rail in the contact area. This component, named 
creep force, arises in the contact area when a traction or a braking torque is 
applied to the axle. These forces play an important role in the wheelset dynamics 
and their value depend on a number of parameters, including the position of the 
contact point between the bodies.  
The introduction of a well defined full three dimensional wheel/rail interaction 
module in a standard multibody model is not easy and may sensibly increase the 
complexity and the computational burden of the numerical procedure [3-10]. 
In the model described in the following sections the wheelset is assumed to have 
six degrees of freedom with respect to the rails. The local deformation of the 
contact surface at the contact point is allowed and the normal contact forces are 
defined using Hertz’s contact theory or in terms of assumed stiffness and 
damping coefficients. This type of approach allows the separation between the 
wheel and the rail and to manage multiple contact points. One of the main 
problems correlated with this approach is the definition of the contact point 
location on line. In most elastic force models, the three-dimensional contact 
problem is reduced, for the sake of efficiency, to a two-dimensional problem 
when the location of the contact points is searched for.  
In order to find a solution for the problem of contact mechanics, detailed 
descriptions of the surfaces in contact, as well as the kinematics of the bodies, 
are required. Because wheel and the rail profiled surfaces, the prediction of the 
location of the contact point on line is a not easy task, especially when the most 
general three-dimensional motion of a wheelset with respect to the rails is 
considered. In many cases, some simplifications are made in the geometric 
and/or the kinematic description. A common method used in many existing 
computer algorithms to find the location of the contact point is to interpolate 



some precalculated table entries. The location of the contact point is given as 
function of some coordinates that measure the relative position of the wheelset 
with respect to the rails. The degree of accuracy of such algorithms depends on 
the number of coordinates that are used to define this relative position. 
The developed numerical procedure can be schematized as shown  in Figure 2. 
The dynamics of each wheelset depends on the external actions (traction/braking 
torques) and on the contact forces. The solution of the differential equations 
describing the wheelset dynamics allows to calculate the kinematical parameters 
(displacement and rotation) from which the position of the contact points can be 
identified. The creep forces are then calculated taking into account the position 
of the contact points and the wheel creepages, obtained from the wheelset 
kinematics.   
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Figure 1: numerical procedure block diagram. 

2 Definition of Wheel/Rail contact points  

In Figure 2 the reference frames used to describe the wheel and rail profile 
geometries  are shown. Concerning the rail coordinate system, bx  is parallel to 

the track direction, by  is on the plane defined by the rails and normal to bx , bz  

is consequently defined. The origin bO  is fixed on the track axis, in other terms 
it is on the plane identified by the rails and is equally distant from both of them. 
The simulated vehicle can move on a generic track, defined by ( )sγ , 
representing a generic three dimensional curve defined by means of its parameter 
s. A second auxiliary coordinate system relative to the track is defined, its origin 

'bO  is on the median railway curve ( ))(tsγ , it is not fixed, and depends on the 
wheelset motion on the track. The axis 'bx  is tangent to the track curve, 'bz  axis 
is normal to the rail plane and 'by  is consequently defined.  
The origin rO of the wheelset coordinate system is on the plane 'by 'bz , then: 



( )[ ] ( )( ) 0')()( ' =•− tstsOtO br γ (1) 

It is then evident that for any t value, s(t) and then Ob’ can be calculated from the 
position of the wheelset center of mass. 
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a) b) 
Figure 2: a) rail coordinate system, b) wheel coordinate system. 

 
The wheel is a revolution surface, the wheel radius depends on the yr coordinate, 
the function )( ryss = describes the wheel profile in the yrzr plane, the 
coordinates of a generic point on the wheel surface can be expressed, in the 
wheelset coordinate system, as follows: 
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where u is the angle between the radius that identify the generic point on the 
wheel and rz−  direction.  
The rail surface is an extrusion surface, the function )( 'bybb = describes the rail 
profile in the plane yb’ zb’, then the coordinates of a generic point on the rail 
surface can be expressed as: 
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the coordinates of a generic point on the wheel can then be expressed in the 
auxiliary coordinate system: 



( ) [ ] rbbrb
r

b OOOOP ⋅+−=− ′′ 2'' )( R  (4) 

The displacement ( )'br OO −  and the rotation matrix [ ]2R  between the wheelset 
and the track reference system depend on the relative displacement between the 
wheelset and the rail, then, for each wheelset configuration the wheel surface can 
be expressed with respect to the auxiliary reference frame as a function of the 
parameters u and yr: 
 

( )r
r
b

r
b yuP ,′′ = s  (5) 

The point bP ′  corresponding to r
bP ′  on the rail surface is then given by: 
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Figure 1: a) rail surface, normal and tangent directions, b) definition of the 

difference surface 
 
 
The difference surface is then defined as: 

( ) ( ) bb
r

br PPyuD ′′′ •−= k,  (7) 

The contact points are located in the points in which this surface assumes a local 
minimum. Then, in order to find the contact points the local minima of this 
surface are searched. 
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The minima are calculated by a procedure that analytically reduces the problem 
dimension to a single equation that is numerically solved. This method is allows 
a good precision with low computational loads. 

3 Contact forces between wheel and rail 

Once the local minima have been identified, the indentation between the surfaces 
is conventionally defined in the direction normal to the rail: 
 

( ) ( )c
bb

c
b
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Where 'bn is the unitary vector normal to the rail in the contact point. The 
indentation value is used to calculate the normal component of the contact force, 
according to the elasto-viscous approach as sum of a term that depends on the 
normal penetration between the body (the elastic component), and a term 
proportional to the surface relative velocities in the contact point (the viscous 
term).  
The magnitude of the tangential component of the contact forces is calculated on 
the basis of Kalker and Hertz theory [12,13]. The Hertz’s theory is used to define 
the contact area dimensions and shape, that depend on the normal force 
magnitude, the material properties and the local profile geometry. The Kalker 
linear theory results are used to define the components of the creep forces as 
follows: 
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where f11, f22, f33, f23 are the linear creep coefficients, depending on the contact 
ellipse semi-axis and on the combined modulus of rigidity (their values are 
tabulated)[10]; ξ, η and φ are the values of the creepage components. 

4 Vehicle multibody model  

The multibody model is composed of seven rigid bodies (the car body, two 
bogies, four wheelsets) connected by three-dimensional non linear elastic-
viscous force elements modelling the connection elements between the bodies 
(for example the vehicle suspensions, dampers etc.).  

On each wheelset the following force act: 
• the creep forces in the contact area;  
• the forces due to the interaction with the boogie;  
• the external applied braking or traction torque;  
• the weight.  



The numerical model was realized in the Matlab/Simulink environment, that 
allows to obtain a numerically efficient model, to test different types of 
integration algorithms, to manage singularities. The structure of the model is 
modular so different subsystems can be easily modeled and substituted in the 
main procedure. In this type of design environment different and complex 
systems can be modeled (electrical, pneumatic etc.), while a toolbox devoted to 
the multibody simulation allows to easily model mechanical systems with an 
high number of bodies and constraints. 
The results of the simulations performed with the developed model were 
compared with those obtained with models of the same vehicle realized with 
Adams Rail and Simpack. The benchmark case is the Manchester wagon, whose 
features are known in the literature and whose Adams Rail model is available 
[14]. The validation process is necessary to evaluate the accuracy of the model 
and to verify the performance of the model in terms of computational burden. 
even if they are obtained using different software environments and different 
modeling approaches. The differences are particularly  evident in the definition 
of the contact points and of the contact forces.        

5 Results 

In this section some the results obtained from the comparison with the Adams 
Rail model are briefly described. In tests the vehicle travels along a curve with a 
constant speed. The parameters that are varied in the first set of tests were: 

• the curve radius values (500, 1200 and 2400 m);  
• the rail angle was 1/40 and 1/20;  
• the cant angles were 40/1435 rad and 90/1435 rad;  
• the speed values were 15, 30 and 45 m/s.  

The wheel/rail adhesion coefficient was 0.2 in all the tests. In this set of tests the 
displacements of the wheelset centers and the contact forces were analyzed and 
compared.  
Figure 2 shows the parameters relative to one of the performed tests: the track 
curvature and the cant angle. Figure 3 shows the comparison between the results 
obtained by the Adams and Simulink multibody models, the time-history of the 
wheelset center of mass displacements is analyzed in the presented example.  
The results show a good agreement between the different models, a difference 
between the simulations can be noted in the transient, it is due to the differences 
in the contact force calculation.   
Table 1 summarizes the hunting frequencies calculated through simulations 
performed imposing different vehicle speeds, a quite good agreement between 
the results obtained with the Simulink and Adams models can be observed. The 
calculated critical speeds are 71 m/s with the Simulink model and 73 m/s with 
the Adams Rail model.  
 



a) b) 
Figure 2: R = 1200 m, rad40/1=pα , rad1435/40=β , m/s30=V Test features: 

a) track curvature, b) cant angle. 
 

  
a) b) 
c) d) 

Figure 3: wheelsets center of mass displacement: comparison between results 
obtained with Adams and Simulink models: a) First wheelset (front bogie, front 

wheelset), b) Second wheelset (front bogie, rear wheelset). 
 

Speed (m/s) 
Hunting Frequencies (Hertz) 

ADAMS SIMULINK 

25 1.7 1.6 

40 2.5 2.6 

55 3.3 3.5 

70 4.6 4.4 

Table 1: hunting frequencies, comparison between the results obtained through 
Adams and Simulink models 

 
The simulation results allow to conclude that the Simulink and Adams multibody 
models give substantially comparable results. The time history analysis shows 



that the Simulink model is generally characterized by an higher transient 
damping, due to the different method for the calculation of the normal 
component of the contact force (in the Simulink model a non linear elasto-
viscous approach is implemented).  

6 Conclusions  

The objective of the work presented in the paper is the development of a 
numerically efficient model describing the three-dimensional dynamics of a 
railway vehicle. The challenge is the realization of a real time implementation, to 
be used for example to control an HIL test rig. In this type of test rig the 
reliability of the realized tests depends on the accuracy of the simulation of the 
‘virtual’ environment, on the other hand the real time constraint imposes 
limitations on the complexity of the numerical models and on their integration 
times. The development of such models has then to find a compromise between 
accuracy and efficinency.  
This paper summarizes the main features of a railway vehicle multibody model 
realized in the Matlab-Simulink environment. The model was tuned in order to 
reproduce the dynamical behavior of a benchmark railway vehicle.  The results 
of the simulations carried out with this model are compared with those obtained 
with the Adams Rail multibody model of the same vehicle. The comparison has 
shown a substantially good agreement between the models and the relative errors 
are acceptable. It has to be highlighted that the models evaluate the local 
deformation of the wheel and the rail in the contact zone by means of two 
different approaches. With respect to the existing and available railway 
multibody models, its features are then a more detailed modeling of the 
wheel/rail contact problems and  the possibility to easily obtain an executable 
implementation that could run in real time conditions. In the developed model 
the aspects relative to the contact point definition and contact force calculation 
has been carefully investigated since they have a significant effect on the vehicle 
dynamics.  
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