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SUMMARY. In this work the authors intend to present an innovative elastic wheel – rail 

contact model. The model considers the wheel and the rail as elastic deformable bodies and 

requires the numerical solution of the Navier’s elasticity equation. The contact between wheel and 

rail has been described by means of suitable analytical contact conditions. Subsequently the 

contact model has been inserted within the multibody model of a benchmark railway vehicle (the 

Manchester Wagon) in order to obtain a complete model of the wagon. The whole model has been 

implemented in the Matlab/Simulink environment and numerical simulations of the vehicle 

dynamics have been carried out on many different railway tracks with the aim of evaluating the 

performance of the model. In conclusion the main purpose of the authors is to achieve a better 

integration between the differential modeling and the multibody modeling, almost absent in 

literature (especially in the railway field). 

1 INTRODUCTION 

The multibody simulation of the railway vehicle dynamics needs a reliable contact model that 

satisfies the following specifics: accurate description of the global and local contact phenomena 

(contact forces, position and shape of the contact patch, stress and strain), general and robust 

handling of the multiple contact, high numerical efficiency and compatibility with commercial 

multibody software (Simpack Rail, Adams Rail). 

The wheel – rail contact problem has been discussed by several authors and many models can 

be found in the literature. All the contact model specifically designed for the multibody modeling 

(as the so-called rigid contact formulation [1]-[3] and the semi-elastic contact description [2]-[4]) 

are computationally very efficient but their generality and accuracy turn out to be often 

insufficient. In particular, the physical theories behind this kind of models (Hertz's and Kalker's 

theory) require very restrictive hypotheses that, in many circumstances, are unverified. 

Differential contact models are needed if a detailed description of the contact phenomena is 

required. In other words wheel and rail have to be considered elastic bodies governed by the 

Navier’s equations and the contact has to be described by suitable analytical contact conditions. 

This kind of approach assures high generality and accuracy but still needs very large 

computational costs and memory consumption [2] [5]-[8]. For this reason, the integration between 

multibody and differential modeling is almost absent in literature especially in the railway field. 

However this integration is very important because only the differential modeling allows an 

accurate analysis of the contact problem while the multibody modeling is the standard in the study 

of the railway dynamics. 

In this work the authors intend to present an innovative differential contact model with the aim 

of achieving a better integration between multibody and differential modeling. The new contact 

model is fully 3D and satisfies all the specifics described above. The developed procedure requires 
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the discretization of the elastic contact problem (Navier’s equations and analytical contact 

condition) and subsequently the solution of the nonlinear discrete problem. Both the steps have 

been implemented in Matlab/Simulink environment. At this point the contact model has been 

inserted within a 2D multibody model of a railway vehicle (Manchester Wagon [9]) to obtain a 

complete model of the wagon. The choice of a 2D multibody model allows to study the lateral 

vehicle dynamics and at the same time to reduce the computational load. The multibody model has 

been implemented in SimMechanics, a Matlab toolbox specifically designed for multibody 

dynamics. The 2D multibody model of the same vehicle (this time equipped with a standard 

contact model based on the semi – elastic approach) has been then implemented also in Simpack 

Rail, a commercial multibody software for railway vehicles widely tested and validated. 

Finally numerical simulations of the vehicle dynamics have been carried out on many different 

railway tracks with the aim of evaluating the performance of the whole model. The comparison 

between the results obtained by the Matlab model and those obtained by the Simpack Rail model 

has allowed an accurate and reliable validation of the new contact model. 

2 ARCHITECTURE OF THE MODEL 

As said in the introduction the whole model consists of two different part: the 2D multibody 

model of the railway vehicle and the fully 3D differential wheel – rail contact model. The 2D 

model has been obtained from a fully 3D multibody model of the Manchester Wagon (see Fig.(1) 

and Chapter 4).   

 

 

 

 

 

 

 

 

During the simulation the 2D multibody model interacts with the fully 3D differential contact 

model. The general architecture of the model is schematically shown in Fig. (2). 

At each integration step the multibody model evaluates the kinematic variables relative to the 

wheelset and consequently to each wheel – rail pair. Starting from these quantities, the contact 

model calculates the global and local contact variables (force, contact patch, stress and 

displacement). Finally the knowledge of the contact variables allows the multibody model to carry 

on the simulation of the vehicle dynamics. 

3 REFERENCE SYSTEMS 

The railway track can be considered as a 3D curve ( )sγ  expressed in a fixed reference system 

f f f f
O x y z  (where s  is the curvilinear abscissa of γ ). Usually in the cartographic description of 

the track only the curvature ( )K s  of ( )sγ  and the track slope ( )p s  are known; however the 

knowledge of these parameters is enough to rebuild the curve ( )sγ . [10] 

 In this work the lateral vehicle dynamics will be described in a local reference system 

R R R R
O x y z  having the 

R
x  axis tangent to the track in the point ( )

R
O sγ=  and the 

R
z  axis normal to 

the plane of the rails. In the considered case the time histories of the curvilinear abscissa ( )s t  and 

of the origin ( ( ))
R

O s tγ=  are supposed to be known (for instance they can be calculated by 

Fig.2: General architecture of the model. Fig.1: 2D/3D multibody models of the Manchester Wagon. 
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simulating independently the longitudinal vehicle dynamics). The local system follows the motion 

of the whole model along the track so that the centers of mass of the bodies lie always on the plane 

R R
y z . According to chapter 2, the car – body and the bogie can only translate along 

R
y  and 

R
z  

and rotate around 
R

x  while the wheelset can also rotate around its symmetry axis. 

Subsequently a third reference system 
W W W W

O x y z  is defined. The origin 
W

O  coincides with 

the center of mass of the wheelset and the 
W

y  axis with its symmetry axis. This system is fixed to 

the wheelset except for the rotation around the 
W

y  axis. The placement of the reference systems is 

illustrated in Fig. (3). In order to correctly describe the differential contact model, two further 

reference systems have to be defined for each wheel – rail pair. For the sake of simplicity only the 

left pair has been reported in Fig. (4).  

 

 

 

 

 

 

 

 

 

 

 

The first system 
lw lw lw lw

O x y z  is parallel to the system 
W W W W

O x y z  and its origin 
lw

O  lies on 

the symmetry axis of the wheel. The system is fixed to the wheel except for the rotation around the 

lw
y  axis. Moreover the origin 

lw
O  belongs to the nominal rolling plane,  i.e. the plane normal to 

the rotation axis containing the nominal rolling radius. The second system 
lr lr lr lr

O x y z  is parallel 

to the system 
R R R R

O x y z . Its origin 
lr

O  belongs to the axis 
R

y  while the distance between 
R

O  

and 
lr

O  has to assure the correct gauge between the rails. Both the reference systems described 

above are very important because the global and local contact variables will be evaluated by the 

contact model just in these systems. 

Finally, as regards the external forces acting on the bodies, some considerations are needed. As 

said before, the lateral vehicle dynamics is studied in the local reference system 
R R R R

O x y z  but this 

system is not inertial. Therefore the multibody model will have to consider the effect of the 

fictitious forces (centrifugal force and Coriolis force). These quantities can be calculated starting 

from the knowledge of the kinematics of the bodies as a function of the curvature ( )K s  and of the 

track slope ( )p s . [10] 

4 THE 2D MULTIBODY MODEL 

The 2D multibody model has been obtained from a fully 3D multibody model of the 

Manchester Wagon, the physical and geometrical characteristics of which are easily available in 

the literature. [9] The original 3D model consists of: 1 car – body, 2 bogies and 4 wheelsets; rear 

and front primary suspensions; rear and front secondary suspensions (including roll bar, traction 

rod and bumpstop). 

Both the primary and the secondary suspensions are usually modeled by means of nonlinear 

force elements like three- dimensional springs and dampers. The 2D model can be thought of as a 

section of the 3D model and comprises (Fig. (5)): one car – body, one bogie and one wheelset; one 
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Fig.3: Reference systems relative to the 

multibody model. 

Fig.4:  Reference systems relative to the 

differential contact model. 



primary suspension; one  secondary suspension (including roll bar and bumpstop). 

 

 

 

 

 
 

 

 

Fig.5:  Reference systems relative to the differential contact model. 

As regards the bodies, only some DOF are allowed by the 2D model: the car – body and the 

bogie have 3 DOF (they can translate along the axes 
R

y  and rotate around the 
R

x  axis); the 

wheelset, considered as a 3D body, has 4 DOF (besides the previous DOF it can also rotate around 

its symmetry axis 
W

y ). Moreover, in order to assure the dynamic equivalence between the 2D 

model and the original 3D model, the inertial characteristics of the bodies and the physical 

characteristics of the force elements have to be correctly scaled down.[3][9] The values of the 

scaling factors are schematically reported in Tab. (1) and Tab. (2). 

The choice of a 2D multibody model has been made with the aim of studying the lateral 

vehicle dynamics and, at the same time, of reducing the computational load. In the near future 

fully 3D multibody models of the Manchester Wagon will be considered in order to have a 

complete description of the vehicle dynamics. 

5 THE 3D DIFFERENTIAL CONTACT MODEL 

As regards the generic contact variable Z , the following convention will be adopted: 

• 
wZ  and 

r

wZ  will denote a variable relative to the wheel respectively expressed in the 

reference systems 
lw lw lw lwO x y z  and 

lr lr lr lrO x y z  

• 
rZ and 

w

rZ  will denote a variable relative to the rail respectively expressed in the reference 

systems 
lr lr lr lrO x y z  and 

lw lw lw lwO x y z . 

In the future, according to this convention, the various changes of reference system won’t be 

continually remarked but will be taken for granted. 

5.1  Inputs and Outputs 

The contact model can be thought of as a black box having the following inputs and outputs: 

• INPUTS: the kinematic variables relative to the considered wheel – rail pair (in this case the 

left one), i.e. the position 
r

wO , the velocity  r

wO
•

, the orientation 
r

wR  and the angular velocity 
r

wω  of the reference system 
lw lw lw lwO x y z  with respect to the system 

lr lr lr lrO x y z  (Fig. (4)). 

• OUTPUTS: the global and local contact variables relative to the wheel and to the rail, like the 

contact forces 
wCF  and 

rCF , the stresses 
wσ  and 

rσ , the displacements 
wu  and 

ru  and the 

contact patches 
wCA  and 

rCA . 

5.2 The kinematics of the problem 

The wheel and the rail have been considered as two linear elastic bodies 
wΩ  and 

rΩ  (as 

shown in Fig. (6)). [6][7] Both the domains are supposed to be sufficiently large compared to the 

dimensions of the contact patch. The boundaries 
w∂Ω  and 

r∂Ω  are split into two disjoint regions, 

Body Mass Inertia 

Car – body 0.25 0.25 

Bogie 0.5 0.5 

Wheelset 1 1 

Suspensions Springs Dampers 

Secondary 0.5 0.5 

Primary 1 1 

Table 1: Scaling factors 

(mass and inertia). 

Table 2: Scaling factors 

(springs and dampers). 
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respectively 
wDΓ , 

wCΓ  and 
rDΓ , 

rCΓ . Within the regions 
wDΓ  and 

rDΓ  the displacements are 

fixed (and equal to zero) while 
wCΓ  and 

rCΓ  (dashed in the figure) are the regions where the 

contact may occur. In case of contact the geometric intersection between the surfaces 
wCΓ  and 

rCΓ  (and thus between the non-deformed configurations) allows to define two regions 
�

wC wCA ⊂ Γ  and � rC rCA ⊂ Γ  (with � �
wC rCA A� ) that can be considered as a rough estimate of the 

contact areas. The situation is schematically sketched in Fig. (6) and Fig. (7). 

The real contact areas �
wCwCA A⊂  and �

rCrCA A⊂  (with 
wC rC

A A� ) are unknown and have 

to be calculated by the model. For this purpose a contact map Φ  has to be introduced. The contact 

map � �: wC rCA AΦ →  (by convention the wheel is the master body) locates the position of the point 
�( )

r
rCwx AΦ ∈  that will come in contact with the generic point �r

wCwx A∈ . In this case the map Φ  

is defined as the normal projection ( )
r

wxΦ  of the point �r
wCwx A∈  on the surface � rCA  

 

 

 

 

 

 

 

 

 

 

 

 

      Fig. 6:  The problem geometry                          Fig.7:  Contact map and distance function. 

Starting from the contact map, the distance function between the deformed configurations 
�: wCd A R→  can be evaluated: 

 ( ) ( )( ) ( )
r r r r r r

w w r w w w wd x u u n x x n= − − Φ −i i  (1) 

where 
r

wn  is the outgoing normal versor to the surfaces 
wCΓ . The function d  is positive if 

there is penetration between the deformed configurations and negative otherwise. 

Formally the contact area 
wC

A  is defined as the region of � wCA  where the function d  is 

positive while the contact area ( )
rC wC

A A= Φ  is the normal projection of 
wC

A  on � rCA . In other 

words, from a kinematic point of view, the penetration between the deformed bodies is allowed 

and will play a fundamental role in the contact model (see paragraph 5.3). [6][7] 

In this way the estimated contact areas � wCA  and � rCA  depend only on the relative wheel – rail 

kinematics (
r

wO ,  r

wO
•

, r

wR  and 
r

wω ) while the real contact areas 
wC

A  and 
rC

A  depend also on the 

displacements 
wu  and 

ru . Finally it is useful to remark that no hypothesis has been made on the 

shape of the contact patch; in particular, the contact patch can be formed of one or more disjoint 

parts. As regards the wheel and rail profiles, the standard ORES1002 and UIC60 have been used.[10] 

5.3 The contact model 

According to the linear theory of elasticity [6] [7], both the wheel and the rail are governed by 

the Navier’s equations: 

 
� �

� �

 ( ) 0 on , ( ) on A , 0 on , ( ) on A

 ( ) 0 on , ( ) 0 on \ A 0 on , ( ) 0 on \ A

wC rCw w w w r rw w w wD rw r

wC rCr w w r r rr r w wC rD r rC

div u u n p u u n p

div u u n u u n

σ σ σ

σ σ σ

= Ω = = Γ =

= Ω = Γ = Γ = Γ

(2) 

where 
wn  and 

rn  are the outgoing normal vectors to the surfaces 
wCΓ  and 

rCΓ  while 
w

p  and 

w

r
r

wx

( )
r

wxΦ

r

wn
�

wCA

�
rCA

r

wu

ru
( )

r

wd x

w

r
r

wx

( )
r

wxΦ

r

wn
�

wCA

�
rCA

r

wu

ru
( )

r

wd x

w

r

( )
rC wC

A A= Φ

wC
A

0d >

0d <0d <

w

r

( )
rC wC

A A= Φ

wC
A

0d >

0d <0d <



r rr

wwN w
p p n= i

r r rr

wwNwT w
p p p n= −  

r
p  are the unknown contact pressures. The pressures 

w
p  and 

r
p  are defined on � wCA  and � rCA  

but, according to paragraph 5.2, will have to be zero on � \wC wCA A  and � \rC rCA A . Both the bodies 

have the material characteristics of the steel (Young’s modulus 112.1*10
w r

E E Pa= =  and 

Poisson’s coefficient 0.3w rν ν= = ). In the studied case the volume forces (i. e. the gravity) have 

been neglected because the multibody model of the wheelset already considers their effect. 

Moreover, since the solution is supposed to be steady within the integration step (see Fig. (2)), also 

the inertial terms have been omitted.  

Equivalently the problem (2) can be formulated in weak form as follows: 

 

� �

( ): ( )  , ( ): ( )  

wC rCw r

w w w w r r r rw w w r rw r

A A

u v dV p v dA v V u v dV p v dA v Vσ ε σ ε
Ω Ω

= ∀ ∈ = ∀ ∈∫ ∫ ∫ ∫i i  (3) 

where 
wε  and 

rε  are the strains while 
wV  and 

rV  are suitable Sobolev’s spaces. 

In order to complete the contact model, the contact pressures 
w

p  and 
r

p  have to be expressed 

as a function of the displacements 
wu  and 

ru . For the sake of simplicity the normal and the 

tangential contact pressures on the wheel are introduced:             ,                    . The normal 

pressure 
r

wNp  has been calculated by means of the distance function d : 

 �( ) max( ( ),0) on 
r rr

wCw wwN
p x K d x A= −   (4) 

where 0K >  is a fictitious stiffness constant. The value of K have to be chosen large enough 

to assure the accuracy required by this kind of problems. The condition of ideal contact (total 

absence of penetration between the deformed bodies) is reached for K → +∞  (usually 
310 ^15 N/mK ≥ ).[6][7] To evaluate the tangential pressure r

wT
p , the slip 

r

ws  between the wheel 

and rail surfaces has to be defined. Since the solution is supposed to be steady within the 

integration step, the following expression holds: [2] 

                  

  ( ) ( )  ( )  (  ( ))  (  ( )) ( )  ( ) ( )  (  ( ))  (  ( )) (  ( )) 
r r r r r r r r r r r r r r r rr

w w w w w w r w r w w w w w w r w w r ww r
s x w x u x w x u x w x J x w x w x J x w x

• •

= + − Φ − Φ == + − Φ − Φ Φ  (5) 

where 
r

ww  and 
rw  are the rigid velocity of the points 

r

wx  and ( )
r

wxΦ  while 
r

wJ  and 
rJ  are 

the Jacobians of 
r

wu  and 
ru . As usual the normal and the tangential slips are: 

r rr

w wwN
s s n= i , 

r r rr

wT w wwNs s s n= − . According to the standard friction models, the tangential pressures 
 

( )
r r r

wwT wT
p p x=  can be expressed as follows: 

 �( , )     on  

r
r r r wT

wCwT wN rwT
wT

s
p s V p A

s
µ= −

 (6) 

where r

wTs  is the norm of ( )
r r r

wT wT ws s x=  and V  is the longitudinal velocity of the vehicle. 

Further details on the friction function ( , )r

wTs Vµ  can be found in the literature. [10] 

Finally the action – reaction principle (the Newton’s Third Law) allows to calculate the 

pressures 
r

p : �( ( )) ( ) on 
r r r

wCw wr w
p x p x AΦ = − . It is useful to remark that, according to the 

described model, the pressures 
r

w
p  and 

r
p  are zero respectively on � \wC wCA A  and � \rC rCA A . 

The displacements 
wu  and 

ru  will be evaluated in the following through the numerical 

solution of Eq. (3). The knowledge of these unknown quantities will allow to calculate all the 

other required outputs like the contact areas 
wCA  and 

rCA  and the stresses 
wσ  and 

rσ . The 

contact forces 
wCF  and 

rCF  will be estimated by integration: 

� �

,

wC rC

wC rCw r

A A

F p dA F p dA= =∫ ∫ . 

5.4 The discretization of the model 

Both the elastic bodies have been discretized by means of tetrahedral elements and linear shape 

functions. The meshes have been built according to the standard Delaunay’s algorithms (Fig. (8)). 

[8] The resolution of the meshes on the surfaces 
wCΓ  and 

rCΓ  is constant (usually in the range 

1mm 2mm÷ ) because the position and the dimensions of the contact patch are a priori unknown.  
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Fig.8: Discretization of the contact model. 

The surface resolution has also to assure an accuracy enough to correctly describe the contact 

phenomena. Moreover it is important to remark that the meshes have been created directly in the 

reference systems 
lw lw lw lw

O x y z  and 
lr lr lr lr

O x y z ; therefore they don’t change during the 

simulation and can be easily built off – line.  

In the future the following convention will be adopted. The sets of all the elements of wheel 

and rail will be called 
wT  and 

rT  while the vectors 
12

  ,w h r lu u R∈  will contain the 

displacements of the four nodes belonging to the elements 
w

h T∈  and 
r

l T∈ . Finally the vectors 

wU  and 
rU  will comprise the displacements relative to all the nodes of wheel and rail. Since the 

displacements on 
wDΓ  and 

rDΓ  are zero, the dimension of 
wU , 

rU  are 3( )w wDN N−  and 

3( )r rDN N− , where 
wN  and 

rN  are the numbers of nodes of wheel and rail while 
wDN  and 

rDN  are the numbers of nodes on 
wDΓ  and 

rDΓ . Similarly 
wC  and 

rC  will be the sets of the 

active contact elements on wheel and on rail, i. e. the sets of the elements having respectively a 

face �
i

wCA  and �
j

rCA  that lies on � wCA  and � rCA . The vectors 
12

  ,w i r ju u R∈  will contain the 

displacements of the four nodes belonging to the elements 
w

i C∈  and 
r

j C∈  while the vectors 

wCU  and 
rCU  will comprise the displacements relative to all the active elements. The dimension 

of 
wCU , 

rCU  are 3 wCN  and 3 rCN  where 
wCN  and 

rCN  are the number of nodes belonging to 

the active elements. The knowledge of the relative kinematics ( r

wO ,  r

wO
•

, r

w
R  and 

r

wω ) and 

consequently of the estimated contact areas � wCA  and � rCA  allows to determine the sets 
wC  and 

rC  of the active contact elements on the wheel and on the rail. 

For each active contact element on the wheel, the center 
 

r

w ix  of the face �
i

wCA  is considered. 

The normal projection 
  ( )

r

r j w ix x= Φ  of 
 

r

w ix  on � rCA  will belong to the external face �
j

rCA  of the 

j -th active contact element on the rail. In particular the index ( )j i  will be a function of the index 

i . In other words the pairs of points 
  ( )(  ,   )

r

w i r j ix x  with 
wi C∈  can be thought of as the 

discretization of the contact map Φ . The situation is schematically sketched in Fig. (8). 

The values of the displacements 
r

wu , 
ru  and of their Jacobians r

w
J , 

rJ  in the points 
 

r

w ix  and 

 r jx  are evaluated through the shape functions. [6] [7] [8] 

At this point the distance function 
 ( )

r

w iid d x=  and the pressure                    on the face �
i

wCA  

of the active element of the wheel can be calculated by means of Eq. (1), (4) and (6). Finally a 

discrete version of the action – reaction principle (the Newton’s Third Law) is needed to evaluate 

the pressure 
  

( )r jr j r
p p x=  on the face �

j

rCA  of the active element of the rail: � �
  

| | | |
j i r
rC wC

r j w i
A p A p= , 

where �| |
i

wCA  and �| |
j

rCA  are the areas of the faces �
i

wCA  and �
j

rCA . Both the pressures 
 

r

w i
p  and 

 r j
p  

are supposed to be constant on �
i

wCA  and �
j

rCA . The standard FEM techniques allow to discretize the 

weak form of the contact problem (see Eq. (3)) : [6] [7] [8] 
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where 
 w hK , 

 r lK  are the stiffness matrices relative to the elements 
w

h T∈ , 
r

l T∈  and 
 w iM , 

 r jM  depend on the shape functions. The global stiffness matrices 
wK  and 

rK  are symmetric, 

r
r

wx

( )
r

r wx x= Φ

r

wn

�
wCA

�
rCA

w
Cw

r
C

�
j

rCA

�
i

wCA



positive defined and sparse while the vectors 
wF  and 

rF , that contain the terms due to the 

contact pressures, are sparse. The dimensions of the stiffness matrices are about 10000  100000÷  

but they are evaluated directly in the reference systems 
lw lw lw lwO x y z  and 

lr lr lr lrO x y z ; therefore 

they don’t change during the simulation and can be easily built off – line. Eq. (3) and Eq. (7), 

combined together, give 

 3( ) 3( )
( , )     , ( , )     w wD r rD

T TN N N NT T

w rw w wC rC w w r r wC rC r rw r
U K V F U U V V R U K V F U U V V R

− −= ∀ ∈ = ∀ ∈  (8) 

Finally, since the matrices 
wK , 

rK  are symmetric and the vectors 
wV , 

rV  are arbitrary, the 

following nonlinear system of algebraic equations is obtained: 

 ( , ), ( , )w rw wC rC r wC rCw rK U F U U K U F U U= =  (9) 

where, as said before,  the contact displacements 
wCU , 

rCU  are a subset of the displacements 

wU , 
rU . Eq. (9) can be also written as 

 ( , ), ( , )w rw wC rC r wC rCw w
U H F U U U H F U U= =  (10) 

where the matrices 1

w wH K
−=  and 1

r rH K
−=  are symmetric, positive defined and full 

(consequently their storage can require an high memory consumption). Like 
wK  and 

rK  they 

don’t change during the simulation and can be calculated off – line. Splitting 
wU , 

rU  into contact 

displacement 
wCU , 

rCU  and non – contact displacement wNCU , wNCU , Eq. (10) becomes  

 
11 12 11 12

21 22 21 22

0 0
,

( , ) ( , )

wNC rNCw w r r

wC rC wC rCwC rCw w r rw r

U UH H H H

f U U f U UU UH H H H

         
= =          

         

 (11) 

In this way the second and the fourth components of Eq. (11) are sufficient to calculate contact 

displacement 
wCU , 

rCU :  

 22 22( , ), ( , )wC wC rC rC wC rCw rw r
U H f U U U H f U U= =  (12) 

The matrices 
22

wH  and 
22

rH  have the same properties of 
wH  and 

rH  but this time their 

dimensions are much smaller (about 100  1000÷ ). In particular, the dimension of 
22

wH  and 
22

rH  

depend on the number of active elements that change during the simulation; therefore they have to 

be built directly on – line. The vectors 
w

f  and 
r

f  are full.  

The remaining  non – contact displacements 
wNCU , 

wNCU  can be evaluated by means of the 

first and the third components of Eq. (11). The knowledge of the displacements 
wU , 

rU , 

evaluated by solving Eq. (9) or Eq. (12), allows to calculate all the other required outputs like the 

contact areas 
wCA  and 

rCA  and the stresses 
wσ  and 

rσ . The contact forces 
wCF  and 

rCF  are 

estimated by numerical integration: 

 � �
  

| | | | .
w r

i j

wC rCwC rCw i r j
i C j C

F A p F A p
∈ ∈

= =∑ ∑  (13) 

5.5 The SIMPACK RAIL 2D multibody model 

 The same multibody model of the benchmark vehicle (Manchester Wagon [9]) has been 

implemented also in Simpack Rail, a widely tested and validated multibody software for the 

analysis of the railway vehicle dynamics. This time the multibody model is equipped with a 

standard contact model based on the semi – elastic approach. [2]-[4] As in the previous case the 

2D multibody model (designed for the study of the lateral dynamics) has been obtained from the 

fully 3D multibody model of the vehicle while the contact model is completely 3D (see Fig. (9)). 

The comparison between the results obtained by the Matlab/Simulink model and those obtained by 

the Simpack Rail model has allowed an accurate and reliable validation of the new contact model. 



 

Fig.9: 3D and 2D multibody models of the Manchester Wagon (Simpack Rail). 

5.6 Simulation of the lateral vehicle dynamics 

The comparison between the Matlab/Simulink model (implemented on Matlab R2007b) and 

the Simpack Rail model (implemented on Simpack 8.900) has been carried out on the same 

curvilinear railway track, the data of which are reported in Tab. (3). [3] [10] The numerical data 

relative to the Matlab model and to the Simpack model are reported in Tab. (4) and Tab. (5). 

 

 

 

  Table 3: Data of the railway track       Table 4: Numerical Data        Table 5: Numerical Data  

Among all the kinematic and dynamic variables evaluated by the models, the time histories of 

the following quantities are reported (for the sake of simplicity all the outputs are expressed in the 

reference system 
R R R R

O x y z ): the lateral displacement R

Wy  of the centre of mass of the wheelset R

WO  

(Fig. (10)) and the contact force on the left wheel R

lwF  (in particular 
R

lwY  is the lateral force (Fig. 

(11) while R

lw
Q  is the vertical forces (Fig. (12))). 

The Matlab variables are plotted in blue while the equivalent Simpack quantities in red. 

 

 

 

 

 

 

 

 

 

Fig. 10: Lateral displacement R

Wy      Fig. 11: Lateral force R

lw
Y            Fig. 12: Vertical force 

R

lw
Q               

The simulation results show a good agreement between the Matlab model and the Simpack 

model both in terms of kinematic variables and in terms of contact forces. 

As regards the positions of contact patches 
wCA , 

rCA  on the wheel and on the rail, in order to 

give an effective description of the shifting of the contact areas during the simulation, a lateral 

section along the plane 
R R

y z  of the areas 
wCA , 

rCA  has been considered. The sections of the 

contact patches have been plotted on cylindrical surfaces generated by the wheel and rail profiles 

and as long as the distance traveled by the vehicle. By way of example the contact areas 
lwCA  and 

lrCA on the left wheel and rail surfaces are reported in Fig. (13) and Fig. (14).  

The sections of the contact areas evaluated by the Matlab model are plotted in blue while the 

contact points detected by the Simpack model are plotted in black. It is interesting to remark that, 

during the curve, a second contact point appears on the left wheel and rail (the track turns to left).  

Consequently, while the Simpack model detects two distinct contact points, the contact areas 

evaluated by the Matlab model consist of two disjoint parts. 

Curvature K  11/1200 m−  

Slope p  0  

Cant β  60 mm  

Laying angle pα  1/40 rad  

Velocity V  45 m/s 

Friction 

coefficient 
µ  0.3  
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Fig.13: Section of contact area 
lwCA     Fig.14: Section of contact area 

lrCA  

Also in this case the agreement between the results obtained by the Matlab model and the 

Simpack model is good. 

In conclusion the accuracy of the Matlab model turns out to be comparable with that of the 

Simpack model; moreover the quasi – total absence of numerical noise highlights the robustness 

and the stability of the new differential contact model.  

6 CONCLUSION AND PERSPECTIVE 

The performances of the Matlab model turned out to be good both in terms of output accuracy 

and in terms of numerical efficiency and satisfy all the specifics reported in the introduction. 

As regards the further developments, in the near future fully 3D multibody models of the 

Manchester Wagon will be considered. This kind of model allows a complete description of the 

vehicle dynamics but obviously involves an increase of the model DOFs and of the number of 

wheel – rail contact pairs. Moreover many optimizations of the differential contact model are 

planned for the future. The improvements will regard especially the FEM techniques used to 

discretize the contact problem. In particular new mesh generation algorithms and suitable 

nonlinear shape functions will be examined. These techniques assure a better accuracy in the 

description of the local contact phenomena but increases the dimension of the discrete problem 

and consequently the computational load and the memory consumption. Finally the 

implementation of the contact model in programming environments like C/C++ and FORTRAN 

will be considered in order to obtain a further reduction of the computation time. 
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