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ABSTRACT 

The wheel - rail contact analysis plays a fundamental role in the multibody modeling of railway vehicles. 

A good contact model must provide an accurate description of the global and local contact phenomena 

(contact forces, position and shape of the contact patch, stresses and displacements) and a general 

handling of the multiple contact. The model has also to assure high numerical efficiency (in order to be 

implemented directly online within multibody models) and a good compatibility with commercial 

multibody software (Simpack Rail, Adams Rail). 

In this work the authors intend to present an innovative elastic wheel - rail contact model that satisfies the 

previous specifics. The model considers the wheel and the rail as elastic deformable bodies and requires 

the numerical solution of the Navier’s elasticity equation. The contact between wheel and rail has been 

described by means of suitable analytical contact conditions. Subsequently the contact model has been 

inserted within the multibody model of a benchmark railway vehicle (the Manchester Wagon) in order to 

obtain a complete model of the wagon. The whole model has been implemented in the Matlab 

environment. Finally numerical simulations of the vehicle dynamics have been carried out on many 

different railway tracks with the aim of evaluating the performances of the model. 

In conclusion the main purpose of the authors is to achieve a better integration between the differential 

modeling and the multibody modeling. This kind of integration is almost absent in literature (especially in 

the railway field) due to the computational cost and to the memory consumption. However it is very 

important because only the differential modeling allows an accurate analysis of the contact problem (in 

terms of contact forces, position and shape of the contact patch, stresses and displacements) while the 

multibody modeling is currently the standard in the study of the railway dynamics. 

Keywords: Multibody modeling, wheel – rail contact, contact between elastic bodies. 

1 INTRODUCTION 

The wheel - rail contact problem has been discussed by several authors and many models can be found in 

the literature. Currently the main multibody approaches to the problem are the so - called rigid contact 

formulation and the semi – elastic contact description. The rigid approach considers the wheel and the rail 

as rigid bodies. The contact is imposed by means of constraint equations and the contact points are 

detected during the dynamic simulation by solving the nonlinear algebraic differential equations 

associated to the constrained multibody system. Indentation between the bodies is not permitted and the 

normal contact forces are calculated through the Lagrange multipliers. Finally the Hertz’s and the 

Kalker’s theories allow to evaluate respectively the shape of the contact patch and the tangential forces. 

[1][2][3][4][5][6] Also the semi - elastic approach considers the wheel and the rail as rigid bodies. 

However in this case there are not constraints and the indentation between the bodies is permitted. The 

contact points are detected by means of approximated procedures (based on look - up tables and 
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simplifying hypotheses on the problem geometry) or by means of semi - analytical methods (based on the 

reduction of the problem dimension). The normal contact forces are calculated as a function of the 

indentation while, as in the rigid approach, the Hertz’s and the Kalker’s theories allow to evaluate the 

shape of the contact patch and the tangential forces. [4][5][6][7][8][9] 

Both the described multibody approaches are computationally very efficient but their generality and 

accuracy turn out to be often insufficient because the physical hypotheses behind these theories are too 

restrictive and, in many circumstances, unverified. 

In order to obtain a complete description of the contact phenomena, differential contact models are 

needed. In other words wheel and rail have to be considered elastic bodies governed by the Navier’s 

equations and the contact has to be described by suitable analytical contact conditions. The contact 

between elastic bodies has been widely studied in literature both in the general case and in the rolling 

case. Many procedures based on variational inequalities, FEM techniques and convex optimization have 

been developed. This kind of approach assures high generality and accuracy but still needs very large 

computational costs and memory consumption. [4][10][11][12][13][14] 

Due to the high computational load, referring to the current state of the art, the integration between 

multibody and differential modeling is almost absent in literature especially in the railway field. However 

this integration is very important because only the differential modeling allows an accurate analysis of the 

contact problem (in terms of contact forces, position and shape of the contact patch, stresses and 

displacements) while the multibody modeling is the standard in the study of the railway dynamics. 

In this work an innovative differential contact model is presented with the aim of achieving a better 

integration between multibody and differential modeling. The new contact model is fully 3D and satisfies 

all the specifics described above. The developed procedure requires the discretization of the elastic 

contact problem (Navier’s equations and analytical contact condition) and subsequently the solution of 

the nonlinear discrete problem. Both the steps have been implemented in Matlab environment.  At this 

point the contact model has been inserted within a 3D multibody model of a railway vehicle to obtain a 

complete model of the wagon. The railway vehicle chosen as benchmark is the Manchester Wagon the 

physical and geometrical characteristics of which are easily available in the literature. [15] The multibody 

model has been implemented in SimMechanics, a Matlab toolbox specifically designed for multibody 

dynamics.  

The 3D multibody model of the same vehicle (this time equipped with a standard contact model based on 

the semi - elastic approach) has been then implemented also in Simpack Rail, a commercial multibody 

software for railway vehicles widely tested and validated.  

Finally numerical simulations of the vehicle dynamics have been carried out on many different railway 

tracks with the aim of evaluating the performances of the whole model. The comparison between the 

results obtained by the Matlab model and those obtained by the Simpack Rail model has allowed an 

accurate and reliable validation of the new contact model. 

2 GENERAL ARCHITECTURE OF THE MODEL 

As said in the introduction the whole model consists of two different parts: the 3D multibody model of 

the railway vehicle (the Manchester Wagon [15]) and the 3D differential wheel - rail contact model. The 

general architecture of the model is schematically shown in Figure 1.  

 

 

 

 

 

Figure 1. General architecture of the model. 

During the simulation the multibody model interacts directly online with the differential contact model. 

At each time integration step the multibody model evaluates the kinematic variables relative to the 

wheelset and consequently to each wheel - rail contact pair. Starting from these quantities, the contact 

model, based on Navier’s equations and suitable analytical contact conditions, calculates the global and 

local contact variables (forces, contact areas, stresses and displacements). Finally the knowledge of the 

contact variables allows the multibody model to carry on the simulation of the vehicle dynamics. 



3 REFERENCE SYSTEMS AND RAILWAY TRACK 

First of all a fixed reference system 
f f f fO x y z  (in which the track ( )sγγγγ  is described) is defined (Figure 2a). 

Subsequently a second reference system, referred as auxiliary reference system 
R R R R

O x y z  (Figure 2a and 

2b), is introduced. It is placed on the plane of the rails and follows the motion of the wheelset during the 

simulation. Finally the local reference system 
W W W W

O x y z  is defined; this system is rigidly connected to the 

wheelset except for the rotation around its axis. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. (a) Fixed, auxiliary and local systems    (b) Auxiliary, local, wheel and rail systems 

In order to correctly describe the differential contact model, two further reference systems have to be 

introduced for each wheel - rail pair: the wheel system 
w w w w

O x y z  and the rail system 
r r r r

O x y z . For the 

sake of simplicity only the left pair has been reported in Figure 2a. Both the systems are very important 

because the global and local contact variables will be evaluated by the contact model just in these 

systems. In the studied case the following standard profiles have been considered: the UIC 60 for the rails 

and the ORE S1002 for the wheels. [8][9][16][17][18] 

4 THE DIFFERENTIAL WHEEL – RAIL CONTACT MODEL 

In this chapter the 3D differential wheel - rail contact model will be described. For the sake of simplicity, 

as regards the generic contact variable Z , the following convention will be adopted: 
wZ  and r

wZ  will 

denote a variable relative to the wheel respectively expressed in the reference systems 
w w w w

O x y z  and 

r r r r
O x y z  while w

rZ  and 
r

Z  will denote a variable relative to the rail expressed in the same systems. In the 

future, according to this convention, the various changes of reference system won’t be continually 

remarked but will be taken for granted. 

4.1 The kinematics of the problem 

The wheel and the rail have been considered as two linear elastic bodies 
wΩ  and 

rΩ  (as shown in Figure 

3a). Both the domains are supposed to be large enough with respect to the dimensions of the contact 

patch. [11][12] The boundaries 
w∂Ω  and 

r
∂Ω  are split into two disjoint regions, respectively 

wC
Γ , 

wD
Γ  

and 
rC

Γ , 
rD

Γ . The contact boundaries 
wCΓ  and 

rC
Γ  (dashed in Figure 3a) are the regions where the 

contact may verify while on the Dirichlet boundaries 
wD

Γ  and 
rD

Γ  the displacements are known and equal 

to zero. The knowledge of the wheel - rail kinematics ( r

wO ,  r

w⋅

•

O , r

w
R , r

wωωωω  and 
r⋅

•

O , 
rωωωω ) and consequently of 

the location of the Dirichlet boundaries has been used, during the simulation, to determine the position of 

the undeformed configurations. 

In case of contact, the geometric intersection between the surfaces 
wC

Γ  and 
rC

Γ  (and thus between the 

undeformed configurations) allows to define the penetration areas � wC wCA ⊂ Γ  and � rC rCA ⊂ Γ  (with 

� �
wC rCA A� ) that can be considered as a first rough estimate of the real contact areas 

wC
A  and 

rC
A . The 

situation is schematically sketched in Figure 3b and 3c. 

The real contact areas �
wCwCA A⊂  and �

rCrCA A⊂  (with 
wC rCA A� ) are unknown and have to be calculated by 

the model. For this purpose a contact map ΦΦΦΦ  has to be introduced. The contact map � �: wC rCA A→ΦΦΦΦ  (by  



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. (a) Domains and boundaries (b) Contact areas (c) Contact map and distance function 

convention the wheel is the master body) connects the generic point �r
wCw A∈x on the wheel surface with the 

point �( )r
rCw A∈ΦΦΦΦ x  on the rail surface that will get in contact with the point on the wheel surface in the 

deformed configuration. In this case the map ΦΦΦΦ  is defined as the normal projection ( )r

wΦΦΦΦ x  of the point 

�r
wCw A∈x  on the surface � rCA . Starting from the contact map, the distance function between the deformed 

configurations �: wCd A R→  can be evaluated: 

( ) ( )( ) ( )r r r r r r

w w r w w w wd = − − −i iΦΦΦΦx u u n x x n  (1) 

where r

w
n  is the outgoing normal versor to the surfaces 

wC
Γ . The function d  is positive if there is 

penetration between the deformed configurations and negative otherwise (Figure 3c). 

Formally the contact area 
wC

A  is defined as the region of � wCA  where the function d  is positive while the 

contact area ( )
rC wC

A A= ΦΦΦΦ  is the normal projection of 
wC

A  on � rCA . In other words, from a kinematic point 

of view, the penetration between the deformed bodies is allowed and will have to be penalized by the 

contact model (see paragraph 4.2) (Figure 3c). [11][12] 

In this way the estimated contact areas � wCA  and � rCA  depend only on the relative wheel - rail kinematics 

while the real contact areas 
wC

A  and 
rC

A  depend also on the displacements 
w

u  and 
r

u . Finally it is useful 

to remark that no hypothesis has been made on the shape of the contact patch; in particular, the contact 

area can be made up of one or more disjoint parts. 

4.2 The contact model 

According to the linear theory of elasticity [11][12], both the wheel and the rail are governed by the 

Navier’s equations: 

where 
wn  and 

wn  are the outgoing normal vectors to the surfaces 
wC

Γ  and 
rC

Γ  while 
wp  and 

rp  are the 

unknown contact pressures. The pressures 
w

p  and 
rp  are defined on � w CA  and � rCA  but will have to be 

zero on � \wC wCA A  and � \rC rCA A . Both the bodies have the material characteristics of the steel (Young’s 

modulus 112.1*10
w r

E E Pa= =  and Poisson’s coefficient 0.3
w r

ν ν= = ). 

In the studied case volume forces (i. e. the gravity) and inertial terms have been neglected (see Eq. 2) 

because their influence on the contact phenomena is very small and because they have just been 

considered by the multibody model of the railway vehicle. Moreover the problem is supposed to be steady 

within the time integration step (see Figure 1). [4][11][12] 

Equivalently the problem 2 can be formulated in weak form as follows: 

� �

( ) : ( )  ( ) : ( )  

wC rCw r

w w w w w w w w r r r r r r r r

A A

dV dA V dV dA Vσ ε σ ε
Ω Ω

= ∀ ∈ = ∀ ∈∫ ∫ ∫ ∫i iu v p v v u v p v v  
(3) 

where 
wε  and 

rε  are the strains while 
wV  and 

rV  are suitable Sobolev’s spaces. 

 �

�

�

�

( )  on A ( )  on A ( )  on  on 

 ( )  on  on ( )  on \ A ( )  on \ A

wC rCw w w w r r r rw w w w wD

wC rCr r r r rD w w w wC r r r rC

div

div

σ σσ

σ σ σ

= == Ω = Γ

= Ω = Γ = Γ = Γ

u n p u n pu 0 u 0

u 0 u 0 u n 0 u n 0

 (2) 



In order to complete the contact model, the contact pressures 
wp  and 

rp  have to be expressed as a 

function of the displacements 
wu  and 

r
u . For the sake of simplicity the normal and the tangential contact 

pressures on the wheel are introduced: r r r

wN w w
p = ip n , r r r r

wT w wN w
p= −p p n . The normal pressure r

wNp  has been 

calculated by means of the distance function d  and has to penalize the penetration between the deformed 

configurations (see paragraph 4.1): 

�( ) max( ( ),0) on r r r
wCwN w wp K d A= −x x  (4) 

where 0K >  is a fictitious stiffness constant. The value of K  has to be chosen large enough to assure the 

accuracy required by this kind of problems. The condition of ideal contact (total absence of penetration 

between the deformed configurations) is reached for K → +∞  (usually 15 310  N/mK ≥ ). [11][12] To 

evaluate the tangential pressure r

wTp , the slip r

w
s  between the wheel and rail surfaces has to be defined. 

Since the solution is supposed to be steady within the integration step, the following expression holds: 

[4][11][12] 

( ) ( ) ( ) ( ( )) ( ( )) ( ) ( ) ( ) ( ( )) ( ( )) ( ( ))r r r r r r r r r r r r r r r r r

w w w w w w r w r w w w w w w w r w r w r wJ J
• •

= + − − = + − −s x w x u x w x u x w x x w x w x x w xΦ Φ Φ Φ ΦΦ Φ Φ Φ ΦΦ Φ Φ Φ ΦΦ Φ Φ Φ Φ  (5) 

where r

ww  and 
rw  are the rigid velocity of the points r

w
x  and ( )r

wΦΦΦΦ x  (computable starting from the 

knowledge of the wheel - rail kinematic variables) while r

wJ  and 
r

J are the Jacobians of r

w
u  and 

r
u with 

respect to the variables r

w
x  and 

r
x . As usual the normal and the tangential slips are: r r r

wN w w
s = is n , 

r r r r

wT w wN w
s= −s s n . According to the standard pseudo – coulombian friction models, the tangential pressures 

r

wTp  can be expressed as follows: 

�( ) (|| ( ) ||, ) ( ) ( ) / || ( ) || on r r r r r r r r r r
wCwT w wT w wN w wT w wT w

V p Aµ= −p x s x x s x s x  (6) 

where V  is the longitudinal velocity of the vehicle. Further details on the friction function (|| ||, )r

wT
Vµ s  

can be found in the literature. [4][11][12][17] Finally the action – reaction principle (the Newton’s Third 

Law) allows to calculate the pressures 
rp : ( ( )) ( )r r r

r w w w
= −p x p xΦΦΦΦ  on � wCA . In conclusion It is useful to 

remark that, according to the described model, the contact pressures r

wp  and 
r

p  are zero respectively on 

� \wC wCA A  and � \rC rCA A . The displacements 
w

u  and 
r

u  will be evaluated in the following through the 

numerical solution of Eq. 3. The knowledge of these unknown quantities will allow to calculate all the 

other required outputs like the contact areas 
wC

A  and 
rC

A  and the stresses 
wσ  and 

r
σ . The contact forces 

wC
F  and 

rC
F  will be estimated by integration: 

�
wC

wC w
A

dA= ∫F p , 
�

rC
rC r

A
dA= ∫F p . 

4.3 The discretization of the model 

Both the elastic bodies have been discretized by means of tetrahedral elements and linear shape functions. 

The meshes have been built according to the standard Delaunay’s algorithms (see Figure 4). [13][14] 

The resolution of the meshes on the surfaces 
wC

Γ  and 
rC

Γ  is constant because the position and the 

dimensions of the contact area are a priori unknown. Moreover the surface resolution (usually in the range 

0.1mm  1.0mm÷ ) has to assure an accuracy enough to correctly describe the contact phenomena. It is 

important to remark that the meshes have been created directly in the reference systems 
w w w w

O x y z  and 

r r r r
O x y z ; therefore they don’t change during the simulation and can be easily built offline without 

increasing the computational load. 

The knowledge of the wheel - rail kinematics and consequently of the estimated contact areas � wCA  and 

�
rCA  allows to determine the sets 

w
C  and 

rC  of the active contact elements on the wheel and on the 

rail.For each active contact element on the wheel, the center 
 

r

w i
x  of the face �

i

wCA is considered. The 

normal projection 
  ( )r

r j w i=x xΦΦΦΦ  of 
 

r

w ix  on � r CA  will belong to the external face �
j

rCA  of the  - thj  active 

contact element on the rail; in particular the index ( )j i  will be a function of the index i . In this way the 

pairs of points 
  ( )(  ,  )r

wi r j i
x x  with 

w
i C∈  can be thought of as the discretization of the contact map ΦΦΦΦ. The 

situation is schematically sketched in Figure 4. The values of the displacements r

w
u , 

r
u of their Jacobians 

r

w
J , 

r
J in the points 

 

r

w ix , 
 r jx  are evaluated through the shape functions. [11][12][13][14] 



 

 

 

 

 

Figure 4. Discretization of the contact model 

At this point the distance function 
 ( )r

i w i
d d= x  and the pressure 

  ( )r r r

w i w w i
=p p x  on the face �

i

wCA  of the active 

element of the wheel can be calculated by means of Eq. 1, 4 and 6. Finally a discrete version of the action 

- reaction principle (the Newton’s Third Law) is needed to evaluate the pressure 
 ( )  ( )( )

r j i r r j i
=p p x  on the 

face �
( )j i

rCA  of the active element of the rail: � �
( )

 ( )  | | | |
j i i

r
rC wCr j i w i

A A= −p p . 

Standard FEM techniques allow to discretize the weak form of the contact problem (see Eq. 3) as follows: 

[11][12][13][14] 

( , ) ( , )
w w w wC rC r r r wC rC

K K= =U F U U U F U U . (7) 

The global stiffness matrices 
w

K  and 
rK  are symmetric, positive defined and sparse; 

w
U , 

rU  comprise 

the displacements relative to all the nodes of wheel and rail while 
wC

U  and 
rC

U  only the displacements 

relative to the active elements. Moreover 
w

K  and 
rK  are evaluated directly in the reference systems 

w w w w
O x y z  and 

r r r r
O x y z ; therefore they don’t change during the simulation and can be easily built offline 

without increasing the computational load. Eq. 7 will be called the sparse formulation of the discrete 

contact problem. This equation can be also written as ( , )
w w w wC rC

H=U F U U , ( , )
r r r wC rC

H=U F U U  where 

the matrices 
w

H  and 
r

H are symmetric, positive defined and full. Like 
w

K  and 
r

K  they don’t change 

during the simulation and can be calculated offline (however their storage can require an high memory 

consumption). Splitting 
w

U , 
rU  into contact displacements 

wC
U , 

rC
U  and non - contact displacements 

wNC
U , 

NC
U , the following relations can be obtained 

11 12 11 12

21 22 21 22( , ) ( , )

wNC rNCw w r r

wC w wC rC rC r wC rCw w r r

H H H H

H H H H

          
= =          

         

U 0 U 0

U f U U U f U U
. (8) 

In this way the second and the fourth components of Eq. 8 are sufficient to calculate the contact 

displacements 
wC

U , 
rC

U : 

22 22( , ) ( , )wC w w wC rC rC r r wC rCH H= =U f U U U f U U . (9) 

Eq. 9 will be called the reduced formulation of the discrete contact problem. The matrices 22

w
H  and 22

rH  

have the same properties as 
w

H  and 
rH  but this time their dimensions are much smaller. However 22

wH  

and 22

rH  change during the simulation and therefore have to be built directly online. 

The knowledge of the displacements 
w

U , 
rU , evaluated by solving Eq. 7 or Eq. 9, allows to calculate all 

the other required outputs like the contact areas 
wC

A  and 
rC

A and the stresses 
wσ  and 

rσ . The contact 

forces 
wC

F  and 
rC

F  are estimated by numerical integration: �
 | |

w

i

wCwC w ii C
A

∈
=∑F p , �

( )

 ( )| |
w

j i

rCrC r j ii C
A

∈
=∑F p . 

4.4 The numerical solution of the discrete problem 

In this paragraph the numerical methods used for solving the discrete contact problem are presented. Both 

the sparse formulation (Eq. 7) and the reduced formulation (Eq. 9) will be analyzed in the following. Eq. 

7 is a large and sparse nonlinear system; on the contrary Eq. 9 is a full non linear system with much 

smaller dimensions than 7. The typical dimensions of 
w

K  and 
rK  (depending on the mesh resolution) are 

in the range 4 510   10÷  while those of 22

wH  and 22

rH  (depending on the number of active elements) are 

about 2 310   10÷ . 



Nonlinear solvers based on Newton - Krylov methods are usually very efficient for solving large and 

sparse systems like Eq. 7. [19] Newton - Krylov methods are Newton-type methods for the problem 

( ) =F x 0  where F  is a generic nonlinear function. In particular, Krylov methods are employed to solve 

approximately the arising linear systems: '( ) ( )
k k k

F = −x s F x  where 'F  is the Jacobian of F . The Krylov 

method computes, at each iteration, the so-called inexact Newton step 
k
�s  which satisfies the condition 

[ )'( ) ( ) ( ) 0,1
k k k k k k

F η η+ ≤ ∈�x s F x F x  where the forcing terms 
k

η  are used to control the level of accuracy. 

[19] In the studied case a constant forcing term 0.5  
k

kη η= ≤ ∀  has been chosen while the method stops 

if the following stopping criterion is satisfied: ( )k Tol<F x . As regards the considered problem, numerical 

experimentations showed that, among all the Krylov methods, the best linear solver is the BiCGStab. [20] 

This particular kind of nonlinear solver is known as Newton - BiCGStab method. 

Iterative methods like the BiCGStab need often a good preconditioner. The employed preconditioner P  

has been defined as follows: ( , )
w r

P diag K K= . Since Eq. 7 is weakly nonlinear, the preconditioner P  is a 

good approximation of the Jacobian. In general, the BiCGStab does not require the whole matrix P  but 

only a factorization of it. In the considered case the incomplete Cholesky factorization [20] has been used 

because the matrix P  is not only symmetric and positive defined but also sparse. Moreover this 

factorization performs a reordering of P  and takes advantage of its sparsity in terms of execution time 

and memory consumption. 

An interesting feature of the Newton - BiCGStab method is that it requires only the action of 'F  on a 

vector v but not the computation and the storage of the whole Jacobian. In this case, the product '( )F x v  

can be approximated by means of finite differences: '( ) ( ( ) ( )) /F ε ε+ −�x v F x v F x  where 0ε >  is a scalar 

small enough. [21] Consequently this method is called ”matrix free”. 

The same nonlinear solver (Newton - BiCGStab), this time without preconditioner, has been used in order 

to solve Eq. 9. In this circumstance, due to the small dimensions of the problem, the arising linear systems 

can be also solved by means of direct methods (like the LU method [22]). Therefore a second nonlinear 

solver based on this kind of procedures (the Newton - LU method) has been analyzed and experimented 

on the system 9. The employment of this alternative approach needs the computation and the storage of 

the whole Jacobian 'F  at each nonlinear iteration. 

Finally, it has to be remarked that, if the guarantee of convergence is only local, the nonlinear solvers (the 

Newton - BiCGStab and the Newton - LU) may fail in finding a solution, even though an effective 

solution exists. Therefore both the numerical procedures have been embedded into a globalization 

strategy. A monotone line search method with Armijo rule has been employed, with a maximum of 10 

backtracks for nonlinear iteration. [21][22] 

As regards the time integration of the whole model (multibody model and contact model; see Figure 1), 

explicit ODE solvers with variable step and variable order have been considered. [23] Moreover, during 

the simulations, the initial conditions for the nonlinear solvers (the Newton - BiCGStab and the Newton - 

LU) are continually updated in order to speed up the convergence of the solvers and to reduce the 

computation time. In other words the solution of the problem at the current time step is used as initial 

condition for the solver at the next time step. 

5 THE MULTIBODY MODEL 

As benchmark vehicle the Manchester Wagon has been chosen (see Figure 5a); the physical and 

geometrical characteristics of the vehicle can be found in literature. [5][15] The multibody model consists 

of seven rigid bodies: the car body, two bogies and four wheelsets. The secondary suspensions connect 

the bogies to the car body while the primary suspensions connect the wheelsets to the bogies. Both the 

stages of suspensions have been modelled by means of three-dimensional viscoelastic force elements 

(linear and nonlinear). The multibody model of the Manchester Wagon has been implemented in 

SimMechanics, a Matlab toolbox specifically designed for the multibody dynamics.  

 

 

 

 

 

 

 

Figure 5. (a) Matlab multibody model    (b) Simpack Rail multibody model 



The 3D multibody model of the same vehicle has been then implemented also in Simpack Rail, a 

commercial multibody software for railway vehicles widely tested and validated (Figure 5b). [15] This 

time the model is equipped with a standard contact model based on the semi - elastic approach and able to 

consider the multiple contact (see the introduction). [4][5][6][7][8][9] The comparison between the results 

obtained by the Matlab model and those obtained by the Simpack Rail model has allowed an accurate and 

reliable validation of the new contact model. 

6 THE NUMERICAL SIMULATIONS 

With the aim of studying the behavior of the whole model (see Figure 1), a large number of dynamic 

simulations has been performed on many different sceneries obtained by varying the geometrical 

characteristics of the railway track. [5][15][16] By way of example a typical simulation of the dynamics 

of the Manchester Wagon will be considered. The simulation has been carried out on a curvilinear railway 

track, the data of which are reported in Table 1a (on a machine provided with an Intel Xeon 2.66GHz and 

8GB RAM). [5][15][16] 

 

Table 1. (a) Data of the curvilinear track    (b) Numerical parameters 

First of all, in order to compare the sparse formulation 7 and the reduced formulation 9 of the contact 

problem, several experimentations have been performed with different ODE solvers like the ODE23 and 

the ODE45. [23] The values of the main numerical parameters relative to the simulation are reported in 

Table 1b for both the formulations. 

The results showed that the reduced formulation 9 is more efficient than the sparse formulation 7 even 

though the reduced formulation 9 may require a bigger memory consumption (see paragraph 4.3). In both 

cases ODE solvers with low order like the ODE23 turned out to be faster than ODE solvers with higher 

order like the ODE45. 

Table 2 summarizes, for instance, the results obtained by using the ODE 23 and relative to the reduced 

formulation 9. For each wheel - rail contact pair the following data have been considered: (1) the number 

CPS  of contact problems solved during the dynamic simulation (equal for all the eight contact pairs); (2) 

the mean computation times CT  relative to each contact model (the time needed to solve one contact 

problem) and the total computation time required by the eight contact models; (3) the total number 

IterNonlin  of nonlinear iterations and the convergence errors of the nonlinear solver ErrorNonlin ; (4) the 

total number IterLin  of linear iterations and the convergence errors of the linear solver ErrorLin . 

Differential Contact Model: Reduced Formulation 9 

Wheel − Rail Pair CPS CT 3h 46 m IterNonlin ErrorNonlin IterLin ErrorLin 

1° Wheelset (Left Wheel) 150156 12.0 ms 162111 13 705742 1428 

1° Wheelset (Right Wheel) 150156 10.7 ms 148925 4 609546 787 

2° Wheelset (Left Wheel) 150156 12.0 ms 160709 3 757143 1659 

2° Wheelset (Right Wheel) 150156 10.6 ms 148501 9 643307 705 

3° Wheelset (Left Wheel) 150156 12.1 ms 163581 4 755329 1410 

3° Wheelset (Right Wheel) 150156 10.5 ms 147231 5 629624 928 

4° Wheelset (Left Wheel) 150156 12.3 ms 162085 4 792693 1368 

4° Wheelset (Right Wheel) 150156 10.3 ms 144923 7 626424 666 

 

Table 2. Performance of the reduced formulation 9 using the ODE23 

As said in the paragraph 4.4, the reduced formulation 9 has been also solved by means of the Newton - 

LU nonlinear solver. The used ODE solver is the ODE23 while the values of the main numerical 

parameters relative to the simulation are reported in table 1b. In this case the comparison between the 

results showed that the Newton - BiCGStab method is more efficient than the Newton - LU method in 

spite of the small dimensions of the discrete problem 9 (the reduced formulation). In particular the 

computation and the storage of the whole Jacobian at each nonlinear iteration turn out to be quite time - 

consuming.  

Among all the outputs evaluated by the models (kinematic variables, internal forces, contact forces and 

contact areas), for the sake of simplicity only the time histories of the following quantities have been 

Curvature K -1/1200 m-1 

Slope p 0 

Cant β  0.0418 rad 

Laying angle p
α  

1/40 rad 

Velocity V 162 km/h 

Friction coefficient µ  0.3 

Contact Model Eq. 7 Eq. 9 Eq. 9 

RelTol / AbsTol 10-8 / 10-6 10-8 / 10-6 10-8 / 10-6 

Nonlinear Solver Newton-BiCGStab Newton-BiCGStab Newton-LU 

Tol / MaxitNonlin 10-7 / 20 10-7 / 20 10-7 / 20 

η  / MaxitLin 0.01 / 20 0.01 / 20 - 



reported: the lateral displacement R

Wy  of the center of mass and the roll angle R

Wϕ  of the first wheelset (in 

the system 
R R R R

O x y z ; blue for Matlab and red for Simpack Rail, see Figure 6a and 6b), the lateral R

lw
Y  and 

vertical R

lw
Q  resultant contact forces on the left wheel of the wheelset (in the system 

R R R R
O x y z ; blue for 

Matlab and red for Simpack Rail, see Figure 7a and 7b) and the real contact areas 
wlC

A , 
rlC

A  on the left 

wheel and rail surfaces (respectively expressed in the systems 
W W W W

O x y z  and 
R R R RO x y z ; blue for Matlab 

and black for Simpack Rail, see Figure 8a and 8b). In order to give a clear and effective description of the 

motion of the contact areas calculated by the Matlab model, a lateral section of the contact patches has 

been plotted on cylindrical surfaces obtained from the wheel and rail profiles (generating profiles) and as 

long as the distance travelled by the vehicle. Concerning the Simpack Rail model (equipped with a 

standard contact model), the position of the contact points has been plotted. 

 
 
 
 
 
 
 
 
 
 

Figure 6. (a) Wheelset: lateral displacement of the center of mass  (b) Wheelset: roll angle 
 
 
 
 

 

 

 

 

 

 

Figure 7. (a) Lateral contact force on the left wheel  (b) Vertical contact force on the left wheel 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. (a) Section of the contact area on the left wheel  (b) Section of the contact area on the left rail 

The analysis of the results shows a good agreement between the Matlab and the Simpack Rail model both 

in terms of kinematic variables and in terms of resultant contact forces. Moreover, during the curve, the 

contact areas calculated by the Matlab model on the left wheel and rail surfaces are made up of two 

disjoint parts (in other words a multiple contact is present). On the other hand, also the Simpack Rail 

model detects, during the curve, the presence of a second contact point on the left wheel and rail; in 

particular the contact points are always contained within the different disjoint parts of the contact areas 

estimated by the Matlab model. From this point of view there is a good agreement between the models. 

In conclusion it is usefull to observe as the stability of the Matlab model and the quasi – total absence of 

numerical noise highlight the accuracy and the reliability of the new contact model. 



7 CONCLUSIONS 

In this work the authors presented an innovative elastic wheel - rail contact model with the aim of 

achieving a better integration between multibody and differential modeling. Due to the high 

computational load, this kind of integration is almost absent in literature especially in the railway field; 

however it is very important because only the differential modeling allows an accurate analysis of the 

contact phenomena while the multibody modeling is the standard in the study of the railway dynamics. 

The performances of the Matlab model turned out to be good both in terms of output accuracy (kinematic 

variables, contact forces and contact areas) and in terms of numerical efficiency (performances of the 

numerical algorithms and time consumption) and satisfy all the specifics reported in the introduction. 
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