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� Ten-fold  increase  in  the  number  of  papers  on PPCPs  in  WWTPs  in  ten  years.
� Wastewater  analysis  can  help  tackle  societal  problems.
� PFCs  in  WWTPs  present  negative  removal  rates.

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 11 February 2012
Received in revised form 9 May  2012
Accepted 10 May  2012
Available online 18 May 2012

Keywords:
Wastewater
Pharmaceuticals
Illicit drugs
Doping substances
Organophosphates
PFCs

a  b  s  t  r  a  c  t

A  wastewater  treatment  plant  may  receive  various  types  of wastewater  namely,  urban,  industrial,  agricul-
tural,  washout  from  the  streets,  wet  or/and  dry atmospheric  deposition.  As  such,  scientists  have  detected
in wastewaters  all major  categories  of  pollutants  like  persistent  organic  pollutants  (POPs),  polycyclic
aromatic  hydrocarbons  (PAHs)  and  pesticides,  but also  substances  that  are  widely  used  as  pharmaceuti-
cals  and cosmetics,  classified  as  “PPCPs”  (pharmaceuticals  and  personal  care  products).  Finally,  the latest
categories  of  compounds  to be  looked  upon  in  these  types  of  matrices  are  illicit  drugs  (drugs  of abuse,
like  cocaine,  etc.) and  doping  substances.

This review  article  summarises  major  categories  of  organic  microcontaminants  that  have been  detected
in wastewaters  and  studies  their  fate during  the wastewater  treatment  process.  Occurrence  of  these
compounds  in  the influents  and  effluents  are  reported,  as  well  as percents  of  removal,  mass  balances  and
phase distributions.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Wastewater treatment plants (WWTPs) were initially designed
to remove/decrease conventional pollution parameters (BOD5,
COD, total suspended solids, etc.) from the wastewater stream, so
that the final effluent did not constitute a new source of pollution
for the water body receiving it. However, it was  soon found out
that the wastewater organic load included high levels of a variety of
hazardous organic pollutants and thus additional treatment steps
and control measures became necessary. The quality of wastew-
ater varies according to what types of influents the WWTP  may
receive, such as domestic wastewater, dry and wet atmospheric
deposition, urban runoff containing traffic related pollution or agri-
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cultural runoff and the range of contaminants is even broader when
industrial effluents are also included in the input wastewater [1–4].

WWTPs are also called “biological treatments” due to the sec-
ondary treatment step, during which the wastewater comes in
contact with “activated sludge” and conventional contaminants are
removed by means of biological degradation. Whilst this is the case
for most of the organic load, for modern organic contaminants such
as persistent organic pollutants (POPs), brominated flame retar-
dants (BFRs), fluorinated compounds (PFCs) or pharmaceuticals
among others, it has been shown that the biological treatment is
not so efficient in their removal. These chemicals are not completely
degraded and are either removed by sorption and deposition to the
final sludge, by volatilisation, or by discharge onto a surface water
body, if they remain in the wastewater effluent stream [7].  This last
fraction is the most concerning, since it has been shown to be of rel-
evant toxicity, readily bioavailable to living organisms, able to enter
the food chain and hence ultimately exposing humans [5,6]. One
of the most important factors that tend to keep organic microcon-
taminants in the wastewater stream is the dissolved organic carbon
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Fig. 1. Number of publications per year studying PPCPs in WWTPs.
Source: SCOPUSTM Database.

(DOC) [7].  In particular, and due to its affinity with organic micro-
contaminants, DOC acts as an antagonist to sorption on particles
and that way keeps organic microcontaminants in the wastewater
stream.

In recent years, scientists have been considering as microcon-
taminants some compounds (or classes of compounds) that until
some years ago were deemed safe or broadly supposed to be totally
biodegradable, such as personal care products, pharmaceuticals or
chemicals like caffeine, benzotriazole, etc. [8–13]. As a result of their
broad usage, these microcontaminants have been detected in con-
centrations up to several �g/L in WWTP  effluents and in surface
waters.

Bearing in mind the aforementioned information, the scope of
this paper is to present concentration levels, to describe the fate
and trends and to discuss the respective implications of new cat-
egories of microcontaminants detected in wastewaters/WWTPs.
These classes of chemicals include (a) pharmaceuticals and per-
sonal care products (b) illicit drugs (c) prohibited doping substances
(d) persistent organic pollutants (e) perfluorinated compounds.

2. Methodology

Given the large number of studies present in literature, this
study goes over some of the most important characteristics that
govern the fate of OPs during the wastewater treatment process and
presents interesting scientific aspects that derive from the chemical
analysis of wastewaters for the aforementioned compounds.

3. Discussion

3.1. Pharmaceuticals and personal care products (PPCPs)

It has been known for over 20 years that pharmaceuticals and
personal care products (PPCPs) enter into the environment through
individual human activity and as residues from manufacturing,
agribusiness, veterinary use, and hospitals and community use.
Individuals may  add PPCPs to the environment through waste
excretion or bathing, as well as by directly disposing of unused
medications into septic tanks, sewers, or trash containers. Their
presence has been identified and quantified in WWTP  effluents
[14], surface waters [15], drinking water [150], groundwater [151],
biosolids [152], agricultural manures [153] and biota [154]. With
hundreds of different PPCPs in the market (see Table 1), WWTPs
represent a key potential point source to the aquatic environ-
ment, but at the same time a major opportunity for centralised
removal processes. This justifies the increasing number of stud-
ies dealing with pharmaceuticals in WWTPs in the last decade
(Fig. 1). Summarizing research results in this area is not a sim-
ple task, given the large number of PPCPs found in WWTPs. The
most common belong to the categories of antibiotics, analgesic

and anti-inflammatory. However, other groups include diuret-
ics, antibiotics, antidiabetics, anticoagulants, psychiatric drugs,
lipid regulators, histamine H2 antagonists [14,15],  anti-epileptic
drugs [15,16], antifongics, antineoplasics, disinfectants, antide-
pressants, antiseptics, hormones, vascodilators [15], antifungics,
vascodilators, barbiturates, anticancers, anticonvulsants [17], anti-
hypersensitives and antilipidemics [18]. Recently, a review by
Miege et al. [15] presented the concentrations of PPCPs in WWTP
influents and effluents, their removal efficiency and their loads to
the aquatic environment. Their database covered 184 PPCPs from
117 scientific publications until 2008.

It is difficult to discuss typical concentration levels (Table 1)
of PPCPs as these can range from hundreds of pg/L up to hun-
dreds of �g/L [13,15,19–25], depending on the target PPCP and the
type of wastewater. Other important factors that play a role in the
occurring levels are the types of products that can be found in the
pharmaceutical market in each country, or the possibility in some
countries to purchase medicines without a medical prescription
[15]. As a matter of fact, reported average influent concentrations
ranging between 0.1 ng/L for hormones and 34 �g/L for naproxen,
whilst naproxen in a study by Nakada et al. [26] occurred in con-
centrations of only a few ng/L. If specific circumstances occur, the
concentration levels of PPCPs in WWTPs can increase even further,
to tens of mg/L. Such a case was the outbreak of the avian influenza,
which led to concentrations of 20 mg/L for oseltamivir carboxylate
in WWTPs with low flow and high population equivalents [20]. In
the same study, it is stated that under normal conditions, the major-
ity of PPCPs do not exhibit seasonality, but for some like antibiotics,
temporal variation is observed due to increased winter usage.

Individual PPCPs have also distinct chemical and physical prop-
erties that suggest potentially different mechanisms and locations
for removal/reduction in a WWTP. PPCPs can have octanol–water
partition coefficients (Kow) or water solubility (WS) values that vary
up to 7–8 orders of magnitude. As an example, log Kow of iopro-
mide: −2.05 and log Kow of mefenamin acid: 5.12 [23,27],  or WS
of roxithromycin: 0.0189 mg/mL  and WS  of diclofenac: 50 mg/mL.
Many of the PPCPs are ionisable chemicals and it may  not be appro-
priate to assess their lipophilicity based only on the Kow value.
Wells [171,172] addressed the latter issue underlining the value
of using a different physical–chemical property which takes into
account both hydrophobicity and ionogenicity (especially for the
cases where pKa < pH). Thus, Wells [171,172] suggested that the
pH-dependent n-octanol–water partition coefficient Dow should
be used. High Kow (or Dow) values mean that PPCPs tend to sorb
onto suspended particles and end up in the sewage sludge, whereas
compounds with low Kow and high WS are expected to remain in
the wastewater stream and, if resistant against microbial degra-
dation, to be discharged with the final effluents. Removal rates
can also vary largely between various contaminants. For exam-
ple diclofenac showed low removal rates (21.8 ± 28.5%), whereas
ibuprofen showed a removal of 99.1 ± 1.8% [16]. Interestingly, in
many cases PPCP loads increase during the wastewater treatment.
Thus, diclofenac showed a raise of 105% in a sewage treatment plant
of Sweden [28], and up to 300% in a WWTP  in Korea [24]. In the latter
study, other PPCPs showing a negative removal rate were acetyl-
salicylic acid, naproxen, ketoprofen and clofibric acid. A possible
explanation for negative removal rates is the influent–effluent mis-
matching, or the formation of “conjugated compounds” throughout
the treatment steps, like for example happens with glucuronic acid
[172]. A review by Onesios et al. [17] reported removal rates for
a very large number of PPCPs. Authors evidenced that removal
rates may  vary considerably even for the same PPCP, and inter-
comparisons are most of the times problematic, due to different
definitions of removal, decrease or elimination rates, but also to
different sampling strategies applied (integrated versus grab sam-
ples). In addition, the different treatment approaches described in
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Table 1
PPCP concentrations in wastewaters (ng/L).

MW log Kow pKa Influent (ng/L) Effluent (ng/L) Removal (%) Reference

Antibiotics
Azithromycin 749 0.74 260 138 [15]

456 (6–1140) [25]

Ciprofloxacin 331.3 0.28 6.09 413 (180–571) 723 (450–140) [15]
182  (124–246) 728 (61–2050) [23]
ND  142 [23]
1980 (460–5030) 3080 [23]
87,100 (528–34,600) 1860 (773–2950) [23]
405  (<LOD–2610)
620 (430–1100) 1 (<10–16) [27]
3700 ± 400 [28]
3300 ± 300 [28]
9300 ± 1200 [28]

Clarithromycin 748 8.99 647 359 [15]

Erythromycin 734  8.88 108 (71–141) 212 (145–290) [15]
ND  197 [156]
134  (24–420) [25]
340  (LOD–480) 2 (<10–15) [27]

Levofloxacin 361.4 −2.0 552 301 [15]
460  (250–900) 1 (<10–10) [27]

Norfloxacin 319.3 −1.03 438 (343–515) 60.8 (39–120) [15]
976  (16–2940) [25]
<LOD [28]
22.0 ± 4.0 [28]
<LOD [28]

Roxithromycin 837 62  (25–117) 49.6 (36–69) [15]
ND 45  [24]
ND  125 [24]

64 [156]
31  (<LOD–50) [25]

Sulfamethazine 278.33 0.89 7.59 132 (0–343) 114 (0–408) 13.1 [18]
333 (110–680) [15]
1020 (60–2630) 333 (28–748) [23]
57,800 (1760–189,000) 11,600 (11–25,400) [23]
ND  ND [23]
1350 (199–3190) 620 (287–1220) [23]

33 [156]
47  (<LOD–186) [25]

Sulfamethoxazole 253.3 0.89 5.7 120 (79–216) 57 (20–162) 51.9 [18]
29 (<3–150) 10 (<3–23) [157]
342  (20–1250) 115 (180–320) [15]
254  (49–410) 175 (47–397) [23]
7950 (1840–17,000) 5610 (2370–8840) [23]
25,300 2200 (108–3840) [23]
166,000 (24,300–309,000) 13,700 (2470–24,800) [23]

(8–37) [158]
688 631 [24]

620 [156]
1180 (19–11,600) [25]
2600 (1200–3400) 80 (35–140) [27]

Trimethoprim 290.3 0.91 6.8 205 (101–277) 63 (13–154) 69 [18]
2192 (464–6796) 1152 (625–3052) [157]
449  (80–1300) 118 (20–550) [15]
230  (36–1510) 209 (5–2000) [23]
ND  23,600 (1190–46,000) [23]
1620 (28–7260) 29,000 (19–95,100) [23]
62,900 (56–162,000) 9030 (7930–10,100) [23]
425 482 [24]

463 [156]
610  (390–770) <10 [27]

Lincomycin 406.54 0.29 7.9 8176 (3095–19,401) 9089 (1437–21,278) −11.2 [18]
224 155 [24]
385  74 [24]
340 240 [24]
399  167 [24]
334  275 [24]
213  33 [24]
410  111 [24]
476 ND [24]
137 102 [24]
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Table 1 (Continued)

MW log Kow pKa Influent (ng/L) Effluent (ng/L) Removal (%) Reference

900 170 [24]
315 103 [24]
21 (11–36) <10 [27]

Chloramphenicol 323.13 0.92 13.59 14 (<4–319) <6 [157]

Tetracyclin 444.43 −1.33 3.3 457 (240–790) 282 (50–850) [15]

Hormones
Estrone 270.4  3.13 10.34 47 (32–70) 6 (0–24) 87.1 [18]

67.2 (2.4–670) 20.9 (0.6–95) [15]
32.0 ± 6.0 [28]
150 ± 16 [28]

Estriol 288.4 2.8 10.38 415 (125–802) 0 100 [18]
115 (14.6–660) 13.1 (0.4–275) [15]

Estradiol 272.4 4.01 10.46 4 (0–4) 0 100 [18]
26.5 ± 6.0 [28]
17.0 ± 5.0 [28]

17a-estradiol 7.4 (1.5–17.2) 0.8 (0.1–3.1) [15]

17b-estradiol 22.2 (2.5–125) 2.8 (0.3–30) [15]

Analgesics/
antiinflammatories
Acetaminophen/
paracetamol

151.17 0.46 9.04 7460 (3540–10,234) 10 (0–27) 99.9 [18]
13,200 (1340–51,900) 652 [23]
23,600 (804–85,200) ND [23]
25,500 (271–63,100) ND [23]
29,100 (40–104,000) 431 [23]
3410 ND [24]
9610 ND [24]
10,100 ND [24]
62,600 ND [24]
48,100 ND [24]
9500 ND [24]
5950 ND [24]
7010 ND [24]
3130 ND [24]
8270 ND [24]
4190 6760 [24]

293 [156]
211,380 (68,107–482,687) 11,733 (1826–24,525) [157]
80,000 (5530–292,000) [15]
80,000 (37,000–130,000) <50 [27]

Diclofenac 296.15 0.7 4.2 131 (59–243) 24 (13–49) 81.4 [18]
69 (26–257) 98 (33–142) [157]
1340 (105–4110) 680 (350–1950) [15]
237 (94–523) 191 (52–1760) [23]
ND 186 [23]
1920 (28–6880) 161 (46–221) [23]
181,000 (160,000–203,000) 7560 (457–19,200) [23]
107–981 37–176 [158]
42 33 [24]
5 17 [24]
39 29 [24]
16 29 [24]
14 18 [24]
12 46 [24]
20 29 [24]
11 25 [24]
14 2 [24]
2  5 [24]
ND ND [24]

1090 [156]
859 (50–4200) [25]
220 (140–280) <10 [27]
700 ± 120 [28]
380 ± 10 [28]
210 ± 100 [28]

Ibuprofen 206.23 3.97 4.9 2265 (1599–2853) 40 (15–75) 98.2 [18]
1681 (968–2986) 263 (131–424) [157]
14,600 (170–83,500) 1960 (20–24,600) [15]
69,700 (3730–353,000) 4130 (<LOD–26,500) 87 [159]
84,400 (<LOD–294,000) 6690 (<LOD–40,200) 84 [159]
105,000 (<LOD–319,000) 1160 (<LOD–55,000) 80 [159]
115,000 (<LOD–603,000) 76,200 (<LOD–48,200) 87 [159]
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Table  1 (Continued)

MW log Kow pKa Influent (ng/L) Effluent (ng/L) Removal (%) Reference

1100 ND [24]
1170 ND [24]
982  ND [24]
852  ND [24]
612 ND [24]
73 ND [24]
1120 ND [24]
1040 ND [24]
1020 ND [24]
ND  ND [24]
213 238 [24]

2400 [156]
3200 (<LOD–11,900) [25]
11,000 (3900–15,000) <10 [27]
14,300 ± 130 [28]
8800 ± 100 [28]
10,800 ± 100 [28]

Ketoprofen 254.29 3.12 4.5 202 (81–286) 12 (0–37) 94.2 [18]
28  (<4–119) – [157]
1030 (800–5700) 325 (400–1620) [15]
1580 (<LOD–5520) 860 (<LOD–2270) 52 [159]
1740 (<LOD–6470) 800 (<LOD–1950) 56 [159]
1910 (<LOD–8560) 820 (<LOD–3920) 72 [159]
2070 (<LOD–5700) 880 (<LOD–2030) 58 [159]
114  ND [24]
83  ND [24]
226 35 [24]
49  41 [24]
44 ND [24]
81  ND [24]
50  ND [24]
18 ND [24]

2980 [156]
561  (<LOD–1520) [25]

Naproxen 230.27 3.18 4.2 2584 (1360–5033) 111 (37–166) 95.7 [18]
838  (400–1457) 370 (234–703) [157]
25,400 (1790–611,000) 1890 (170–33,900) [15]
3810 (480–12,500) 250 (21–740) [23]
3170 (306–6040) 309 (248–370) [23]
59,700 (410–206,000) 13,300 (361–39,300) [23]
4830 (2020–8500) 2740 (540–5090) 43 [159]
8070 (2030–52,900) 1640 (220–3520) 71 [159]
4690 (1630–27,400) 2180 (830–3640) 48 [159]
4280 (1140–9100) 1670 (290–4280) 60 [159]
1210 254 [24]
827 104 [24]
962  114 [24]
823  57 [24]
487  48 [24]
524 138 [24]
532  ND [24]
451  183 [24]
565  ND [24]
761  ND [24]
278  77 [24]

1740 [156]
335  (<LOD–1550) [25]
20,200 ± 210 [28]
9300 ± 100 [28]
6600 ± 110 [28]

Mefenamic
acid

241.3 5.12 4.2 121 (55–328) 153 (44–392) −26.30 [18]
205  (<20–1269) 61 (<5–222) [157]
1730 (136–3200) 1140 (900–2400) [15]
1900 (232–8810) 385 (68–1360) [23]
ND  167 [23]
14,200 (329–36,400) ND [23]
119  32 [24]
52  43 [24]
192  68 [24]
42  53 [24]
127 83 [24]
121  11 [24]
92  21 [24]
55 25 [24]
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Table 1 (Continued)

MW log Kow pKa Influent (ng/L) Effluent (ng/L) Removal (%) Reference

61 3 [24]
23  6 [24]
53  (<LOD–120) [25]

Aspirin 180.15 1.19 3.49 664 (485–2042) 27 (<3–85) [157]

Acetyl salicylic acid 180.15 1.29 5866 (1479–18,479) 164 (<1–497) [157]
212,000 (16,000–606,000) 2500 (300–4800) [15]
176,000 (3090–1,407,000) 7240 (2340–12,100) [23]
313,000 (41,800–1,030,000) 89,500 (1000–193,000) [23]
126,000 (1540–384,000) 507 (396–618) [23]
551,000 (3850–1,731,000) 25,200 (2830–47,600) [23]
2040 ND [24]
11,100 9 [24]
7640 10 [24]
3160 ND [24]
2610 27 [24]
7600 6 [24]
3910 10 [24]
3970 ND [24]
11,100 32 [24]
9780 30 [24]
2670 78 [24]

Codeine 299.36 1.28 8.21 10,321 (1732–32,295) 5271 (2940–15,593) [157]

Tramadol 263.37 2.51 9.41 36,750 (8505–89,026) 43,813 (24,132–97,616) [157]

Dextropropoxyphene 4.18 27.3 (22–33) 52.3 (37–64) [15]

Antiepileptic
Carbamazepine 263.27 2.45 3.19 72 (43–127) 55 (40–74) 23.1 [18]

437 ± 117 [160]
1694 (709–2930) 2499 (644–4596) [157]
968  (100–1900) 674 (150–2300) [15]
1920 (95–21,600) 1750 (208–21,000) [23]
167  (40–399) 2430 (128–10,200) [23]
827  (18–6080) 3560 (241–14,400) [23]
10,100 (35–19,100) 51,700 (61–150,000) [23]
530  (<LOD–3780) 580 (<LOD–1180) 11 [159]
470  (<LOD–2100) 610 (150–1290) 7 [159]
410  (<LOD–1310) 490 (<LOD–840) 7 [159]
490  (<LOD–2150) 560 (150–1550) 8 [159]

(233–1061) [158]
258  180 [24]
327 188 [24]
481  175 [24]
214  140 [24]
290 183 [24]
450  170 [24]
311  243 [24]
338  235 [24]
105  173 [24]
103  96 [24]
207  36 [24]
419  (120–1550) [25]
230  (130–440) 1 (<10–12) [27]

Gabapentin 171.24 −1.10 15,034 (2059–37,426) 15,747 (3001–42,611) [157]

Antilipidemic
Clofibric
acid

214.5 2.57 3.2 28 (0–65) 2 (0–6) 93.6 [18]
19 (<1–57) 15 (<1–75) [157]
294  (15–651) 150 (42–230) [15]
33  8 [24]
ND  6 [24]
ND  35 [24]
55 35 [24]
ND  4 [24]

30 [156]
25.0 ± 3.0 [28]
12.5 ± 7.0 [28]
17.0 ± 6.5 [28]

Gemfibrozil 250.34 4.77 4.7 222 (101–318) 17 (9–26) 92.3 [18]
1630 (700–3000) 564 (60–1340) [15]
21  ND [24]
14 ND [24]

520 [24]
377  (<LOD–1700) [25]
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Table  1 (Continued)

MW log Kow pKa Influent (ng/L) Effluent (ng/L) Removal (%) Reference

Bezafibrate 361.82 14.75 420 (209–1391) 231 (<85–667) 92 [157]
2440 (100–7600) 816 (20–4800) [15]
65  (<LOD–260) [25]

Simvastatin 418.57 115 (<7–798) 5 (<3–20) 38 [157]

Stimulant
Caffeine 194.19 −0.07 10.4 2349 (3217–1608) 18 (0–60) 98.2 [18]

2400 24 [24]
6170 ND [24]
7310 ND [24]
4860 ND [24]
3270 ND [24]
1950 ND [24]
1920 ND [24]
2500 ND [24]
1160 ND [24]
2190 ND [24]
56,100 ND [24]
80,000 (54,000–120,000) 17 (<10–50) [27]

Nicotine 162.23 3.1 373 (72–1706) [161]
235 (93–755) [161]
430 (76–3857) [161]
213 (75–253) [161]
538 (101–3249) [161]

Antihypersensitive
Atenolol 266.3 0.16 9.6 7801 (5113–11,239) 2772 (261–5911) 64.5 [18]

271 ± 91 [160]
12,913 (3090–33,106) 2870 (1260–7602) [157]
30 154 (10–380) [15]

1094 [156]
1880 (<LOD–7560) [25]

Metoprolol 267.3 2.15 9.6 4 (2–6) 3 (3) 23 [18]
274 ± 192 [160]

75 (39–117) 69 (35–130) [157]
160 338 (10–688) [15]

13 [156]
953  (<LOD–4680) [25]

Solatol 274 ± 192 [160]
221  (<LOD–1080) [25]

Acebutolol 336.43 2 ± 2 [160]

Propanolol 259.34 557  (125–1962) 265 (121–405) [157]
74.7 (50–119) 341 (10–615) [15]

(16–135) [158]

Antiseptic (dinfectant)
Triclosan 289.6 4.76 7.8 547 (247–785) 112 (79–149) 99.6 [18]

380 150 (70–430) [15]

Diuretics
Furosemide 330.74 1476 (836–5111) 1161 (583–1956) [157]

Antidepressant
Amitriptyline 277.40 1249 (341–5143) 197 (53–357) [157]

Personal care products
Galaxolide 258.4 5.9 2510 (790–4443) 642 (451–1080) [15]

1941 695 [162]
9710 (+5090) 32–3750 [163]
16,600 (+10700)

10–25,947 [161]

Tonalide 258.4 5.7 990  (210–1690) 162 (144–200) [15]
583  212 [161]
5970 (+3880) 24–2670 [163]
12,500 (+7350)

2.1–2151 [161]

Celestoide 244.4 ND-92 [161]

Benzophenone-1 182.2 3.15 258 (51–700) 12 (<2–38) [157]

Benzophenone-2 194 (61–403) 4 (<13–13) [157]

Benzophenone-3 1195 (<104–3975) 22 (<80–223) [157]

Benzophenone-4 4152 (2218–6084) 3370 (<10–6325) [157]

Methylparaben 152.2 2.0 11,601 (4550–30 688) <3–36 (9) [157]
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Table 1 (Continued)

MW log Kow pKa Influent (ng/L) Effluent (ng/L) Removal (%) Reference

Ethylparaben 166.2 2.5 2002 (715–3312) 4 (<0.6–43) [157]

Propylparaben 180.2 2.9 3090 (820–8286) 26 (<1–84) [157]

Butylparaben 194.2 3.5 723 (274–1595) [157]

Vasodilator

Pentoxifyllin 278.31 533 (500–600) [15]

each study render these comparisons less useful. As a matter of fact,
Onesios et al. [17] reported removal rates for diclofenac between
1 and 94%, for a variety of treatment systems, whereas in many
studies it was not reported.

The elimination efficiency of PPCPs in WWTPs can be fur-
ther complicated by biological transformations, mixture effects,
hydraulic and temperature variations and the combination of treat-
ment processes. It is however known that this efficiency increases
with higher hydraulic retention times (HRT) [155]. In the last few
years, the application of more advanced treatment processes such
as ozonation, activated carbon, and tight membrane filtration are
receiving considerable attention, although studies addressed to a
better understanding of removal in conventional treatments (pri-
mary, secondary and tertiary) remain active. The use of advanced
oxidation technologies increases the formation of intermediate
degradation products that may  be more toxic than the parental
ones. Further analytical and toxicological research studies are
needed to increase the knowledge in this area. Lin et al. [29]
reported that the combined ozone systems (O3/H2O2) contribute to
an enhancement in the removal of sulphonamide and macrolides
antibiotics. Four antibiotics (sulfamethoxazole, sulfamethoxine,
sulfamethazine and trimethoprim) and four non-steroidal anti-
inflammatory drugs (acetaminophen, ibuprofen, retoprofen and
naproxen) were also successfully removed using extended sludge
age biological system [30]. However, the same study showed that
the removal efficiency is strongly related to the initial influent
concentration of each target compound. The combination of a
UV/TiO2 system was reported to be highly efficient to the com-
plete elimination of naproxen, clofibric acid and carbamazepine
[31] in addition to olfoxacin [32], and a removal efficiency ranging
from 12 to 80% was reported for iomeprol [33,34]. Moreover, the
use of UV/H2O2 systems in the presence of humic acids resulted
in very effective removal of carbamazepine and diclofenac [35]
and clofibric acid [36]. The capacity of granular activated car-
bon (GAC) in comparison with other adsorbents was  tested to
remove estrone and 17 �-estradiol [37], showing that the elimi-
nation rate increased at pH above 8 and adsorption capacity of GAC
decreased by the presence of surfactants or humic acids. Maniero
et al. [38] investigated the degradation of natural (17�-estradiol)
and synthetic (17�-ethinylestradiol) estrogens (pure or in the mix-
ture) and the cease of estrogenic activity by the ozonation and
O3/H2O2 process at three different pH levels (3, 7 and 11). Both
these processes were effective in eradicating the estrogens from
aqueous solutions, for all ozone doses and pH values in ques-
tion. Senta et al. [39] evaluated membrane bioreactors (MBRs),
nanofiltration, reverse osmosis and ozonation, as well as their
combinations, for the removal of antimicrobials including sulfon-
amides, fluoroquinolones, macrolides and trimethoprim from a
synthetic wastewater which simulated highly contaminated indus-
trial effluents. MBR  system was only efficient for the elimination of
sulfonamides whereas nanofiltration and reverse osmosis achieved
high elimination rates, yet producing a highly contaminated
concentrate.

Many studies have also reported the occurrence of PPCPs in
sewage sludge. A review by Diaz-Cruz et al. [40] summed up the

occurrence of 12 PPCPs (only 8 at detectable levels), yet with con-
siderably variable concentrations. According to their summary,
limits of detection for PPCPs under different techniques can be at
the sub-�g/kg level, and concentrations of up to 1500 �g/kg have
been reported (triclosan from a WWTP  in Galicia, Spain, [40,41]).
Triclosan occurred at even higher levels in the sludge from the
major WWTP  of Athens, Greece, reaching 1790 �g/kg [42]. This
compound has a log Kow of 4.8 and a pKa of 7.9, which at wastew-
ater conditions (pH around 7) can be considered a hydrophobic
compound prone to sorption onto the sludge. The concentrations
of PPCPs detected in sewage sludge reflect their use in the society
[40], although the influent wastewater is a better indicator, espe-
cially for hydrophilic and water soluble PPCPs that are not likely to
be detected in sludge. According to Horsing et al. [43], who stud-
ied the sorption of 75 common PPCPs, only 14 were found to have
strong affinity with particles/sludge, whereas for 37 of them, more
than 80% of their predicted occurrence would be in the liquid phase.
In that study, pH was  also identified as an important factor for the
partition to the sludge. Other parameters affecting the sewage con-
centration of PPCPs can be the sludge retention time or the biosolids
acclimatisation [44,45].

3.2. Illicit drugs (IDs)

In the last few years, the scientific community started paying
more attention to the occurrence of drugs of abuse or illicit drugs
(IDs) in various environmental compartments. The number of stud-
ies dealing with IDs in WWTPs is not as large as for PPCPs, but is
increasing continuously. Compounds of interest in this category
belong to the groups of stimulants, hallucinogens, opiods, dissocia-
tive anaesthetics, etc. [46], whilst key target chemicals are cocaine
(COC), heroin, nicotine, amphetamine, methamphetamine, opiates
or cannabis, among others, and their metabolites, e.g. benzoylecgo-
nine (BE), ecgonine methyl ester, norbenzoylecgonine, norcocaine
and cocaethylene [13,46–52].  For compounds like nicotine and caf-
feine, a study in Spain has shown that average concentrations of 13
and 23 �g/L are detected in influent wastewaters, respectively, and
that the mean values for effluent wastewaters can be as high 2.7
and 4.4 �g/L, respectively. Instead, for the stronger narcotic (COC),
the highest concentration observed to date was in the influent of a
WWTP  in Barcelona (4.7 �g/L) [51]. The concentrations of IDs in the
influents of WWTPs can reflect both societal habits and the finan-
cial situation. As a matter of fact, their levels have been found to
increase during weekends [50,53,54],  or after the “Street Parade”
event in Zurich [55]. MDMA  (an amphetamine-type drug) was
found to be more abundant on Sundays and Tuesdays, in WWTPs
from Paris [50]. Regarding the temporal trends of IDs, the existing
dataset is still insufficient for such an assessment. [56]. According
to the latter study that took place in Italy, there is a decreasing trend
in the consumption of expensive IDs and a simultaneous increase
in the less expensive ones.

The important implication of the analysis of IDs in WWTPs is the
back estimation of equivalent drug users and consumption. This has
been applied by many scientific groups and, recently, a review has
been published on this topic [48].



Author's personal copy

N. Ratola et al. / Journal of Hazardous Materials 239– 240 (2012) 1– 18 9

Table 2
Cocaine and benzoylecgonine concentrations in wastewaters (ng/L).

Cocaine Benzoylecgonine Reference

Influent Effluent Influent Effluent

WWTPs in UK (7) 70.9 29.2 243.1 115.9 [46]

WWTP  Paris 1 4.8–52.6 ND-7 64.0–175.6 15.9–25.4 [50]
WWTP  Paris 2 67.2–282 ND-20.7 147.2–849.2 82.0–149.0
WWTP  Paris 3 12.0–53.7 1.2–5.3 136.1–218.0 14.5–36.3
WWTP  Paris 4 32.7–99.2 ND-3.2 129.4–303.1 7.9–18.2

WWTP  Oslo 86 (35–166) 273 (121–669) [60]

WWTP  Geneva NQ-1928 101–1788 [103]
WWTP  Luzern NQ-297 244–1040
WWTP  Basel 177–262 872–1299
WWTP  Berne 159–336 522–1132
WWTP  Zurich 406–1109 802–2400

WWTP  Back River 2.66 ± 0.005 9.31 ± 0.17 [104]

WWTP, Prison in
Catalonia

128 ± 94 556 ± 291 [105]
(max. 462) (max. 1760)

WWTP  Milan 255 712 [54]
WWTP  Como 98 380
WWTP  Cagliari 138 316
WWTP  Olbia 131 337
WWTP  Sassari 48 149
WWTP  Nuoro 55 153
WWTP  Chicago 868 1553

WWTP  Villaseca 160–2486 NQ-9 1169–3336 1–42 [53]

WWTP  Canada 1 209–823 287–1488 [52]
WWTP  Canada 2 475–776 658–2624
WWTP  Canada 3 487–656 588–722

One of these approaches is the “sewage epidemiology”, which
uses wastewater concentrations for the abovementioned purpose.
The concept of this tool is to combine the concentrations of COC
and its major metabolites with its breakdown pattern. For exam-
ple, only 1–9% of a COC dose is excreted in urine unchanged, whilst
35–54% and 32–49% is excreted as BE and ecgonine methyl ester,
respectively. Norbenzoylecgonine, norcocaine and cocaethylene
are minor metabolites and only account for traces of the urinary
excretion pattern. In the back-calculations, a mean excretion rate
of 45% for BE and of 10% for COC is taken into account, values in very
good agreement with the distributions of BE/COC ratios of Fig. 2.
The broad ranges for the excretion values of BE (15–55%) and COC
(1–15%) can lead to uncertainties in the calculations. Table 2 sum-
marises concentrations of BE and COC in various WWTPs, published
the last 3 years. It can be seen that BE is coherently higher than COC
with BE/COC ratios ranging from 0.9 to 5.0. However, 36.4% of the

Fig. 2. Distribution of the BE/COC ratios in influents from WWTPs.

samples exhibits a BE/COC ratio in the range of 3.1–3.5 and a fur-
ther 18.2% between 3.6 and 4.0 (Fig. 2). According to Karolak et al.
[50], BE/COC ratios lower than 5.0 suggest that COC has been dis-
charged in WWTPs without being consumed, thus not metabolised
to BE. The first formula, proposed by Zuccato et al. [57], was  based
on concentrations of BE, the major metabolite of COC, and which is
present in wastewater at relatively high levels. From the concen-
trations of BE (ng/L) and the flow rate (L/day) of the wastewater
stream, BE loads (g/day) can be calculated. These loads are then
subsequently transformed into consumed COC (g/day) taking into
account the molecular mass ratio of COC to BE (1.05) and the mid-
range excretion percentage of 45% as BE [58]. This leads to the
following equation:

COC (g/day) = concentration BE (ng/L) × flow rate (L/day)

× 2.33

The result is the grams of COC used per day. Then, dividing
the grams by the average dose (∼100 mg [59]), we  can have the
number of doses per day and per number of equivalent inhabi-
tants (by the in-flow rate of the WWTP). Most studies that report
use of COC through wastewater analysis report consumption in
the range of 31–2800 mg/day/1000 inhabitants [50,59–61].  Met-
calfe et al. [52] also stated the use of other drugs through similar
approaches and found that methamphetamine in Canada can be up
to ∼60 doses/day/1000 inhabitants.

IDs similarly to PPCPs are not efficiently removed during the
wastewater treatment process. Karolak et al. [50] reported removal
rates of COC ranging from 89.6 to 97.8% and BE removal rates from
69 to 93%, but MDMA  removal rates were much lower and var-
ied between 48.6 and 80.1%. Hummel et al. [62], Bones et al. [49]
and Pedrouzo et al. [53] also reported that IDs are only partially
removed through the sewage treatment and that further enhance-
ments of the treatment technology are deemed necessary.
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Fig. 3. Analysis strategy proposed by Katsoyiannis and Jones [64].

3.3. Prohibited doping substances

In 2010, Schroder et al. [21] published a study which for the
first time presented concentrations of prohibited doping sub-
stances (steroids, �2-agonists, stimulants, diuretic agents, and
PDE V inhibitors) in the effluents of a sports centre, but also in
large municipal WWTPs. Chemicals like testosterone, boldenone,
ephedrine or stanozol were studied, and for some of these, the lev-
els in the municipal WWTPs had reached values even in the levels
of �g/L (i.e. salbutamol’s maximum concentration was 5.008 �g/L).

Important implications from this study came from the view
point by Katsoyiannis and Jones [63,64], according to which this
kind of environmental analysis would be feasible during major
athletic events (e.g. the Olympic Games). This way, anti-doping
authorities could enhance their targeted testing and be more effec-
tive in identifying doped athletes. In light of this strategy, it should
be possible to enhance targeted sampling to catch athletes using
prohibited substances in main sport events through the analysis of
wastewaters from all individual residences. It was suggested that
the extensive number of collected samples should be used only as
an “archive”, leaving the routine analyses for the more centralised
samples. Then, in cases of positive results, the archived samples
should be analysed in order to backtrack where the breaching
of regulations took place, as shown in Fig. 3. Furthermore, Kat-
soyiannis and Jones [64] suggested that epidemiology approaches
similar to those for IDs should be applied to allow sports author-
ities to understand and tackle the consumption levels of doping
substances. These compounds were found by Schroder et al. [21]
to be removed at levels up to ∼100% during conventional activated
sludge treatment.

3.4. Persistent organic pollutants

Persistent organic pollutants (POPs), especially the legacy
ones (polychlorinated biphenyls, polychlorinated dibenzo-p-
dioxins/furans and organochlorine pesticides) have been studied
in detail since the early 1980s [65–71].  It is widely known that
legacy POPs in wastewaters originate from a variety of sources
and, once in the WWTP, tend to partition mainly on the particu-
late phase and end up that way in the final sludge. Their fate is
essentially governed by the physical–chemical properties, with Kow

playing the most important role [2,3,72–75].  The DOC has also been

shown to be of critical importance, enhancing the percent of POPs
subject to advection, rather than sorption on particles [7,76].  For
these compounds, modelling studies can be found in literature that
have tried to estimate the final effluent, or sludge concentrations
of POPs based on the respective influent concentrations [75,77,78],
or works where the wastewater toxicity is correlated with POPs
concentrations [79].

In the current study, the occurrence and fate of some of the
newly introduced POPs to the Stockholm Convention is presented.
In particular, flame retardants (FRs) (brominated and organophos-
phate, Table 3) and fluorinated organic chemicals (Table 4) are
discussed.

As far as brominated FRs are concerned, polybrominated
diphenyl ethers (PBDEs) are the most studied class and concen-
trations for �PBDEs in wastewaters can vary from few ng/L up to
tens of �g/L (33 �g/L in influents from a WWTP  in China [80]).
In almost all studies, the range of �PBDE concentrations is too
large, showing the impact that non-ordinary wastes can have on
the load of WWTPs. PBDEs are hydrophobic compounds so they
are expected to be removed mainly by sorption on particles and
subsequent sedimentation. As can be seen in Table 3, in all stud-
ies reporting removal, the rates are higher than ∼70% [80,81]. This
results in very high concentrations of BDEs in sewage sludge. The
profile and total BDE levels in wastewater or sludge depends highly
on whether the deca-BDE (BDE-209) is analysed and taken into
account or not. BDE-209 occurs in higher concentrations that the
other BDEs, reflecting its widespread usage. As a matter of fact, in
Europe, the deca-bromodiphenyl ether mixture (in which the main
ingredient is BDE-209) accounted for 75% of the total usage. In a
work by De la Torre et al. [82], a typical profile of PBDEs in sludges
is characterised by BDE-209, which represents 77 ± 11% of the total
BDE burden. Based on this and in the fact that BDE-209 comprised
75% of the European market, this result could be a strong evidence
that under activated sludge treatment process, there is no substan-
tial debromination of deca-BDE. This is further supported by the
results of Peng et al. [80] and Fabrellas et al. (cited in Gevao et al.
[83]), where BDE-209 is up to 100 times higher than the sum of the
other BDEs.

Daso et al. [84] reported that the occurrence of BDE-209 in
influents of a WWTP  in South Africa exhibits seasonality, with par-
ticularly low concentrations in warmer periods (April and June)
than in cold ones. On the contrary, the levels of BDEs-47 and -99
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(the most important congeners of the penta-bromodiphenyl ether
mixtures [85]) were much higher in the winter.

Table 3 also displays the occurrence of organophosphate FRs
(OPFRs), which are less hydrophobic than PBDEs, having poor
WS.  They tend to occur in concentrations of hundreds to thou-
sands of ng/L. In general, OPFRs are not efficiently removed during
the wastewater treatment process. Marklund et al. [86] reported
removal rates for individual OPFRs that ranged between −20% (tris-
chloropropyl-phosphate, TCPP) and 85% (tributylphosphate, TBP),
whereas for the total OPFRs, the average elimination was 50%. Even
lower removals were reported by Bester [87] (0–41% for TCPP).

Chlorinated OPFRs are more stable against degradation pro-
cesses than alkyl-, or aryl- OPFRs, and whether OPFRs will partition
onto particles or remain in the water stream will be affected by
the occurrence of DOC and other detergents, shifting the partition
towards the aqueous phase [86].

3.5. Perfluorinated compounds

Contrarily to most BFRs, PFCs are not efficiently eliminated along
a WWT  process. In fact, in some cases it is often common to observe
a phenomenon of negative removal or in-plant production [88].
Pan et al. [89] suggested the same fate when confronted with over-
all higher levels of PFCs in the effluents comparing to the influent
flows. According to Heidler and Halden [88], several mass balances
performed for fluorochemicals also reflect a net mass flow increase
at the WWTP  effluents. However, this family of compounds have
dissimilar behaviour among them, depending on the functional
groups [90]. For instance, some authors reported that perfluorooc-
tanesulfonic acid or perfluorooctane sulfonate (PFOS) levels have a
decreasing tendency after treatment in most WWTPs, whilst perflu-
orooctanoic acid or perfluorooctanoate (PFOA) showed an inverse
pattern [89–91]. According to Guo et al. [90], this could be due to
the higher organic carbon-normalised distribution coefficient of
perfluoroalkylsulfonate (PFASs) in comparison with the carboxy-
late analog, a sign of preferential uptake of PFASs by the sludge,
which seems to be a key mechanism in the process. Although Zhou
et al. [92] state that, in terms of electrostatic interaction, PFOS
and PFOA would suffer repulsion, making their adsorption impos-
sible on activated sludge, they also consider that some cations
present in the sludge (e.g. Ca2+ and Mg2+) could provide the nec-
essary ion bridges to allow the sorption of the negatively charged
PFCs. Indeed, a review by Rayne and Forest [93] indicates that PFCs
removal happens mainly through sorption on sludge. In a study to
assess the sorption abilities of seven PFCs (heptafluorobutyric acid
(PFBA), potassium perfluorobutanesulfonate (PFBS), undecafluo-
rohexanoic acid (PFHxA), perfluorohexanesulfonic acid potassium
salt (PFHxS), PFOA, PFOS, and perfluorododecanoic acid (PFDOA) on
aerobic activated sludge, Zhou et al. [92] found out that the sorption
of PFOS was  highest when considering each compound individ-
ually. The same authors refer that the overall sorption capacities
increased with the enlargement of the chain length for both the
carboxylic and sulfonate compounds and, for the same number of
carbons, were higher for the latter than for the former. Perfluori-
nated sulfonates possess one more tail carbon (longer CAF chain)
than perfluorinated carboxylates, which enhances their hydropho-
bicity and reflects the significance of hydrophobic interaction in
the sorption activity. Using a mixture of the seven PFCs, the same
authors reported a significant decrease on the sorption capacities.
For instance, PFOS sorption in the mixed solution was much higher
than that of PFOA (as suggested by the respective isotherms), whose
sorption decreased more than that of PFOS comparing to the sin-
gle compound samples. The equilibrium of both compounds was
obtained after about 11 h, enough time for them to be adsorbed on
activated sludge on a WWTP  normal process. Furthermore, their
removal was lowered by the pH increase.
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Rayne and Forest [93] mentioned filtration and sorption
methodologies as the most promising existing removal approaches
for PFCs in wastewaters, together with the possibility of some
sonochemical advances. Evaporative, extractive, thermal, advanced
oxidative, direct and catalysed photochemical, reductive, and
biodegradation techniques are yet short of validation for these sys-
tems. Slow kinetics impedes the direct use of most PFCs treatment
methods in low residence time systems. In addition, the authors
state that in concentrated solutions the polyfluorinated acid coun-
terion is bound to influence the degradation and/or partitioning
processes, but the extent of such influence in so far undetermined.
In more dilute media (such as most wastewaters), the substrate
reactivity and partitioning would potentially be independent of the
input counterion.

On the other hand, Kunacheva et al. [94] found that two WWTPs
with activated sludge processes failed to remove PFCs efficiently,
which was a consequence of the non-biodegradability of those
microcontaminants. Still, the authors agree that bio-accumulation
in sludge could be the major removal mechanism of PFCs and that
their increase in the effluents could be attributed to the existence
and subsequent chemical and/or biological degradation of PFCs pre-
cursors such as perfluoroalkyl telomers or sulfonamides. This was
confirmed by Boulanger et al. [95] and Schultz et al. [91].

Martin et al. [96] studied the importance of the precursors on
the exposure of PFOS, whose concentrations in WWTPs exceed
those of its precursors by one or more orders of magnitude. PFOSA,
the most frequently analysed precursor, was often found below
LODs. But even if they seldom appear in quantifiable limits, some
studies advocate that precursors do play an important role in
the levels of PFOS found in WWTP  effluents and increases in its
mass flow were found after activated sludge treatment in facilities
from all over the world [97–100]. Rhoads et al. [101] found three
potential precursors (perfluorooctanesulfonamide (PFOSA), methyl
perfluorobutane sulfonamine (MeFBSA) and methyl perfluorobu-
tane sulfonamidoethanol (MeFBSE)) in WWTPs and D’Eon et al.
[102] stated the possibility of 4-carbon-chain (C4) compounds like
MeFBSA and MeFBSE degrading into the C4 homologues of perfluo-
roalkyl carboxylates (PFCAs) and perfluoroalkyl sulfonates (PFSAs).
Some researchers reported that laboratory experiments supported
the field studies and concluded that aerobic microbial biodegrada-
tion of precursors can yield important loads of PFCs [101], but the
actual understanding of these processes is still weak. In addition, it
is also suggested that the percentage of industrial, commercial or
domestic loads in the influents of WWTPs will affect the PFCs levels
and profiles [98].

The physicochemical properties of fluorinated chemicals are
not well known as for other microcontaminants (like PBCs for
example). For PFOS, it is said that octanol/water partition coeffi-
cient cannot be calculated because PFOS forms multiple layers in
octanol/water determination. According to US-EPA, PFOA, PFOS and
other related microcontaminants have log Kow that range between
−1 and 7. PFOS is almost totally water soluble and its pKa is −3.3.
The latter value for PFOA is said to range between 2 and 3 [164–170].

Hence, the current knowledge on the behaviour of PFCs in
WWTPs is influenced by all these intertwining and sometimes
confounding factors, by the inexistence of a strong dataset report-
ing evidences on a significant number of facilities and treatment
options and by a scarce experimental expertise on the physico-
chemical properties of almost all straight chain PFAs [93]. According
to Heidler and Halden [88], future work to enhance the removal
responses of WWTP  systems should include an environmen-
tal impact assessment for chemicals accumulating in digested
sludge and with high persistence throughout aerobic and anaero-
bic sewage treatment. Should degradation be limited or inexistent,
more biodegradable and sustainable alternatives could ultimately
prevent environmental and human health hazards.

4. Conclusions

The present review gave brief information about the occurrence
of five categories of organic microcontaminants in WWTPs. PPCPs,
IDs, doping substances, BFRs or PFCs are compounds that were
probably present in wastewaters for decades. However, the sci-
entific community only started dealing with them during the last
years, either because the methodologies used in the past were not
powerful enough to achieve low enough LODs, or simply because
there was always the impression that these chemicals were easily
biodegradable, making no sense to try to analyse them in WWTPs.

But since then, the analysis of these compounds has proved to
have an outstanding impact and also important implications that go
as far as the intersection between science and the society. For exam-
ple, the epidemiological approach used to assess the consumption
of cocaine in a city, based on the concentrations in WWTPs or
the understanding of the use of doping substances, based on well
designed sampling and analysis of effluents from Olympic villages.

Equally important is the recognition that many processes are
yet poorly described and even unknown. This urges the continuous
pursue of better analytical methodologies and optimised sampling
strategies, in order to build an extensive dataset to help the enlight-
enment of such processes.
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[156] M. Gros, M.  Petrović, A. Ginebreda, D. Barceló, Removal of pharmaceuticals
during wastewater treatment and environmental risk assessment using haz-
ard indexes, Environ. Int. 36 (2010) 15–26.

[157] B. Kasprzyk-Hordern, R.M. Dinsdale, A.J. Guwy, The removal of pharmaceu-
ticals, personal care products, endocrine disruptors and illicit drugs during
wastewater treatment and its impact on the quality of receiving waters, Water
Res. 43 (2009) 363–380.

[158] J.L. Zhou, Z.L. Zhang, E. Banks, D. Grover, J.Q. Jiang, Pharmaceutical residues
in  wastewater treatment works effluents and their impact on receiving river
water, J. Hazard. Mater. 166 (2009) 655–661.

[159] J.L. Santos, I. Aparicio, M.  Callejón, E. Alonso, Occurrence of pharmaceutically
active compounds during 1-year period in wastewaters from four wastewater
treatment plants in Seville (Spain), J. Hazard. Mater. 164 (2009) 1509–1516.

[160] A. Daneshvar, J. Svanfelt, L. Kronberg, M. Prévost, G.A. Weyhenmeyer, Seasonal
variations in the occurrence and fate of basic and neutral pharmaceuticals in
a  Swedish river–lake system, Chemosphere 80 (2010) 301–309.

[161] M.J. Martínez Bueno, M.J. Gomez, S. Herrera, M.D. Hernando, A. Agüera, A.R.
Fernández-Alba, Occurrence and persistence of organic emerging contami-
nants and priority pollutants in five sewage treatment plants of Spain: two
years pilot survey monitoring, Environ. Pollut. 164 (2012) 267–273.

[162] K. Bester, Retention characteristics and balance assessment for two polycyclic
musk fragrances (HHCB and AHTN) in a typical German sewage treatment
plant, Chemosphere 57 (2004) 863–870.

[163] S.L. Simonich, T.W. Federle, W.S. Eckhoff, A. Rottiers, S. Webb, D. Sabaliu-
nas, W.  de Wolf, Removal of fragrance materials during U.S. and european
wastewater treatment, Environ. Sci. Technol. 36 (2002) 2839–2847.

[164] H.P.H. Arp, C. Niederer, K.-U. Goss, Predicting the partitioning behavior
of  various highly fluorinated compounds, Environ. Sci. Technol. 40 (2006)
7298–7304.

[165] B.C. Kelly, M.G. Ikonomou, J.D. Blair, B. Surridge, D. Hoover, R. Grace,
F.A.P.C. Gobas, Perfluoroalkyl contaminants in an Arctic marine food web:
trophic magnification and wildlife exposure, Environ. Sci. Technol. 43 (2009)
4037–4043.

[166] D.A. Ellis, T.M. Cahill, S.A. Mabury, I.T. Cousins, D. Mackay, Partitioning
of  organofluorine compounds in the environment, in: A.H. Neilson (Ed.),
Handbook of Environmental Chemistry, Springer, Berlin, Germany, 2002, pp.
63–83.

[167] K. Prevedouros, I.T. Cousins, R.C. Buck, S.H. Korzeniowski, Sources, fate and
transport of perfluorocarboxylates, Environ. Sci. Technol. 40 (2006) 32–44.

[168] D.C. Burns, D.A. Ellis, H. Li, C.J. McMurdo, E. Webster, An experimental pKa

determination for perfluorooctanoic acid (PFOA) and the potential impact
of  pKa concentration dependence on laboratory-measured partitioning phe-
nomena and environmental modelling, Environ. Sci. Technol. 42 (2008)
9283–9288.

[169] K.-U. Goss, The pKa values of PFOA and other highly fluorinated carboxylic
acids, Environ. Sci. Technol. 42 (2008) 456–458.

[170] USEPA, Long-Chain Perfluorinated Chemicals (PFCs), Action Plan (2009)
http://www.epa.gov/oppt/existingchemicals/pubs/pfcs action plan1230 09.
pdf.

[171] M.J.M. Wells, Log Dow Key to understanding and regulating wastewater-
derived contaminants, Environ. Chem. 3 (2006) 439–449.

[172] M.J.M. Wells, Examination of the Mobility Scoring Hierarchy Used to Select
Chemicals for the U.S. EPA Contaminant Candidate List Classification Proce-
dure [CD-ROM pp. 86–98], Proceedings of the Water Environment Federation
2007 Specialty Conference Series, Compounds of Emerging Concern: What Is
on the Horizon? Providence, RI (2007).


