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Abstract

We show that this problem gives rise to the same differential equation of a well

known potential of ordinary quantum mechanics. However there is a subtle difference

in the choice of the parameters of the hypergeometric function solving the differential

equation which changes the physical discussion of the spectrum.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Florence Research

https://core.ac.uk/display/301564058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

The non-renormalizability of quantum gravity requires the introduction of an intelligent UV

cutoff at the Planck scale, like non-commutative algebras. However this program is not easy

to make explicit because many of them break basic principles of a quantum field theory like

Lorentz invariance and unitarity.

It has been proposed that an effective cutoff in the ultraviolet should quantum theoreti-

cally be described as a non-zero minimal uncertainty ∆x0 in position measurements [1]-[2].

Technically it is necessary to require that there is no minimal uncertainty in momentum in

order to use a continuous representation.

Recently it has also been found that this type of non-commutative cutoff is compatible

with Lorentz invariance [3], in particular the Snyder geometry [4]( at the price of loosing

translational invariance ).

Since there are experimental observations pointing out that Lorentz invariance is pre-

served even at the Planck scale [5], this theoretical framework is worth being investigated.

In general it has been studied how this intelligent cutoff affects the underlying quantum

mechanical structure. The most interesting example is the harmonic oscillator with a minimal

position uncertainty, which has been solved in [1].

In this letter we point out that their solution leads to the same differential equation of a

well known potential of quantum mechanics. We show that the difference between the two

problems is in a different sign of the parameters of the hypergeometric functions solving the

differential equation leading to a different physical spectrum.

2 Minimal position uncertainty

While in ordinary quantum mechanics ∆x can be made arbitrarily small, this is no longer

the case if the following relation holds:

∆x∆p ≥ ~
2
(1 + β(∆p)2 + γ) (2.1)

The following Heisenberg algebra generated by x̂ and p̂ obeying the commutation relations

[x̂, p̂] = i~(1 + β p̂2) (2.2)

underlies the uncertainty relation with γ = β < p >2, from which
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∆p =
∆x

~β
±

√(
∆x

~β

)2

− 1

β
− < p >2 (2.3)

we can read off the minimal position uncertainty

∆xmin(< p >) = ~
√
β
√
1 + β < p >2 ≥ ~

√
β (2.4)

In the algebra (2.2) there is no nonvanishing minimal uncertainty in momentum. The

Heisenberg algebra (2.2) can be represented continuously on momentum space wave functions

ψ(p) =< p|ψ > as

p̂ψ(p) = pψ(p)

x̂ψ(p) = i~(1 + βp2)
∂

∂p
ψ(p) (2.5)

The position and momentum operators are symmetric on the domain S∞ with respect to

the following modified scalar product:

< ψ|ϕ > =

∫ +∞

−∞

dp

1 + βp2
ψ∗(p)ϕ(p) (2.6)

The identity operator can thus be expanded as

1 =

∫ +∞

−∞

dp

1 + βp2
|p >< p| (2.7)

and the scalar product of momentum eigenstates is:

< p|p′ > = (1 + βp2) δ(p− p′) (2.8)

The position operator is no longer essentially self-adjoint but has a one parameter family

of self-adjoint extensions. This means that even if formal eigenvectors for the position

operator exist, they are not physical states since they have infinite energy.

3 The harmonic oscillator

From the expression for the Hamiltonian
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H =
p̂2

2m
+ mω2 x̂

2

2
(3.1)

and the representation for x̂ and p̂ in the p-space (2.5) we get the following form for the

stationary state Schrodinger equation:

d2ψ(p)

dp2
+

2βp

1 + βp2
dψ(p)

dp
+

4β(q − βrp2)

(1 + βp2)2
ψ(p) = 0 (3.2)

where

q =
E

2m~2ω2β
r =

1

4β2m2~2ω2
(3.3)

and E is the energy.

In order to find the explicit solution it is useful to introduce a new variable z in terms of

which the poles coincide with those of the hypergeometric function, i.e. 0, 1,∞ :

d2ψ(z)

dz2
+

2z − 1

z(z − 1)

dψ(z)

dz
− (q + r(1− 2z)2)

z2(z − 1)2
ψ(z) = 0 z =

1

2
+ i

√
β

2
p (3.4)

This type of differential equation is not new in physics since it is related to a well known

potential of ordinary quantum mechanics:

V (x) = − U0

ch2αx
(3.5)

The corresponding eigenvalue problem is, in the x-space representation, given by:

d2ψ(x)

dx2
+

2m

~2

(
E +

U0

ch2αx

)
ψ(x) = 0 (3.6)

The analysis of the spectrum is rather clear in this case. The positive energy spectrum

is continuous and the negative energy spectrum is discrete. Let us remember the discussion

in the last case. By changing variables ξ = th(αx) and introducing the notations:

ϵ =

√
−2mE

~α
s(s+ 1) =

2mU0

~2α2
(3.7)

we obtain the differential equation:

d

dξ

[
(1− ξ2)

dψ

dξ

]
+

[
s(s+ 1)− ϵ2

1− ξ2

]
ψ = 0 (3.8)
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To reach the hypergeometric function it is necessary the substitution:

ψ = (1− ξ2)ϵ/2w(ξ)

u =
1

2
(1− ξ) (3.9)

We end up with the hypergeometric equation:

u(1− u)w′′ + (ϵ+ 1)(1− 2u)w′ − (ϵ− s)(ϵ+ s+ 1)w = 0 (3.10)

The finite solution for ξ = 1(x = +∞) is

ψ = (1− ξ2)ϵ/2 2F1

[
ϵ− s, ϵ+ s+ 1, ϵ+ 1,

1− ξ

2

]
(3.11)

The condition of finiteness of ψ at ξ = −1(x = −∞) requires ϵ− s = −n ( where n is an

integer ), then the hypergeometric function reduces to a polynomial of degree n.

In this way, the energy levels are determined by the condition

s− ϵ = n (3.12)

from which

En = −~2α2

8m

[
−(1 + 2n) +

√
1 +

8mU0

α2~2

]2
(3.13)

The number of discrete energy levels is finite and determined by the condition ϵ > 0 i.e.

n < s (3.14)

The differential equation of the quantum mechanical problem (3.8) compared with the

noncommutative problem (3.4) implies the following relation between the parameters

q =
ϵ2 − s(s+ 1)

4
r =

s(s+ 1)

4
ϵ = 2

√
q + r (3.15)

In the differential equation it appears only the combination ϵ2. We therefore want to

clarify that while in the quantum mechanical problem the natural choice is the solution with
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the positive sign +ϵ, in the non-commutative problem the right choice turns out to be −ϵ.
In fact the non-commutative problem requires the substitution

ψ = (1− ξ2)−ϵ/2w(ξ) u =
1

2
(1− ξ) (3.16)

which implies the following solution in the p variables ( ξ = −i
√
βp ):

ψ(p) =
1

(1 + βp2)
√
q+r 2

F1

(
−ϵ− s,−ϵ+ s+ 1, 1− ϵ,

1

2
+ i

√
β

2
p

)
(3.17)

The quantization condition is now

ϵ+ s = n (3.18)

and for q we obtain

q =
(n− s)2

4
− r (3.19)

The requirement ϵ > 0 i.e. n − s > 0 is always satisfied for every integer n by choosing

also for s the negative solution

s = −1

2
−

√
1 + 16r

2
(3.20)

The number of energy levels is now infinite and not subjected to any condition

Elevel ∼ ~ω
q√
r
= ~ω

(
(n− s)2

4
√
r

−
√
r

)
=

= ~ω

[(
n+

1

2

)(√
1 +

1

16r
+

1

4
√
r

)
+

n2

4
√
r

]
(3.21)

For β → 0 (r → ∞) we recover the harmonic oscillator energy levels.

The conclusion is that it is enough to choose a different sign ( ±ϵ ) in the solution of the

same differential equation (3.4) to reach completely different physical spectra.
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