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Abstract. The large-time behaviour of the solution of a hyperbolic-
parabolic problem in an isolated domain, which models the diffusion of
n species of radiative isotopes of the same element, is studied, assuming
general hypotheses on the initial data.
Depending on the radiative law and on the distribution of the initial
concentration, either a uniform distribution for the concentration of
each isotope or the presence of oscillations may be possible when t →∞.
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1. Introduction

Let us consider the following problem in Ω = (−L,L):

cit =
(

ci

c
cx

)
x

+
n∑

j=1

Λijcj , x ∈ Ω, t > 0,

ci(x, 0) = ci0(x) ≥ 0, x ∈ Ω,

ci
cx

c
(−L, t) = ci

cx

c
(L, t) = 0, t > 0,

i = 1, ..., n, c =
∑n

k=1 ck.

(1)

The problem comes from a model for the diffusion of n species of isotopes of
the same element in a medium, in the assumption that the flux of the i − th
species, whose concentration is ci, is

Ji = −ci

c
cx, i = 1, ..., n, x ∈ Ω,
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where c =
∑n

i=1 ci is the total concentration.
This assumption means that any component varies with the total gradient of
the element in a relative percentage

ci

c
(see [7, 20]).

Actually the above law for the flux is an approximation of a more complete
model where the flux is Ji = −(D̃icix + Di

ci

c cx). If one assumes Di = 0 then
the problem becomes a classical parabolic problem whose solution does not
quite agree with the experimental data (see [20]). On the other hand there are
physical situations, such as self-diffusion, in which it is sensible to try the model
with D̃i = 0, thus obtaining solutions more in agreement with experimental
data, at least qualitatively.

Moreover, it would be reasonable, for solutes, that the coefficients Di are
practically the same for all isotopic molecules of the element, as they have the
same partial molar volume and the same electronic configuration, especially for
the heavier chemical elements. Although it would be interesting from a math-
ematical point of view to study the model in the general hypothesis that the
diffusion coefficients are different (see [7]), numerical simulations evidentiate no
significant difference in the qualitative behaviour of the solution in dependence
on the diffusion coefficients Di, here assumed to be all equal to 1 after rescaling
(see [6]). For more details on the physical motivations of the model see [5].

The coefficients Λij are the elements of a constant n × n matrix Λ which
expresses the ”radiative decay law” in the case of radiative isotopes. In the
physically relevant hypothesis that C = (c1, ..., cn) is regular and satisfies

ci0(x) ≥ 0, c0 =
n∑

i=1

ci0(x) > 0, (2)

there exists a unique classical non negative solution (see Section 2 for the
precise assumptions, [7] for the complete model and [5] in the present case).
We remark that it has been proved that the total concentration c satisfies a
parabolic equation with data cx(±L) = 0 and it is regular and strictly positive
for any t ≥ 0. Once c is given, the concentrations ci for the single isotopes are
solutions of linear hyperbolic first order equations and they can be derived by
means of the method of the characteristics, defined by the total concentration.
In this case, denoted by X(t;x0) the characteristic starting in x0 at time 0, we
have:

dX(t;x0)
dt

= −cx

c

∣∣∣∣
x=X(t;x0)

, X(0;x0) = x0. (3)

Let us remark that if the initial total concentration c0(x) has zeroes, there
can be effects of “loss of regularity”. Actually it can happen that, also if
the data are regular, ci has discontinuities for positive time. Although from
a physical point of view it is more sensible to consider c0 small rather than
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c0 ≡ 0, a mathematical approach to the hyperbolic problem was performed
in [5], defining, also if the data are regular, a weak solution as in [2]. Let us
stress that, since the total concentration satisfies a uniform parabolic equation,
it will be strictly positive for any positive time also if it is initially zero on
subintervals. The problem is that this initial ”holes” may possibly cause the
ci to be discontinuous for positive time (for details see [5]). Since we wish to
understand first the asymptotic behaviour for physically relevant initial data,
possibly strongly oscillating but smooth, we need to assume c0 > 0. In this
assumption, one can use the results of [4] and show that the solution constructed
along the characteristics is the “viscosity solution” obtained as the limit of the
complete physical model, with D̃i = D̃ 6= 0, Di = D = 1 as D̃ → 0. Numerical
simulations confirm this result, also for the complete physical model, in very
general situations, and they have been performed using a program for solving
parabolic equations, with initial data possibly zero ([6]); however the proof of
existence and uniqueness of the solution of the complete parabolic problem and
its convergence to the hyperbolic problem in the possible presence of zeroes in
the initial total concentration is still an open problem.

We remark that the asymptotic behaviour of the solutions for t → ∞
strongly depends on the decay law, that is on Λ, and on the first significa-
tive term of the asymptotic expansion for t →∞ of the solutions of the ODE{

Ċ = ΛC, C = (c1, ..., cn),
C(0) = C0.

(4)

These results are evidentiated in [8], under strong assumptions on the positivity
of the initial data in the whole Ω. However there are physically relevant initial
data that do not satisfy such assumptions in the whole Ω but still the corre-
sponding solution should have a similar asymptotic behaviour. In the present
paper we will study the problem assuming the most general hypotheses.

2. Statement of the problem

Existence and uniqueness of a classical non negative solution of Problem (1)
have been obtained in [5] under the following assumptions:

H1) ci0 ∈ H2+l(Ω), l > 0, i = 1, ..., n, 0 ≤ ci0 ≤ K, c0 =
∑n

i=1 ci0 > 0,

H2) positivity property for the ODE (4):

if ci0 ≥ 0, then ci(t) ≥ 0, i = 1, ..., n,

Since we want to consider a set of isotopes which either decay or are stable,
it is natural to assume that all the eigenvalues of the matrix Λ are real non
positive, actually we can assume:
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H3) all the eigenvalues of Λ are real.

Due to the structure of Problem (1) it is convenient to consider instead of
C, C̃ = (c1, ...cn−1, c), c =

∑n
i=1 ci, then (4) is transformed in the following:{ ˙̃C = Λ̃C̃,

C̃(0) = C̃0, C̃0 = (c10, ..., c(n−1)0, c0).
(5)

where Λ̃, for which H3 holds too, is given by

Λ̃ =


Λ11 − Λ1n . . . Λ1n

Λ21 − Λ2n . . . Λ2n

...
. . .

...∑n
m=1(Λm1 − Λmn) . . .

∑n
m=1 Λmn

 .

Assuming that Λ̃ has s ≤ n distinct eigenvalues λs < ... < λ1, for i = 1, ..., s,
let us denote by (see [1, 12])

µ(λi) = algebraic multiplicity of λi,

ν(λi) = geometric multiplicity of λi,

E(λi) = generalized autospace of λi,

h(λi) = the least integer k s.t. Ker (Λ̃− λiI)k+1 = Ker (Λ̃− λiI)k,

so that E(λi) = Ker (Λ̃− λiI)h(λi), with I = Id matrix n× n.
Any solution is a linear combination of the product of exponential functions

time polynomials. Quite precisely:

C̃(t) =
s∑

i=1

h(λi)−1∑
k=0

(Λ̃− λiI)k tk

k!

 eλitC̃0,i, (6)

with C̃0 =
∑s

i=1 C̃0,i, C̃0,i ∈ E(λi).
Therefore, since λ1 is the highest eigenvalue, we have:

lim
t→+∞

t−(h(λ1)−1)e−λ1tC̃(t; C̃0)

=
1

(h(λ1)− 1)!
(Λ̃− λ1I)h(λ1)−1C̃0,1 = B̂C̃0.

(7)

Here B̂ is a constant n× n matrix, determined by the E(λi) (see [8]).
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Given C̃0(x), x ∈ Ω, let us define:

F(x) = B̂C̃0(x), F (x) = (B̂C̃0(x))n. (8)

Let us remark that the positivity hypothesis H2 together with H1 guarantees
F (x) ≥ 0, moreover, if for some x0 F (x0) = 0, then F(x0) = 0.

We proved in [8, Theorem 3.1], that, assuming H1, H2, H3, for any initial
datum C̃0 such that

H4) F (x) ≥ δ > 0 in Ω,

we have
lim

t→+∞
t−(h(λ1)−1)e−λ1tm(x, t) =

x + L

2L
M∞, (9)

uniformly in Ω, where

m(x, t) =
∫ x

−L

c(ξ, t) dξ, M∞ =
∫ L

−L

F (ξ) dξ. (10)

Then the first asymptotic term for the total concentration c is given by

th(λ1)−1eλ1t M∞

2L
, that is a uniform distribution of the total concentration, and

this is in agreement with the physics of the problem.
Moreover, once the characteristics have been defined as in (3), it is possible

to get their asymptotic behaviour, and precisely (see [8, Corollary 3.1]):

lim
t→+∞

X(t;x0) = X∞(x0) =
2L

M∞

∫ x0

−L

F (ξ) dξ − L. (11)

The hypothesis H4 ensures that the function X∞(x0) is monotone increasing,
and consequently it is possible to obtain the information on the ratioes ri =
ci

c
, i = 1, ...n− 1,

cn

c
= 1−

n−1∑
i=1

ri, precisely:

lim
t→+∞

ri(x, t) =
Fi(X−1

∞ (x))
F (X−1

∞ (x))
, i = 1, ..., n− 1 (12)

uniformly in Ω (see [8, Corollary 3.2]).
Of course, if M∞ = 0, that is F ≡ 0, the first significative term of the

asymptotic expansion of m and c changes, but it is natural to investigate what
happens if F 6≡ 0 but e.g. it is null in a subset of Ω.

In order to better understand the question, let us consider the couple of
isotopes (U238, U234) whose decay law is:{

ċ1 = −γ1c1

ċ2 = γ1c1 − γ2c2, 0 < γ1 < γ2,
(13)
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that is the isotope 1, U238, decays into the isotope 2, U234, and the second
one decays out of the element. In this example one can see that F (x) =
γ2 − γ1

γ2
c10(x). If the isotope 1 is not present initially (i.e. c10 ≡ 0), then the

solution is c1 ≡ 0 and c2 ≡ c = e−γ2tw(x, t), with w(x, t) solution of
wt = wxx(x), x ∈ Ω, t > 0,

w(x, 0) = c0(x), x ∈ Ω,

wx(±L, t) = 0, t > 0,

that is, for large time,

m(x, t) ' e−γ2t x + L

2L

∫ L

−L

c0(ξ) dξ, and r ≡ 0.

If on the contrary assumption H4 holds, that is the isotope 1 is initially
present everywhere in Ω, then from (9)-(12):


m(x, t) ' e−γ1t x + L

2L

(
1− γ1

γ2

) ∫ L

−L

c10(ξ) dξ,

r(x, t) ' rE = 1− γ1

γ2
,

uniformly in Ω, with 0 < rE < 1. We have in this case the so called ”secular
equilibrium” of the two isotopes, that are both present in Ω for t > 0 and tend,
for t → ∞, respectively to rE , 1 − rE . The question is what happens if the
isotope 1 is absent only in a subset of Ω but M∞ > 0. We will prove in the
sequel that the asymptotic behaviour of m is still given by (9).

Other significant examples will be analyzed in Section 4.

3. Main result

Aim of this Section is to prove that the same result (9) holds if instead of H4
we assume the following hypothesis:

H5) F (x) = (B̂C̃0(x))n ≥ 0, F (x) 6≡ 0 inΩ.
We have the following:

Theorem 3.1. In the assumptions H1, H2, H3, H5, then

lim
t→+∞

t−(h(λ1)−1)e−λ1tm(x, t) =
x + L

2L
M∞, (14)

uniformly in Ω, with m and M∞ defined in (10).
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Proof. Taking as an unknown C̃ = (c1, ..., cn−1, c), c =
∑n

i=1 ci, the original
problem (1) becomes:

cit =
(

ci

c
cx

)
x

+ (Λ̃C̃)i, i = 1, ..., n− 1, x ∈ Ω, t > 0,

ct = cxx + (Λ̃C̃)n, x ∈ Ω, t > 0,

cx(−L, t) = cx(L, t) = 0, t > 0,

C̃(x, 0) = C̃0(x) = (c10(x), ..., c(n−1)0(x), c0(x)),
c0(x) =

∑n
i=1 ci0(x), x ∈ Ω.

(15)

As in other problems of this kind, see [2, 5, 13, 14, 18], it is more convenient
to consider, instead of (15), the problem for

ri =
ci

c
, i = 1, ..., n− 1:

rit =
cx

c
rix + Pi(r), i = 1, ..., n− 1, x ∈ Ω, t > 0,

ct = cxx + b(r1, ..., rn−1)c, x ∈ Ω, t > 0,

cx(−L, t) = cx(L, t) = 0, t > 0,

c(x, 0) = c0(x), x ∈ Ω,

ri(x, 0) =
ci0(x)
c0(x)

, i = 1, ..., n− 1, x ∈ Ω,

(16)

where Pi are polynomial expressions of degree ≤ 2 in r = (r1, ..., rn−1), the
coefficients depending on Λ, and b is defined by

b = (Λ̃r̃)n, r̃ = (r1, ..., rn−1, 1). (17)

Let us remark that under hypotheses H1 and H2 we have proved in [5] the
existence of a unique classical solution of problem (16).

Moreover, c(x, t) is always positive, satisfying a linear parabolic equation
with zero flux on the boundary and positive initial datum.
Once c is known, the characteristics depend only on c, see (3), but the ri evolve
along each characteristic, independently of c, like the solutions of the spatially
omogeneous problem. Then, fixed x0 and C̃0(x0), the ri are given explicitely
on the characteristic X(t;x0) by the ratioes ci/c, with ci, c given in (6) with
initial datum C̃0(x0).

Moreover, we proved in [5] that the ”masses” between two characteristics
X(t;x1), X(t;x2) starting respectively in x1, x2, with −L ≤ x1 < x2 ≤ L,
defined by

M̃(t) =
∫ X(t;x2)

X(t;x1)

C̃(ξ, t) dξ, (18)
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are solutions of the ODE system:

˙̃M = Λ̃M̃, M̃(0) =
∫ x2

x1

C̃0(ξ)dξ = M̃0, (19)

and hence are given explicitly by (6) with initial datum M̃0 instead of C̃0.

This means that, since x = −L is the characteristic starting in x0 = −L,
we know the evolution in time of m(x, t) on any characteristic x = X(t;x0)
and in particular for x = X(t;L) ≡ L.

Then v(x, t), defined by

v(x, t) = (1 + t)−(h(λ1)−1)e−λ1tm(x, t), (20)

is solution of: 
vt = vxx + f(x, t), x ∈ Ω, t > 0,

v(x, 0) =
∫ x

−L
c0(ξ) dξ, x ∈ Ω,

v(−L, t) = 0, t > 0,

v(L, t) = H(t), t > 0.

(21)

with

f(x, t) =
∫ x

−L
b̃ u dξ,

u = (1 + t)−(h(λ1)−1)e−λ1tc,

b̃ = b− λ1 −
h(λ1)− 1

1 + t
, b = (Λ̃r̃)n,

H(t) = (1 + t)−(h(λ1)−1)e−λ1t×

×
∑s

i=1

{[∑h(λi)−1
k=0 (Λ̃− λiI)k tk

k!

]
eλit

∫ L

−L

C̃0,i(ξ) dξ

}
n

.

(22)

The expression of H(t) comes from (19), recalling that x ≡ ±L are the charac-
teristics starting at x0 = ±L, since there cx = 0. Then, see (21), v is solution
of a Dirichlet problem for the heat equation with source f(x, t) and known
boundary data.

Under the hypothesis H5, from (7) and the definition (8) of F , we have

lim
t→+∞

H(t) =
∫ L

−L

F (ξ) dξ = M∞. (23)

Using a classical result ([11, Theorem 1, Chapter V]) the proof of Theorem 3.1
follows, provided that

lim
t→+∞

f(x, t) = 0 (24)
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uniformly in Ω.
In order to prove (24), fixed an arbitrary σ > 0, let us divide the interval
Ω = (−L,L) into the two subsets:

Ω− = {x ∈ Ω : F (x) < σ},
Ω+ = {x ∈ Ω : F (x) ≥ σ}.

(25)

Let us remark that, for any σ sufficiently small, Ω+ is not empty and, if
F (x0) = 0, there exists a neighborhood of x0 where F < σ and Ω− is not
empty.
For any fixed t > 0, let us divide Ω into

Ω−(t) = {x ∈ Ω : x = X(t;x0), x0 ∈ Ω−},
Ω+(t) = {x ∈ Ω : x = X(t;x0), x0 ∈ Ω+},

(26)

that is Ω−(t), Ω+(t) are the set of the characteristics at time t starting from
Ω−, Ω+ respectively.

Then

f(x, t) =
∫
[−L,x]∩Ω−(t)

b̃u dξ +
∫
[−L,x]∩Ω+(t)

b̃u dξ =
= f−(x, t) + f+(x, t).

(27)

Let us consider first f+. In [8, Lemma 3.1], we proved that if for some
x0 F (x0) ≥ σ > 0, on the characteristic X(t;x0) starting in x0, the following
estimate on b̃ depending on σ holds:

|b̃| ≤ k1

σ

[
h(λ1)− 1

t2
+ (s− 1)e

λ2−λ1
2 t

]
=

k1

σ
g(t), (28)

for x = X(t;x0) and t ≥ 1, where k1 is a constant depending on Λ and on
maxΩ ||C̃0(x)||.

Then, being u > 0, recalling (21)-(23), we have:

|f+(x, t)| ≤ k1

σ
g(t)

∫
[−L,x]∩Ω+(t)

u(ξ, t) dξ

≤ k1

σ
g(t)

∫ L

−L

u(ξ, t) dξ

≤ k1

σ
g(t)H(t) ≤ 2

k1M∞

σ
g(t), t ≥ T1.

(29)

Let us consider now f−. Notice that for any x ∈ Ω, t > 0, b̃ is uniformly
bounded because the ri are bounded between 0 and 1 (see (22)), that is |b̃| ≤ k2.
Since u > 0 we have:

|f−(x, t)| ≤ k2

∫
[−L,x]∩Ω−(t)

u(ξ, t) dξ

≤ k2

∫
Ω−(t)

u(ξ, t) dξ.
(30)
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From (18), (19), (6), (8), the last term in (30) can be written in the form∫
Ω−(t)

u(ξ, t) dξ = (1 + t)−(h(λ1)−1)e−λ1t×

×
∑s

i=1

{[∑h(λi)−1
k=0 (Λ̃− λiI)k tk

k!

]
eλit

∫
Ω−

C̃0,i(ξ) dξ

}
n

=
(
B̂

∫
Ω−

C̃0,1(ξ) dξ
)

n
+ z̃ =

∫
Ω−

F (ξ) dξ + z̃,

(31)

with z̃ bounded for any x ∈ Ω, t ≥ 1 by:

|z̃| ≤ k3

(
(h(λ1)− 1)

t
+ (s− 1)e

λ2−λ1
2 t

)
= k3g1(t), (32)

with k3 depending on Λ and on maxΩ ||C̃0||.
Recalling that F < σ in Ω−, from (31), (32) it follows

|f−| ≤ k4(σ + g1(t)), x ∈ Ω, t ≥ 1. (33)

From the estimates (29), (33) on f+, f− we have, for any x ∈ Ω, t ≥ max(1, T1):

|f | ≤ k5

(
σ +

g(t)
σ

+ g1(t)
)

. (34)

Then, fixed an arbitrary ε > 0, e.g. σ =
ε

3
, recalling that g(t) and g1(t) tend

to zero as t →∞, from (34) we have that there exists a time T (ε) such that

|f | ≤ ε, ∀x ∈ Ω, t > T (ε),

that gives the proof of the theorem. 2

From Theorem 3.1, as in [8], it is possible to obtain the asymptotic be-
haviour of the characteristics, precisely we have:

Corollary 3.2. In the hypotheses of Theorem 3.1 we have that

lim
t→+∞

X(t;x0) = X∞(x0) =
2L

M∞

∫ x0

−L

F (ξ) dξ − L, (35)

uniformly in Ω.

Proof. The proof is the same as the one of [8, Corollary 3.1], let us mention here
that the idea of the proof is that we know the evolution in time of m(X(t;x0), t),
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since m is solution of the ODE (19). Therefore we have that, by the definition
of X∞(x0) in (35) and by (6)-(8):

t−(h(λ1)−1)e−λ1tm(X(t;x0), t)

=
∫ x0

−L

F (ξ) dξ + ẑ(x0, t) =
X∞(x0) + L

2L
M∞ + ẑ,

where
|ẑ(x0, t)| ≤ k6g1(t),

with k6 constant depending on Λ and on maxΩ ||C̃0||, and g1(t) defined in (32).
On the other hand, Theorem 3.1 implies that, for t sufficiently large and

for any x0 in Ω, t−(h(λ1)−1)e−λ1tm on the characteristic X(t;x0) is close to
X(t;x0)+L

2L
M∞. 2

Concerning the asymptotic behaviour of the ri =
ci

c
, i = 1, ..., n− 1, as in

[8] we have:

Corollary 3.3. In the hypotheses of Theorem 3.1, and assuming that F (x) ≥
δ > 0 in [x1, x2],⊂ Ω, we have:

lim
t→+∞

ri(x, t) =
Fi(X−1

∞ (x))
F (X−1

∞ (x))
, (36)

uniformly in [X∞(x1), X∞(x2)], and∣∣∣∣ri

(
X(t;X−1

∞ (x)), t
)
− Fi(X−1

∞ (x))
F (X−1

∞ (x))

∣∣∣∣ ≤ k(δ)g1(t), (37)

for t > T (δ) = g−1
1

(
δ

2

)
, g1 defined in (32).

Proof. From the hypothesis F (x) ≥ δ > 0, x ∈ [x1, x2], it follows that the
function X∞(x) is monotone increasing in [x1, x2], consequently the inverse
function is monotone increasing in [X∞(x1), X∞(x2)].

Moreover the characteristics are ordered so that ∀t̄ > 0 and ∀x̄ ∈ [X(t;x1),
X(t;x2)] there exists a unique x̂ ∈ [x1, x2] such that x̄ = X(t; x̂) and F (x̂) ≥
δ > 0. Then we can repeat the arguments of [8, Corollary 3.2]. The estimate
(37) on ri comes from the explicit expression of C̃(t) in (6). 2

From the explicit expression of X∞(x), see (35), we have the following
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Remark 3.4. i) If F (x) ≡ 0 for x ∈ [x1, x2] ⊂ Ω, then X∞(x1) = X∞(x2).
That is, if F is identically zero in a subinterval of Ω, all the subinterval
asymptotically reduces to the point

X∗ = X∞(x1) =
2L

M∞

∫ x1

−L

F (ξ)− L.

ii) If 0 ≤ F (x) ≤ β, β > 0 for x ∈ [x1, x2] ⊂ Ω, then

X∞(x2)−X∞(x1) =
2L

M∞

∫ x2

x1

F (ξ) dξ ≤ 2L

M∞
(x2 − x1)β.

That is the asymptotic measure of the subinterval is of the order β.

In the next Section we will consider some examples in order to make clearer the
above observations concerning the asymptotic behaviour of r = (r1, ..., rn−1).

4. Examples and comments

Let us consider the example described in Section 2, for the couple (U238, U234),
where the matrix Λ is given by (13). If we assume in this example that F (x) =
γ2 − γ1

γ2
c10(x) is null in a subinterval [x1, x2] ⊂ Ω and positive out of this

interval, then (see Remark 3.4), the whole interval [x1, x2] reduces, for t →∞
to the unique point

X∗ = X∞(x1) =
2L

M∞

∫ x1

−L

F (ξ)− L.

In this case there does not exist the limx→X∗, t→∞ r(x, t), because in any neigh-
borhood of X∗ there are characteristics on which r ≡ 0 (precisely X(t;x0),
∀x0 ∈ [x1, x2]) and characteristics on which

r → rE =
γ2 − γ1

γ2
, 0 < rE < 1,

precisely the ones starting at a point out of [x1, x2].
However, fixed a neighborhood of X∗, out of it r tends uniformly to rE for

t → ∞, because of Corollary 3.3. From a physical point of view in this case
(0 < γ1 < γ2) there is not a uniform asymptotic distribution for c1, c2 and, in
particular, oscillations may be present near X∗ also asymptotically. However
varying order of the parameters γ1, γ2 one can observe that:

i) if γ1 > γ2 > 0 then F (x) = c0(x) +
γ2

γ1 − γ2
c10(x) ≥ c0(x) > 0.

Then H1 implies that assumption H4 is satisfied and r → 0 uniformly
for t →∞, that is only the isotope 2 is present asymptotically.
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ii) if γ1 = γ2 = γ > 0 then F (x) = γc10(x).

Then in assumption H5 we have that M∞ =
∫ L

−L
F > 0 depends only on

the isotope 1 and the asymptotic expansion of m(x, t) is

te−γt x + L

2L
M∞.

However for any initial data satisfying H1 we have r ≤ 1
γt

for t > 1 and x ∈ Ω, so that r → 0 uniformly for t → ∞, that is there
exists a uniform asymptotic distribution of r in Ω, independently of the
possible vanishing of F in a subset of Ω.

Let us remark that if assumption H5 does not hold, that is if F ≡ 0 in
Ω, the isotope 1 is initially absent in the explicit solution and the first
asymptotic term of m is

e−γt x + L

2L

∫ L

−L

c0(ξ) dξ, c0 ≡ c20.

This example shows that depending on the form of the matrix Λ there can
be three different asymptotic behaviours:

case I for any initial data satisfying H1, F (x) is always strictly positive, and
hence hypothesis H4 holds. Then r = (r1, ..., rn−1) has an asymptotic
distribution in the whole Ω (see [8] and (12));

case II assuming hypothesis H5, there exists an asymptotic distribution of r
in the whole Ω;

case III assuming hypothesis H5, there does not exists in general an asymp-
totic distribution of r in the whole Ω.

These three possible behaviours are present in the general case of n species
with different evolutive laws. We will present some of them, interesting from a
physical point of view.

case I

example Ia) The matrix Λ is a multiple of the identical matrix, defined by:

ċi = −γci, i = 1, ..., n, γ ≥ 0. (38)

This example describes both sets of stable isotopes, i.e. with γ = 0, e.g.
of the couple (Cl37, Cl35), and of radiative isotopes that decade out of
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the element with the same coefficients of decay (γ > 0), e.g. the couple
(U235, U238).

In this case we have that F (x) = c0(x) > 0 because of hypothesis H1.

Let us remark that in this case the asymptotic distribution of r strongly
depends on the initial conditions, since it is given explicitely by:

lim
t→∞

ri(x, t) =
ci0(X−1

∞ (x))
c0(X−1

∞ (x))
, i = 1, ..., n. (39)

example Ib) The matrix Λ is defined by


ċ1 = −γ1c1,

ċi = γi−1ci−1 − γici, i = 2, ..., n− 1,

ċn = γn−1cn−1,

(40)

with γi > 0, i = 1, ..., n− 1.

This case describes the evolution of a chain of n isotopes such that the
ith one decades into the (i + 1)th one, for i = 1, ..., n − 1, while the nth

one is stable.

It is shown in [8] that also in this example F (x) = c0(x), however in this
case

lim
t→∞

ri(x, t) = 0 i = 1, ..., n− 1, (41)

uniformly in Ω, then the unique isotope asymptotically present is the nth

one, that is the unique stable isotope.

example Ic) The matrix Λ is defined by

{
ċ1 = −γ1c1,

ċi = γi−1ci−1 − γici, i = 2, ..., n.
(42)

with γi > 0, i = 1, ..., n and γn = min γi, µ(−γn) = 1.

This is a generalization of the couple (U238, U234): we have a chain of
n isotopes of which the ith one decades into the (i + 1)th one, for i =
1, ..., n− 1, and the nth one decays out of the element. In [8, Example 2,
Section 4] we have shown that

F = F (x)vn, vn = (0, ..., 0, 1), F (x) ≥ c0(x).
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Then, again, for any datum satisfying H1, F (x) is strictly positive and

lim
t→∞

ri(x, t) = 0 i = 1, ..., n− 1, (43)

uniformly in Ω, and the unique isotope asymptotically present is the nth

one.

Let us remark that the estimate on F (x) can be derived directly, without
a detailed analysis of the eigenvalues-eigenvectors of Λ.

In fact in this case the ODE system ˙̃C = Λ̃C̃ is given by


ċ1 = −γ1c1,

ċi = γi−1ci−1 − γici, i = 2, ..., n

ċ = −γnc + γn

∑n−1
i=1 ci(t).

(44)

Then the ci(t), i = 1, ..., n − 1, can be obtained from the first n − 1
equations and depend only on ci0(t), i = 1, ..., n − 1, and the total con-
centration consequently is given by

ceγnt = c0 + γn

∫ t

0

eγnτ
n−1∑
i=1

ci(τ) dτ. (45)

The hypotheses γn = min γi, µ(−γn) = 1 ensure that the integral in (45)
is bounded for t → ∞, since ci, i = 1, ..., n − 1, behave at most like
e−γitQ(t), with Q(t) polynomial in t of degree less or equal to n − 1
(equal if the γi, i = 1, ..., n− 1, are all identical).

Since ci ≥ 0, we have limt→∞ ceγnt = F (x) ≥ c0,

in particular F (x) = c0 if ci0 = 0, i = 1, ..., n − 1, that is if initially the
unique isotope present is the nth one.

Let us remark that if γn = min γi, but µ(−γn) > 1 then in general F
is not positive everywhere. Indeed even in the case n = 2 we have seen
that F = γ1c10, and in general, for n > 2 we have, from (45) and since
µ(−γn) = h(−γn) > 1:

F = lim
t→∞

t−(h(−γn)−1)eγntc = lim
t→∞

γnt−(h(−γn)−1)

∫ t

0

eγnτ
n−1∑
i=1

ci(τ) dτ.

If ci0 = 0, i = 1, ..., n − 1 and cn0 > 0, then the initial data satisfy H1
but F = 0.
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case II
This case occurs when H1 does not imply that F (x) is positive in Ω, but

r has a unique asymptotic limit for all data satisfying H1, as solution of an
ODE. In this class we can find the example with Λ given by (42) with γi = γ >
0, i = 1, ..., n. Under hypothesis H1, in this case we have that, ∀x ∈ Ω and for
t > 1:

Fi(x) =
γn−1

(n− 1)!
c10(x)δn

i , i = 1, ..., n,

0 ≤ ri ≤
i

γt
, i = 1, ..., n− 1,

(46)

where δn
i is the Kronecker symbol.

Then for any initial datum satisfying hypothesis H1, we have that

lim
t→∞

r = 0,

uniformly in Ω, that is asimptotically the unique isotope present is the nth one,
however M∞ depends only on the 1st isotope (see Theorem 3.1).

To prove (46) we remark that Λ is multiple of a Jordan normal form and
the solution can be explicitly written as follows:

eγtci =
∑i

j=1 cj0
(γt)i−j

(i− j)!
, i = 1, ..., n− 1,

eγtc =
∑n−1

i=1 ci0

∑n−i
j=1

(γt)j

(j)!
+ c0.

(47)

Then, recalling that h(−γn) = n and limt→∞ t−(h(−γn)−1)eγtC̃ = F, (46) fol-
lows.

Let us remark that for any initial data such that c10 > 0 we have for t →∞:

ri '
(n− 1)!
(i− 1)!

(γt)−(n−i), i = 1, ..., n− 1,

that is the estimate (46) is almost sharp.

case III
This case occurs when H1 does not imply that F (x) is positive, and r, as

solution of an ODE, does not have a unique asymptotic limit, for all the data
satisfying H1.

example IIIa) The matrix Λ is diagonal, with eigenvalues not all equal.
This is the case of a set of isotopes which decade out of the element with
coefficients of decay not all equal.
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Assuming the isotopes to be ordered with γ1 ≤ γ2 ≤ ... ≤ γn, γ1 <
γn, from the explicit solution one can directly observe that, denoting
µ(−γ1) = j < n:

F (x) =
j∑

i=1

ci0(x),

and if F (x0) > 0 then r(X(t;x0), t) tends asymptotically to a limit which
can depend on the initial data, if j > 1, but it is such that

∑j
i=1 ri tends

to 1 and ri tends to 0 for i > j, as t →∞.

On the other hand, we have that if c10(x0) = ... = c(n−1)0(x0) = 0,
cn0(x0) > 0 then F (x0) = 0 and r(X(t;x0), t) ≡ 0, that is a different
limit from the previous one.

Then in general there does not exist a limit for r in the whole Ω.

example IIIb) Let us consider the example (42) assuming now that the γi

are not all equal and that −γn is not the maximum eigenvalue. Then if
we choose the initial data ci0 = 0, i = 1, ..., n − 1, cn0 > 0, satisfying
hypothesis H1, we have the solution:

C̃ = c0e
−γntvn, vn = (0, ..., 0, 1).

Denoted by λ1 = −mini=1,...,n γi the maximum eigenvalue, say −γk, k 6=
n, then, for this initial condition we have:

F = lim
t→∞

t−(h(λ1)−1)e−λ1tC̃ = lim
t→∞

t−(h(λ1)−1)e−(γn−γk)tc0vn = 0.

Moreover, on any characteristic X(t;x0) with x0 such that ci0 = 0, i =
1, ..., n− 1, cn0 > 0, we have r = 0.

On the other hand we can show, see [8, Example 2], that in this case
F(x) = β(x)vk, where vk is given by:

vk,i = 0, i = 1, ...k − 1, if k > 1,

vk,i =
∏n−1

j=i

γj+1 − γk

γj
, i = k, ..., n− 1,

vk,n = 1 +
∑n−1

i=1

∏n−1
j=i

γj+1 − γk

γj
.

(48)

Then if F (x0) is positive on the characteristic starting in x0 we have

lim
t→∞

r = rE 6= 0, rE,i =
vk,i

vk,n
, i = 1, ...n− 1,
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that is in general a limit for r does not exist in the whole Ω.

In particular if k = 1, all the components of rE are positive and
∑n−1

i=1 rE,i

< 1, that is, from a physical point of view, we have the so called secular
equilibrium of all the n isotopes.
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