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1. INTRODUCTION

1.1. Multiple sclerosis

Multiple  sclerosis  (MS) is  a  chronic  inflammatory demyelinating  disease of  the central 

nervous  system  (CNS)  (Martin  et  al,  1992;   Compston  et  al,  2002).  MS  has  been 

considered to be an autoimmune disorder mediated by CD4+ type 1 T helper cells, but 

recent  studies  have  challenged  this  idea  by  indicating  a  role  for  other  immune  cells 

(Sospedra et al, 2005). During the course of MS, the humoral immune response becomes 

compartmentalized in the CNS generating intratecal production of oligoclonal IgG (Qin et 

al, 1998; Colombo et  al, 2000).  Moreover,  studies performed on cloned T cells isolated 

from MS cerebrospinal fluid (CSF) demonstrated that this compartment is enriched of T 

cell  clones using restricted T cell  receptor (TCR) genes (Hafler  et al,  1985; Lee et al, 

1991). Even if other investigations failed to reproduce these findings (Rottevel et al, 1987), 

these data suggest that in MS also T cells may expand intrathecally as a result of antigen 

(Ag) specific stimulation. Recently, the possible contribution of CD8+T cells as effectors of 

the pathological immune reactions damaging the CNS of MS patients and animals with 

experimental  autoimmune encephalomyelitis (EAE), the animal model of MS, has been 

outlined (Sun et al, 2001; Huseby et al, 2001; Steinman 2001; Neumann et al, 2002; Liblau 

et  al,  2002).  T  lymphocytes,  CD8+T cells  could  be  demonstrated  in  MS brain  lesions 

(Hayashi et al, 1986). In addition, analysis of microdissected  CD8+T cells in the brain 

lesions using single-cell PCR showed oligoclonal expansion of these cells (Babbe et al, 

2000). Their role in MS pathogenesis has been strongly suggested by a study of the TCR 

repertoire in  three separate compartments (brain,  CSF and blood) of  two MS patients 

(Jacobsen et al, 2002; Skulina et al, 2004). These data do not exclude that CD4+T cells 

may also play an important role. It is likely indeed, that CD8+ T cell function depends on 

“help”  from CD4+ regulatory T cells  and that  CD4+ effector  cell  function might  directly 

contribute to inflammatory tissue injury. In a recent study, CD4+ T cell activation has been 
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analysed  in  clinically  isolated  syndrome (CIS)  suggesting  an initial  attack  of  MS.  The 

authors showed that percentage of CD25+CD4+ T cells in CSF correlated negatively with 

myelin basic protein (MBP) CSF concentration and the presence of IgG oligoclonal bands 

(Jensen et al, 2004). Human CD4+ regulatory T cells expressing high levels of CD25 are 

suppressive in vitro and have similar activity of mouse CD4+CD25+ regulatory T cells. It 

has  been  proposed   that  alteration  in  function  of  this  cell  sub-population  may  have 

implications in the breakdown of self-tolerance during MS (Viglietta et al, 2004). Indeed, in 

EAE CD4+CD25+ auto-Ag specific cells play an important  role in  genetic  resistance to 

autoimmunity (Reddy et al, 2004).

As  autoimmune  pathogenetic  mechanisms  against  CNS  white  matter  underlie  the 

development of the MS lesions, immune-suppressive medications have been successfully 

used  in the therapy of this disease (Hommes et al, 2004): among them Azathioprine, a 

cytostatic agent, well tolerated, easy to administer and to monitor (Aarbake et al, 1997).

1.2. Thiopurine drugs

Azathioprine  (Aza),  6-Mercaptopurine  (6-MP)  and  6-Thioguanine  (6-TG)  are  thiopurine 

drugs (Fig.1.2)  widely  used as  immunosuppressants/anti-inflammatory  agents  in  organ 

transplantation and chemotherapy. Azathioprine is utilized to prevent rejection in kidney 

and heart transplantation (McGeown et al, 1988; Andreone et al, 1986; Chan et al, 1990) 

and to treat various autoimmune and chronic inflammatory diseases, such as inflammatory 

bowel  diseases,  rheumatoid  arthritis,  systemic  lupus  erythematosus,  primary  biliary 

cirrhosis, and multiple sclerosis (British and Dutch Multiple Sclerosis  Azathioprine Trial 

Group 1988; De Silva et al, 1981; Ginzler et al, 1975; Christensen et al, 1985; Bouhnik et 

al,  1996;  Fraser  et  al,  2002).  On  the  other  hand,  6-MP  and  6-TG  have  been  used 

particularly in the treatment of acute leukaemia (Erb et al, 1998).

6-MP and  6-TG  were  planned  in  1950s  by  Gertrude  Elion  and  George  Hitchings as 

cytostatic agents  primarily  for  suppressing  neoplastic  proliferation and  initially  were 

developed  for  therapy  of  childhood  acute  lymphoblastic  leukaemia  (Elion,  1967). 

Azathioprine  (Aza)  was  designed later in order to prevent hydrolysis in the gut of the 
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unshielded mercapto-group of 6-MP. The immunosuppressive activity was described since 

1958 (Elion, 1993) and in 1963 its activity on prolonging renal allograft survival was proved 

(Murray et al, 1963). 

Along  with  the  Azathioprine  pharmacological  and  clinical  development,  other  activities 

were observed (Elion 1993) and, for this discover, Elion and Hitchings in 1988 received the 

Nobel Prize in Medicine. 

                  

                  Fig. 1.2. Molecular structure of thiopurine drugs.

1.2.1. Metabolism of azathioprine 

The Azathioprine molecule is composed of two moieties: mercaptopurine and an imidazole 

derivative. After oral administration and intestinal absorption, ranged from 50 to 72%, the 

pro-drug Azathioprine undergoes approximately 90% conversion to 6-MP and S-methyl-4-

nitro-5-thioimidazole by non enzymatic attack by sulphydryl containing compounds such as 

glutathione or cysteine that are present in every mammalian cell. Whereas S-methyl-4-

nitro-5-thioimidazole is excreted in urine,  6-MP enters cells where it  is subject to three 

competing enzymes: xanthine oxidase (XO), thiopurine S-methyltransferase (TPMT) and 

hypoxanthine  guanine  phosphoribosyltransferase  (HGPRT)  (Van  Os  et  al,  1996; 

Hoffmann et al, 2001; Lennard 1992).

Xanthine oxidase oxidizes 6-MP generating the inactive metabolite 6-thiouric acid (6-TA). 

Thiopurine  S-methyl-transferase  converts  6-MP  to  6-methyl-mercaptopurine  (6-MMP). 

Hypoxanthine-guanine-phosphoribosyl-transferase  acts  on  6-MP  to  produce  6-

Thioguanine (6-TG); 6-TG is then metabolised further to form mono-di- and tri-phosphate 

Thioguanine  nucleotides  (TGNs).  In  particular,  lymphocytes  have  been  shown  to 
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enzymatically convert 6-MP to 6-TG (Tiede et al, 2003). 6-TG and TGNs are thought to be 

the predominant active metabolites mediating the immunosuppressive properties of Aza, 

but  they  also  seem to  be   associated  with  side  effects  of  this  drug  as  myelotoxicity 

(Coulthard et al, 2005). Most likely TGNs can exert cytotoxicity following incorporation into 

DNA  as  fraudulent  bases  causing  DNA-protein  cross-links,  single  strand  breaks, 

interstrand cross-links and sister  chromatid exchanges (Christie et al,  1984; Pan et  al, 

1990).  The incorporation of TGNs into DNA has been shown to be recognised by the 

mismatch repair (MMR) system. Defects in the MMR pathway have been shown to be 

associated with resistance to 6-TG (Swann et al, 1996).

An  intermediate in the HGPRT pathway, 6-thioinosine-monophosphate (TIMP), can be a 

substrate for TPMT, resulting in  the production of  S-methyl-thioinosine-monophosphate 

(MeTIMP), a strong inhibitor of de novo purine syntesis, which is believed to significantly 

contribute to the 6-MP cytotoxicity (Vogt et al,  1993). The level of TPMT activity would 

therefore be expected influence the production of MeTIMP and hence of  de novo purine 

synthesis. The effects of TPMT activity levels on cytotoxicity was reported in 1987 by Van 

Loon (Van Loon et al, 1987). Moreover, the enzyme TPMT competing with HGPRT can 

prevent TGNs formation. The gene TPMT is subject to genetic polymorphism, leading to 

an almost 50-fold variation in enzyme activity among individuals. TPMT polymorphisms 

have been associated with mercaptopurine’s therapeutic efficacy and also to its toxicity 

(Coulthard et al, 2005). Three single nucleotide polymorphisms (SNPs) account for over 

90% of the clinically relevant  TPMT mutations and bring to aminoacid substitutions that 

make the protein more susceptible to degradation through ubiquitylation.  In Caucasian 

population about 0.3-0.6% of the individuals carry two mutant  TPMT alleles and do not 

express functional TPMT. That results in greater conversion of 6-MP to 6-TGNs via the 

HGPRT pathway after mercaptopurine therapy and in myelosuppression, requiring doses 

to  be  reduced to as  little  as  a  tenth  of  the  normal  dose  in  order  to  tolerate  therapy. 

Alternatively, high TPMT enzyme activity may result in larger 6-MMP production at the 

expense  of  6-TGN,  leading  to  decreased  efficacy.  A  number  of  single  nucleotide 

polymorphisms (SNP) for  TPMT have been identified that  cause diminished or  absent 
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TPMT  enzyme  activity.  About  5-10%  of  the  Caucasians  are  heterozygous  for  this 

polymorphism, have intermediate levels of TPMT activity and require only modest dosage 

reductions. The remaining 90-95% of the population carry two wild-type alleles and have 

full TPMT activity (Coulthard et al, 2005).

The relative activities of XO, HGPRT and TPMT determine the net concentration of the 

active  6-  TGN.  For  this  reason attempt  to prevent  serious adverse events have been 

pursued  looking  for  homozygous  allelic  variations.  Nonetheless,  the  similar  or  higher 

frequency of toxicity in patients not carrying mutant alleles indicates that other factors, i.e. 

unpredictable allelic variation of other enzymes involved, may affect Aza metabolism and 

bioavailability. This finding and the very low frequency of homozygous subjects, suggest 

that genotyping for TPMT prior to Aza administration may not be efficient. In addition, in 

many  pathological  conditions,  no  correlation  has  been  found  between  6-TGNs  blood 

concentrations and disease remission (Cara et al, 2004), indicating that TPMT genotype 

evaluation has low predictive value in the monitoring of thiopurine therapy as probably also 

other mechanisms are associated to the immunosuppressive activity  of thiopurines (Cara 

et  al,  2004;  Lichtenstein  2004).  On  the other  hand,  combined  net  effects  of  the  Aza 

metabolites may be easily evaluated by leuko/lymphocyte levels. Their reduction probably 

reflects mainly unspecific suppression of highly proliferating bone marrow precursors of 

white  cell  lineage,  induced  by  both  the  6-TGNs  and  the  Me-TINPs  and  it  may  not 

necessarily be correlated to the immune-suppressive activity. However leuko/lymphocyte 

levels act as a marker of the active metabolites net bioavailability and correlates well with 

effective individual Aza/6-MP dosing (Colonna et al, 1994).

1.2.2. Toxicity 

The most common adverse events observed during Aza treatment include gastrointestinal 

abnormalities (gastric or abdominal pain, seldom vomiting and diarrhoea), bone marrow 

suppression (defined as wbc<3000/mm3 or lymphocytes<800/mm3 or platelet<50.000) and 

abnormal  liver  function.  Less  frequently  skin  rash  and  myalgia  can  also  be  reported 
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(Yudkin et al, 1991;  Massacesi et al, 1994; Craner et al, 2001; Bryant et al, 2001; Sudlow 

et  al,  2003;  Massacesi  et  al,  2005).  However,  simple leuKopenia  or  lymphopenia  w/o 

myelosuppression are part  of  the action mechanism and should not be considered an 

adverse event. In prospective controlled clinical studies the adverse events frequency was 

between  45 and  55 % (Goodkin et al, 1991). Withdrawal rate due to unfavourable effects 

was  lower,  being  reported  about  30  %,  but  was 10-18% when compared  to  placebo 

(British and Dutch Multiple Sclerosis Azathioprine Trial Group 1988;  Yudkin et al, 1991). 

However, any Aza toxicity can be prevented simply by careful monitoring of white blood 

cells and aminotransferases; in addition, serious adverse events due to hypersensitivity 

are usually ready reversible with dose reduction (Massacesi et al, 2005). Therefore most 

of  the  toxicity  associated  to  Aza  can  be  controlled  by  appropriate  individual  dose 

adjustment. Indeed very rarely, adverse effects and withdrawals were observed after the 

first year of treatment (Massacesi et al, 2005). 

To date little is known about the metabolites that are responsible for the toxicity, although 

6-MMP concentrations  have been correlated to liver toxicity and 6-Me-TIMPs to bone 

marrow suppression,  but  no advantage is  achieved by evaluation of  serum metabolite 

concentrations (Reuther et al, 2003; Wright et al, 2004).

Carcinogenic  activity  of  immune-suppression  have  been  suggested,  non–Hodgkin 

lymphomas being the malignancy more frequently associated (Kinlen et al, 1981; Opelz et 

al, 1993; Ciancio et al, 1997). However the data available are not conclusive, as recent 

studies indicate that the diseases requiring Aza therapy (autoimmune diseases, cancer or 

transplantation), may per se convey risk of  cancer (Kwon et al, 2005; Fraser et al, 2002). 

Conflicting  results  have  been  reported  in  patients  treated  only  with  Aza,  without  any 

concomitant therapy: the main concern was raised by two studies by Kinlen et al. carried 

out  many  years  ago,  one  in  patients  with  renal  graft  transplantation,  the  other  with 

reumathoid  arthritis  or  other autoimmune diseases (Kinlen et  al,  1981).  These studies 

showed a substantial increase of cancer frequency rate for patients treated with Aza with 

respect to the general population. However, as risk of malignancies may be due to the 

disease itself, concurrent matched untreated patients carrying the same disease should be 
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the optimal control population (Fraser et al, 2002). Indeed, similar studies including the 

appropriate  controls  failed  to  confirm  carcinogenic  activity  of  Aza.  For  instance,  no 

increase in cancer frequency was found in patients with lupus eritematosus sistemicus 

(LES) treated with Aza with respect to untreated patients, even after 22 years follow up 

(Nero  et  al,  2004).  In  addition,  in  patients  with  Inflammatory  Bowel  Diseases  (IBD), 

augmented non–Hodgkin  lymphoma frequency  was  observed  if  treated  patients  were 

compared to normal controls but not if compared to untreated patients (Kwon et al, 2005; 

Fraser et al, 2002). One of the largest study, by Fraser et al, retrospectively compared 627 

IBD patients taking Aza with 1578 receiving no or other therapies for a mean of 7 years: 

high (4.5%) frequency of malignancies was observed, but identical in both the two groups 

(Fraser et al, 2002). 

In  MS,  two  studies  with  adequate  statistical  power  to  detect  the  cancer  risk  level, 

previously reported in other diseases, compared treated and untreated patients. In the first 

one, 300 patients treated for at least 3 years were followed for 17-20 years (Taylor et al, 

2004), whereas in the second study, 442 patients treated for a mean of 4 years were 

followed for a median time of 7 years (Amato et al, 1993). Both failed to find significant 

cancer risk increase. However, the largest study was a case-control study, including 1191 

patients followed for an average of 12+9 years (Confavreux et al, 1996). Among the 23 

cases with malignancies and the 69 matched controls, respectively 14 (61%) and 34 (49%) 

had been treated with Aza. This difference, accounted for 1.7 odds ratio (OR), resulted not 

significant. However, a critical issue must be highlighted in this already classical study: the 

choice to include two cases receiving Aza for one month only and immediately before 

cancer diagnosis (respectively six and one month before). As for it  is known of cancer 

biology, at the time of Aza administration the malignancy was probably already developed 

and it seems unlike that the minimal cumulative dose administered within one single month 

may have had any causal relation with the subsequent malignancies.  If these two cases 

had  not  been  included,  even  this  marginal  difference  would  disappear.  Nonetheless 

comparing only patients with a treatment duration of more than 10 years the difference 

was significant (OR: 4.4), suggesting a cumulative dose effect. Nevertheless, Aza dose 
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related effect on carcinogenicity was not confirmed by a similar evaluation carried out in 

LES patients (Nero et al, 2004). 

The data available overall  support  the safety  of  Aza at  the usual immune-suppressive 

doses. This position is sustained in the Essential Medicine Formulary published on the 

web-site of the WHO, that does not include cancer risk among Aza adverse events (Mehta 

et al, 2004). If any carcinogenicity by this drug exists, it seems marginal and eventually 

appearing after more than 10 years treatment.   

1.2.3. Azathioprine in MS treatment 

Among immunosuppressive medications currently used in MS, Aza has been the most 

widely studied (Aarbake et al, 1997). The majority of these studies were carried out in the 

eighties and  showed clinical  efficacy  (British and Dutch Multiple sclerosis Azathioprine 

Trial group, 1988; Ellison et al, 1989; Goodkin et al, 1991; Yudkin et al, 1991), but this 

efficacy was often considered marginal or inadequate to balance safety concerns (Yudkin 

et  al,  1991).  When, early  in  the  nineties,  Aza patent  expired,   clinical  researchers 

neglected this  treatment  for  MS,  leaving a  gap of  studies that  still  needs to be filled. 

However,  reviewing  today  the above mentioned works  under  the light  of  more  recent 

achievements, Aza therapeutic effectiveness in MS may have been underestimated. This 

has probably been due to the limited knowledge, at the time those studies were planned, 

both  on  MS clinical  course  and  pathogenesis  and  on  Aza  activity,  safety  and  action 

mechanism. In addition, in the eighties the clinical results were not corroborated by more 

sensitive marker of disease as MRI evaluation of brain lesions (Cavazzuti  et  al,  1997; 

Miller et al, 1998). In the last years these considerations inspired new investigations to 

better evaluate the Aza usefulness in MS (Markovic-Plese et al,  2003;  Fernandez et al, 

2004; Palace et al, 1997). A recent work published by Massacesi et al (Massacesi et al, 

2005)  demonstrate  for  the  first  time  that Azathioprine,  administered  at  lymphocyte-

suppressing doses, is effective in reducing MS new brain inflammatory lesions and is well 

tolerated.  
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1.2.4. New insights in the action mechanism of thiopurine drugs

Although  Azathioprine  has  been  in  clinical  use  for  about  four  decades,  its  precise 

mechanisms of action are still unknown. However, inhibition of de novo purine nucleotide 

biosynthesis with suppression of DNA and RNA synthesis and downregulation of B and T 

cell  functions  have  been  suggested  as  major  therapeutic  mechanisms  of  6-MP 

(Röllinghoff et al, 1973; Abdou et al, 1973; Lennard, 1992). 

The results obtained along several years indicate that Aza efficacy in various autoimmune 

diseases is good at well tolerated doses and the risk/benefit ratio is probably the most 

favourable among cytostatic immune-suppressive agents. This specificity allows many of 

those who have used and evaluated this medication, including the inventors, to believe 

that  the “action mechanism of  thiopurines cannot  be explained only  by the cytostatic  

mechanism they were created for“ (Elion GB, cited by Maltzman et al, 2003).

Recent  data  produced  by  Tiede et  al  (2003)  confirm that  6-MP and  the metabolite  6 

thioguanine triphosphate (6-Thio-GTP)  are involved in more selective immune-regulatory 

mechanisms;  they  observed  a  unique  and  unexpected  role  for  azathioprine  and  its 

metabolites in the control of T cell apoptosis by specific blockade of the small GTPase 

Rac1 activation  upon CD28 costimulation,  trough binding of  azathioprine-generated  6-

Thio-GTP to Rac1 instead of  GTP. Consecutively,  the activation of Rac1 target  genes 

such as MEK, NF-kB and bcl-xL is suppressed, leading to a mitochondrial  pathway of 

apoptosis. Azathioprine thus converts a costimulatory signal into an apoptotic one. 

These findings may contribute to elucidate Aza action mechanism in prevention of organ 

transplantation rejection and in  the treatment of  autoimmune diseases.  To pursue this 

goal,  it  seems  reasonable  to  clarify  the  role  of  Azathioprine  and  its  metabolites  in 

modulation  of  immune  responses,  taking  into  consideration  not  only  the  lymphocyte 

populations, but also cells which promote and regulate their functions, as dendritic cells.

1.3. Dendritic cells
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Dendritic cells  represent a heterogeneous population of professional antigen presenting 

cells  (APCs).  DCs play a unique role  in  inducing selective immune responses against 

individual classes of pathogens and are involved in peripheral immune tolerance and in 

immune homeostasis maintenance (Gad et al,  2003). Immature dendritic  cells capture, 

process and present antigens and consequently express high levels of costimulatory and 

major  histocompatibility  complex  (MHC)  molecules,  in  addition  to  secreting  various 

cytokines  and  chemokines  which  initiate  and/or  enhance  many  T  and  B  lymphocyte 

responses. These responses include induction of CD4+ T lymphocyte type 1 and type 2 

subset  differentiation,  CD8+  T  lymphocyte  activation  and  enhancement  of  cytotoxic  T 

lymphocyte  activity  and  B  lymphocyte  maturation,  Ig  class-switching  and  antibody 

production (Gerloni et al, 1998; MacPherson et al, 1999).

Human DCs are all bone marrow-derived leukocytes (Katz et al, 1979) and comprise at 

least four types defined under cytokine-driven conditions in vitro. These include myeloid 

DCs (mDCs),  dermal DCs or interstitial DCs (DDCs-IDCs), Langerhans cells (LCs) and 

plasmacytoid DCs (pDCs) (Dzionek et al, 2000; Rossi et al,  2005).

DCs have been found in most tissues, in lymphoid organs, where represent the major cell 

population, and in peripheral blood, where constitute the 0.2% of circulating leucocytes. 

Circulating  DCs  are  distinct  in  two  subsets:  myeloid  DCs  and  plasmacytoid  DCs 

morphologically, phenotypically and functionally distinguished. mDCs have a monocytoid 

appearance, while pDCs are so named because of their morphological resemblance to 

plasma cells.  Both subgroups have lacked lineage markers and express high levels  of 

HLA-DR and CD4, but whereas mDCs are CD11c+, CD33+, CD13+, CD1c+  and CD123low, 

pDCs are CD11c- and CD123bright
 (McKenna et al, 2005). DCs resident in peripheral tissues 

exhibit  an  immature  phenotype  characterized  by  low  expression  of  costimulatory 

molecules  such  as  CD40,  CD80,  CD86  and   high  ability  to  ingest  by  phagocytosis, 

endocytosis or pinocytosis a wide variety of antigens including microbial pathogens, dead 

or dying cells, immune complexes (Mahnke et al, 2002). DCs express pattern recognition 

receptors that bind pathogen-associated molecular patterns consisting of  microbial or of 

damaged host  tissues components,  such as lipopolysaccharides,  peptidoglycans,  CpG 

53



motifs, flagella and viral nucleic acids, these pattern recognition receptors include Toll-like 

receptors  (TLRs).  Dendritic  cell  subsets  exhibit  unique  repertoires  of  TLRs,  allowing 

specialized responses to each class of pathogen, (Proietto et al, 2004; Jarrossay et al, 

2001) enhancing innate immune responses at the site of inflammation and driving adaptive 

immunity. For instance, pDCs exclusively express TLR9 and TLR7 by which are able to 

respond to viral CpG DNA and viral single stranded RNA, respectively. However, pDCs do 

not express TLR4 and therefore respond to lipopolysaccharide relatively weakly. In pDCs 

TLR9 stimulation determines an high production of type I interferons (IFN-α and IFN-β) 

promoting their own cell survival and increasing MHC expression by neighboring antigen-

presenting cells,  thus enhancing anti-viral  immunity.  Meanwhile,  responses to bacterial 

infections may primarily be mediated by mDCs, that express TLR4. Engagement of the 

TLRs  results  in  production  of  several  proinflammatory  cytokines,  including  type  I 

interferons, tumor necrosis factor (TNF)-α, IFN-γ, IL-12, IL-6 and IL-1 (Siegal et al, 1999; 

Cella et al, 1999). Depending on the environment in which pathogens are encountered, 

both subtypes of DCs seem able to induce Th1 or Th2 T cell responses (Cella et al, 2000).

Another group of pattern recognition receptors expressed by DCs are the C-type lectin 

receptors,  which  bind  the  carbohydrate  moieties  of  glycoprotein  self-antigens  and 

pathogens for processing and presentation on MHC molecules. Immature not activated 

DCs  express  these  receptors,  as  Langherin  (CD207),  DC-SIGN  (CD209),  mannose 

receptor (CD206) and DEC205 (CD205), which are specialized for antigen capture and 

processing (Thery et al, 2001; Figdor et al, 2002). Activation and maturation down-regulate 

expression of  C-type lectin receptors,  as DC function changes from antigen uptake to 

antigen presentation. TLRs and C-type lectin receptors work in concert to balance immune 

tolerance with activation.  DCs use C-type lectin receptors to present  self-antigens and 

harmless  environmental  antigens  in  the  steady  state,  thereby  maintaining  peripheral 

tolerance  (Hawiger  et  al,  2001;  Liu  et  al,  2002).  Perturbation  of  the  steady  state  by 

concomitant exposure to an activating stimulus like TLR-binding ligands or CD40L can 

reverse any tolerizing purpose of C-type lectin receptors and lead to immune activation 

(Gantner et al, 2003).
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Upon internalization, exogenous antigens are subject of processing mechanisms and the 

resulting  peptides  are  loaded  onto class II  MHC molecules  for  presentation  to  CD4+T 

lymphocytes, whereas antigens synthesized in the cytosolic compartment are associated 

to class I MHC molecules and presented to CD8+T lymphocytes. Remarkably, DCs can 

also cross-present antigens on the MHC class I  and II molecules to autologous MHC-

restricted T cells in spite of the MHC alleles expressed by the antigen source. Much has 

also been made of the distinction between apoptotic and necrotic cell death as a source of 

cross-presented antigen (Sauter et al, 2000). Whether antigen remains intact or denatured 

during apoptosis or necrosis, as well as any association with additional danger signals, are 

the greater determinants of effective cross-presentation and a tolerant or immune outcome 

(Albert et al, 1998 J Exp Med;  Albert et al, 1998 Nature).

After phagocytosis and subsequent activation, DCs residing in peripheral tissues migrate 

to  the  draining  lymph  nodes,  undergo  further  maturation,  present  to  and  stimulate  T 

lymphocytes specific for the cognate peptide. Maturation of DCs is crucial for the induction 

of T lymphocyte immunity as demonstrated by Hugues et al (Hugues et al, 2004).  This 

group  determined  that  dendritic  cell  maturation  due  to  inflammatory  stimuli,  such  as 

lipopolysaccharide, results in prolonged contacts between DCs and T lymphocytes. The 

kinetics of this interaction differ from those observed for immature DCs in which only short-

term contacts  with  T  lymphocytes  are  established.  Interestingly,  the  extended  contact 

between  T  lymphocytes  and  mature  dendritic  cells  resulted  in  efficient  T  lymphocyte 

activation and proliferation not observed with immature DCs. It is likely that the kinetics of 

dendritic  cell/T  lymphocyte  interactions,  along  with  dendritic  cell  phenotype  (i.e., 

costimulatory molecule and cytokine expression) together determine whether immunity or 

tolerance is established. In addition to the kinetics of T lymphocyte interaction, dendritic 

cell  maturation  is  crucial  for  appropriate  migration  to  lymph  nodes.  DCs  matured  by 

inflammatory stimuli in the periphery become highly motile and readily traffic to local lymph 

nodes.  Once  in  a  lymph  node,  these  mature  cells  interact  with  large  numbers  of  T 

lymphocytes  priming  and  activating  them  (Lindquist  et  al,  2004). Recent  data  have 

established an important role for DCs in innate immunity by enhancing reactivity of resting 
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NK and (Fernandez et al, 1999) and NKT cells (Fujii et al, 2003), which otherwise respond 

to the aggregate of activating and inhibitory signals on their targets. DC-stimulated NK and 

NKT cells become potent sources of IFNγ  and other inflammatory cytokines, supporting 

the maturation of resident populations of DCs through a reciprocal interaction and eliciting 

an adaptive Th1 response mediated by cytotoxic effectors (Taniguchi et al, 2003; Gerosa 

et  al,  2005).  Many  evidences  suggest  that  DCs  also  control  immunity  by  inducing  T 

regulatory cells to promote antigen specific unresponsiveness of lymphocytes in primary 

and secondary lymphoid tissues (Yamazaki et al, 2003; Tarbell et al, 2004).

Progress  in  the  study  of  DC  biology  exploded  in  the  1990s.  Investigators  developed 

cytokine-driven methods for expanding and differentiating DCs ex vivo in both mouse and 

human systems (Inaba et al, 1992; Sallusto et al, 1994) and further refinements continue 

to  emerge  (Thurner  et  al,  1999;  Lutz  et  al,  1999).  The  DCs  generated  in  vitro  with 

cytokines should approximate resident populations that exist in vivo under steady-state 

conditions.  The  inflammatory  cytokine  combinations  used  in  vitro  for  terminal  DC 

maturation and activation mimic the physiologic activation via TLRs. The most accessible 

DC precursors are the CD14 monocyte in peripheral blood, which under the influence of 

GM-CSF and IL-4 differentiates into CD14-, CD11chigh, HLA-DRhigh, CD80+, CD86+, CD40+, 

monocyte-derived DCs (moDCs) that, upon appropriate stimulation, express high levels of 

activation  marker  CD83,  upregulate  HLA-DR  and  the  costimulatory  receptors  CD80, 

CD86, CD40.

Most current clinical studies use DCs for active immunotherapy trials in cancer. Dendritic 

cell-based “vaccines” consisting of re-infusion of autologous dendritic cells upon  ex vivo 

manipulation have already been developed (Banchereau et  al,  2001; Hsu et  al,  1996; 

Thurner et al,1999; Timmerman et al, 2002). Most tumor antigens  are poor immunogens 

because  they  are  self-Ags  or  self-differentiation  Ags,  to  which  there  is  considerable 

tolerance. DCs provide a potential solution to this challenge by coupling tumor Ag with all 

of  the  requisite  costimulatory  ligands,  cytokines,  and  chemokine-directed  migration  to 

secondary lymphoid organs. There they can stimulate incoming T cells to exit via efferent 

lymph into the periphery as cytolytic and helper T cell effectors (Rossi et al, 2005).
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Actually  the  role of  dendritic  cells in preventing autoreactivity  and/or tolerizing  existing 

autoreactive  T cells  are becoming subject  of  extensive investigation  (Dhodapkar  et  al, 

2001;  Yamazaki  et  al,  2003).  Manipulation  of  immunity  using  DCs  generated  in  vitro 

should therefore exploit the less mature and not-activated forms to promote tolerance and 

the activated and mature forms to break tolerance and advance immunity. 

Therapies for autoimmune disorders and anti-graft rejection treatments have traditionally 

relied upon broadly immunosuppressive drugs. In view of their central role in eliciting and 

regulating immunity, the application of dendritic cells in immunotherapy is highly appealing.
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1.4. Aim of the study

Considering the pivotal role of DCs in regulating immunity and the recent outcomes on 

Azathioprine action mechanism, in this study we proposed to  investigated the possible 

immunosuppressive effects of 6-MP on in vitro matured and activated human monocyte-

derived dendritic cells (moDCs). 

According to autoimmune hypothesis of MS pathogenesis, the activation of autoreactive T 

cells is a central event in the development of autoimmune response in MS (Sospedra et al, 

2005).  At  the  time  of  MS diagnosis,  an  immunological  process  known  as  Ag/epitope 

spreading, has probably already occurred in most of the patients (Tuohy et al, 1999). This 

makes unfeasible, even at single patient level, antigen specific desensitization, a treatment 

strategy directed to a unique pathogenetic self-Ag (Bielekova et al, 2000). If the strategy of 

antigen specific desensitization will be confirmed not to be applicable (or even dangerous), 

immunosuppressive/modulating therapies will probably maintain a key role in the treatment 

of MS. 
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2. MATERIALS AND METHODS

2.1. PBMC isolation 

Peripheral blood mononuclear cells (PBMCs) were extracted from buffy coats or freshly 

collected  blood samples of healthy donors by density gradient centrifugation using Ficoll-

Paque Plus (Amersham Biosciences).

2.2. Ex vivo primary proliferation assay

Blood samples were collected from 12 patients with definite relapsing remitting MS (RR-

MS) according to Poser criteria  (7) treated with Azathioprine (per os 2.7 mg/Kg a day ) 

before starting the therapy and 6 months after onset of treatment. PBMCs were frozen and 

later  tested at  the same time. When thawed, cell  viability  was assessed by propidium 

iodide incorporation. PBMCs were cultured at 1x105 cells/well in 96-well U-bottom plates in 

presence  or  absence  of  leucoagglutinin  (PHA-L,  2µ g/ml),  Concanavaline  A  (ConA, 

2µ g/ml) and Candida albicans (heat killed bodies, 106 bodies/ml). PHA and ConA were 

from Sigma-Aldrich, Candida albicans was a kindly gift  of Marta Peruzzi, MD. Cultures 

were set up at least in quadruplicate. After 48-72 hours from stimulation, cultures were 

pulsed 8 hours with 1µ Ci [3H]Thymidine (Amersham), then cells were harvested by a 96-

well  plate  harvester  (Harvester  96,  Tomtec)  and [3H]Thymidine  incorporation  was 

measured  on  a  scintillation  counter  (1450  Microbeta  Plus,  Wallac).  Wells  with 

∆ CPM>2000 (CPM= Counts Per Minute;  ∆ CPM= mean CPM of stimulated wells-mean 

CPM of not stimulated wells) and SI>2 (SI= Stimulation Index= mean CPM of stimulated 

wells/mean  CPM  of  not  stimulated  wells)  were  considered  positive.  Differences  were 

tested for statistical significance by Χ2 test. 

2.3. 6-MP preparation
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6-Mercaptopurine Hydrate (C5H4N4S, FW 152.2) was from Sigma. Powder was dissolved 

in DMSO (Sigma) at the concentration of 2.5x10-1M, then was diluted in culture medium to 

reach working concentration.

2.4. Dendritic cell cultures

Monocytes were isolated by positive selection with  human anti-CD14 antibodies coupled 

to magnetic beads (MACS, Miltenyi Biotec) from PBMCs of healthy donors. Cells were 

incubated  with  anti-CD14 microbeads as  indicated  in  data  sheet  and  separated  on a 

column  placed  in  an  appropriate  magnetic  field  (mini  or  midi  MACS system,  Miltenyi 

Biotec);  the  magnetically  labeled  CD14+cells  were  retained  in  the  column,  while  the 

unlabeled  cells  run  trough.  After  removal  of  the  column  from  the  magnetic  field,  the 

CD14+cells  can be eluted as positively  selected cell  fraction.  Purity  of  separation was 

determined  by  flow  cytometry  analysis.  CD14+cells were  cultured  in  24-well  plates 

(Grainer) at the density of 1x106/well for 6 days in RPMI 1640 containing 10% FCS, 2mM 

L-glutamine,  1%  sodium  pyruvate,  1%  penicilline-streptomycine,  1%  Hepes  buffer 

(Euroclone), GM-CSF 1000 u/ml (recombinant human purified protein, Chemicon) and IL-4 

1000 u/ml (recombinant human purified protein, R&D Systems). Where indicated, 6MP 

was added at two different concentrations (10-6 and 10-5M) from the onset of the culture, 

then the immature DCs were activated for 24 hours with 1µ g/ml of lipopolysaccharide 

(LPS, Sigma-Aldrich); in one experimental group 6MP was added only 24 hours with LPS. 

Maturation state was evaluated as surface markers expression HLA-DR, CD14, CD80, 

CD86 and CD83 by flow cytometry. Also viability  and apoptosis were assessed by flow 

cytometry. The samples were analyzed on a 4-color flow cytometer (Epics-XL with Expo32 

software acquisition and analysis, Beckman-Coulter). 

2.5. Immune staining procedure 

Cells were centrifuged and the pellet was resuspended in cold staining buffer, composed 

by PBS with 1% FCS, at the density of 1x105-1x106  cells/100µ l, then cells were stained 

with appropriate antibody amount as recommended in data sheet, mixed very well and 
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incubated at 4°C in the dark for 20-25 minutes. After incubation period cells were washed 

2 times in cold staining buffer, resuspended in 300-500µ l of the same buffer and kept on 

ice until flow cytometry analysis. Where indicated propidium iodide (PI, Molecular Probes) 

was added to 100µ l of immune stained cells at the final concentration of  5µ g/ml for 5 

minutes, then samples were diluted with 200-400µ l of  staining buffer and  immediately 

examined. 

In  this  work  the  following   conjugated  monoclonal  anti-human  antibodies  were  used: 

mouse IgG2a CD14 FITC (Miltenyi Biotec), mouse IgG1 CD80 FITC (Immunotech), mouse 

IgG2b k CD86 PE (Immunotech), mouse IgG1 HLA-DR ECD (Immunotech), mouse IgG2b 

CD83 PC5 (Immunotech), mouse IgG1 CD4 FITC (Immunotech), mouse IgG1 CD3 PE 

(Immunotech),  mouse  IgG1  CD8  PC5  (Immunotech),  mouse  IgG2b  CD69  PE 

(Immunotech), mouse IgG1 k CD25 PE (BioLegend). 

2.6. Apoptosis detection assay

Apoptosis was evaluated through flow cytometry technique  using the  Annexin V-FITC kit 

by Immunotech. Cell samples were washed in ice-cold PBS; after centrifugation the pellet 

was resupended in ice-cold binding buffer at the density of 5x105-5x106 cells/ml and 1µ l of 

annexin V-FITC and 5µ l of propidium iodide were added to 100µ l of cell suspension for 

10 minutes on ice in the dark, then 200-400µ l of binding buffer were added and samples 

were analyzed.

2.7. Dextran-FITC assay

Dendritic  cell  macropinocytosis  capability  was  examined  as  described  by  Sallusto  et 

al.1995 (ref). Briefly,  2x105 not activated and LPS activated DCs were resuspended in 

10% FCS RPMI 1640 medium and equilibrated at 37°C or 0°C for 10 min, then were 

pulsed with dextran-FITC (40000 m.w., Molecular Probes) at the concentration of 1mg/ml 

for 45 min at 37°C or 0°C. Cells were washed four times with cold PBS buffer containing 
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0.01% sodium azide (Sigma-Aldrich) and  1% FCS and analyzed by flow cytometry using 

PI to exclude dead cells. The background (cells pulsed at 0°C) was subtracted.

2.8. Mixed lymphocyte reaction (MLR)

Untouched CD4+lymphocytes were magnetically isolated from PBMC of healthy donors by 

negative  selection  using  the  Miltenyi  CD4+  Isolation  Kit  II.  Purity  of  separation  was 

determined by flow cytometry analysis. CD4+  T cells (1x105 /well) were cultured in 96-well 

U-bottom plates  (Nunc)  with  HLA-DR mismatched  allogenic  DCs,  after  24 hours  LPS 

activation, at three different concentrations (1x102,1x103 and 1x104 DCs/well). DCs were 

obtained as described above. Cultures were set up in quadruplicate. T cell proliferation 

was determined by [3H]Thymidine incorporation after 5 days of culture, as described in 

section 2.2.

2.9. CFSE labeling

Carboxyfluorescein diacetate succinimidyl ester (CFSE) is a dye that spontaneously and 

irreversibly  binds  to  intracellular proteins.  At  each  cellular  division  CFSE  is  equally 

distributed among the daughter cells,  which, therefore,  contain half  the fluorescent  dye 

compared with the parental cells resulting in multimodal flow cytometric histograms, with 

each cell generation clustering around half the fluorescence intensity of the previous one. 

On the basis  of  the CFSE fluorescence the number  of  cell  divisions can be followed. 

Untouched CD4+lymphocytes obtained as described previously were washed in PBS 1% 

FCS and resuspended at 20x106cells/ml. Cell suspension was mixed in a ratio of 1:1 with 

a 5mM or 10mM CFSE solution (Molecular Probes) for 8 minutes  at room temperature in 

the dark, then reaction was stopped by adding an equal volume of FCS and samples were 

centrifuged at 1250 rpm for 10 minutes. Next, cells were washed twice in culture medium 

at 1500 rpm for 10 minutes and were used in MLR assay. 

2.10. Dendritic cell cytokine detection
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DCs were cultured  as described above. Supernatants were collected before adding LPS 

and after activation time, then stored at –80°C. IL-12 and IL-10 production was measured 

by double sandwich ELISA (Biosource), following the manufacturer’s protocol.

2.11. T cell line generation 

T cell lines (TCL) specific for FluHA peptide(306-318) were generated by modified split-

well analysis from healthy donors as described by Vergelli et al. (ref). FluHA peptide(306-

318)   was  kindly  provided   by  AnnaMaria  Papini,  PeptLab,  Dept  Organic  Chemistry, 

Florence University. Briefly, PBMCs were seeded in 200µ l of T cell medium (TCM) (RPMI 

1640  with  5%  AB  serum,  2mM  L-glutamine,  1%  sodium  pyruvate,  1%  penicilline-

streptomycine, 1% Hepes buffer) at 2xl05/well into 96-well U-bottom plates and stimulated 

with 5µ g/ml of human FluHA peptide(306-318). Seven days later IL-2 20u/ml was added 

to each well.  After  another  seven days,  cells  were washed once within the plate and 

resuspended in 200µ l of TCM. Next, 50µ l of the cell suspension was transferred into two 

adjacent wells of a separate 96-well U-bottom plate with 100µ l of TCM containing 1xl05 

autologous irradiated (6000 Rad) PBMCs. One well was stimulated with 50µ l of  FluHA 

peptide solution at the final concentration of 5µ g/ml, in the other well 50µ l of TCM were 

added  to  reach  the  same  volume  of  200µ l. T  cell  proliferation  was  evaluated  by 

[3H]Thymidine incorporation after 48-72 hours of culture. In parallel, the remaining wells in 

the original plates were restimulated with 1xl05 autologous irradiated PBMCs and  FluHA 

peptide (5µ g/ml). One week later wells that showed a SI>2 in the proliferative assay were 

transferred  into  a  24-well plate  and  restimulated  with  1xl06  autologous irradiated  PBL, 

5µ g/ml  of  FluHA  peptide and  IL-2  50u/ml.  Cells  were  expanded  by  successive 

restimulation cycles as described above and periodically tested versus FluHA antigen. 
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2.12. Antigen specific proliferation test

1x105 TCL  cells  specific  for  FluHA  peptide(306-318)   were  stimulated  with  1x104 

autologous not activated DCs in 96-well U-bottom plates. Before test, DCs were incubated 

for 2 hours at 37°C in culture medium  at the density of 1x106/ml with or without 10µ g/ml 

of peptide. After that cells were washed twice and used in the antigen driven proliferation 

assay. Where indicated DCs were treated with 6MP at two different concentrations (10-6 

and 10-5M) for 6 days during the differentiation from monocytes (as described above) or 

during the 2 hours long antigen loading.  Cultures were set  up in  quadruplicate.  T cell 

proliferation was determined by [3H]Thymidine incorporation after 48 hours of culture.
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3. RESULTS

3.1. 6-MP partially suppresses recall antigen response in MS treated patients.

12 RR-MS outpatients diagnosed according to Poser criteria (Poser et al,1983) and taking 

a daily dose of 2,7 mg/Kg of Azathioprine were enrolled. Six months before and six months 

after therapy starting, PBMCs were isolated from patients, frozen and then tested at the 

same  time  for  proliferation  in  response  to  Candida  albicans  (heat  killed  bodies,  106 

bodies/ml);  to verify their  proliferation capability after  thawing,  response to not  specific 

mitogen stimulation (PHA 2µ g/ml, ConA 2µ g/ml) was evaluated. While all the patients 

responded  to  PHA  and  ConA  before  and  during  therapy,  we  detected  a  statistically 

significant (p value=0.04, analysis performed by  χ2 test) reduction in number of positive 

responders (-42%) to Candida albicans after therapy (Table 3.1), suggesting an unspecific 

mechanism of antigen driven immunosuppression.

Table 3.1. The table reports the absolute number of responders (SI>2 and ΔCPM>2000) at 
the two time points.

3.2. 6-MP during DC maturation doesn’t affect viability and maintains a CD14+ phenotype 

in a higher percent of cells comparing to control.

Human CD14+ monocytes were cultured 6 days with GM-CSF and IL-4 with or without 6-

MP at two different doses (10-6M, 10-5M), then cells were analyzed for cell death, apoptosis 
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and  CD14  membrane  expression.  As  well  known,  during  in  vitro  differentiation  and 

maturation  monocyte precursor cells lack CD14 surface expression, upregulate HLA-DR 

expression  and  display  typical  costimulation  markers,   such  as  CD80  and  CD86. 

Interestingly  ,  while  cells  treated  with   both  doses  of  6-MP didn’t  differ  from  control 

samples (without  drug) concerning viability and apoptosis percentage (Fig.  3.2a),  cells 

treated with drug significantly retained CD14 expression in a dose dependent manner (Fig.  

3.2b), indicating that 6-MP impairs maturation process. Fig. 3.2a and Fig. 3.2b report dot 

plots from one experiment representative of three independent ones; analysis is referred to 

morphological gate.  In Fig. 3.2a controls and 6-MP treated DCs are compared for percent 

of apoptotic and necrotic cells. Annexin V+/PI- cells correspond to the apoptotic ones: this 

percentage is 3,4% in controls, 4,5% in samples with 6-MP 10-6M and 4,9% in samples 

with 6-MP 10-5M. The PI+/AnnV-  percentage, representing damaged viable cells, ranges 

from 0,8% in controls to 0,5% and 1,1% in cells treated respectively with 6-MP 10 -6M and 

10-5M. The PI+/AnnV+ percentage, necrotic cells, varies from 2,5% in control cells to 2,2% 

and 4% in DCs treated respectively with the lower and the higher dose of drug. Fig. 3.2b 

shows HLA-DR and CD14 phenotype analysis.  Cells  treated with 6-MP strongly retain 

CD14 expression in a dose dependent fashion: HLA-DR+/CD14+ cells in control sample 

represent  the  16% of  total  population  and reach  the 39% and 47,1% in  DCs treated 

respectively with the lower and the higher concentration of 6-MP.
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A  summary  of  CD14/HLA-DR  phenotype  examination  relative  to  3  independent 

experiments is reported in Fig. 3.2c. The percentage of CD14+/HLA-DR+  cells, expressed 

as mean value±DEV.Q, ranges from 14,3%±1% in controls to 34,1%±4% in DCs treated 

with the lower concentration of 6-MP and 44,1%±3% in DCs with the higher dose of drug. 

Mean  values  and  DEV.Q  were  compared  by  χ2 test.  6-MP  treated  cells  significantly 

maintain  CD14  expression  in  a  dose  dependent  manner  (p  value=0,001  at  10-6M,  p 

value<0,001 at 10-5M).
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Fig. 3.2c. The histogram resumes three independent experiments and shows percentage 
of CD14+/HLA-DR+ cells, expressed as mean value±DEV.Q, in controls (green bar) and in 
samples treated for 6 days (6d) with 6-MP (added in culture at the beginning of culture) 10 -

6M (blue bar) or 10-5M (black bar). On blue and black bar top the p values (assessed by T-
test) are reported.

3.3. 6MP inhibits membrane expression of CD83 during DC activation.

After 6 days of culture in GM-CSF+IL-4, DCs were activated with LPS for 24 hours. 6-MP 

(10-6M, 10-5M) was added in culture  from day 1 (as  above)  or  only  the last  24 hours 

together with LPS (see Methods). After activation time, DCs were examined for cell death, 

apoptosis and immune phenotype. As previously mentioned, upon activating stimulation 

immature  DCs  acquire  a  fully  mature  phenotype,  expressing  at  high  levels  the 

characteristic activation surface marker CD83 and upregulating HLA-DR, CD80 and CD86. 

Again,  any significant variation in PI+ and Annexin V+  cell percentage comparing control 

and  treated  cells  wasn’t  observed,  as  showed  in  Fig.  3.3a,  where  one  experiment 

representative  of  three  independent  ones  is  reported.  The  AnnV+/PI- cell  percentage 

(apoptotic cells) is 4,4% in control sample (cells without drug), 2% and 6,9% where 6-MP 

was present from the onset of culture (7d) respectively at 10-6M and 10-5M, 2,1% and 1,3% 

where 6-MP was administered for 24 hours (24h) together with LPS at the lower and the 

higher dose; the PI+/AnnV-  percentage (damaged viable cells) is 1,7% in control, 1,5% and 

1,3% in cells treated respectively with 6-MP 10-6M and 10-5M for 7 days, 1,5% and 1,9% in 

samples  treated  respectively  with  6-MP  10-6M  and  10-5M  for  24  hours  during  LPS 

activation; the PI+/AnnV+ percentage (necrotic cells) is 2,1% in control, 2,2% and 4,1% in 7 

days 6-MP treated DCs respectively at the concentration of 10-6M and 10-5M, 2,4% and 
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2,3% in samples treated for 24 hours during LPS activation respectively with the lower and 

the higher dose of drug. 

From the phenotype point of view, 6-MP treatment, at both doses used, either if drug was 

added at the beginning of monocyte culture either if it was added for 24 hours during LPS 

activation,  results  in  a  significant  (p<0.05 at  each  dose  tested,  calculated  by  χ2 test) 

reduction of CD83+cell percentage in respect to controls (Fig. 3.3b). In particular, CD83+ 

cell percentage decreases in a dose-dependent manner from 63%±8% (mean value of 

four independent  experiments±DEV.Q) in  controls  to  49%±4% (p=0,04) and 29 %±8% 

(p<0,0001) in cells treated for 7 days respectively with 6-MP 10 -6M and 10-5M, and to 44%

±3% (p=0,02)  and 37%±7% (p<0,0001) in samples treated for 24 hours only during LPS 

activation respectively with the lower and higher dose of drug. Any alteration in HLA-DR, 

CD80 and CD86 expression was emerged.

These data suggest that 6MP has an inhibitory effect during activation processes.

Fig. 3.3a. After LPS activation, DCs were examined for cell death and apoptosis. Dot plots 
from one experiment representative of three independent ones are reported. Analysis is 
referred to morphological gate. 6-MP treatment doesn’t affect cell viability.

69

Annexin V



 

70

   6MP 10-6M 7d     6MP 10-5M 7d 2,2%2,0% 1,5%  6,9%

 

4,1
%

1,3
%

Annexin V

Fi
g.

 3
.3

b.
 T

he
 fi

gu
re

 s
um

m
ar

iz
es

 fo
ur

 in
de

pe
nd

en
t e

xp
er

im
en

ts
 a

nd
 s

ho
w

s 
m

ea
n 

pe
rc

en
ta

ge
±D

EV
.Q

 
of

 c
el

ls
 e

xp
re

ss
in

g 
H

LA
-D

R
, 

C
D

80
, 

C
D

86
 a

nd
 C

D
83

 s
ur

fa
ce

 m
ar

ke
rs

 a
fte

r 
LP

S 
ac

tiv
at

io
n 

in
 t

he
 

ex
pe

rim
en

ta
l 

co
nd

iti
on

s 
in

di
ca

te
d.

 A
na

ly
si

s 
is

 r
ef

er
re

d 
to

 a
 m

or
ph

ol
og

ic
al

 g
at

e.
 6

-M
P 

tre
at

m
en

t 
do

es
n’

t i
m

pa
ir 

H
LA

-D
R

, C
D

80
, C

D
86

  e
xp

re
ss

io
n,

 b
ut

 s
ig

ni
fic

an
tly

  r
ed

uc
es

 C
D

83
+ ce

ll 
pe

rc
en

ta
ge

 (p
 

va
lu

es
 a

re
 re

po
rte

d 
on

 e
ac

h 
ba

r t
op

). 



3.4. 6-MP inhibits DC stimulatory function in MLR assay.

Under  the  same  experimental  conditions  described  above,  DCs  were  tested  for 

allostimulatory ability in MLR assay. Proliferative response of allogenic HLA mismatched 

CD4+T lymphocytes was evaluated after 5 days of co-culture with DCs treated or not with 

6-MP  and  activated  with  LPS.  DCs  were  tested  at  three  different  concentrations 

(100000c/w,  1000c/w,  100c/w),  as  described  in  section  2.8.  DC  6-MP  pre-treatment 

significantly inhibits T cell proliferation (overall p<0.0001, calculated by χ2 test), achieving 

the maximum effect when DCs were generated from monocytes in presence of the higher 
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dose of 6-MP from the onset of culture (Fig. 3.4). According to phenotype data, 6-MP 

treated DCs result less efficient in allostimulation assay compared to control cells.
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Fig. 3.4.  The graph shows one experiment representative of 5 independent ones. Each 
experimental  condition  was  tested  in  quadruplicate.  On  x axis  are  indicated  DC 
concentrations used in MLR and on  y axis is reported the T cell proliferative response, 
expressed as mean cpm. 
3.5.  6-MP  treated  DCs  do  not  affect  CD69  and  CD25  expression  on  T  cells  during 
allostimulation.
To clarify how T cell proliferation in MLR was reduced when DCs were treated with 6-MP, 

T cells were stained with CFSE and proliferation was evaluated at two time points together 

with CD69 and CD25 T cell activation marker expression, respectively 12 hours and 24 

hours after MLR onset.  No differences in CD69 and CD25 expression were pointed out 

between T cells stimulated with 6-MP treated DCs and T cells stimulated with control DCs 

(data not shown). However, MLR was carried on until day 5, when T cell proliferation was 

checked  both  by  [3H]Thy  incorporation  (data  not  shown)  and  by  CFSE  fluorescence 

intensity evaluation, as described in section 2.9. (Fig. 3.5). CFSE analysis was concordant 

with  [3H]Thy incorporation  results  and  confirmed data  obtained by MLR without  CFSE 

stained cells (Fig. 3.4).
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Fig.  3.4.  MLR performed with CFSE stained T lymphocytes. 1x105  CD4+T cells/well were 
cultured with three different  doses of DCs (1x104,1x103,1x102/well).  CFSE fluorescence 
distributions after 5 days of co-culture are compared by overlapping histograms each other 
(CFSE fluorescence intensity on x axis, event counts on y axis). Plots show proliferative 
response corresponding to T cells stimulated with 1x103 DCs/w treated with 6-MP at two 
different concentrations (10-6M histogram on the left, 10-5M histogram on the right) and for 
different time (7 days, distribution delimited in green, or 24 hours, in pink) or not treated 
(controls, in blue). Hatching delimited distributions indicate basal proliferation of T cells 
without DC stimulation. CFSE positive cells included in regions N1 and N2 (high mean 
fluorescence intensity)  represent  not  divided cell  population.  We can observe a larger 
percentage of not divided cells in treated samples in respect to the controls. CFSE positive 
cells are gated on PI negative events. 

3.6. 6-MP treated DCs maintain high Dextran-FITC uptake capability after LPS activation.

In order to evaluate the maturation state of 6-MP treated and control DCs, their endocytic 

activity was measured by Dextran-FITC assay. The Dextran-FITC uptake is mediated  by 

mannose receptor, a surface C-type lectin (Sallusto et al, 1995). The capacity to interiorize 

and process antigen is a constitutive property of immature DCs. Normally, fully activation 

of DCs results in a downregulation of endocytic ability compared to not activated ones. 
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The  uptake  ability  was  evaluated  as  percentage  of  Dextran-FITC  positive  events, 

excluding dead cells  by PI co-staining. We found that immature DCs treated with  both 

doses of 6-MP (10-6M and 10-5M), either when drug was added in medium at the first day 

of culture either when it was administered at day 6 for 24 hours only, were perfectly able to 

engulf Dextran-FITC like immature control cells (Fig. 3.6), as percentage of Dextran-FITC 

positive DCs was between 92% and 97% of vital cells (data relative to one experiment 

representative of  three independent  ones).  From the other  hand,  after  LPS activation, 

while  controls  downregulated  endocytic  capability  (reduction  of  35%  respect  to  not 

activated state), DCs treated with both doses of 6-MP for 7 days almost preserved this 

capability in a dose dependent fashion (reduction of 18% in DCs treated with 6-MP 10 -6M 

and  of  9%  in  DCs  treated  with  6-MP10-5M  respect  to  corresponding  not  activated 

condition). Interestingly, DCs treated with 6-MP just during LPS activation reduced their 

endocytic ability at the same manner of activated control cells. According to phenotype 

data,  DCs  treated  with  6-MP  from  the  onset  of  culture  are  less  activated  by  LPS 

stimulation compared to control cells, but if 6-MP is administered at day 6 for 24 hours 

together with LPS we do not detect any  variation in respect to the controls.

Fig. 3.6. Dextran-FITC uptake. Figure reports in the left column the assay on not activated 
DCs  and  in  the  right  column  the  assay  on  LPS  activated  ones  (one  experiment 
representative of  three independent ones);  the different conditions tested are represented 
in plots with different colors: controls (ctr) in gray, samples treated with 6-MP from the 
onset of culture (7d) in red (10-6M) and yellow (10-5M), samples treated with 6-MP only 
during LPS stimulation (24h) in green (10-6M) and blue (10-5M).  Each plot relative to 6-MP 
treated  samples  is  overlapped  to  corresponding  control  histogram  (in  gray)  for  both 
conditions examined (before and after  LPS activation).  Histograms show Dextran-FITC 
fluorescence intensity on x axis and  event counts on y axis.

    
             Not activated cells                          LPS activated cells
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3.7. 6-MP doesn’t affect cytokine production.

Supernatans of LPS activated and not activated DCs were checked for IL-12 and IL-10 

production by ELISA assay. 6-MP treatment doesn’t affect the DC ability to secrete IL-10 

(Fig. 3.7) and IL-12 (data not shown). 
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Fig.  3.7.  Graph  shows  IL-10  production  (on  y axis,  expressed  as  pg/ml  )  after  LPS 
activation (one experiment representative of three independent ones).  Supernatants was 
dosed in duplicate for each experimental condition and corresponding mean values (pg/ml)
±SD are reported.  Any significant  difference is detectable between control  and treated 
samples.
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3.8. 6-MP reduces DC stimulatory functions in antigen driven T cell proliferation.

Finally, the DC characteristic antigen presenting ability was investigated in antigen specific 

proliferation test. TCL cells specific for FluHA(306-318) peptide were stimulated with DCs 

loaded for 2 hours with or without peptide. 6-MP was administered to DCs at two different 

concentrations (10-6M and10-5M) or at the onset of culture (thus present in culture for 6 

days) or during antigen loading (2 hours), as described in section 2.12; when DCs were 

pre-treated with  both doses of  6-MP T cell  proliferative response was weaker  than in 

control sample. The maximum of inhibition (34%) was observed when drug was added 

during antigen loading at the higher dose (one preliminary experiment), as showed in Fig.  

3.8.
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4. DISCUSSION

Azathioprine  is  an  immune-suppressive  agent  largely  used  either  in  the  prevention  of 

transplant rejection or in the therapy of autoimmune diseases, such as multiple sclerosis. 

Although inhibition of purine nucleotide biosynthesis based on random incorporation of 6-

thioguanine  nucleotides  (6-TGNs)   into DNA  has  been  suggested  as  the  action 

mechanism, a general inhibition of nucleic acid synthesis is not sufficient to explain the 

relatively low bone marrow toxicity of the thiopurines associated to therapeutic efficacy on 

immune mediated  disorders  (Massacesi  et  al,  2005). Recent  works  by Neurath  group 

(Tiede  et  al,  2003;  Poppe  et  al,  2006) demonstrated  that Rac1,  a  small  guanosine 

triphosphatase (GTPase) of the Rho family, is a molecular target of azathioprine and 6-MP 

in  naïve  CD4+T  lymphocytes  upon  CD28  costimulation.  Specifically,  they  found  that 

azathioprine  metabolite  6-Thio-GTP  bind  to  Rac1  instead  of  GTP  suppressing  Rac1 

activation. If  T cells were stimulated via anti-CD3/CD28 Abs for at least 5 days,  Rac1 

inhibition led to a mitochondrial pathway of apoptosis. If T cell  stimulation was shorter (3 

days), 6-Thio-GTP binding to Rac1 blocked Vav guanosine exchange activity, causing an 

accumulation  of  6-Thio-GDP-loaded,  inactive  Rac  proteins,  and  these  events  resulted 

finally in the suppression of T cell-APC conjugation.

These  findings  may  help  explain  our  preliminary  results  about  ex  vivo proliferative 

response  to  recall  antigens   by  PBMCs  from  12  RR-MS  patients  before  and  during 

Azathioprine therapy. We found a statistically significant reduction in number of positive 

responders  to  Candida  albicans  after  Aza  therapy  starting,  although  PBMCs  from  all 

patients were perfectly able to proliferate if  stimulated with non-specific mitogens. In a 

recent work Massacesi et al (2005) demonstrated that in RR-MS patients treatment with 

Aza at doses bringing to lymphopenia determines a remarkable decrease of the new brain 

lesion accumulation, without increasing  infections, such as candidosis; according to these 

data,  our  ex vivo results  may signify  that  Aza therapy,  without  affecting  resistance  to 
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Candida  infection,  suppresses  in  vivo Candida  specific  memory  T  cell  frequency  or 

function, probably by inducing apoptosis in antigen activated T lymphocytes trough the 

mechanism described by Tiede et al (2003).

The  second  part  of  this  study  was  focused  on  investigating  the  possible 

immunosuppressive effects of 6-MP on  in vitro matured and activated monocyte derived 

human DCs (moDCs). We analyzed phenotype and function of DCs treated with 6-MP or 

during all the differentiating/maturating culture time, or only during the activation phase 

with LPS or  Flu antigen. We found that monocytes cultured in presence of 6-MP during 

differentiation to DCs significantly retain CD14 expression. As well known, throughout  in  

vitro differentiation  and  maturation   monocyte  precursor  cells  lack  CD14  surface 

expression, so, our data indicate that 6-MP affects DC maturation process. In addition, we 

observed that 6-MP inhibits surface expression of DC activation marker CD83: inhibition 

was more evident if 6-MP was present for all culturing time, but was still significant if 6-MP 

was added just together with LPS. These findings suggest that 6-MP may have effects 

both during maturation and activation processes, without impairing cell  viability,  neither 

HLA-DR  and costimulatory marker expression. 

In order to analyze their functions, 6-MP treated DCs were tested for endocytic capability, 

allostimulatory ability, antigen presenting competence and cytokine production. Immature 

DCs have the constitutive ability to interiorize and process antigens and, normally, upon 

fully  maturation  they  downregulate  this activity.  Trough  Dextran-FITC uptake  test,  we 

showed that after LPS stimulation 6-MP treated DCs save their endocytic capability, but 

only when 6-MP was present from the onset of monocyte culture; indeed, when 6-MP was 

added just during LPS activation, DCs reduced their endocytic ability at the same manner 

of activated control cells. These results confirm the phenotype data indicating that 6-MP 

interferes with DC maturation processes;  from the other hand they suggest  that  6-MP 

administration for 24 hours to moDCs at the last step of culture maturation/activation is not 

sufficient  to  affect  the  molecular  mechanisms  modulating  the  endocytic  capability. 

Moreover,  6-MP  treated  DCs  resulted  significantly  less  efficient  in  mixed  lymphocyte 

reaction and in antigen specific proliferation assay compared to control cells. To clarify 
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how T cell proliferation in MLR was reduced when DCs were treated with 6-MP, the allo-

reaction was performed with CFSE stained CD4+T lymphocytes and proliferative response 

was evaluated together with CD69 and CD25 T cell early activation marker expression, 

respectively 12 hours and 24 hours after MLR onset. As we found 6-MP treated DCs do 

not affect CD69 and CD25 expression on T cells, we can  conclude that mechanism by 

which 6-MP suppresses DC allostimulatory function, considering also that we didn’t detect 

any  alteration  in  IL-12  and  IL-10  production,  is  not  cytokine  mediated.  According  to 

phenotype data, since among surface maturation markers analyzed only CD83 expression 

(reported as % of positive cells) was significantly diminished by 6-MP treatment, we can 

assume that 6-MP induced inhibition of DC allostimulatory ability may be partially due to 

reduction  of  CD83  expression.  CD83  is  a  cell  surface  molecule  involved  in  CD4+T 

lymphocyte development in the thymus and in cell–cell interactions (Fujimoto et al, 2002; 

Lechmann  et  al,  2002),  therefore  it  is  reasonable  to  believe  that  6-MP  may  in  part 

suppress DC stimulatory functions by affecting the DC-T cell  contact.  This assumption 

may also explain our findings about antigen driven proliferation experiments on T cell lines 

specific for Flu-HA(306-318) peptide stimulated with immature DCs pre-pulsed for 2 hours 

with  or  without  peptide:  we  observed that  6-MP  significantly  impaired  DC  antigen 

presenting  ability,  both  when  added in  medium at  the  beginning  of  DC differentiation 

culture  and  when  present  during  antigen  loading.  In  these  experimental  conditions, 

maximum inhibition was achieved when 6MP was added during antigen loading at the 

higher dose. As the capacity to uptake antigens, at least the one mediated by mannose-

receptor (Sallusto et al, 1995), seems not affected by 6-MP treatment, we can hypothesize 

again an involvement of CD83 molecule. Actually, a reduced CD83 surface expression 

may alter the DC-T cell contact during antigen presentation, resulting in a not-efficient T 

cell stimulation.

Taken together,  our  data show that  6-MP has an inhibitory  effect  on DC functions  at 

several  levels:  during  maturation,  activation  and  antigen  presentation  without  affecting 

survival and cytokine production. 
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Based on recent outcomes produced by Poppe et al (2005), we can speculate that 6-MP 

effect on DCs may be mediated by Rac1/Rac2 Rho-GTPase inhibition. The importance of 

small Rho family GTPases in T cells during T cell priming has been widely documented (Li 

et  al,  2000;  Gomez  et  al,  2000), their  role  in  DCs  is  object  of  increasing  interest 

(Kobayashi  et  al,  2001;  Benvenuti  et  al,  2004). DCs  exist  in  two  functionally  and 

phenotypically distinct states, immature and mature (Mellman et al, 2001). Immature DCs 

are widely distributed throughout the body and occupy sentinel positions in many non-

lymphoid tissues. They constantly sample their environment for antigens by phagocytosis, 

macropinocytosis  and  pinocytosis.  After  antigen  engulfing  and  activation  by 

proinflammatory cytokines,  immature  DCs differentiate  into  mature DCs,  which  have a 

reduced potential for Ag uptake but have a high capacity for Ag presentation and T cell 

stimulation (Mellman and Steinman, 2001).  This transition is accompanied by dramatic 

cytoplasmic  reorganization characterized  by  a  redistribution  of  MHC  class  II  from 

intracellular compartments  to  the  plasma  membrane,  up-regulation  of  surface 

costimulatory molecules and T cell adhesion molecules. DCs also remodel their profile of 

chemokine receptors that facilitate migration and homing to lymphoid organs (Mellman et 

al, 2001). Finally, DCs project long dendritic processes that further increase opportunities 

for T cell capture  and interaction (Mempel et al, 2004). All of these changes depend on 

rearrangement of actin cytoskeleton, which in turn is mediated by small GTPases of the 

Rho family, (Nobes et al, 2000;  Burns et al, 2001; West et al, 2000; Swetman et al, 2002). 

Many evidences indicate that Rho GTPases play a crucial role in several events, such as 

membrane  trafficking,  transcriptional  regulation,  cell  growth  control,  chemotaxis, 

endocytosis  (Yanagawa et  al,  2003),  differentiation,  antigen presentation  (Shurin  et  al, 

2005), apoptosis (Boettner et al, 2002),  intracellular transport of secretory vesicles and 

exocytose (Nassar et al, 2000). Disposable data together show that each Rho GTPase 

might mediate different effector pathways in DCs. For example, recently Benvenuti et al. 

(2004) found that Rac1 and Rac2 but not Rho itself control the formation of dendrites in 

mature DCs, their polarized short-range migration toward T cells and T cell priming. Other 

investigators have been suggested  for Rac1 a special involvement in modulation of DC 
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capacity to endocytose apoptotic cells and prime T lymphocytes via cross-presentation 

(Kerksiek et al, 2005).  It has been  reported that Cdc42 plays a major role among Rho 

GTPases  in  the  regulation  of  DC  adhesion  and  endocytosis  (Garrett  et  al,  2000). 

Moreover, it has been showed that Rho inactivation in DCs was associated with inhibited 

interaction  between  DCs  and  CD4+T  cells  and  80%  reduction  of  DC  allo-stimulatory 

property in MLR, although the surface expression of MHC, costimulatory and adhesion 

molecules were unaffected (Kobayashi et al, 2001). 

DCs represent a heterogeneous population of professional antigen presenting cells that 

initiate primary immune responses. Besides linking innate and adaptative immunity, DCs 

also control immunity based on their ability to induce antigen specific unresponsiveness of 

lymphocytes, phenomenon known as immunologic tolerance, in primary and secondary 

lymphoid  tissues. Immunologic  tolerance  normally  prevents  reactions  against  self-

antigens. Lack  or  loss  of  self-tolerance  is  likely  to  result  in  autoimmune  responses. 

Interactions  between  lymphocytes  and  antigen  presenting  cells  are  critical  for  self-

tolerance assessment, either in thymus (central tolerance) either in peripheral lymphoid 

tissues (peripheral tolerance). Central tolerance occurs during immune system maturation 

in the thymus, where developing lymphocytes with marked reactivity against self-antigens 

are  eliminated  by  clonal  deletion  or  inactivated  by  anergy  induction.  However,  great 

number of self-reactive lymphocytes escape these central  negative-selection processes 

and  form  a  peripheral  pool  of  potentially  autoimmune-disease-mediating  lymphocytes 

(Abbas  et  al,  2002).  In  addition,  some  self-antigens  do  not  access  the  thymus,  as 

environmental  proteins  located  in  the  airway  and  intestine  or  sequestered  into 

immunologically privileged sites like CNS, while  others may be expressed later  in  life, 

when  T  and  B  lymphocyte  repertoire  has  already  been  formed.  Therefore,  central 

tolerance needs to be supported by peripheral mechanisms. It has been proposed that 

under  non-pathologic  steady  state  conditions  DCs  continuously  sample  self-Ags  from 

normal  peripheral  tissues  (Banchereau  et  al,1998) and  present  self-Ags  to  CD4+ and 

CD8+T cells, including complete or partial T cell tolerization through deletion or induction of 

unresponsiveness (Banchereau et al, 1998; Hawiger et al, 2001). Other mechanisms of 
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tolerance occur extra-thymically and include activation of antigen specific T suppressor 

cells and clonal deletion (Abbas, 2002). The failure of any of the mechanisms involved in 

self-recognition and elimination or down regulation of self-reactive clones may result in 

autoimmunity. 

Given  their  pivotal  role  in  controlling  immunity,  DCs  are  logical  targets  for  treating 

autoimmune diseases. Disruption of the costimulatory pathways has been shown to be 

effective in blocking the pathogenic process in several models of autoimmune diseases 

(Salomon  et  al,  2001;  Van  Parijs  et  al,  1997). Insufficient  IL-12  production  and  or 

decreased expression of costimulatory molecules by APCs with a concomitant increased 

secretion of IL-10, that in turn blocks DC maturation and inhibits IL-12 production during 

Ag presentation, have been implicated in T cell anergy and tolerance induction. At the 

moment,  two  different  strategies  to  selectively  enhance  DC tolerogenic  properties  are 

under  extensive  investigation:  one  based  on   pharmacological  impairment  of  DC 

maturation; the second trough the use of genetically modified DCs, engineered to express 

anti-inflammatory cytokines like IL-10 and TGF-b (Takayama et al, 1998), or to express 

costimulation-blocking agents such CTLA-4 (Takayama et al, 2000),  or to express FasL 

provoking  lymphocyte  apoptosis  (Matsue  et  al,  1999)  or,  finally,  transfected  to  block 

directly NF-kB (Bonham et al, 2002).

Altough  DCs  seem  to  be  absent  in  the  CNS  parenchyma  under  physiological  non-

pathological conditions, the presence of DCs at the blood-brain barrier and meninges in 

rodents (Mc Menamin PG 1999; Serafini et  al, 2000; Kivisakk et al, 2004) and in non-

inflamed human brain tissue (Matyszak et al, 1996; Greter et al, 2005) has been showed. 

Recently, Greter et al (2005) demonstrated that DCs associated with CNS vessels could 

process and present myelin antigens in the context of MHC class II molecules and then 

restimulate adoptively transferred Ag-experienced T cells.  So, they proposed that DCs, 

strategically  located  at  the  brain  barrier  level,  act  as  sentinels  for  CNS,  scanning  for 

physiologic self and foreign antigens, presenting these to cognate T cells migrating trough 

CNS  vessels  and  promoting  the  CNS  invasion  by   T  encephalitogenic  cells.  Under 

pathological conditions, it  is possible that DCs co-migrate with T cells into CNS, where 
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inflammatory foci arrange in a fashion similar to secondary lymphoid organs (Prineas JW 

1979; Raine et al,1984). 

Furthermore, a recent study on animal  models of MS (McMahon et al,  2005) provided 

evidences  that  epitope spreading  occurs  within  the inflamed CNS.  At  the  time of  MS 

diagnosis, Ag-epitope spreading has probably already occurred in most  of the patients 

(Tuohy et al, 1999), making unfeasible, even at single patient level, a treatment based on 

antigen specific desensitization  (Bielekova et al, 2000). If the strategy of antigen specific 

desensitization  will  be  confirmed  not  to  be  applicable  (or  even  dangerous), 

immunosuppressive/modulating  therapies  will  probably  maintain  a  key  role  in  MS 

treatment. In addition, it  is now clear that, late in the MS course, chronic inflammatory 

infiltrates persist in the CNS beyond an intact blood-brain barrier (BBB) (Massacesi, 2002; 

Uccelli  et  al,  2005;  Ambrosini  et  al, 2005);  consequently,  immune-therapies  not 

trespassing  BBB  will  not  be  able  to  suppress  the  autoimmune  responses  ongoing 

intratecally (Massacesi, 2002). Therefore, DCs sited at the interface of CNS and immune 

system, pivotal players in development of CNS inflammation as discussed above, could 

represent a novel therapeutic target for the treatment of multiple sclerosis and other CNS 

inflammatory diseases. As Azathioprine does not easily cross the BBB, it has been well 

accepted that it acts mainly on the lymphoid organs, resulting thus more effective early in 

the course of MS, during the RR phase. We can now believe that Aza may acts also on 

DCs located at the brain barrier level.

Our data show that 6-MP in culturing medium, without affecting DC survival and cytokine 

production,  strongly  inhibits  cell  maturation,  costimulation  marker  expression  and 

allostimulatory  ability.  Based  on  these  results,  we  suggest  a  double  action  for  6-MP 

mediated immunosuppression on both sides of immune-synapses: one on T lymphocytes, 

as recently demonstrated (Tiede et al, 2003; Poppe et al, 2005), another on dendritic cells. 

These data provide new insight into the mechanisms of action of Azathioprine, indicating 

for the first time that its immunosuppressive effect may be partially due to the inhibition of 

DC maturation.
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