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Abstract 
In asynchronous environments, the spreading signature 
generation is one of the main issues for CDMA commu- 
nication systems. In this paper is shown that the spectral 
design of the spreading signature leads to efficient band- 
limited signals with attractive cross-correlation properties. 
The behavior of the proposed spreading signals is simu- 
lated in a GSM-like multipath environment and it is com- 
pared to that of a traditional DS-CDMA using Walsh binary 
sequences. 

Technical Subject Category: CDMA 

I Introduction 
The DS-CDMA technique relies on an efficient design of 
the spreading codes, with a small cross-correlation index 
to permit the retrieval of the desired user’s information, and 
an autocorrelation shape as closer as possible to the Dirac’s 
delta; this to avoid unexpected auto-interference effects due 
to the reception of delayed version of the transmitted sig- 
nal. 

Sometimes the standard design in the time domain of 
the spreading codes may result inappropriate, especially in 
presence of multi-path where time-shifted replicas of the 
same signal interfere with the desired one. 

The basic theory of the Digital Signal Processing sug- 
gests an alternative method to design spreading functions 
and the resulting technique has some interesting properties 
which may result useful in the presence of multi-path envi- 
ronments. 

In this work we show how the spreading sequences can 
be alternatively designed in the frequency domain. The flat 
spectral occupancy, the auto-correlation and other interest- 
ing properties are highlighted, and some examples of appli- 
cations are given in order to compare this design technique 
with the standard one. 

The paper is organized as follows: after a short introduc- 
tion in section I, the definitions of the spectral spreading 
functions is in section 11. In section I11 is reported a com- 
parison between the proposed signals and the traditional 
Direct Sequences, while in section IV the computer sim- 
ulations are described and the corresponding results com- 
mented. 

I1 Spectral Spreading Signals 
A complex representation of the spreading signals is con- 
sidered. We can write the definition of the signals as fol- 
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lows: 

Where Si (IC) is a complex-valued spectral coefficient. The 
signals s i ( t )  expressed by (1) are band-limited by K/Tb 
since they are generated by a sum of harmonics whose 
higher frequency is K/Tb. The definition of si ( t )  is due to 
the choice of a complex sequence of length K .  We refers 
to (1) as spectral spreading signals. 

In order to generate signals with flat amplitude spectrum 
and unitary energy, the values of S i (k )  are chosen with 
constant modulus and variable phase, as follows: 

A polyphase or N-Phase sequence is a sequence whose el- 
ements are of the form e z p ( j 2 m / N ) ,  with 0 5 n < N .  

If ~ ( z )  and q(z) are two N-Phase sequences of length L, 
the Periodic Cross-correlation Function (PCCF) is defined 
as: 

L-1 

cp rq (Z )  = T*(z)q((z + 1 )  mod L )  0 5 I < L 
2=0 

(3) 

The respective autocorrelation function is obtained if the 
sequence r (z )  is replaced by q(z). 

The sequence ~ ( z )  is called p e ~ e c t  if the side-lobes of 
the corresponding autocorrelation function are 0. 

There are some operations that, if applied to a perfect N- 
Phase sequence, permit to generate further perfect N-Phase 
sequences of the same size. The invariance operations are: 

1. 

2. 

3. 

4. 

5.  

reflections: g(z) = r ( -z)  

cyclic shifts: g(z) = r ( z  - U )  with U integer 

constant phase addition: g(z) = T ( Z )  * e x p ( j 2 ~ u / N )  
with U integer 

linear phase addition: g(z) = T ( Z )  * ezp(j27ruz/N) 
with U integer 

proper decimation of rows: g(z) = ~ ( u z )  where U 

and L are coprime. 

Where each argument is intended modulus L. 
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In the past a large number of methods have been de- 
veloped for searching or generating perfect N-Phase se- 
quences. The basic theory of perfect sequences generation 
is due to Frank , Chu and Milewski [3, 2, 41. Synthesis 
methods able to generate new sequences of various length 
from the basic ones,are also known [I]. 

The interest in this class of multi-phase sequences de- 
rives from the expression of the cross-correlation factor be- 
tween two spectral spreading signals defined by (1). In 
facts we have: 

(4) 
k=l 

K .. 

= R e { c  S:(k)Sj(k)} 
k = l  

Equation (4) shows that the cross-correlation between two 
different signals is the real part of the complex cross- 
correlation between the two sequences of the respective 
spectral coefficients. This suggests that the perfect se- 
quences can be used as the spectral coefficients in spectral 
spreading signal definition. 

We have focused our attention on the so called pelfect 
arrays, whose definition follows: 

O I x < N ,  O L y < N  ( 5 )  

In this case we are able to generate N different sequences 
of length N. It can be easily shown that each sequence is 
perfectly orthogonal to any other. The number of codes 
generated equals the spreading factor, as in the case of di- 
rect sequences derived from the Walsh's matrix. 

We analyze the behavior of the spectral spreading sig- 
nals when the signals are received with unexpected delays. 
Since a synchronization device is supposed to be present, 
we consider the receiver perfectly synchronized with the 
main incoming signal of the desired user. By doing that in 
general the receiver is not synchronized with the interfer- 
ers and all the delayed replicas of the desired signal due to 
multipath. 

Under these conditions, the ideal behavior of a set of 
spreading signals S i  ( t )  is: 

1 T = t  
0 otherwise 

Tb/2 

Re [ [ T b / 2  

I11 Comparison between direct sequences 
signals and spectral s 

We now consider a practical case and compare the 
autolcross-correlation profiles of both direct sequences and 
perfect array phase sequences signals. We consider the sit- 
uation where the same information symbol is continuously 
repeated by both the desired and the interferent user. 

No phase distortions effects are taken into account and a 
spreading factor K of 32 is considered. 

Fig 1 shows the cross-correlation profile (continuous 
line) and the auto-correlation profile (dotted line) of two 
spreading signals. 

In the upper part of the fig 1, two signals generated 
by the proposed technique are compared. The upper-left 
part shows the effect of delay on two signals derived by 
Chu Perfect Sequences. Chu Sequences do not guarantee 
the perfect orthogonality with r=O, but the delayed cross- 
correlation is bounded in the whole range of delay. 

On the upper-right part is shown the profile for two sig- 
nals derived by Perfect Arrays. This time the orthogonality 
is perfect for the synchronous case (T = 0) and the delayed 
profile is extremely low, with the exception of a narrow 
pulse. Basically the spreading signals derived from a Per- 
fect Array are composed by a discrete cyclic delayed copy 
of the first sequence. 

This may appear as an undesired property, but the nar- 
rowness of the impulse is the key issue here. As confirmed 
by computer simulations, later described, the cross correla- 
tion impulse is so narrow that only a few times a multipath 
replica is likely to fall inside it. This results in a global 
averaged good rejection of the delayed replicas of the in- 
terference signals. 
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Figure 1: Auto- and cross-correlation profile in the asyn- 
chronous case 

As the lower half of the fig 1 concerns, the same 
crosslauto correlation profile is computed for an ordinary 
Direct Sequences spreading signal. Each chip modulates a 
square pulse and both Walsh and random binary codes are 
represented. While orthogonality holds in the synchronous 
case also for Walsh DS codes, as soon as the signal is de- 
layed, DS signals manifest poor cross and auto correlation 
profiles. 
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IV Computer Simulations and Results 
To prove the observations stated in the previous sections, 
several computer simulations have been made. 

The general assumptions in common to each simulated 
environment are: 

b-- + + + + 

Figure 3: Time varying complex filter 

Two users sharing the same channel. One is the de- 
sired user whose information is wanted; the other one 
is the interferer, 

AWGN noise added to the received signal, 

Severe multipath channel, 

Rayleigh 
generator 

CHFIR 

MPSTDfi) 
MPAVh’fi) 

Performance measured in terms of probability of er- 
ror at the receiver for the desired user computed for 
different values of signal to noise ratio. 

The CDMA system under test are: 

0 Direct Sequences CDMA with Walsh codes and rect- 
angular pulse modulated by each chip, 

0 Phase Sequences CDMA whose complex codes are 
obtained by the perfect arrays. 

We now prove that the unusual cross-correlation profile 
exerted by the perfect arrays in the CDMA using the pro- 
posed signaling is convenient in the presence of strong mul- 
tipath. Starting from the GSM channel model, we have de- 
veloped a discrete simulation environment capable to gen- 
erate the effect of a strong multipath. 

The channel model used in this set of simulations is ba- 
sically a time-varying complex filter, whose taps are syn- 
chronously updated by several pink Rayleigh discrete pro- 
cesses. 

The Fig. 2 helps to understand the structure of the chan- 
nel model. The stream of samples is filtered by a com- 
plex Finite Impulse Response filter (fig. 3) whose dimen- 
sion (the parameter WINDOW) influences the multipath 
spread of the channel. A white Gaussian complex process 
is then added to the resulting signal. 

The taps of the complex filter are continuously updated 
by the Rayleigh generator and spread projiler block. 

Figure 4: Complex Taps Generation 

the Drocess. The FIR tam are defined in the CHFIR vec- 
tor which is a parameter of the simulation. Basically the 
CHFIR vector defines the frequency response of the spec- 
tral shaping filter H ( f ) .  Since the Rayleigh generator is 
white, the quantity llH(f)112 gives the power spectral den- 
sity of the channel taps. The first and second order statis- 
tics of the channel taps are defined separately for each tap 
by the two vectors MPAVE and MPSTD. Basically the tap 
c ( i ,  t )  is a pink Rayleigh (or Rice) process with variance 
MPSTD( i )2  and mean MPAVE(i) .  

The two system, DS-CDMA and spectral spreading sig- 
nals, have been tested with different values of the received 
interfererpower. Table 1 shows the scalar parameters used 
in the simulation, while in the figs. 5 and 6 are plotted the 
values of the vectors involved. 

sDreading factor 16 
received user power 1 

received interferer power 10,4.65,2.15 
SNR (desired user) dB 0 . . ~8 

FFT size 32 
WINDOW 32 

phase sequences type 
direct sequences type Walsh 16 

perfect 32-phase arrays 

Table 1 : Asynchronous case - profile A - parameters 

The cross-correlation properties of the Phase sequences are 
useless when the dominant cause of error is the AWGN 
noise. 

V Conclusions 
The design of spreading signatures for CDMA systems of- 
fers a better cross-correlation profile in the asynchronous 
environment with respect to the traditional direct se- 
quences. An IFFT implementation of the signal genera- 

Figure 2: Discrete multipath channel model 

Each tap of the complex filter is synchronously updated 
from a set of independent Rayleigh generators. The struc- 
ture of each complex tap generator is described in the fig. 4. 

Each complex tap is generated by a Rayleigh process 
with unitary variance. This process is then filtered by a 
low pass FIR used to shape the power spectral density of 
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Figure 5: Profile A - vector parameters I 
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Figure 6: Profile A - vector parameters I1 

tor is possible, so that the resulting spreading technique fits 
the requirements for a cheap DSP realization in portable 
devices. The good average behavior in a multipath environ- 
ment of the proposed signatures is confirmed by computer 
simulations. r 
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