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Conventional, organic and biodynamic
farming: differences in polyphenol content
and antioxidant activity of Batavia lettuce
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Abstract

BACKGROUND: Lactuca sativa L. ssp. acephala L., cv. Batavia red Mohican plants were cultivated under intensive conventional,
organic and biodynamic farming and were analyzed for their polyphenol content and antiradical activity in order to demonstrate
the influence of farming on yield, polyphenol content and antiradical activity.

RESULTS: The yield of plants from conventional farming was the highest (2.89 kg m−2), while polyphenol content, measured by
spectrophotometry, of these plants was lower at P < 0.05 (1.36 mg g−1) than the content of plants from organic and biodynamic
farming (1.74 and 1.85 mg g−1, respectively). The antiradical activity, measured by DPPH · assay, was positively correlated to
flavonoid and hydroxycinnamic acid contents.

CONCLUSION: Flavonoid, hydroxycinnamic acid and anthocyan patterns were not affected by the type of cultivation, while
quantitative differences were demonstrated and some differences were found between conventional farming and organic or
biodynamic farming. The yield of conventionally grown salads was the highest.
c© 2011 Society of Chemical Industry
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INTRODUCTION
Food products of organic origin are believed to be healthier than
those from conventional farming. The concept of healthfulness
concerns two main aspects: the first is correlated to agronomic
practices and to their effects on soil management and food security
(absence of synthetic pesticides); the second to the compounds of
plants food such as vitamins, minerals, fibres and phytochemicals.
Among these last compounds polyphenols play an important
role in exerting their positive activity on human health1 and
contributing strongly to protection from oxidative stress and
regulation of cellular processes such as inflammation.2

While for the first aspect, especially in terms of sustainability,
soil fertility and lesser use of pesticides, organic farming offers
more benefit than a conventional approach,3 the second aspect
involves greater uncertainty since the content and profile of
polyphenols are affected by several factors such as temperature,
ultraviolet light, insect attack, pathogen infection and nutrient
deficiency4. However, assessment of food quality is a very
important subject and many parameters are taken into account.5

The comparison of organically and conventionally grown food
has been reviewed,6 as has the quality of plant products from
organic agriculture.7 Polyphenol content and antioxidant activity
have been taken into account in the case of apples,8,9 peaches
and pears,10 different kinds of salads,4 wine grapes,11 oranges,12

blackcurrants,13 plums,14 oat grains,15 marionberries, strawberries
and corn,16 and tomatoes.17 The results of such comparisons are
not univocal, and in some cases debate has been reported in

the literature,18,19 depending in large part on the many variables
which determine the amount of polyphenols.

Biodynamic agriculture falls into the category of general organic
agriculture, the main differences being in the use of biodynamic
preparations for soil (preparation 500), plants (preparation 501)
and compost (preparations 502–507). The agronomic system is
based on a holistic approach of the whole farm and under this
aspect the simple use of preparations could not completely be
defined as a biodynamic approach. However, from a scientific
point of view the only way to compare results from different
farming systems is to study the effect of preparations.20

Even if some efforts have been made to explain the mechanism
by which these preparations act,21 – 23 their effect on plant
physiology, soil microbiology and compost characteristics is still
not explained.20 Only a few papers compare the results obtained
with biodynamic agriculture with those from conventional
farming.11,24,25
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Table 1. Treatments and application dates for the three farming
systems

Date
Conventional

plots
Organic

plots
Biodynamic

plots

14 May 2008 Treatment with
composted
manure

Treatment with
biodynamic
composted
manure and
field
preparation
500

29 May 2008 Seedlings
transplanted
and mineral
fertilization
(27% N, 18%
P2O5 and 30%
K2O)

Seedlings
transplanted

Seedlings
transplanted

6 June 2008 Field preparation
501

13 June 2008 Field preparation
500

2 July 2008 Field preparation
501

11 July 2008 First sampling First sampling First sampling

14 July 2008 Second sampling Second sampling Second sampling

21 July 2008 Harvest Harvest Harvest

The aim of the present paper is to compare three different
agricultural practices (i.e. intensive conventional, organic and
biodynamic) on the basis of agronomic yields and from the stand-
point of polyphenol (flavonoids, anthocyans and hydroxycinnamic
acids) content and antiradical activity in order to ascertain whether
biodynamic practices could lead to variations with respect to the
most general organic practice and whether either technique could
lead to vegetables which may be more appreciated by consumers
as ‘nutraceutical’ food.

EXPERIMENTAL
Agricultural conditions and plant material
The experimental field was in the area of the ‘Forschungsring für
Biologisch-Dynamische Wirtschaftsweise’ of Darmstadt, Germany.
The soil is sandy orthic luvisol (FAO classification), with 87% sand,
8% loam and 5% clay. Seedlings of Batavia lettuce (Lactuca sativa
L. ssp. acephala L., cv. Batavia red Mohican) were employed in our
experiment under the three farming methods. The experimental
layout was a randomized block (4 × 1.50 m, 102 seedlings), with
three replicates for each kind of cultivation; distances were 25 cm
among rows and 30 cm on the row.

The amount of mineral fertilization corresponded to 125 kg
ha−1 for nitrogen, 134 kg ha−1 for phosphorus and 14 kg ha−1

for potassium. 7.5 kg composted manure was distributed in
organic and biodynamic blocks; the manure contained 125 kg
ha−1 nitrogen, and the phosphorus and potassium percentages
(0.3% and 0.8% respectively) were calculated from the dry matter.
The plants were irrigated when needed using the same quantity
of water in all plots.

The dates and the treatments for each cultivation are reported in
Table 1. During this period total rainfall was 75.4 mm and the mean
temperature was 12.42 ◦C (7.2 ◦C minimum, 17.2 ◦C maximum).

Eight lettuce plants were picked in each plot and grouped into
subsamples of two plants so that 36 samples of the whole plant
were obtained.

Extraction of polyphenols
Samples were frozen in liquid nitrogen and stored at −80 ◦C
before proceeding with the analysis. Frozen tissues were ground
in a mortar with a pestle under liquid nitrogen. A quantity of 2 g
of tissue was extracted in 30 mL of 3 : 7 water-ethanol mixture (pH
= 3.2 by formic acid) overnight. The extraction yield (95%) was
controlled by the addition of 40 µL gallic acid (5.88 mmol L−1) as
internal standard; gallic acid is not naturally present in the samples
and exhibits a retention time which falls in an empty zone of
the chromatogram. Only in the case of anthocyan analysis, the
extraction was carried out with 70% ethanol (pH = 2 by formic
acid).

Standards and solvents
Rutin, chlorogenic acid, gallic acid, Folin–Ciocalteu reagent and
DPPH · (1,1-diphenyl-2- picrylhydrazil radical) were purchased
from Sigma-Aldrich (St Louis, MO, USA). Malvin-3-O-glucoside was
purchased from Extrashynthese (Nord Genay, France).

All solvents used were of high-performance liquid chromatog-
raphy (HPLC) grade purity (BDH Laboratory Supplies, Poole, UK).

Antiradical activity
Free radical scavenging activity was evaluated with the DPPH ·
assay. The antiradical capacity of the sample extracts was estimated
according to the procedure reported by Brand-Williams and
Cuvelier,26 with slight modifications. Two millilitres of the sample
solution, suitably diluted with ethanol, was added to 2 mL of an
ethanol solution of DPPH · (0.0025 g 100 mL−1) and the mixture
was kept at room temperature. After 20 min, the absorption
was measured at 517 nm versus ethanol as a blank. Each day,
the absorption of the DPPH · solution was checked. Antiradical
activity was expressed as IC50: the antiradical dose required to
cause 50% inhibition. IC50 was calculated by plotting the ratio
(Ablank − Asample/Ablank) × 100, where Ablank is the absorption of
DPPH · solution and Asample is the absorption of DPPH · solution
after addition of the sample, against the concentration of the
sample. Straight lines were obtained in each case, with R2 changing
from 0.8179 to 0.9981. IC50 was expressed as mg sample mg−1

DPPH ·. All spectrophotometric data were achieved using a Lambda
25 spectrophotometer (PerkinElmer, Waltham, MA, USA).

Total phenolic content
The total phenolic content was determined using the
Folin–Ciocalteu method, described by Singleton et al.27 and
slightly modified.28 To 125 µL of the suitably diluted sample ex-
tract, 0.5 mL of deionized water and 125 µL of the Folin–Ciocalteu
reagent were added. After 6 min 1.25 mL of a 7% aqueous Na2CO3

solution was added to the mixture. The final volume was adjusted
to 3 mL with water. After 90 min, the absorption was measured
at 760 nm against water as a blank. The amount of total pheno-
lics was expressed as gallic acid equivalents (GAE, mg gallic acid
100 g−1 sample) through the calibration curve of gallic acid. The
calibration curve ranged from 20 to 500 µg mL−1 (r2 = 0.9969).

Total anthocyan content
Anthocyan levels were estimated by means of spectrophotometric
measurements from the extraction solution as A530 − 0.24A653.29
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HPLC–diode array detection analysis (DAD)
Analyses of flavonols and hydroxycinnamic acids were carried out
using an HP 1100L liquid chromatograph equipped with a diode
array detector and managed by a HP 9000 workstation (Agilent
Technologies, Palo Alto, CA, USA). Analysis was carried out during a
30 min period at a flow rate of 0.8 mL min−1 using a Varian Polaris

C18-E (250 × 4.6 mm i.d., 5 µm) column operating at 27 ◦C with a
linear solvent gradient system.30 UV-visible spectra were recorded
in the 190–600 nm range and chromatograms were acquired at
260, 280, 330 and 350 nm.

HPLC–mass spectrometry (MS)
Analyses were performed using an HP 1100L liquid chromatograph
linked to an HP 1100 MSD mass spectrometer with an atmospheric
pressure ionization/electrospray interface (Agilent Technologies).
The mass spectrometer operating conditions were: gas tempera-
ture, 350 ◦C; nitrogen flow rate, 11.0 L min−1; nebulizer pressure,
40 psi; quadrupole temperature, 100 ◦C; and capillary voltage,
4000 V. The mass spectrometer was operated in negative mode at
120 eV.

Identification and quantification of individual polyphenols
Identification of individual polyphenols was carried out using their
retention times and both spectroscopic and mass spectrometric
data. Quantification of individual polyphenolic compounds was
directly performed by HPLC/DAD using a five-point regression
curve (r2 ≥ 0.998) in the range 0–30 µg on the basis of
standards. In particular, flavonols were determined at 350 nm
using rutin as reference compound. Hydroxycinnamic derivatives
were determined at 330 nm using chlorogenic acid as reference
compound. In all cases, actual concentrations of the derivatives
were calculated after applying corrections for differences in
molecular weight. Three samples were collected from each site so
as to express the analytical results as an average with its standard
deviation.

Statistical analysis
Statistical analysis was performed using PASW Statics, version 18,
with the general linear model. Data were subjected to analysis of
variance (ANOVA) and to Tuckey’s test. Differences at P < 0.05
were indicated by lower case letters, while differences at P < 0.01
were indicated by upper case letters. The t-test has been used
for the analysis of some data. All data are mean values of three
determinations.

RESULTS AND DISCUSSION
Figure 1 reports the average head weights of Batavia at three
different sampling dates. The weights of the conventionally
grown lettuce were always the highest and were also significantly
different (P < 0.001) from both organic and biodynamic lettuce
heads, while latter treatments significantly (P < 0.05) differ only
for the last sampling date (21 July). Also in the case of organically
grown apples, their weight was lower than that of conventionally
grown fruits,10 while the opposite is reported in the case of
plums.14 The yield of conventionally grown lettuce was therefore
higher than that of the other two groups (2.89 kg m−2 with respect
to 2.30 and 2.37 kg m−2 for organic and biodynamic farming for the
last sampling). It should be noted that water content (about 93%)
did not significantly change among the three farming systems.
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Figure 1. Average weight of a head of lettuce at three samplings dates (11
July, first bar; 14 July, second bar; 21 July 2008, third bar). The data are
divided according to conventional trial (C), organic trial (O) and biodynamic
trial (B). Error bars describe the standard deviation of replicates (n = 20).

Table 2. Amount of polyphenols, anthocyans and antiradical activity
expressed as IC50, i.e. the amount of sample (mg) which inhibited the
activity of 1 mg DPPH ·

Farming

Polyphenols as
gallic acid

(mg g−1 sample)

Anthocyans as
malvin-3-O-

glucoside
(mg g−1 sample)

DPPH · IC50
(mg sample
mg−1 DPPH)

Conventional 1.36a 0.90A 238.80a

Organic 1.74ab 1.43AB 199.48a

Biodynamic 1.85b 1.87B 197.95a

Upper-case letters indicate a significance level<0.01; lower-case letters
indicate a significance level <0.05. All data refer to fresh weight.

The amounts, as determined by spectrophotometric analysis,
of polyphenols and total anthocyans under the three farming
systems are reported in Table 2. Both anthocyan and polyphenol
contents were significantly lower under conventional than
under biodynamic farming. The amount of polyphenols in
biodynamically grown lettuce was about 36% higher than in
conventionally grown product and its amount (as gallic acid)
in the latter, notwithstanding its higher yield, was 3.93 g m−2;
for organic and biodynamic lettuce the values were 4.00 and
4.38 g m−2 respectively. Similar results were obtained in the case
of marionberries and strawberries.16 In a previous paper4 on
organically grown lettuce the total amount of polyphenols was
lower (from two to five times) than the values found in this research
and no differences between organic and conventional cultivation
have been found in individual and total phenolic levels. The
discrepancy between these data can be ascribed to the different
cultivars of seedlings and to the environmental conditions, which
are also responsible for the expression of polyphenols.

Our trend is similar to that found in tomatoes, where a 10-
year study showed higher flavonoid contents under organic
management practices with respect to a conventional approach.17

In a previous study on Cichorium intybus24 no differences were
found between conventional and biodynamic cultivations in terms
of polyphenol content.

Anthocyan amount (Table 2) in conventionally grown Batavia
lettuce was the lowest, also taking into account the agronomic
yields (2.60 g m−2), while for lettuce from organic and biodynamic
farming it was calculated as 3.28 and 4.43 g m−2 respectively; this
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Figure 2. Chromatographic profiles acquired by HPLC/DAD (350 nm) of the
hydroalcoholic (ethanol : water 70 : 30, pH 3.2) extract of a lettuce sample.
Identified compounds: 1, caffeic derivative; 2, caffeoylquinic derivative; 3,
chlorogenic acid; 4, caffeic derivative; 5, flavonoid; 6, quercetin derivative;
7, luteolin glucuronide; 8, quercetin malonyl glucoside; 9, caffeic derivative;
10, quercetin acetyl glucoside; 11, caffeic derivative.

trend is similar to what found in the case of strawberries.31 In the
case of Syrah grapes grown under organic agricultural practices,
a lower anthocyan content was achieved, which was ascribed to
the use of pesticides in conventional farming.32 Organic farming
tends to increase environmental stress and therefore an increase
in polyphenol content can be explained on this basis.33

With regard to antiradical activity, IC50 values are not signif-
icantly different when conventional lettuce is compared to the
organic and/or biodynamic produce. However, if the t-test is
performed significant differences (P < 0.05) are found when con-
ventional lettuce is compared to the organic and/or biodynamic
produce, while the latter two groups do not differ between them.

The kinetic curves for the three farming systems (conventional,
organic and biodynamic) were similar. The exponential model
which describes the three curves (R2 ≥ 0.9451) is

ln[DPPH·] = at + b

indicating that the antiradical mechanism is the same in the
three cases.30 However, no relationship could be found between
antiradical activity and polyphenol or anthocyan contents, similarly
to what observed in the case of basil (Ocimum basilicum L.),
where antioxidant activity did not correlate with total polyphenol
content,34 while the role of anthocyans in plant protection from
oxidative stress seems related to their ability to attenuate visible
light and reduce excitation pressure.35

Identification of individual polyphenols was carried out using
HPLC-DAD-MS; a chromatogram, acquired at 350 nm, of a lettuce
extract is reported in Fig. 2. From a qualitative point of view,
quercetin and luteolin derivatives, and caffeic acid derivatives
were identified. In particular, among flavonols we identified
luteolin glucuronide and quercetin malonylglucoside according
to Heimler et al.30 Chlorogenic acid was also found and identified
by comparison and combination of retention time, UV-visible and
mass spectra with those of authentic standards.

The amounts of flavonoids and hydroxycinnamic acids as
obtained from HPLC data are reported in Table 3. In all cases
biodynamic and organic farming led to the highest amount of
polyphenols. The total polyphenol content is comparable to that
reported by Heimler et al.30 for different lettuce varieties. It can
be pointed out that flavonoids are the main compounds in the
three different samples (Table 3), and quercetin malonyl glucoside
is always the most abundant compound (Fig. 3).

Table 3. Amount of flavonoids, hydroxycinnamic acid and total
polyphenols (mg g−1 sample) from HPLC data

Farming Flavonoids
Hydroxycinnamic

acids
Total

polyphenols

Conventional 1.09A 0.67A 1.76a

Organic 1.23AB 0.84AB 2.07a

Biodynamic 1.39B 0.97B 2.36a

Upper-case letters indicate a significance level <0.01. All data refer to
fresh weight.
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Figure 3. Amount of individual flavonoids (mg g−1). For each compound,
there is a bar for conventional (C), organic (O) and biodynamic (B) farming.
Numbers as in Fig. 2. Error bars describe the standard deviation of replicates
(n = 12).

Both flavonoids and hydroxycinnamic acid contents correlate
with the antiradical activity; also total polyphenols (from HPLC
data) exhibit quite a good correlation with antiradical activity. In
all cases R2 values are between 0.799 and 0.928. Total phenolic
content, measured with the Folin–Ciocalteu method, seems a
good indicator of ABTS and ORAC scavenging capacities,36 while
flavonoids and hydroxycinnamic acids are correlated to DPPH
· scavenging capacities, giving rise to a positive correlation (the
higher the polyphenol amount, the greater the antiradical activity).

Figs 3 and 4 present the different trends for individual flavonoids
and hydroxycinnamic acids. It is possible to note that the
differences among the three cultivation methods involve only
some quantitative aspects since the qualitative patterns do not
change. In fact, the relative amounts of individual flavonoids and
hydroxycinnamic acids do not change with the cultivation method.

In conclusion, the present study demonstrates that under the
same conditions of climate, temperature, water stress and plant
material, when comparing conventional, organic and biodynamic
cultivation of Lactuca sativa L. ssp. acephala L., cv. Batavia red
Mohican plants, the yield in the conventional treatment was
highest, while the amount of polyphenols (see Table 2) was
significantly lower than in biodynamic farming, with all the other
parameters (amount of individual polyphenols, total anthocyans)
confirming this trend. As regards the differences between organic
and biodynamic farming, no significant values were found.

If we regard polyphenol and hydroxycinnamic acid contents as
‘nutraceutical’ components of food, it should be underlined that
in this case higher amounts were obtained with biodynamic and
organic farming. The reason why this occurs may be associated
with stress conditions in organic and biodynamic farming and/or
to a different microbe environment.22 The differences between
organic and biodynamic farming systems are not firmly stated
in this case; applying the t-test instead of ANOVA, however,
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Figure 4. Amounts of individual hydroxycinnamic acids (mg g−1). For each compound, there is a bar for conventional (C), organic (O) and biodynamic
(B) farming. Numbers as in Fig. 2. Error bars describe the standard deviation of replicates (n = 12).

the differences between organic and biodynamic farming are
significant at P < 0.05 and P < 0.001 in the case of anthocyan and
hydroxycinnamic acid contents and this aspect could indicate an
influence of biodynamic practice on secondary metabolites which
has not previously been shown.
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