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Abstract. Given a complete metric space X and a compact set C ⊂ X, the

famous Steiner (or minimal connection) problem is that of finding a set S of
minimum length (one-dimensional Hausdorff measure H1) among the class of

sets

St(C) := {S ⊂ X : S ∪ C is connected}.
In this paper we provide conditions on existence of minimizers and study topo-

logical regularity results for solutions of this problem. We also study the rela-

tionships between several similar variants of the Steiner problem. At last, we
provide some applications to locally minimal sets.

1. Introduction

In this paper we deal with the following problem. Let X be a complete metric
space, C ⊂ X be a compact set and define

St(C) := {S ⊂ X : S ∪ C is connected}.

We are interested to find an element of St(C) with minimal length (i.e. 1-dimensional
Hausdorff measure H1), namely,

inf{H1(S) : S ∈ St(C)}. (ST )

We introduce also the notation

M(C) := {S ∈ St(C) : H1(S) ≤ H1(S′) for all S′ ∈ St(C)}

for the set of solutions to this problem.
The above problem with C being a finite set of points in an Euclidean space

is well-known under the name of minimal connection or Steiner problem. As it
is generally recognized nowadays, the German-Swiss 19th century mathematician
J. Steiner, whose name is attributed to this problem, has in fact little to do with its
formulation. It appeared in fact more than a century after Steiner, in 1934, in the
works of Czech mathematicians Jarnik and Kossler, but actually became famous
only after having been cited in the book of Courant and Robbins. On the other
hand, the first problem of this type (namely, with C being a triple of points in the
plane) may be considered quite ancient: it was actually raised in 17th century by
Fermat, the solution being found by Torricelli and further refined by Cavalieri (not
to mention that, of course, the particular case of C being a couple of points, i.e.
the geodesic problem, has even earlier history). By now this problem is subject of
active study, and an extremely extensive literature on the subject exists (see, for
instance, the book [6] and references therein).

It is worth mentioning that many other similar problem settings appear in the
literature, usually under the same name of Steiner problem. In particular, one may
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(a) A solution of a Steiner

problem having a countable

set of branching points.
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(b) Comparison between

length minimizers over

St(C) and over St3(C).

Figure 1

consider, instead of the class St(C), the other natural classes of sets

St1(C) := {S ⊂ X : S is connected and S ⊃ C},
St2(C) := {S ⊂ X : S ∪ C compact and connected},

and pose the problems of finding a set of minimal length (i.e. one-dimensional Haus-
dorff measure H1) among the class Sti(C) for i = 1, 2. We will denote such prob-
lems (STi), i = 1, 2, and still refer to them as Steiner problems, the notation Mi(C),
i = 1, 2 standing for the respective classes of minimizers of the length functional H1

(i.e. of solutions). For instance, in most papers one deals with problem (ST1) which
is easily reducible to problem (ST ) and in fact is clearly less general than the latter
(see section 6 below). Further, most results in the literature refer to the cases when
the set C is finite and the ambient metric space X has some particular structure
(e.g. is an Euclidean space or a Riemannian manifold). However, optimal networks
connecting infinite sets are also quite important and may have highly complicated
structure. For instance, in Figure 1(A) we have drawn a compact set S which is
an infinite binary tree whose triple points (which are infinite) have equal angles of
120 degrees. We consider the set C composed by the endpoints of the tree S (one
root and infinitely many leafs). The set C is not countable and totally disconnected
(every connected component of C is a point). It is easy to verify that S \ C is
connected and that it is a locally minimal network (see Definition 8.1). However
the proof that such a set S is actually a minimizer S ∈M(C) is much more difficult
than what one might think at first glance and will be provided in a forthcoming
paper. We also mention that in the recent paper [4] another problem of this type
was studied, namely, that of minimizing H1 over the set

St3(C) := {S ⊂ X : S ∪ C and S are both compact and connected}.

Though looking similar, this problem is a bit different and will not be studied here.
In fact, in Figure 1(B) we present an example (with C being the union of four shaded
regions in the plane) where the minimizer of length H1 over St3(C) (denoted by
S3 in the figure) is quite different from the solution S to (ST ). In this example
the minimizer S3 is connected but it is not at all influenced by the presence of the
biggest component of C.
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In this paper we will study the general setting of the Steiner problem (ST ), for
generic ambient space X (the only result where we will need additional assumptions
on X rather than just completeness, is the existence theorem) and for possibly
infinite sets C. In particular, in Theorem 4.1 we will show the existence of solutions
to this problem under additional requirement on the metric space X to be proper
and connected. We will deduce this result from the analogous existence statement
for the apparently easier problem (ST2), for which the proof is by now quite standard
and makes use of the metric space versions of the Blaschke theorem on compactness
of Hausdorff topology and the Go la̧b theorem on semicontinuity of the length H1 in
the same way as in the proof of the existence of geodesics from [1]. Note however,
that the proof of the Go la̧b theorem used in the latter book, which is the only known
version of this result for arbitrary complete metric spaces, contains a flaw, which
we recover here giving the complete version of the respective proof. We will further
study the topological properties of solutions to the Steiner problem. Namely, we will
show, that without any extra assumption on the ambient space X every solution
S to the problem (ST ) having finite length H1(S) < +∞ has the following quite
natural properties (Theorems 5.1, 7.6, 7.4, 7.3):

(i) S ∪ C is compact;
(ii) S \ C has at most countably many connected components, and each of the

latter has strictly positive length;
(iii) S̄ contains no closed loops (homeomorphic images of S1);
(iv) the closure of every connected component of S is a topological tree with

endpoints on C (so that in particular it has at most countable number
of branching points), and with at most one endpoint on each connected
component of C and all the branching points having finite order (i.e. finite
number of branches leaving them);

(v) if C has a finite number of connected components, then S \ C has finitely
many connected components, the closure of each of which is a finite geodesic
embedded graph with endpoints on C, and with at most one endpoint on
each connected component of C;

(vi) for every open set U ⊂ X such that C ⊂ U the set S̃ := S \ U is a
subset of (the support of) a finite geodesic embedded graph. Moreover, for

a.e. ε > 0 one has that for U = {x : dist (x,C) < ε} the set S̃ is a finite
geodesic embedded graph (in particular, it has a finite number of connected
components and a finite number of branching points).

It is worth mentioning that such results for a generic (i.e. not necessarily finite)
compact set C are new even for the Euclidean space X := Rn (some results for a
countable C ⊂ Rn were obtained in [8]).

We also will show that problems (STi), i = 1, 2, may be all naturally reduced to
problem (ST ). Finally, we will give some applications of the results proven to the
study of locally minimal sets.

2. Notation and preliminaries

2.1. Metric spaces. The metric space X is said to be proper (or to possess the
Heine-Borel property), if every closed ball of X is compact. In particular, this
implies completeness, local compactness and σ-compactness of X.

For a set S ⊂ X we denote by S̄ its closure in X. The notation Br(x) stands for
the open ball with radius r centered at x ∈ X. By Hk we denote the k-dimensional
Hausdorff measure, and, for the finite positive Borel measure µ over X the notation
Θ∗k(µ, x) will stand for the k-dimensional upper density of µ at point x ∈ X [1].

In the sequel we will need the following general result.
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Theorem 2.1 (coarea inequality). Let S be a non empty subset of a metric space
X and let f : X → R be any 1-Lipschitz function. Then

H1(S) ≥
∫
R
H0(S ∩ f−1(t)) dt.

Proof. Let δ > 0 be fixed. From the definition of Hausdorff measure, for all ε > 0
we can find a family of sets {Bi} with diamBi ≤ δ, such that

⋃
iBi ⊃ S and

H1
δ(S) ≥

∑
i

diamBi − ε.

Define St := S ∩ f−1(t). For every t the family of sets Bi such that t ∈ f(Bi) is
a covering of St. The condition t ∈ f(Bi) is equivalent to 1f(Bi)(t) = 1, where 1E
stands for the characteristic function of the set E, so we have

H0
δ(St) ≤

∑
i

1f(Bi)(t).

Notice now that given two points {xi, yi} ⊂ Bi we have |f(xi)− f(yi)| ≤ diamBi,
hence sup f(Bi)− inf f(Bi) ≤ diamBi. We conclude∫

R
H0
δ(St) dt ≤

∑
i

∫
R

1f(Bi)(t) dt ≤
∑
i

∫ sup f(Bi)

inf f(Bi)

dt ≤
∑
i

diamBi ≤ H1
δ + ε.

Letting ε→ 0 we get

H1
δ(S) ≥

∫
R
H0
δ(St) dt

and letting δ → 0, we obtain the desired result by applying the monotone conver-
gence theorem. �

2.2. Connected spaces. We recall that a topological space Σ is called

• connected, if it contains no subset except Σ and ∅ which is both closed an
open,

• continuum, if it is connected and compact,
• metric continuum, if it is a metric space and a continuum in the topology

induced by the metric,
• locally connected, if at every point there exists a fundamental system of

open and connected neighborhoods.

A path (resp. arc) in Σ is defined as a continuous (resp. homeomorphic) image
of an interval. Namely, we call a path (resp. arc) [a, b] ⊂ Σ connecting the couple
of points {a, b} ⊂ Σ an image of some continuous (resp. continuous injective) map
γ: [0, L] ⊂ R → Σ satisfying γ(0) = a and γ(L) = b for some L ∈ R. We also say
in this case that the path (resp. arc) [a, b] ⊂ Σ starts at a and ends at b. The map
γ is called a parameterization of [a, b]. For the sake of brevity we will frequently
abuse the notation identifying the path (resp. arc) with its parameterization, i.e.
writing γ = [a, b] instead of Im γ = [a, b]. A path (resp. arc) is called Lipschitz , if
it admits Lipschitz-continuous parameterization. At last, we let (a, b) stand for the
path (resp. arc) without endpoints connecting a and b, i.e. (a, b) := [a, b] \ {a, b}.

A topological space Σ is called

• arcwise connected, if every couple of points of Σ is connected by some arc.
• locally arcwise connected, if at every point there exists a fundamental system

of open and arcwise connected neighborhoods.

It is well-known that

(i) every arcwise connected (resp. locally arcwise connected) space is connected
(resp. locally connected);

(ii) the reverse implication to the above is false;
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(iii) nevertheless, a complete locally connected space is locally arcwise connected
(Mazurkiewicz-Moore-Menger theorem II.1 from [7, § 50]);

(iv) a connected locally arcwise connected space is arcwise connected (theo-
rem I.2 from [7, § 50]);

(v) a continuum is locally connected (hence also locally arcwise connected and
arcwise connected by (iii) and (iv)), if an only if it is a path, i.e. a continuous
image of an interval (Hahn-Mazurkiewicz-Sierpiński theorem II.2 from [7,
§ 50]).

Proposition 2.2. Let Σ ⊂ X be a closed connected set having H1(Σ) < +∞. Then
Σ is compact, arcwise connected and locally arcwise connected.

Proof. By theorem 4.4.7 from [1], Σ is compact and arcwise connected (by Lipschitz
continuous arcs). We now prove that Σ is locally connected (hence locally arcwise
connected). Consider for this purpose an arbitrary x0 ∈ Σ and ρ > 0. It is enough to
show the existence of a connected neighborhood of x0 contained in B̄ρ(x0). Consider
Σρ := Σ ∩ B̄2ρ(x0) and let Σi with i ∈ I be the connected components of Σρ.
Recall that every connected component Σj is closed in Σρ and hence is compact
by theorem 4.4.7 from [1] since H1(Σj) ≤ H1(Σ) < +∞. Let Σ0 be the connected
component containing x0. Consider the family Σj with j ∈ J of such connected
components Σj which intersect the smaller ball B̄ρ(x0). Every Σj is compact and
does not contain x0 so it has positive distance from x0. If J is finite there would
exist a minimal distance ε > 0 such that Σ ∩ Bε(x0) = Σ0 ∩ Bε(x0) and hence
Σ0 would be a connected neighborhood of x0. On the other hand suppose that
J is infinite. Then we have infinitely many disjoint connected sets Σj such that
Σj 3 yj with yj ∈ Bρ(x0). We also claim that every Σj has a point in ∂B2ρ(x0).
Otherwise we would conclude that Σj ⊂ B2ρ(x0) which means that Σj is also open
in Σ. This contradicts the connectedness assumption of Σ. So for every j ∈ J we
find points yj , zj ∈ Σj such that d(xj , zj) ≥ ρ and hence H1(Σj) ≥ ρ. Since J is
infinite we would conclude that H1(Σ) = +∞ which is in contradiction with the
assumptions. �

We now introduce the following notions.

Definition 2.3. Let Σ be a connected space. Then x ∈ Σ is called noncut point of
Σ, if Σ \ {x} is connected. Otherwise, x is called cut point of Σ.

It is worth mentioning that according to Moore theorem IV.5 from [7, § 47])
every continuum has at least two noncut points.

Another relevant notion is that of an order of a point and of branching points
and endpoints.

Definition 2.4. Let Σ be a topological space. We will say that the order of the
point x ∈ Σ does not exceed n, writing

ordxΣ ≤ n,

where n is a cardinal, if for every neighbourhood V of x there is an open subset
U ⊂ V such that x ∈ U and #∂U ≤ n, # standing for cardinality of a set.

The order of the point x ∈ Σ is said to be equal n, written

ordxΣ = n,

if n is the least cardinal for which ordxΣ ≤ n.
If ordxΣ = n, with n ≥ 3, then x will be called branching point of Σ, while if

ordxΣ = 1, then x will be called endpoint of Σ.

We recall that according to the theorem V.1 from [7, § 51], if ordxΣ ≤ 1, then x
is a noncut point of Σ. In particular, every endpoint of Σ is a noncut point.
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A locally connected continuum not containing closed loops (homeomorphic im-
ages of S1) is called topological tree. It is well-known that a topological tree has at
most countable number of branching points [7, theorem VI.7,§ 51].

We will also need the following easy lemmata of more or less folkloric character.

Lemma 2.5. Let C and S be two connected subsets of a metric space X. Then
C ∪ S is connected, if and only if

C̄ ∩ S̄ ∩ (C ∪ S) 6= ∅.
In particular, if C is closed, then C ∪ S is connected, if and only if S̄ touches (i.e.
is not disjoint from) C.

Proof. Suppose that C∪S is not connected. Then there exist A,B be two relatively
open disjoint subsets of C ∪ S such that A ∪ B = C ∪ S. Since C and S are
connected, we might suppose that A ⊃ C and B ⊃ S. As a consequence A = C and
B = S which means that C and S are relatively closed in S ∪ C. In other words
S̄ ∩ (S ∪C) = S and C̄ ∩ (S ∪C) = C. Hence C̄ ∩ S̄ ∩ (C ∪S) = C ∩S = A∩B = ∅.
Hence we have proved one implication.

For the other implication suppose S ∪ C is connected. If C ∩ S 6= ∅ then

C̄ ∩ S̄ ∩ (C ∪ S) ⊃ C ∩ S 6= ∅.
Otherwise S, C is a partition of S ∪C and since the latter is connected, we known
that either C or S is not relatively closed in S∪C. Suppose that C is not relatively
closed. Then there exists x ∈ (C̄ ∩ (S ∪C)) \C. Hence x ∈ C̄ ∩ S which means, in
particular, that x ∈ C̄ ∩ S̄ ∩ (C ∪ S). �

Lemma 2.6. Let X be a metric space and Σ ⊂ X be connected. Then H1(Σ) =
H1(Σ̄).

Proof. It suffices to prove the claim for the case H1(Σ) < +∞. Let µ := H1xΣ.
One has

µ(B̄r(x)) = H1(Σ ∩ B̄r(x)) ≥ r
for all x ∈ Σ and r ≤ diam Σ/2, in view of connectedness of Σ. Since by assumption
the measure µ is finite, then the above estimate holds also for all x ∈ Σ̄. In fact, if
x ∈ Σ̄ and xk → x, then B̄r(xk) ⊂ B̄r+ε(x) for all k such that d(x, xk) < ε. Thus,

µ(B̄r+ε(x)) ≥ lim sup
k

µ(B̄r(xk)),

and letting ε→ 0+ in the above relationship, we get

µ(B̄r(x)) ≥ lim sup
k

µ(B̄r(xk)).

One has now that the upper density Θ∗1 of µ with respect to H1 satisfies

Θ∗1(µ, x) ≥ 1/2 for all x ∈ Σ̄,

which implies µ ≥ H1xΣ̄/2 by [1, theorem 2.4.1]. Therefore,

0 = µ(Σ̄ \ Σ) ≥ 1

2
H1xΣ̄(Σ̄ \ Σ) =

1

2
H1(Σ̄ \ Σ),

which concludes the proof. �

3. Generalized Go la̧b theorem

In this section we prove the generalization to metric spaces of the classical Go la̧b
theorem on lower semicontinuity of one-dimensional Hausdorff measures on con-
nected compact sets with respect to Hausdorff convergence. This claim was first
proven in [1] (note however that there is a small flaw in the respective proof which
we will recover here by using Lemma 3.2; apart from this point, our proof follows
that of [1]). Our version of this theorem contains also the generalization of the
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semicontinuity result from [3] applicable to non-connected sets, which we will need
to prove the existence result for the Steiner problem (ST ) and which is absent in
that of [1].

We will need the following auxiliary assertions.

Lemma 3.1. Let C be an arcwise connected metric space containing three points
{x, y, z} ⊂ C. Then

H1(C) ≥ 1

2
(d(x, y) + d(x, z) + d(y, z)),

where d stands for the distance in C.

Proof. Consider an injective curve γ joining x with y. Then consider an injective
curve η joining z with x. Let w be the first point of the curve η in common with γ.
We obtain

H1(C) ≥ d(x,w) + d(y, w) + d(z, w).

By the triangle inequality we have

d(x, y) ≤ d(x,w) + d(w, y)

d(x, z) ≤ d(x,w) + d(w, z)

d(y, z) ≤ d(y, w) + d(w, z),

and summing up we obtain

d(x, y) + d(x, z) + d(y, z) ≤ 2(d(x,w) + d(y, w) + d(z, w)) ≤ 2H1(C).

�

Lemma 3.2. Let X be a metric space, x0 ∈ X, r > 0, ε ∈ (0, r). Let γ : [−r +
ε, r − ε]→ X be a Lipschitz curve with γ(0) = x0 and such that

|t− s| − ε ≤ d(γ(t), γ(s)) ≤ |t− s|+ ε for all t, s ∈ [−r + ε, r − ε].

Let C be a compact subset of B̄r(x0) in X such that for every t ∈ [−r+ε, r−ε] one
has d(γ(t), C) ≤ ε and such that every connected component of C touches ∂Br(x0).
Then H1(C) ≥ 2r − 9ε.

Proof. Let C1 be a connected component of C such that d(γ(0), C1) ≤ ε. Let us
define

T1 := {t ∈ [−r + ε, r − ε] : d(γ(t), C1) ≤ ε}.

By the choice of C1 we have 0 ∈ T1. Choose s1, s3, t1, t2 such that

−s1 − ε < −s3 < −s1 ≤ 0 ≤ t1 < t2 < t1 + ε

while [−s1, t1] ⊂ T1 and −s3 6∈ T1, t2 6∈ T1.
Let now x1, y1 ∈ C1 be such that d(x1, γ(t1)) ≤ ε and d(y1, γ(−s1)) ≤ ε. Let

x2, x3 ∈ C be such that d(x2, γ(t2)) ≤ ε and d(x3, γ(−s3)) ≤ ε and let C2, C3 be
connected components of C containing x2 and x3 respectively. In the case when
t2 ≥ r − ε we could not find x2 as above, so we just take C2 := ∅. Analogously let
C3 := ∅ if s1 ≥ r − ε.

By the choice of t2 and s3 we have that x2, x3 6∈ C1 hence C1 6= C2 and C1 6= C3.
(but we might have C2 = C3). Let zi ∈ Ci ∩ ∂Br(x0) for i = 1, 2, 3.
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We have

d(x1, y1) ≥ d(γ(t1), γ(−s1))− 2ε ≥ t1 + s1 − 3ε,

d(x2, x3) ≥ d(γ(t2), γ(−s3))− 2ε ≥ t2 + s3 − 3ε ≥ t1 + s1 − 5ε,

d(x1, z1) ≥ d(γ(t1), z1)− ε
≥ d(z1, x0)− d(γ(t1), x0)− ε ≥ r − t1 − 2ε,

d(y1, z1) ≥ d(γ(−s1), z1)− ε
≥ d(z1, x0)− d(γ(−s1), x0)− ε ≥ r − s1 − 2ε,

d(x2, z2) ≥ d(γ(t2), z2)− ε
≥ d(z2, x0)− d(γ(t2), x0)− ε ≥ r − t2 − 2ε ≥ r − t1 − 3ε,

d(x3, z3) ≥ d(γ(−s3), z3)− ε
≥ d(z3, x0)− d(γ(−s3), x0)− ε ≥ r − s3 − 2ε ≥ r − s1 − 3ε,

d(x3, z2) ≥ d(γ(−s3), z2)− ε
≥ d(z2, x0)− d(γ(−s3), x0)− ε ≥ r − s3 − 2ε ≥ r − s1 − 3ε.

Suppose now that C2 ∩ C3 = ∅. We now recall that if K is connected and
{x, y} ⊂ K, then H1(K) ≥ d(x, y). Thus, applying the above estimates, we get

(1)

H1(C1) ≥ d(x1, y1) ≥ t1 + s1 − 3ε,

H1(C2) ≥ d(x2, z2) ≥ r − t1 − 3ε,

H1(C3) ≥ d(x3, z3) ≥ r − s1 − 3ε.

Note that the above inequalities hold even when C2 = ∅ or C3 = ∅. For instance,
C2 = ∅ when t2 > r − ε which implies t1 > r − 2ε, hence r − t1 − 3ε < 0, and the
case C3 = ∅ is analogous. Summing the inequalities from (1), we get

H1(C) ≥ H1(C1) + H1(C2) + H1(C3) ≥ 2r − 9ε.

In the case C2 = C3 6= ∅ we apply Lemma 3.1 getting

H1(C1) ≥ 1

2
(d(x1, y1) + d(x1, z1) + d(y1, z1)) ≥ r − 7

2
ε,

H1(C2) ≥ 1

2
(d(x2, x3) + d(x2, z2) + d(x3, z2)) ≥ r − 11

2
ε,

so that

H1(C) ≥ H1(C1) + H1(C2) ≥ 2r − 9ε,

concluding the proof. �

We may announce now the main result of this section.

Theorem 3.3 (Go la̧b). Let Cν be closed connected subsets of a complete metric
space X. Suppose moreover that the sequence Cν converges with respect to Hausdorff
metric to a closed set C ⊂ X. Then C is connected and

(2) H1(C) ≤ lim inf
ν

H1(Cν).

Moreover, if {Kν} is a sequence of closed sets converging in Hausdorff distance to
a closed set K ⊂ X, then

(3) H1(C \K) ≤ lim inf
ν

H1(Cν \Kν).

The claim (2) is the generalization of the classical Go la̧b semicontinuity theorem
which was originally formulated in the Euclidean space setting, i.e. for X = Rn.
The more general claim (3) is a generalization for metric spaces of the analogous
Euclidean space result from [3].



EXISTENCE AND REGULARITY RESULTS FOR THE STEINER PROBLEM 9

Proof. We prove at once (3), since (2) is its particular case with K = Kν = ∅.
Without loss of generality we shall suppose that L := limν H

1(Cν) exists and is
finite, and that H1(Cν) < L + 1 for all n. Since Hausdorff convergence preserves
connectedness, we know that C is connected. Also by Proposition 2.2 we have that
every Cν is compact. We are going to reduce to the case when X is compact.
Consider the set

X̃ :=
⋃
ν

Cν .

Since Xν is a Cauchy sequence with respect to Hausdorff convergence, for all ε >
0 there exists an N ∈ N such that all Cν with ν > N are contained in the ε-
neighborhood of CN . Hence

X̃ ⊂

(
N⋃
ν=1

Cν

)
∪ (CN )ε.

Since H1(CN ) < +∞ we know that CN is totally bounded and hence X̃ is totally

bounded too. Being closed X̃ is compact and contains all Cν and C. So, in the
following, we shall suppose that X is compact, otherwise we could replace X with
X̃.

Let dν := diamCν , d := diamC. We have dν → d. If d = 0 we get H1(C) = 0
and the proof is completed. Otherwise suppose that d > 0. Define the measures µν
by

µν(B) := H1(B ∩ Cν \Kν), n ∈ N
for every Borel set B ⊂ E and observe that µν is a finite Borel measure. Up to a

subsequence we can assume that µν
∗
⇀ µ for some Borel measure µ. We recall that

this implies

µ(F ) ≥ lim sup
ν

µν(F ), µ(G) ≤ lim inf
ν

µν(G)

whenever F is closed and G is open.
Now choose x ∈ C \K, r < min{d/2,dist (x,K)/2}. We have

µ(B̄r(x)) ≥ lim sup
ν

µν(B̄r(x)) = lim sup
ν

H1(Cν ∩ B̄r(x)).

In the last equality we use the fact that for ν sufficiently large r < dist (x,Kν)
because limν dist (x,Kν) = dist (x,K) > 2r and hence Kν ∩ B̄r(x) = ∅. But on the
other hand, letting xν ∈ Cν be such that xν → x as ν →∞, we get

H1(Cν ∩ B̄r(x)) ≥ dist (xν , ∂Br(x)) ≥ r − |x− xν |.

Hence lim supν H
1(Cν ∩ B̄r(x)) ≥ r and we have thus

µ(B̄r(x)) ≥ r

for every x ∈ C \K and every r sufficiently small. Hence Θ∗1(µ, x) ≥ 1
2 and by [1,

theorem 2.4.1] we obtain

H1(C \K) ≤ 2µ(X) ≤ 2 lim inf
ν

µν(X) = 2 lim inf
ν

H1(Cν) = 2L < +∞.

Now we invoke the rectifiability theorem 4.4.5 from [1] which assures that H1-a.e.
x ∈ C \K can be represented as γ(0), where γ is a Lipschitz curve, with values in
C \K defined in some open interval containing 0, and γ is metrically differentiable
at 0. By reparameterization, we can assume that |γ′|(0) = 1. We can also suppose
that γ is 1-Lipschitz and for every ε > 0 we can find r > 0 sufficiently small such
that

|t− s| − rε ≤ d(γ(t), γ(s)) ≤ |t− s| for all t, s ∈ (−r, r).
Applying Lemma 3.2 we conclude that

µν(Br(x)) = H1(Cν \K ∩Br(x)) ≥ 2r − 9rε
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and letting r → 0 we obtain θ̄(µ, x) ≥ 1 and hence

H1(C \K) ≤ µ(X) ≤ lim inf
ν

µν(X) = lim inf
ν

H1(Cν \Kν) = L,

concluding the proof. �

4. Existence of minimizers

The main result of this section is given by the following assertion.

Theorem 4.1 (existence of minimizers). If X is a proper connected metric space
and C ⊂ X is compact, then M(C) is not empty, i.e. problem (ST ) admits a
solution.

Remark 4.2. The above existence result remains valid, if X is assumed to be just
σ-compact and uniformly locally compact (i.e. such that there is a δ > 0 such that
any closed ball of radius δ is compact). In fact, by [9], in such a space one can
introduce a new distance, topologically equivalent and locally uniformly identical
to the original one, which implies that Hausdorff measures with respect to the new
distance coincides with that with respect to the original one.

Notice that the existence result does not hold in every complete metric space. In
particular, in [5, example 5.1] a complete metric space has been exhibited which does
not contain geodesics between some couple of its points (i.e. in our terminology,
the Steiner problem is not solvable even for the case when C consists of a couple of
points).

Remark 4.3. According to Lemma 4.7 which is the core construction of the existence
proof for problem (ST ), one has that problem (ST ) admit solutions whenever there
is a minimizer of H1 in the smaller class St2(C). The latter may be true even in the
case when X is not proper, for instance, it is true when X is a Hilbert space (in fact,
the problems in this case may be reduced to problems in the compact coC ⊂ X
instead of the whole space X, because the projection operator to the closed convex
set has unit norm and hence decreases Hausdorff measures).

Remark 4.4. It is important to emphasize that the above existence result does not
guarantee that a minimizer S ∈M(C) has finite length, i.e. H1(C) < +∞.

For instance, consider the set C ⊂ R2 defined by

C := {(1/k, 1/j) : k = 1, 2, . . . ,∞, j = 1, 2, . . . ,∞}
where we let 1/∞ := 0. The set C is a countable, compact subset of [0, 1]2 ⊂ R2.
For every S ∈ St(C), we claim that H1(S) = ∞. Consider the set Cν ⊂ C defined
by

Cν := {(1/k, 1/j) : k = ν, ν + 1, . . . , ν2, j = ν, ν + 1, . . . , ν2}.
If we take ρν := 1

2(ν+1)2 we easily notice that the balls Bρν (z) are pairwise disjoint

for all z ∈ Cν . Hence we have

H1(S) ≥
∑
z∈Cν

H1(S ∩Bρν (z)) ≥ (ν2 − ν)2ρν → +∞ as ν →∞.

So H1(S) = +∞ as claimed.

In the proof of the existence theorem we will use the following lemmata.

Lemma 4.5. Let S ∈ St(C) with H1(S) < +∞. If x ∈ S̄ \ C then there is a
connected component S0 of S having H1(S0) > 0 such that x ∈ S̄0.

Proof. Otherwise there is a sequence {xν} ⊂ S such that each xν belongs to a
different connected component of S, while xν → x as ν → ∞. But the closure
of every connected component of S cannot be disjoint with C (otherwise S ∪ C
would be disconnected by Lemma 2.5), and therefore, chosen a sufficiently small
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r > 0 (such that B̄r(x) ∩ C = ∅) one has that for all sufficiently large ν (such
that dist (x, xν) < r/2) the closure of every connected component of S containing
xν intersects ∂Br(x), and hence, has length exceeding r/2. By Lemma 2.6 the
length of each connected component of S equals that of its closure, and since by
assumption there are infinitely many such connected components, this would imply
H1(S) = +∞ contrary to the assumption. �

Lemma 4.6. Let S be a set such that S ∪ C is compact and connected (i.e. S ∈
St2(C)). Then if S0 is any connected component of S, we have

inf{d(x, y) : x ∈ S0, y ∈ C} = 0.

Proof. Reasoning by contradiction there would exist an ε > 0 such that the set

A := {x : d(x, S0) < ε}

would be an open set containing S0 and disjoint from C. Also, since S0 is a con-
nected component of S, there exists an open set B such that S0 = S ∩B. Then we
find that S0 = (S ∪ C) ∩ (A ∩B) which means that S0 is relatively open in S ∪ C.
Clearly S0 is also closed in S ∪ C because it is closed in S. Hence S0 would be a
connected component of S ∪C which is a contradiction, since we assumed S ∪C to
be connected. �

Lemma 4.7. If problem (ST2) is solvable, then so is problem (ST ), i.e. M(C) 6= ∅.
Moreover, if S′ is a solution to problem (ST2), then S′ ∈M(C), i.e. S′ is a solution
also to problem (ST ).

Proof. Let ` stand for the value of the minimum (which we suppose to be attained)
of H1 over the smaller class St2(C) ⊂ St(C). It is worth emphasizing that the case
` = +∞ is not excluded. We will show the existence of solutions to problem (ST ).
Let S ∈ St(C) be such that H1(S) ≤ `. We will show that S is a solution to
problem (ST ). We may suppose that H1(S) < +∞ (if no such S exists, then there
is nothing to prove, since then automatically ` = +∞).

We first observe that by Lemma 4.5 if x ∈ S̄\C then there a connected component
S0 of S having H1(S0) > 0 such that x ∈ S̄0. Denote now by {Sν} the at most
countable set of connected components of S having positive length, i.e. H1(Sν) > 0
for all ν. The above proven claim implies that

S̄ \ C ⊂
⋃
ν

S̄ν .

Hence,

(4)

H1(S̄ \ C) ≤ H1(∪ν S̄ν) ≤
∑
ν

H1(S̄ν)

=
∑
ν

H1(Sν) = H1(∪νSν) ≤ H1(S) ≤ `,

where we used the fact that H1(Sν) = H1(S̄ν) which is true by Lemma 2.6 since
H1(Sν) ≤ H1(S) < +∞. Minding that (S̄ \ C) ∪ C = S̄ ∪ C and the latter set is
compact, we have S̄ \ C ∈ St′0(C), which implies H1(S̄ \ C) ≥ ` by definition of `.
Together with the estimate (4) this gives

H1(S̄ \ C) = H1(S) = `,

and hence S solves problem (ST ), i.e. S ∈M(C) as claimed. In particular, if S is a
solution to problem (ST2), then H1(S′) = ` and hence, S′ ∈M(C), which concludes
the proof. �

Lemma 4.8. If X is a proper connected metric space, and C ⊂ X is compact, then
problem (ST2) admits a solution.
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Proof. Observe first that St2(C) 6= ∅ because X ∈ St2(C) (since X is assumed
to be connected). Let now Sν ∈ St2(C) be a minimizing sequence for the length
functional H1, and define Σν := Sν ∪ C. Assume also that H1(Sν) ≤ l for some
l < +∞ (otherwise the minimum for H1 is attained at every S ∈ St2(C) since
every set in St2(C) has infinite length). Therefore, minding that C is compact, we
may assume all Σν are included in a unique compact set Ω ⊂ X. In fact, for each
fixed ν ∈ N, every connected component of Sν has length, and hence diameter, not
exceeding l, and therefore, by Lemma 4.6, Sν belongs to the l-neighborhood of C.
Since the space of non empty closed subsets of Ω endowed by the Hausdorff metric
is a compact metric space according to the Blaschke theorem (theorem 4.4.6 of [1]),
we get that up to a subsequence (not relabeled) Σν → Σ in the sense of Hausdorff
convergence, while Σ ⊂ X is still closed and connected. The generalized Go la̧b
theorem 3.3 gives

H1(Σ \ C) ≤ lim inf
ν

H1(Σν \ C) = lim inf
ν

H1(Sν),

and hence Σ \ C solves problem (ST2) which proves the statement. �

Proof of Theorem 4.1. Combine Lemma 4.7 with Lemma 4.8. �

5. Basic topological properties

In this section we will prove the following theorem, which gives some finer topo-
logical properties of minimizers S ∈M(C).

Theorem 5.1. Let X be a metric space and let C ⊂ X be compact. If S ∈M(C),
then S̄ \ C ∈M(C), while if in addition H1(S) < +∞, then

(a) S ∪ C is compact;
(b) S \ C has at most countably many connected components, and each of the

latter has strictly positive length;
(c) S̄ contains no closed loops (homeomorphic images of S1).

The proposition below collects some even finer, though more technical, assertions
on topological structure of connected components of minimizers S ∈ M(C), which
are a by-product of the proof of Theorem 5.1.

Proposition 5.2. Let X be a metric space and let C ⊂ X be compact. If S ∈M(C)
with H1(S) < +∞ and S0 is a connected component of S, then

(c1) every x ∈ S0 \ C is a cut point of S̄0;
(c2) every x ∈ S̄0 ∩ C is an endpoint of S̄0.

We emphasize that both Theorem 5.1 and Proposition 5.2 as well as all the results
on topological structure of minimizers to the Steiner problem (ST ), in contrast with
the existence Theorem 4.1, hold in arbitrary (complete) metric spaces without any
extra requirement on the ambient space (e.g. it should not necessarily be proper).

To prove Theorem 5.1 we use some auxiliary lemmata. First we will need the
following lemma proven in [2].

Lemma 5.3. Let Σ be a locally connected metric continuum consisting of more
than one point and x ∈ Σ be a noncut point of Σ. Then there is a sequence of open
sets Dν ⊂ Σ satisfying

(i) x ∈ Dν for all ν;
(ii) Σ \Dν are connected for all ν;
(iii) diamDν ↘ 0 as ν →∞;
(iv) Dν are connected for all ν.

The easy lemmata below are used in the proof of both Theorem 5.1 and Propo-
sition 5.2.
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Lemma 5.4. Let Σ := S∪C ⊂ X be a connected set of a metric space X, and S0 be
a connected component of S. If S′0 ⊂ X is a connected set such that S̄0∩C ⊂ S̄′0∩C,
then the set

Σ′ := (Σ \ S0) ∪ S′0
is connected.

Proof. Let C0 := S̄0 ∩ C and consider an arbitrary y ∈ S′0 \ C0. We will show that
for every z ∈ Σ′ there is a connected subset σ ⊂ Σ′ such that {y, z} ⊂ σ. Clearly
it is so, if z ∈ S′0 (since also y ∈ S′0 and the latter set is connected). On the other
hand, if z 6∈ S′0, then consider a connected component Σz of Σ\S0 such that z ∈ Σz.
One has clearly Σz ∩ S̄0 6= ∅ by Lemma 2.5, while Σz ∩ (S̄0 \C) = ∅ by definition of
S0. Hence, Σz∩C0 6= ∅. Then clearly σ := Σz∪S′0 is connected, and {y, z} ⊂ σ. �

Lemma 5.5. If S ∈ M(C) with H1(S) < +∞ and S0 is one of its connected
components and x ∈ S̄0 is a noncut point of S̄0, then x ∈ C.

Proof. Notice that by Lemma 2.6 we have H1(S̄0) = H1(S0) ≤ H1(S) < +∞
hence, by Proposition 2.2 we know that S0 is arcwise connected. By Lemma 5.3, if
x ∈ S̄0 \C is a noncut point of S̄0, then there is a relatively open set D ⊂ S̄0, x ∈ D
such that D ∩ C = ∅, H1(D) > 0 and S̄0 \D is connected. Then S′0 := S̄0 \D is
closed (hence compact as a subset of a compact set S̄0), connected, and H1(S̄′0) <
H1(S̄0) = H1(S0). Consider

S′ := S′0 ∪ (S \ S0).

Clearly, one has

H1(S′) ≤ H1(S′0) + H1(S \ S0) < H1(S0) + H1(S \ S0) = H1(S)

Notice that since D∩C = ∅, we have S̄′0 ∩C = S′0 ∩C = (S̄′0 \D)∩C = S̄0 ∩C. So
we can apply Lemma 5.4 which states that ((S ∪ C) \ S0) ∪ S′0 is connected. Then
S′ ∪ C = S′0 ∪ (S \ S0) ∪ C = S′0 ∪ ((S ∪ C) \ S0) is connected.

Therefore S′ ∈ St(C) and H1(S′) < H1(S) contrary to the assumption S ∈
M(C). �

Lemma 5.6. Let Σ ⊂ X be a closed connected set satisfying H1(Σ) < ∞ which
contains a simple closed curve Γ. Then H1-a.e. point x ∈ Γ is a noncut point for Σ.

Proof. Let x ∈ Γ be a cut point for Σ. Then Σ \ {x} has at least two connected
components, one of which containing the connected set Γ \ {x}. Let Lx be a con-
nected component of Σ \ {x} such that Lx ∩ Γ = ∅. Notice that L̄x ⊂ Σ is also
connected, and since Lx is a maximal connected set in Σ \ {x} we can state that
L̄x ⊂ Lx ∪ {x}.

We claim that L̄x = Lx ∪ {x}. Otherwise we would have Lx = L̄x which means
that Lx is closed. Now notice that Σ is locally connected, by Proposition 2.2 and
hence Σ \ {x} is also locally connected. This means that Lx, which is a connected
component of a locally connected space, is relatively open in Σ \ {x} and then also
in Σ. So Lx is open and closed in Σ which is a contradiction because Σ is connected.
So the claim is proved.

As a consequence we notice that H1(Lx) > 0. In fact L̄x is connected and it is
not a single point, because Lx is not empty. Hence H1(Lx) = H1(L̄x) > 0.

Now we claim that if x, y ∈ Γ are two different cutpoints of Σ then Lx ∩Ly = ∅.
In fact suppose by contradiction that Lx∩Ly 6= ∅. Then Lx∪Ly would be connected
and disjoint from Γ. But since Lx is a maximal connected set in Σ \ {x} we would
have Lx ⊃ Lx ∪ Ly which means Lx = Ly. Then we notice that Ly ∪ {x} = L̄x is
also connected and contained in Σ \ {y} so Ly ⊃ Ly ∪ {x} i.e. x ∈ Ly. But this is a
contradiction since x ∈ Γ and Ly ∩ Γ = ∅.
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Hence for every noncut point x ∈ Γ we are able to find disjoint sets Lx with
H1(Lx) > 0. Since by assumption we have H1(Σ) < +∞ then the set of noncut
points of Σ in Γ is at most countable. �

Lemma 5.7. Let S ∈ St(C) with H1(S) < +∞. Then S ∪ C is precompact.

Proof. Consider an arbitrary sequence {xν} ⊂ C ∪ S. We have to show that it
admits a convergent subsequence. This is trivial if

(i) either it contains an (infinite) subsequence belonging to C (since C is com-
pact by assumption), or

(ii) it contains an (infinite) subsequence belonging to some connected compo-
nent S0 of S (since H1(S0) ≤ H1(S) < +∞ and thus H1(S̄0) = H1(S) <
+∞ by Lemma 2.6, which implies that S̄0 is compact, hence S0 is precom-
pact).

Consider the remaining case, namely when for a subsequence of ν (not relabeled)
one has xν ∈ Sν \ C, where Sν is some connected component of S having strictly
positive length, and all Sν are different. But then since∑

ν

H1(Sν) = H1(∪Sν) ≤ H1(S) < +∞,

one has H1(Sν)→ 0 as ν → +∞, and thus H1(S̄ν)→ 0 because H1(S̄ν) = H1(Sν)
by Lemma 2.6. Let zν ∈ S̄ν∩C (such a point exists in view of Lemma 2.5). Minding
that H1(S̄ν) ≥ d(xν , zν), we get d(xν , zν) → 0 as ν → +∞, and it suffices now to
extract a convergent subsequence of {zν} ⊂ C to conclude the proof. �

Proof of Theorem 5.1. Let S ∈ M(C) with H1(S) < +∞. We will prove compact-
ness of S ∪ C by showing that

(5) S̄ ⊂ S ∪ C.

In fact, the latter inclusion implies that S∪C is closed, hence compact by Lemma 5.7.
To prove (5), suppose the contrary, i.e. the existence of an x ∈ S̄, with x 6∈ S and

x 6∈ C. Then minding Lemma 4.5, we conclude that there is a connected component
S0 of S with H1(S0) > 0 satisfying x ∈ S̄0. Then x is a noncut point of S̄0. In fact,
otherwise if S0 \ {x} were not connected, there would exist y ∈ S̄0 belonging to a
connected component of S̄0\{x} not containing S0. Note that by Lemma 2.6 one has
H1(S̄0) = H1(S0), hence in particular H1(S̄0) ≤ H1(S) < +∞, and therefore S̄0 is
arcwise connected by Proposition 2.2. Consider then any arc σ ⊂ S̄0 connecting y
to x. We have that σ∩S0 = ∅ (otherwise y would have been connected to a point of
S0 by an arc not containing x contrary to the assumption on y), hence σ ⊂ S̄0 \S0.
But H1(σ) > 0 which contradicts the equality H1(S̄0) = H1(S0) thus concluding
the proof of the fact that x is a noncut point of S̄0. We have now a contradiction
with Lemma 5.5, which shows the validity of (5), and hence concludes the proof of
compactness of S ∪ C which is statement (a) of the theorem.

To prove statement (b) note now that the closure of every connected component
of S \C must touch C (otherwise S∪C would be disconnected by Lemma 2.5), and
hence is not reduced to a point, so that in particular it must have strictly positive
length. Therefore, there are only a countable number of such components.

For statement (c) suppose that Γ is a closed loop in S̄. Then either Γ ⊂ C or
H1(Γ \C) > 0. In the first case we get a contradiction because S̄ \Γ ∈ St(C) while
H1(S̄ \ Γ) < H1(S̄) = H1(S). In the case H1(Γ \ C) > 0 by Lemma 5.6, there is
a noncut point z ∈ Γ \C of some connected component of S̄, in contradiction with
Lemma 5.5, according to which one should have z ∈ C.

Finally, we show that S ∈ M(C) implies S̄ \ C ∈ M(C). In fact, in this case
(S̄ \ C) = S̄ ∪ C = S ∪ C is connected since so is S ∪ C. Hence it enough to prove
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H1(S̄ \ C) ≤ H1(S). Assuming H1(S) < +∞ (otherwise the assertion is trivial),
we have by claim (a) that S̄ ∪ C = S ∪ C, hence

S̄ \ C = (S̄ ∪ C) \ C = (S ∪ C) \ C = S \ C,

which gives the desired statement. �

To prove Proposition 5.2 we will need in addition the following lemmata which
will be also employed in the sequel.

Lemma 5.8. If S ∈M(C) and H1(S) < +∞, then for every connected component
S0 of S \ C one has S0 ∈ M(C0), where C0 stands for the union of connected
components of C touching S̄0.

Proof. Suppose the contrary, i.e. that there is an S′0 ∈ St(C0) such that H1(S′0) <
H1(S0). Then for S′ := (S \S0)∪S′0 one clearly has H1(S′) < H1(S). On the other
hand,

S′ ∪ C =
(

(S \ S0) ∪ (S′0 ∪ C0)
)
∪ C

and hence is connected by Lemma 5.4 (applied with the connected set S′0 ∪ C0

instead of S′0), contrary to the optimality of S. �

Lemma 5.9. If S ∈M(C), S is connected, H1(S) < +∞, S∩C = ∅ and x ∈ S̄∩C,
then x is a noncut point of S̄.

Proof. Suppose the contrary, i.e. that x ∈ S̄∩C is a cut point and consider a z ∈ S,
z 6= x. Combining Lemma 2.6 with the assumptions we get H1(S̄) = H1(S) < +∞,
and hence in particular S̄ is arcwise connected, and so is S (because S = S̄ \ C
and hence is relatively open in S̄). For every y ∈ S̄ \ C, since S̄ \ C = S by
Theorem 5.1(a), there is an arc connecting y to z in S (hence, such a y belongs to
the same connected component of S̄ \{x} as z). Therefore, we have that there is an
y ∈ S̄ ∩ C such that every arc [y, z] connecting y to z in S̄ passes through x. But
then for a subarc [y, x] ⊂ [y, z] one has [y, x] ⊂ C, since otherwise, if there would be
a point u ∈ (y, x), u 6∈ C, then connecting u by some arc [u, z] ⊂ S to z, we would
get that the arc [y, u] ◦ [u, z] connects y to z without passing through x, contrary
to the assumption. Letting now S′ := S̄ \ [y, x], we get S′ ∪C = S ∪C and hence is
connected, while H1(S′) < H1(S̄) = H1(S) contrary to the optimality of S. This
concludes the proof. �

Proof of Proposition 5.2. It is obvious that (c1) follows from Lemma 5.5. As for
(c2), let C0 stand for the union of connected components of C touching S̄0. By
Lemma 5.8 one has S0 ∈ M(C0), and hence every x ∈ S̄0 ∩ C = S̄0 ∩ C0 is a cut
point of S̄0 by Lemma 5.9 applied with S0 and C0, hence is an endpoint of S̄0, since
S̄0 may not have closed loops by Theorem 5.1(c). �

6. Equivalence of different problem settings

We discuss now some of the consequences and by-products of Theorem 5.1 re-
garding the relationships between problem (ST ) and problems (STi), i = 1, 2. First
we note that problems (ST ) and (ST2) are in fact equivalent in the following sense.

Proposition 6.1. If S solves problem (ST2), then S ∈ M(C), i.e. S solves prob-
lem (ST ). Conversely, every solution S ∈ M(C) to problem (ST ) solves prob-
lem (ST2). In particular, problems (ST2) and (ST ) are either both solvable or both
not solvable, while in the former case

(6) min{H1(S′) : S ∈ St(C)} = min{H1(S′) : S′ ∈ St2(C)}.

Proof. The first claim is nothing else but Lemma 4.7, while the second one follows
from Theorem 5.1. �
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Consider now problem (ST1). Clearly, there is plenty of situations when it has
no solutions of finite length, while problem (ST ) has such solutions (consider, for
instance, the case of C being the union of two disjoint balls in Rn). Nevertheless
the following equivalence result holds.

Proposition 6.2. Problems (ST ) and (ST1) are equivalent in the following sense.

(i) For every solution S to problem (ST ) the set S ∪ C solves (ST1);
(ii) if H1(C) < +∞, then for every solution Σ to problem (ST1) the set Σ \ C

solves (ST ).

In particular, for every solution Σ to problem (ST1) its closure Σ̄ also solves prob-
lem (ST1), while if H1(Σ) < +∞, then

(a′) Σ is compact,
(b′) Σ \ C has at most countably many connected components, and each of the

latter has strictly positive length,
(c′) Σ \ C contains no closed loops (homeomorphic images of S1).

Proof. Let S ∈ St(C) solve problem (ST ). We show that Σ := S ∪ C solves (ST1).
In fact, suppose the contrary, i.e. the existence of a connected Σ′ ⊂ X such that
C ⊂ Σ′ and H1(Σ′) < H1(Σ). Since H1(Σ′) < +∞, one has H1(C) < +∞.
Therefore,

H1(Σ′ \ C) = H1(Σ′)−H1(C) < H1(Σ)−H1(C) = H1(S \ C) ≤ H1(S),

which contradicts the optimality of S for problem (ST ), and thus shows the claim (i).
Symmetrically, let H1(C) < +∞, and assume that Σ be a solution to prob-

lem (ST1). To show that Σ \ C solves problem (ST ), we suppose the contrary, i.e.
the existence of an S ⊂ X such that S ∪ C is connected and H1(S) < H1(Σ \ C).
Then

H1(S ∪ C) ≤ H1(S) + H1(C) < H1(Σ \ C) + H1(C) = H1(Σ),

contrary to the optimality of Σ for problem (ST ). This shows (ii).
Claims (a′), (b′), (c′) follow by combining Theorem 5.1 with the above claims (i)

and (ii). �

7. Regularity of minimizers

The aim of this section is to prove that for every minimizer Σ, the set Σ \ C is
locally a finite embedded geodesic graph, as explained by the following definition.

Definition 7.1 (embedded graph). Let Γ = (V,A) be an abstract graph. The
elements of V are the vertices of Γ while A ⊂ V × V identifies the arcs of Γ. An
embedding of Γ into a metric space X is a couple of functions (f, g) with f : A ×
[0, 1]→ X and g : V → X such that

(1) for each a ∈ A the curve f(a, ·) : [0, 1]→ X is continuous;
(2) f((v0, v1), 0) = g(v0), f((v0, v1), 1) = g(v1);
(3) g is injective;
(4) given any a, a′ ∈ A, t, t′ ∈ (0, 1) if t 6= t′ or a 6= a′ then f(a, t) 6= f(a′, t′)

(i.e. f is injective if restricted to A× (0, 1));

The couple (Γ, (f, g)) is called an embedded graph.
We say that the the embedded graph and the embedding is Lipschitz (resp.

geodesic) if for every a ∈ A the curve t 7→ f(a, t) is a Lipschitz curve (resp. a
geodesic) in X.

We say that the embedded graph is finite/enumerable, if V is finite/enumerable.

The support of the embedded graph (Γ, (f, g)) is the set [Γ] := f([0, 1] × A). If
there is no confusion, we will always identify the graph with its support.
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We will call each g(v) for v ∈ V a vertex of the graph, and f((u, v), ·) an arc
connecting vertices g(u) with g(v) for (u, v) ∈ A. Clearly the definition asserts that
the arcs of an embedded graph do not intersect except at the vertices.

Theorem 7.2 (regularity for finite connections). If C is finite, then every mini-
mizer Σ ∈M1(C) having H1(S) < +∞, is a finite geodesic embedded graph.

In particular, if X is a Riemannian manifold, every vertex of the graph is either
a point of C or a triple joint.

Proof. Let Σ ∈ M1(C). If C has only one element, the result is trivial, so suppose
that C has at least two elements. In this case Σ is not finite and hence Σ \ C 6= ∅.

Fix a point x0 ∈ Σ \ C and let C := {c1, . . . , cN}. Let Σ0 := {x0}. Then define
the compact sets Σ1, . . . ,ΣN and the continuous curves θ1, . . . , θN : [0, 1] → X as
follows. Recall that since H1(Σ) < +∞, then Σ is arcwise connected. We set the
curve θk to be the shortest arc in Σ joining ck with a point xk ∈ Σk−1 (such an arc
exists since Σ is compact by Proposition 6.2(a′)). Then define Σk := Σk−1 ∪ θk.
Every curve θk is injective and intersects the curves θj with j < k only in the point
xk. Thus we have

H1(ΣN ) =

N∑
k=1

H1(θk) ≤ H1(Σ).

On the other hand ΣN is compact, connected and contains C hence, by the minimal-
ity of Σ we get H1(ΣN ) ≥ H1(Σ). Therefore we conclude that H1(Σ) = H1(ΣN )
and hence Σ = ΣN .

For k fixed there might be points xj with j > k which lie on θk. By possibly
splitting θk into pieces θ1

k, . . . , θ
nk
k , we end up with a finite collection of injective

curves which have pairwise disjoint interiors. Hence we have found an embedded
graph with vertices on the set C ∪ {x0, x1, . . . , xN−1}. �

We have then the following results.

Theorem 7.3 (pruning). Let S ∈ M(C) and H1(S) < +∞. Then for L1-a.e.
ε > 0 one has that for Uε = {x ∈ X : dist (x,C) < ε} the set Sε := S \ U is a
finite geodesic embedded graph (in particular, it has a finite number of connected
components and a finite number of branching points). Moreover, for every open

set U ⊂ X such that C ⊂ U the set S̃ := S \ U is a subset of (the support of) a

finite geodesic embedded graph, while for each connected component S̃0 of S̃ one has
S̃0 ∈M1(S̃0 ∩ ∂U).

Proof. The proof will be achieved in several steps.
Step 1. For every ε > 0 consider the open sets

Uε := {x ∈ X : dist (x,C) < ε},
We claim that for L1-a.e. ε > 0 the set Cε := S ∩ ∂Uε has finitely many points.
This follows from the general coarea estimate of Lemma 2.1 (applied with f(x) :=
dist (x,C)), namely,∫ +∞

0

H0 (S ∩ {x ∈ X : dist (x,C) = t}) dt ≤ H1(S)

once we recall that H0 is just the counting measure, i.e. the cardinality of the set
and that

∂Ut = {x ∈ X : dist (x,C) = t}.
Step 2. We will prove that for L1-a.e. ε > 0, the set Sε := S \ Uε has finitely

many connected components. To this aim we may suppose that Cε has finitely
many points. Let S0

ε be a connected component of Sε. Define

C0
ε := S0

ε ∩ ∂Uε = S0
ε ∩ Cε.
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Then C0
ε 6= ∅ for all sufficiently small ε > 0, unless C is connected (in which case

one has S \ C = ∅ and hence there is nothing to prove). So to every connected
component of Sε we can associate the finite set C0

ε . These sets are all disjoint
subsets of Cε because the connected components are disjoint. Since Cε is finite we
conclude that also the number of connected components of Sε is finite.

Step 3. We prove now that for an arbitrary open set U ⊂ X such that C ⊂ U ,
every connected component S̃0 of the set S̃ := S \ U satisfies S̃0 ∈ M1(S̃0 ∩ ∂U).

Clearly S̃0 ∈ St1(S̃0 ∩ ∂U) by construction, and H1(S̃0) ≤ H1(S) < +∞. Consider

an arbitrary S̃′ ∈ St1(S̃0 ∩ ∂U) and define

S′ := (S \ S̃0) ∪ S̃′.

Obviously, if we suppose by contradiction that H1(S̃′) < H1(S̃0) then also H1(S′) <

H1(S). Further, clearly there is a connected component S0 of S such that S̃0 ⊂ S0,

and hence we have S′ = (S \S0)∪ ((S0 \ S̃0)∪ S̃′), while (S0 \ S̃0)∪ S̃′ is connected.
Hence by Lemma 5.4 the set S′ is connected, which contradicts the optimality of S
and proves the claim.

Step 4. Now we apply the result of Step 3 to the case U = Uε. Then, with the
notation of Step 1, we have that for L1-a.e. ε > 0, for every connected component
S0
ε of Sε we have S0

ε ∈M1(C0
ε ) where C0

ε := S0
ε ∩ ∂Uε. Hence by Theorem 7.2, the

set S0
ε is a finite geodesic embedded graph. Since for every open U ⊂ X such that

C ⊂ U there is a sufficiently small ε > 0 such that Uε ⊂ U , then we have shown
that every connected component of the set S̃ := S∩Ū is a subset of a finite geodesic
embedded graph, which concludes the proof. �

In the case when the set C has finitely many connected components we can say
more.

Theorem 7.4. If S ∈ M(C) and H1(S) < +∞ with the set C having finitely
many connected components, then S \ C has finitely many connected components,
the closure of each of which is a finite geodesic embedded graph with endpoints on
C, and with at most one endpoint on each connected component of C.

Proof. Let {Ci}ki=1 be connected components of C and consider an ε > 0 such that
the sets

V iε := {x ∈ X : dist (x,Ci) < ε}
be pairwise disjoint. From Lemma 7.5 below we conclude that no connected com-
ponent of S \C is entirely contained in some V iε . But since by Theorem 7.3 the set
S \

⋃
i V

i
ε has only finitely many connected components, while S \

⋃
i V

i
ε ⊂ S \ C,

then S \ C has only a finite number of connected components.
Note that by Lemma 5.8 for every connected component S0 of S \ C one has

S0 ∈M(C0), where C0 stands for the union of connected components of C touching
S̄0. Then from Lemma 7.7 we get that S̄0 touches each connected component of C0

in exactly one point, while by Proposition 5.2 the finite set C ′0 := C0 ∩ S̄0 is the set
of all endpoints of S̄0. Finally, it remains to observe that S̄0 ∈M(C ′0) and refer to
Theorem 7.2. �

Lemma 7.5. If S ∈M(C) and H1(S) < +∞, then for every connected component
S0 of S \C one has that S̄0 touches at least two different connected components of
C.

Proof. Suppose the contrary, i.e. that for some connected component S0 of S \ C
one has that S̄0 touches just a single connected component C0 of C. Let then
S′ := S \ (S̄0 \ C). Then S′ ∪ C is connected by Lemma 5.4 (applied with C0 in
place of S′0) since

S′ ∪ C =
(

(S \ S0) ∪ C0

)
∪ C.
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On the other hand, since clearly H1(S0) = H1(S̄0) > 0, then H1(S′) < H1(S),
contrary to the optimality of S. �

We can prove also the following general result.

Theorem 7.6. If S ∈M(C) and H1(S) < +∞, then the closure of every connected
component of S is a topological tree with endpoints on C, and with at most one
endpoint on each connected component of C. Each branching point of this tree has
finite order and the number of branching points is at most countable.

Proof. The closure S̄0 of every connected component S0 of S is a locally connected
continuum by Proposition 2.2. The fact that it is a topological tree follows then from
Theorem 5.1(c). Its endpoints belong to C by Proposition 5.2(c2) and there is at
most one endpoint on each connected component of C by Lemma 7.7 below. Mind
that every topological tree has at most countable number of branching points [7,
theorem VI.7,§ 51]. Further, every branching point x of S̄0 must belong to X \ C
by Proposition 5.2(c1), hence to X \ Cε for all sufficiently small ε > 0 (depending
of course on x. Minding that S̄0 \ Cε is a finite geodesic embedded graph for an
appropriate ε > 0 by Theorem 7.3, we have ordS̄0

x < +∞. �

Lemma 7.7. Let S ∈ M(C) be connected, S ∩ C = ∅, and H1(S) < +∞. Then
the set S̄ ∩ C0 is a singleton for every connected component C0 of C.

Proof. Suppose the contrary, i.e. that S̄ ∩C0 contains at least two points, {x, y} ⊂
S̄ ∩ C0. Since S̄ is a topological tree by Theorem 5.1(c), there is a unique arc

[x, y] ⊂ S̄. Clearly H1(S̄ ∩ C) = 0, since otherwise for S̃ := S̄ \ C one would have

H1(S̃) = H1(S̄)−H1(S̄ ∩ C) < H1(S̄) = H1(S)

(minding Lemma 2.6 in the last equality), which would contradict the optimality of

S since S̃ ∈ St(C). Therefore, H1-a.e. point of [x, y] is outside of C. Consider then
an open U ⊂ X with C ⊂ U such that H1([x, y] \ U) > 0. Since every connected
component of [x, y] \ U belongs to some connected component of S̄ \ U which, by
Theorem 7.2 is a finite graph, then there is a z ∈ [x, y]\U such that ordS̄z = 2. This
means in particular that there exists an open V ⊂ X such that z ∈ V , V̄ ∩ C = ∅
and #(∂V ∩S̄) = 2. Therefore there exists an x′ ∈ ∂V ∩S̄ such that [x, x′] ⊂ [x, y] is
outside of V , and, symmetrically, an y′ ∈ ∂V ∩ S̄ such that [y′, y] ⊂ [x, y] is outside
of V . We prove now that for S′ := S \ V one has that S′ ∪ C is connected. This
is enough to arrive at a contradiction since H1(S′) < H1(S) against the optimality
of S.

Therefore, it remains to prove that S′ ∪ C is connected, which will be achieved
by Lemma 5.4 applied with S0 := S and S′0 := (S \V )∪C0 once we show that S′0 is
connected. Proving the latter claim amounts to showing that for every u ∈ S′0 there
is a connected set σ ⊂ S′0 containing both x and u. This is clearly the case when
u ∈ C0 (then just take σ := C0). Otherwise, if u ∈ S \ V , then consider the arc
[u, x] ⊂ S̄. If [u, x]∩V = ∅, then we may just take σ := [u, x], while if [u, x]∩V 6= ∅,
then [u, y′] ∩ V = ∅ and hence we take σ := ([u, y′] ◦ [y′, y]) ∪ C0. �

Example 7.8. It is worth emphasizing that Theorem 7.6 does not assert that every
connected component of C is touched by the closure of some connected component
of S. In fact, the latter assertion is, generally speaking, false. Consider for instance
X = R, C ⊂ [0, 1] be the Cantor set. Then a set S is optimal for problem (ST ), if
and only if

[0, 1] \ C ⊂ S ⊂ [0, 1]

In particular, S := [0, 1] \ C ∈ M(C). This set is open and hence is a countable
union of intervals (which are hence connected components of S). Therefore, the
closures of connected components of S touch only a countable number of connected
components of C (recall that the latter form an uncountable set since C is totally
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Figure 2. A locally minimal network.

disconnected). In other words, for a more than countable number of connected
components of C it is true that they are not touched by the closures of any single
connected component of S (rather, for each such component C0 of C there is a
sequence of components of S getting arbitrarily close to C0).

Corollary 7.9. If S ∈M(C), then the closure of every connected component of S
has at most countable number of branching points.

Proof. Since H1(S∩C) = 0, one has that the connected components of S belonging
to C are singletons for which the statement being proven is automatically valid.
Thus one has to consider only such connected components S0 of S that S0 \C 6= ∅.
By Theorem 7.6, one has that S̄0 is a topological tree and hence it has at most
countable number of branching points, and it remains to observe that the set of
such connected components is at most countable by Theorem 5.1(b) (equivalently,
one may have referred to Theorem 7.3). �

8. A remark on local minima

In this section we study the following concept.

Definition 8.1. Let X be a metric space. A set Σ ⊂ X is called locally minimal
network, if for every x ∈ X there is an open U ⊂ X such that x ∈ U , Σ ∩ ∂U 6= ∅
and

Σ ∩ Ū ∈M(Σ ∩ U ∩ ∂U).

In Figure 2 we present an example of a locally minimal network in the plane.
Notice that such sets can be unbounded and may have loops.

We can immediately list now some of the basic properties of locally minimal
networks. In fact, every locally minimal network is

• locally connected (by definition),
• closed (in view of Theorem 5.1(a)).

However, the most important property of locally minimal networks is the follow-
ing.

Theorem 8.2. Let X be a complete metric space. Every locally minimal network
Σ ⊂ X is locally a finite geodesic graph, in the sense that for every compact set
K ⊂ X there is a closed set S ⊃ K such that Σ ∩ S is the (support of a) finite
geodesic embedded graph. In particular, Σ ∩ S has a finite number of connected
components and a finite number of branching points (hence also Σ ∩K has a finite
number of branching points).

Proof. Let K̃ := K ∩ Σ. The set K̃ is compact since Σ is closed. Now, for every
x ∈ K̃ choose an open U ⊂ X such that x ∈ U , Σ ∩ ∂U 6= ∅ and

Σ ∩ Ū ∈M(Σ ∩ U ∩ ∂U).
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By Theorem 7.3 combined with the coarea inequality (Theorem 2.1) there is an
open V ⊂ U with x ∈ V , such that #(Σ ∩ ∂V ) < +∞ and Σ ∩ V̄ is a finite graph
(it is enough to take V := {y ∈ U : dist (y,Σ ∩ ∂U) > ε} for a sufficiently small

ε > 0). By compactness the set K̃ may be covered by a finite family of the latter

sets {Vi}li=1. Let S̃ :=
⋃
i V̄i. We show that Σ ∩ S̃ is the support of some finite

geodesic embedded graph. For this purpose we assume without loss of generality
that for all i = 1, . . . , l and all j = 1, . . . , l all the points in Σ ∩ V̄i ∩ ∂Vj (there
is only a finite number of them by construction) are vertices of a finite geodesic
embedded graph with support Σ ∩ V̄i (if it is not so, just add the as new vertices
and split the respective arcs accordingly, so that the support of the graph will not
change). Let us prove the claim by induction. In fact, Σ ∩ V̄1 is the support of a
finite geodesic embedded graph. Suppose that Σk := Σ ∩ (V̄1 ∪ . . . ∪ V̄k) is so for
some k < l. Notice that every arc σ of the graph Σ∩ V̄k+1 is either an arc of Σk or
may touch Σk only at the vertices of the latter (since every such arc by construction
meets every ∂Vi only at the vertex). Hence by adding to Σk all the arcs σ of the
graph Σ∩ V̄k+1 which do not belong to Σk, we get a finite graph with support Σk+1.

Thus Σ ∩ S̃ = Σk+1 is the support of a finite geodesic embedded graph as claimed.
To conclude the proof it suffices to take as a set S any closed S ⊃ K satisfying

S ∩ Σ = S̃ ∩ Σ (e.g. one can take S := K ∪ S̃). �
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