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SUMMARY 

A wide range of human pathologies arises from the failure of a specific peptide or 

protein to adopt, or remain in, its native functional conformational state. These 

pathological conditions are generally referred to as protein misfolding diseases and 

range from neurodegenerative disorders to systemic amyloidoses. The largest group of 

misfolding diseases is associated with the conversion of specific peptides or proteins 

from their soluble functional states into insoluble highly organized fibrillar aggregates 

often called amyloid fibrils. It is increasingly evident that the oligomeric assemblies, 

kinetic intermediates in fibrillization process, are the primary pathogenic species in 

many protein deposition diseases. It has recently been found that prefibrillar aggregates 

from proteins not involved in amyloid diseases can impair cell viability when added to 

cultured cell media. It follows that the cross-β fold is not only the structural feature 

common to all amyloid aggregates, but is also the structural determinant of cytotoxicity 

of any amyloid aggregate. These data have led to propose that the prefibrillar assemblies 

share basic structural features that, at least in most cases, seem to underlie common 

biochemical mechanisms of cytotoxicity. The toxicity of these early oligomers appears 

to result from an intrinsic ability to impair fundamental cellular processes by interacting 

with cellular membranes and disassembling the lipid bilayer. The resulting impairment 

of membrane permeability would lead to an imbalance of the intracellular redox status 

and ion levels, together with other modifications such as mitochondria injury and lipid 

peroxidation. The N-terminal domain of the prokaryotic hydrogenase maturation factor 

(HypF-N) is a valuable model system for investigating the structural basis of the cellular 

impairment caused by misfolded protein oligomers. In fact, it can rapidly be converted 

into stable oligomers under conditions that promote its unfolding into partially folded 

species and can generate a cascade of events, resulting in cytoxicity and death, when 

added to cells.  

Alzheimer’s disease (AD) is the most common senile neurodegenerative disease 

characterized by progressive dementia, extracellular amyloid plaques and intracellular 

neurofibrillary tangles. The amyloid hypothesis postulates that Aβ peptide, the major 

component of senile plaques, may play a causative role in the development and 

progression of AD. Aβ peptides derived from the proteolytic cleavage of the amyloid 
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precursor protein (APP) carried out by β- and γ-secretase in the amyloidogenic pathway, 

and prefibrillar Aβ oligomers, rather than mature fibrils, have been indicated as the 

main responsible of cytotoxicity and synapse failure.  

Among the mechanisms involved in Aβ-mediated neurotoxicity, oxidative stress has 

largely been implicated as a major cause of neurotoxicity in AD and it has been 

established a strong link between lipid peroxidation and amyloid plaques within the AD 

brain. Moreover, there is a rising consensus on major role of membranes as initial 

triggers of the biochemical modifications culminating with neuronal death. In fact, Aβ 

oligomers can readily insert into plasma membrane and compromise its integrity, 

resulting in a prompt impairment of fundamental cellular processes by causing oxidative 

stress and increasing free Ca2+ that eventually lead to apoptotic or necrotic cell death. 

Considerable attention has been focused on the possible association between 

cholesterol metabolism in the central nervous system (CNS) and AD pathogenesis. 

Clinical evidence suggests that reducing circulating and brain cholesterol protects 

against AD by reducing Aβ production and secretion, however a growing body of 

evidence implicates low membrane cholesterol in the pathogenesis of AD. The content 

of membrane cholesterol can modulate Aβ production, aggregation and clearance in 

various ways, particularly by affecting the stability of lipid rafts, or detergent resistant 

membrane domains (DRMs), which are discrete cholesterol-rich microdomains of the 

cell membrane involved in a wide range of biological processes, such as cellular 

trafficking and signalling events.  

Recently, lipid rafts have been proposed to function as platforms where neurotoxic 

oligomers of proteins, including the Aβ peptides are assembled. Remarkably, increasing 

evidence supports the idea that the initial events of Aβ oligomerization and cytotoxicity 

in AD involve the interaction of amyloid Aβ-derived diffusible ligands (ADDLs) with 

the cell membrane. Increasing evidence now shows that Aβ can tightly associate with 

GM1 ganglioside (a component of lipid rafts), and it was originally postulated that this 

may act as a seed for its accumulation and aggregation. These findings, together with 

the presence, in the raft domains, of ligand-gated calcium channels (the AMPA and 

NMDA glutamate receptors) involved in Ca2+ influx into neuronal synaptic ends and in 

Ca2+ permeabilization of amyloid-exposed cells has implicated lipid rafts as likely 

primary interaction sites for ADDLs.  
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CNS is physiological protected from oxidative damage by antioxidant molecules. 

Glutathione (GSH) is one of the most abundant intracellular non-protein thiols in the 

CNS, where it plays a major antioxidant role within both neurons and non-neuronal 

cells. Some brain regions of AD patients show a decrease in free radical defences or an 

increase in free radical formation, or both. Aβ can fragmentate and generate free radical 

peptides with potent lipoperoxidizing effects on the synaptosomal membranes in the 

neocortex. Indeed, cells experiencing amyloid toxicity usually exhibit impaired 

viability, oxidative stress, and mitochondrial dysfunction. Reactive oxygen species 

(ROS) and peroxynitrite accumulation result in chemical modification of cell 

components including lipids, proteins, and nucleic acids. It has therefore been proposed 

that lipid peroxidation and the weakening of cell antioxidant defenses may contribute to 

AD pathogenesis. In particular, GSH metabolism is altered and its levels are decreased 

in affected brain regions and peripheral cells from AD patients and in experimental 

models of AD. The alteration of GSH homeostasis impairs neuronal viability, leaving 

neurons vulnerable to oxidative stress injury. In the past decade, interest in the 

protective effects of various antioxidants aimed at increasing intracellular GSH content 

has been growing. Finally, much experimental evidence suggests a possible protective 

role of unsaturated fatty acids in age-related diseases. Indeed, it has been found a 

reduction in the risk of cognitive impairment in population-based samples with a high 

intake of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA). 

Taking into account these observations, the aim of the present study is to get clues 

into the molecular basis of amyloid cytotoxicity with particular interest in the 

interaction of different types of oligomers, related or not with diseases, with cell 

membrane (or its subfractions, as lipid rafts) and the resulting cascade of events, 

culminating in cellular dysfunction and death. We also focused our attention to the role 

of membrane cholesterol as a possible modulator of the interaction between amyloid 

aggregates and the plasma membrane of exposed cells. Finally, considering the 

importance of developing new antioxidant compounds and the relevance of their 

application in the treatment of neurodegenerative diseases, we aimed to synthesize new 

S-acylglutathione (acyl-SG) derivatives, and to test their protective effect on cells 

experiencing amyloid aggregate oxidative insult.  
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The present studies provide evidence that:  

I) Two types of oligomers formed by the HypF-N protein, both possessing a 

hydrophobic core, showed a different degree of flexibility of the exposed hydrophobic 

surfaces, which is essential to determine the different ability of aggregates to exert a 

toxic function. In particular, only the oligomers exposing hydrophobic surface, and 

endowed with sufficient structural plasticity, are able to penetrate the plasma membrane 

of human SH-SY5Y neuroblastoma cells and to increase cytosolic Ca2+ levels, 

intracellular ROS production and lipid peroxidation, resulting in the activation of the 

apoptotic pathway. In contrast, cellular stress markers and viability were unaffected in 

culture and neuronal cells exposed to HypF-N oligomers with a higher degree of 

packing and lower structural flexibility. Our results support the rising consensus on the 

role of plasma membranes as primary targets of toxic protein oligomers, suggesting that 

the ability to form amyloid-like structures is generic to polypeptide chains, whether or 

not such species are pathogenic will depend on their structural features, notably the 

extent to which hydrophobic residues are flexible and exposed on their surfaces within 

the environment of a living organism.  

II)  Cell resistance to amyloid toxicity is strictly related to plasma membrane 

cholesterol content in SH-SY5Y cells and in Familial Alzheimer’s Disease (FAD) 

fibroblasts. In particular, in our model cells, membrane cholesterol modulation was 

achieved by supplementing the cell culture media with water soluble cholesterol (PEG-

chol or Chol) to increase the levels of membrane cholesterol; on the other hand, 

cholesterol levels were diminished by using methyl-β-cyclodextrin (β-CD) or 

mevastatin. Under these conditions, membrane cholesterol enrichment readily prevent 

the interaction of Aβ42 oligomers with the cell membrane, thus reducing cell damage 

and oxidative stress. Therefore, membrane cholesterol enrichment significantly 

decreases intracellular ROS production and membrane lipoperoxidation with respect to 

cholesterol-depleted cells. Finally, the higher resistance to amyloid-induced oxidative 

stress in cholesterol-enriched cells matched an improved cell viability. These results 

identify membrane cholesterol as being key to Aβ42 oligomer accumulation at the cell 

surfaces and to the following Aβ42-induced cell dysfunction and death in AD neurons.  

III) Lipid rafts/DRMs are chronic targets of Aβ-induced lipid peroxidation in SH-

SY5Y human neuroblastoma cells overexpressing amyloid precursor protein APPwt and 
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APPV717G genes and in fibroblasts bearing the APPV717I gene mutation. Therefore, 

Aβ-oxidized rafts recruit more ADDLs than corresponding domains in control cells, 

triggering a further increase in raft lipid peroxidation and loss of membrane integrity. 

Moreover, amyloid pick up at the oxidative-damaged domains was prevented by 

enhanced cholesterol levels, anti-ganglioside (GM1) antibodies and the B subunit of 

cholera toxin binding to GM1. The increase of the structural rigidity of the DRMs, 

isolated from cells and exposed to ADDLs, indicates a specific perturbation of raft 

physicochemical features in cells facing increased amyloid assembly at the membrane 

surface. This data identifies lipid rafts as specific targets of oxidative damage and 

membrane degeneration in APP-mutated neurons as a result of their ability to recruit 

aggregates to the cell surface.  

IV) The new synthesized acyl-SG derivatives can easily cross the plasma membrane 

and be internalized in cellular compartments; due to their lipophilic nature, acyl-SGs act 

as GSH carriers, allowing GSH to enter the cell and, once internalized in the cytoplasm, 

to be converted back to the corresponding free fatty acid and GSH by cellular 

thioesterases. Moreover, acyl-SG thioesters prevent Aβ42-induced oxidative stress by a 

significant decrease in intracellular ROS production, a large inhibition of membrane 

lipoperoxidation and apoptotic pathway activation in SH-SY5Y cells, and prevent 

amyloid oxidative injury in primary fibroblasts from FAD patients. Moreover, an 

increase in antioxidant and neuroprotective effects with the presence of the double bond 

and the lengthening of the chain in these compounds occurred. Therefore, our results 

put forward acyl-SG derivatives as new antioxidants with neuroprotective effects 

against Aβ-induced oxidative injury, which could be useful in the treatment of AD and 

other oxidative stress-related disorders. 
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CHAPTER I – INTRODUCTION 

 
-PROTEIN FOLDING, MISFOLDING AND AMYLOID AGGREGATIO N- 

Protein folding  

Proteins are involved in virtually every biological process in a living system. They are 

synthesized on ribosomes as linear chains of typically several hundred aminoacid 

residues in a specific order from information encoded within the cellular DNA. One of 

the most remarkable characteristics of a living system is the ability of its molecular 

components to self-assemble into their functional states. The most fundamental example 

of biological self-assembly is protein folding, the process through which disordered 

polypeptide chains convert into the tightly packed protein structures through which they 

exert their biological functions [1]. In addition to generating biological activity, 

however, the folding is coupled to many other biological processes, including the 

trafficking of molecules to specific cellular locations and the regulation of cellular 

growth and differentiation [2]. Most of the newly synthesized polypeptide chains 

usually fold into their functional and compact “native states”. Native states of proteins 

generally correspond to the structures that are most thermodynamically stable under 

physiological conditions and are characterized by a well-defined, persistent secondary 

and tertiary structure [3]. Nevertheless, the total number of possible conformations of a 

polypeptide chain is so large that it would take an astronomical length of time to find 

this particular structure by means of a systematic search of all conformational space [2]. 

The folding process of proteins can be reproduced in vitro, and has been extensively 

investigated with a variety of experimental and computational methods [4, 5]. It is now 

clear that this process consists in a stochastic search of the conformations accessible to a 

given polypeptide, targeted at finding the most energetically favourable conformation 

[3, 6]. Inherent fluctuations in the conformation of unfolded or incompletely folded 

states enable different portions of the amino acid sequence to come into contact with 

one other. Because the correct (native-like) interactions between different residues are 

on average more stable than the incorrect (nonnative) ones, such a search mechanism is 

in principle able to find the lowest energy structure [7]. In fact, when the fluctuations 

trigger the formation of stable native-like interactions a folding nucleus forms, reducing 
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the number of conformations that need to be sampled by a protein molecule during its 

transition from a random coil state to the native structure [3, 8-10]. This stochastic 

description of protein folding involves the concept of an “energy landscape” for each 

protein, describing the free energy of the polypeptide chain as a function of its 

conformational properties. To enable a protein to fold efficiently, the landscape required 

has been likened to a funnel because the conformational space accessible to the 

polypeptide chain is reduced as the native state is approached [7]. The shape of the 

energy landscape is encoded by the amino acid sequence, thus natural selection has 

enabled proteins to fold rapidly and efficiently. Small single domain proteins (e.g. < 100 

amino acids in length), in general, fold to the native state on a sub-second timescale and 

have been the focus of many experimental and theoretical studies of folding [11]. For 

small proteins, typically of 60-100 residues, this landscape appears to be rather 

“smooth” as these proteins have been found to convert rapidly into their native states, 

without populating partially folded intermediates [2]. The highly cooperative folding 

observed for naturally occurring small proteins has been proved to be the product of 

natural selection [12]. On the other hand, larger polypeptide sequences have “rougher” 

energy landscapes, allowing the population of partially folded species that may be on- 

or off-pathway to the native fold [13]. In figure 1 is shown the energy landscape for the 

folding of a highly simplified model of a small protein. The critical region on a simple 

surface such as this one is the saddle point corresponding to the transition state, the 

barrier that all molecules must cross if they are to fold to the native state. In figure 1, 

applied to this schematic surface, are ensembles of structures corresponding to different 

steps of the folding process. The transition state ensemble was calculated by using 

computer simulations controlled by experimental data from mutational studies of 

acylphosphatase [14]. The results of many studies suggest that the fundamental 

mechanism of protein folding involves the interaction of a relatively small number of 

residues, ‘key residues’, to form a folding nucleus, about which the rest of the structure 

rapidly condenses [10]. In this scheme, the yellow spheres represent the three ‘key 

residues’ in the structure: when these residues have formed their native-like contacts the 

general topology of the native fold is established. At the top are indicated some 

contributors to the distribution of unfolded species that represent the starting point for 

folding, while the structure of the native state is shown at the bottom of the surface.  
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Figure 1. A schematic energy landscape for protein folding. The surface is derived from a 
computer simulation of the folding of a highly simplified model of a small protein. The surface 
‘funnels’ the multitude of denatured conformations to the unique native structure. From [2]. 

 

Theoretical studies, particularly involving simulation techniques, have been used to 

complement experimental data, and vice versa, allowing a complete view of folding 

from the earliest steps to conformational transitions as the native structure ultimately 

forms [15]. One approach incorporates experimental measurements directly into the 

simulations as restraints limiting the regions of conformational space that are explored 

in each simulation; this strategy has enabled rather detailed structures to be generated 

for transition states [14]. The results suggest that, despite a high degree of disorder, 

these structures have the same general topology as the native fold. In essence, 

interactions involving the key residues force the chain to adopt a rudimentary native-

like architecture. Once the correct topology has been achieved, the native structure will 

then almost invariably be generated during the final stages of folding [14]. Conversely, 
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if these key interactions are not formed, the protein cannot fold to a stable globular 

structure; this mechanism therefore acts also as a ‘quality control’ process by which 

misfolding can generally be avoided. Although it is not yet clear exactly how the 

sequence encodes such characteristics, the essential elements of the fold are likely to be 

determined primarily by the pattern of hydrophobic and polar residues that favours 

preferential interactions of specific residues as the structure becomes increasingly 

compact [16]. Another important parameter is “the contact order” which describes the 

average separation in the sequence between residues that are in contact with each other 

in the native structure. The existence of such a correlation can be rationalized by the 

argument that a stochastic search process will be more time consuming if the residues 

that form the nucleus are further away from each other in the sequence. [17]. 

Experiments show that the in vitro folding of proteins with more than about 100 

residues involves a larger number of species than the fully unfolded and the fully folded 

states found to be populated in the simplest systems [18]. Experiments have shown that 

the folding intermediates that result from larger proteins, sometimes correspond to 

species in which segments of the protein have become highly native-like, whilst others 

have yet to achieve a folded state [3]. In particular, they suggest that these proteins 

generally fold in modules, in other words, folding can take place largely independently 

in different segments or domains of the protein [9]. The fully native structure is only 

acquired when all the native-like interactions have been formed both within and 

between the domains; this happens in a final cooperative folding step when all the side 

chains become locked in their unique close-packed arrangement and water is excluded 

from the protein core [19]. This modular mechanism is attractive because it suggests 

that highly complex structures might be assembled in manageable pieces. Folding in 

vivo is more complex and can occur before the completion of protein synthesis, 

particularly for multidomain proteins where individual domains fold separately after the 

end of their synthesis. Folding can occur in the cytoplasm after release from the 

ribosome, or in specific compartments, such as mitochondria or the endoplasmic 

reticulum (ER) [20-22]. The details of the folding mechanism of a given sequence in 

vivo depend on the peculiar environment in which this process takes place. However, 

the fundamental principles of protein folding are thought to be the same in vivo and in 

vitro. The key difference is that living cells have evolved mechanism of control and 
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regulation of the process [2]. Examples are molecular chaperones [21, 22], folding 

catalysts [23] and the quality-control and protein degradation mechanisms present in 

eukaryotic cells for proteins taking the secretory pathway [24]. 

 

Protein misfolding in the cell 

Within the past two decades it has been recognized that the inability of a protein to 

adopt, or remain in, its native conformation is often referred to as protein misfolding. 

Indeed, in the misfolding process a protein adopts an alternative conformation, either a 

partially or totally unfolded monomeric state or an aggregated state.  Protein misfolding 

is a common and intrinsic propensity of proteins that occurs continuously. Misfolding is 

influenced by the amino acid composition, and certain mutations are known to 

accelerate the process. Moreover, it also depends on environmental conditions, because 

once proteins are exposed to specific environmental changes such as increased 

temperature, high or low pH, agitation, elevated glucose, or oxidative agents, they can 

lose their native conformation more rapidly. Because of the lack of arrangement, 

unfolded proteins are nonfunctional. Importantly, the unfolded state is 

thermodynamically unfavorable and unstable, thus, seeking lower energy levels and 

more stability, unfolded proteins have a tendency to aggregate [25]. Protein misfolding 

often results in the formation of aggregates because misfolded proteins are more prone 

than native proteins to undergo aberrant self-association. The native state of a protein 

has indeed minimal propensity to aggregate, because most of its hydrophobic moieties 

and a large portion of the backbone amide and carboxylic groups are sequestered inside 

the protein; while the regions on the protein surface that may potentially retain a 

residual ability to trigger undesired intermolecular association are protected by 

structural adaptations developed during evolution [26]. By contrast, partially or fully 

unfolded states expose to the solvent some regions of the protein that might have a high 

propensity to form interchain interactions with other molecules. It is in fact well known 

that the first event that generally triggers the aggregation process of a globular protein is 

the adoption of a non-native, partially or fully unfolded state [27, 28]. Living cells have 

developed different strategies to avoid the occurrence of aberrant aggregation. Of 

particular importance are the many molecular chaperones that are present in all types of 

cells and cellular compartments. [29]. Despite their similar general role in enabling 
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efficient folding and assembly, their specific functions can differ substantially and it is 

evident that many types of chaperone work in tandem with one other [22]. Some 

molecular chaperones have been found to interact with nascent chains as they emerge 

from the ribosome, and bind rather non-specifically to protect aggregation-prone 

regions rich in hydrophobic residues. Others are involved in guiding later stages of the 

folding process, particularly for complex proteins including oligomeric species and 

multimolecular assemblies. The best characterized of the chaperones studied in this 

manner is the bacterial complex involving GroEL, a member of the family of 

‘chaperonins’, and its ‘co-chaperone’ GroES. [21, 22]. Of particular interest is that 

GroEL, and other members of this class of molecular chaperone, contains a cavity in 

which incompletely folded polypeptide chains can enter and undergo the final steps in 

the formation of their native structures while sequestered and protected from the outside 

world [30]. Molecular chaperones increase the efficiency of the folding process by 

reducing the probability of competing reactions, particularly aggregation. However, 

there are several classes of folding catalyst that accelerate potentially slow steps in the 

folding process. [23]. Clear evidence that molecular chaperones are needed to prevent 

misfolding and its consequences comes from the fact that the concentrations of many of 

these species are substantially increased during cellular stress. Indeed, many chaperones 

were found in such situations, and their nomenclature as Hsps (heat shock proteins) 

reflects this fact [31]. Some molecular chaperones are able to rescue misfolded and even 

aggregated proteins, enable them to fold correctly, for example solubilising some forms 

of aggregates [32]. Such active intervention in the folding process requires energy, and 

ATP is required for most of the molecular chaperones to function with full efficiency 

[22]. In eukaryotic systems, many of the proteins that are synthesized are translocated 

into the ER, where folding takes place before secretion through the Golgi apparatus. 

The ER contains a wide range of molecular chaperones, folding catalysts and the 

proteins that fold here must satisfy a ‘quality-control’ check before being exported (Fig. 

2) [24].  
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Figure 2. Regulation of protein folding in the ER. Many newly synthesized proteins are 
translocated into the ER, where they fold into their three-dimensional structures with the help of 
a series of molecular chaperones and folding catalysts. Correctly folded proteins are then 
transported to the Golgi complex and then delivered to the extracellular environment. 
Incorrectly folded proteins are detected by a quality-control mechanism and sent along another 
pathway in which they are ubiquitinated and then degraded in the cytoplasm by proteasomes. 
From [2]. 
 

This quality-control mechanism involves a complex series of glycosylation and 

deglycosylation reactions that prevents misfolded proteins from being secreted from the 

cell. In addition, unfolded and misfolded proteins are recognized and targeted for 

degradation through the ubiquitin–proteasome pathway [24]. Folding and unfolding are 

the ultimate ways of generating and abolishing cellular activities. It is not surprising 

therefore that failure to fold correctly, or to remain correctly folded, will give rise to the 

malfunctioning of living systems and hence to disease [30, 33, 34]. The details of how 

these incredible regulatory systems operate represent astonishing examples of the 

rigorous mechanisms that biology has established to ensure that misfolding, and its 

consequences, are minimized. Some diseases, such as cystic fibrosis [33] and some 
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types of cancer [31] is associated with aberrations in the folding process [33]. In other 

cases, proteins with a high propensity to misfold escape all the protective mechanisms 

and form intractable aggregates within cells or (more commonly) in extracellular space. 

An increasing number of pathologies, including Alzheimer’s and Parkinson’s diseases, 

the spongiform encephalopathies and type II diabetes, are directly associated with the 

deposition of such aggregates in tissues, including the brain, heart and spleen [27, 30, 

34]. Diseases of this type are among the most debilitating, socially disruptive and costly 

diseases in the modern world, and they are becoming increasingly prevalent as our 

societies age and become more dependent on new agricultural, dietary and medical 

practices [35]. 

 

Amyloid aggregation and diseases 

Protein misfolding can be at the basis of some of the most important disorders that 

affect humans including cancer, metabolic pathologies and degenerative diseases [36]. 

Indeed, protein misfolding and aggregation are often coupled, with over 40 human 

diseases associated with formation of fibrillar aggregates [37]. Subsequent to protein 

unfolding, aggregation, starts with the nucleation, when proteins reversibly attach to a 

growing core. Then, further protein molecules attach irreversibly to the core, developing 

a large aggregate. Protein aggregation can result in various different structural 

appearances with intermediates (oligomers) varying from unordered amorphous 

aggregates to highly ordered fibrils that are called amyloid (Fig. 3) [25]. They are 

generally enriched in cross-β structure [38], yet fluctuate in sequence, time, and 

conditions [39].  
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Figure 3. Protein misfolding and aggregation. Under certain circumstances such as pH or 
temperature change, mechanical stress, glycation, or oxidation, proteins undergo conformational 
changes that result in unfolding and partial misfolding that is associated with the tendency to 
aggregate. During aggregation, proteins can obtain a range of different structural appearances, 
which are generally enriched in cross-β structure, including intermediates varying from 
unordered amorphous aggregates to ordered fibrils that are called amyloid. From [25]. 
 

Considerable attention is presently focused on a group of protein misfolding diseases 

known as amyloidoses. These disease are characterized by the deposition in organs and 

tissues of specific peptides or proteins, incorrectly folded or unfolded, which aggregate 

intra- or extracellularly into polymeric assemblies (amyloid fibrils) rich in β-sheet [7, 

40]. The deposits in strictly defined amyloidoses are extracellular and can often be 

observed as thread-like fibrillar structures, sometimes assembled further into larger 

aggregates or plaques. Some of these diseases are sporadic, familial or transmissible 

degenerative pathologies affecting either the central nervous system (Alzheimer’s and 

Creutzfeldt-Jakob diseases,) or a variety of peripheral tissues and organs (systemic 

amyloidoses and type II diabetes) [40]. In addition, there are others diseases 

(Parkinson’s and Hungtington’s diseases) characterized by the presence of intracellular, 

rather then extracellular, deposits localized in the cytoplasm, in the form of specialized 

aggregates known as Lewy bodies, or in the nucleus (Table 1). These structures are 

generally described as “amyloid fibrils” or “amyloid plaques” when they accumulate 

extracellularly, whereas the term “intracellular inclusions” is used when fibrils with the 

same morphological and structural properties form inside the cell [41]. 
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Table 1: peptides and proteins associated with known amyloid diseases 

 
From [40]. 

 

Each amyloid disease involves the aggregation of a specific protein although a range 

of other components, including other proteins and carbohydrates, is also incorporated 

into the deposits when they form in vivo. The characteristics of the soluble forms of the 

proteins involved in the well-defined amyloidoses are varied - they range from intact 

globular proteins to largely unstructured peptide molecules - but the aggregated forms 

have many common characteristics [42]. The various peptides and proteins associated 

with amyloid diseases have no obvious similarities in size, amino acid composition, 

sequence or structure. Nevertheless, the amyloid fibrils into which they convert are very 

similar in their external morphology (Fig. 4) and in their internal structure (Fig. 5) [40]. 

The fibrils can be imaged in vitro using transmission electron microscopy (TEM) or 

atomic force microscopy (AFM). These experiments reveal that amyloid fibrils usually 

consist of a number (typically 2–6) of protofilaments, each about 2–5 nm in diameter 

that are often twisted around each other to form supercoiled rope-like structures that are 

typically 7–13 nm wide [42, 43] or associate laterally to form long ribbons that are 2–5 

nm thick and up to 30 nm wide [44, 45]. Circular dichroism, Fourier transform infra-red 

spectroscopy and X-ray fibre diffraction data have shown that in each individual 

protofilament the protein or peptide molecules are arranged so that the polypeptide 

chain forms β-strands that run perpendicular to the long axis of the fibril to generate 

what is described as a cross-β structure [42]. The latter confers to the amyloid fibrils 

specific biophysical characteristics and a variety of tinctorial properties, notably 
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staining with thioflavin T (ThT) and Congo red (CR) [46, 47]. The cross-β structure can 

be therefore considered as the main structural hallmark of the amyloid aggregates. 

 

 
 
Figure 4. Transmission electron 
microscopy of a mesh of amyloid 
fibrils assembled from human 
lysozyme negatively stained with 
uranyl acetate. Scale bar, 400 nm. 
From [48]. 

Figure 5. Schematic drawing of the structural 
organization of insulin fibrils. From [49].  
 
 
 

 

The ability of polypeptide chains to form amyloid structures is not restricted to the 

relatively small number of proteins associated with recognized clinical disorders, but it 

now seems to be a generic feature of polypeptide chains [28, 34]. The core structure of 

the fibrils seems to be stabilized primarily by interactions, particularly hydrogen bonds, 

involving the polypeptide main chain. Because the main chain is common to all 

polypeptides, this observation explains why fibrils formed from polypeptides of very 

different sequence seem to be so similar [28, 42]. The generic amyloid structure 

contrasts strongly with the highly unique globular structures of most natural proteins. In 

these latter structures the interactions associated with the very specific packing of the 

side chains seem to ignore the main-chain preferences [28, 50]. Even though the ability 

to form amyloid fibrils seems to be generic, the propensity to do so, under given 

circumstances, can vary markedly between different sequences. The relative 

aggregation rates for a wide range of peptides and proteins correlates with the 

physicochemical features of the molecules such as charge, secondary-structure 

propensities and hydrophobicity [51]. In a globular protein the polypeptide main chain 
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and the hydrophobic side chains are largely hidden within the folded structure. Only 

when they are exposed, for example when the protein is partly unfolded (for example, at 

low pH) or fragmented (for example, by proteolysis), will conversion into amyloid 

fibrils be possible. 

 

A general mechanism of amyloid formation: common characteristic of polypeptide 

chains 

The observation that proteins associated with amyloid diseases, thought displaying in 

their soluble native state a very different nature, are able to generate similar fibrillar 

forms, encouraged the proposal that there are strong similarities in the intrinsic structure 

of the amyloid fibrils and in the mechanism by which they are formed [34]. Amyloid 

fibril formation follows a “nucleated growth” mechanism similar to that observed in 

protein crystallization [52]. The aggregation pathways of different systems have been 

extensively investigated. At the beginning of the aggregation process small soluble 

oligomers can be found to be in rapid equilibrium with the monomer. This is the case 

for example of Aβ peptides, widely studied for its links with Alzheimer’s disease, 

whose small oligomers have been trapped by protein cross-linking and have been found 

to be relatively disordered and composed by 2-4 and 5-6 molecules for Aβ40 and Aβ42, 

respectively [53]. In particular, during the pathway of fibril formation, Aβ exists as 

soluble oligomers in rapid equilibrium with the corresponding monomeric forms. These 

species, also termed as Aβ-derived diffusible ligands (ADDLs) [54], precede the 

formation of the so called “protofibrils”, a series of metastable, nonfibrillar species that 

can be visualized using AFM and TEM [55]. Insights into the structure of Aβ 

protofibrils are emerging; the exciting finding that a specific antibody can bind to 

protofibrillar species from different protein sources, but not their corresponding 

monomeric or fibrillar states, suggests that such soluble amyloid oligomers have some 

important common structural elements [56]. Some of these aggregates appear to be 

spherical beads of 2-5 nm in diameter, others appear to be beaded chains with the 

individual beads again having a diameter of 2-5 nm and seeming to assemble in linear 

and curly chains. Yet, others appear as annular structures, apparently formed by the 

circularization of the beaded chains. At longer aggregation times, curvilinear fibers 

form with a beaded appearance and an extensive β-sheet structure [37]. Analogous 
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spherical and chain-like protofibrillar structures have been observed for many other 

systems, including α-synuclein [57], amylin [58], the immunoglobulin light chain [59], 

transthyretin [60] and polyQ-containing proteins [58]. Similar aggregated structures can 

also be formed by proteins unrelated to disease, such as the N-terminal domain of HypF 

from Esherichia coli (HypF-N) [61, 62], the Sulfolobus solfataricus acylphosphatase 

[63] and an SH3 domain from bovine phosphatidyl-inositol-3’-kinase (PI3-SH3) [64]. 

Actually, for the first time in 1998, two independent groups reported the observation 

that a protein unrelated to any amyloid disease aggregated in vitro into structures 

indistinguishable from the amyloid fibrils produced by disease-associated peptides and 

proteins. Indeed, it was reported that two proteins, particularly the PI3-SH3 and 

fibronectin type III, aggregated in vitro to form structures indistinguishable from those 

formed in vivo by the proteins associated with the known amyloid diseases [65]. It was 

presently shown that a similar conversion could be achieved deliberately for other 

proteins by a rational choice of appropriate solution conditions [66, 67]. These proteins 

have different secondary and tertiary structure contents, different functions and belong 

to different organisms. In most cases, aggregation of full-length proteins was found to 

require solution conditions that destabilize the native structure but do not inhibit the 

formation of hydrogen bonds, such as low pH, lack of specific ligands, high 

temperature, high pressure and moderate concentrations of salts or co-solvents such as 

trifluoroethanol (Fig. 6). By contrast, many peptides that were unable to fold into stable 

globular structures readily formed fibrils [68]. The reduced physicochemical stability of 

the partially unfolded monomers leads them to organize into the oligomeric assemblies 

seen in the path of fibrillization and eventually into stable mature fibrils.  
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Figure 6. Electron micrographs of amyloid fibrils from A, PI3-SH3 and B, the N-terminal 
domain of the bacterial hydrogenase maturation factor HypF (HypF-N), a protein unrelated to 
any amyloid disease. The formation of these fibrillar aggregates was obtained by incubating 10 
mg/ml PI3-SH3 in H2O/HCl mixture, pH 2.0 at 37 °C for 1 month and 0.3 mg/ml HypF-N in 
50mM acetate buffer, pH 5.5, in the presence of 30% (v/v) TFE at room temperature for 20 
days, respectively. From [69]. 
 

The demonstration that peptides and proteins that are unrelated to disease have a 

generic ability to form amyloid fibrils has incited a more general discussion of the 

various states that can be adopted by polypeptides following their synthesis in vivo. It is 

now clear that the native state of a polypeptide chain is in dynamic equilibrium with 

other states including aggregates and their precursors (Fig. 7) [2, 37, 40]. Moreover, the 

proposal that amyloid fibrils are a generic structure of polypeptide chains allowed the 

researchers to suggest that the conformational properties of all proteins should be 

considered in terms of the multiple conformational states that are accessible and into 

wich they interconvert on a wide range of timescales [37].  

 

 A                                                                               B 
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Figure 7. A schematic representation of some of the many conformational states that can be 
adopted by polypeptide chains. All of these different conformational states and their 
interconversions are carefully regulated in the biological environment, but conformational 
diseases will occur when such regulatory systems fail. From [37]. 
 

Following biosynthesis on a ribosome, a polypeptide chain is initially unfolded and 

can then remain unfolded, or fold into a unique compact structure, often through one or 

more partially folded intermediates. Moreover, natively unfolded proteins and peptides 

can also aggregate under some circumstances. Some of the initial amorphous aggregates 

simply dissociate, but others may reorganize to form oligomers with amyloid structure, 

including the spherical, chain-like, and annular amyloid protofibrils observed for many 

systems [2, 37]. The structured polypeptide aggregates can then sometimes grow into 

mature fibrils by further self-association or through the repetitive addition of monomers 
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(Fig. 7). Indeed, to understand the determinants of protein folding and aggregation a full 

characterization of the multitude of non-native conformational states populated on the 

folding energy landscape is crucial. [70, 71]. The idea that amyloid is a generic form of 

protein structure rises the question of why it is only associated with diseases [34]. One 

possible explanation is that the formation of amyloid fibrils is difficult to control, and 

once formed it is often extremely hard or impossible to degrade. Recent data have 

shown that general physicochemical features, such as mean hydrophobicity, net charge 

and propensity to α and β structure formation, affect the tendency of an unfolded or 

partially folded polypeptide chain to aggregate [72]. This may explain the higher 

propensity to aggregation of peptides and natively unfolded proteins such as α-synuclein 

(involved in Parkinson’s disease) and tau (involved in Alzheimer’s disease) carrying 

specific mutations enhancing their mean hydrophobicity or reducing their mean net 

charge. Finally, protein aggregation may be favoured under conditions resulting in the 

impairment or overwhelming of the molecular machineries (i.e. chaperones) responsible 

for the quality control of protein folding [40]. Despite much recent work in this area, 

many questions about the amyloid aggregation remain open, and considerable efforts 

are currently devoted to the study of the phenomenon of protein aggregation because of 

its association with a wide variety of human diseases and of its potential applications in 

biotechnology. 

 

Role of prefibrillar aggregates as causative agents of neurodegenerative diseases 

The data reported in the past few years have considerably improved the knowledge of 

the molecular basis of protein misfolding and aggregation, as well as of the relationship 

between structure and toxicity of the amyloid aggregates, even if the specific nature of 

the pathogenic species, and their ability to damage cells, are however, the subject of 

intense debate [40]. Recent findings indicate that the protein assemblies preceding the 

formation of mature amyloid fibrils, such as low-molecular-weight disordered 

oligomers and/or structured protofibrils, are the pathogenic species in neuropathic 

diseases. The severity of cognitive impairment in Alzheimer's disease correlates with 

the levels of low-molecular-weight species of Aβ rather than with the amount of fibrils 

[73]. Abundant data show that also the prefibrillar species of other amyloidogenic 

proteins such as α-synuclein or transthyretin, which are formed early in the process of 
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fibrillogenesis, are neurotoxic, whereas the mature fibrils are much less toxic [40, 50, 

74]. Pre-fibrillar aggregates formed by transthyretin can also be toxic to neuronal cells 

or perturb their function [75]. Protofibril appearance in tissues precedes the expression 

of the clinical phenotype thus explaining the lack of relationship found in most cases 

between extent of amyloid deposits and severity of the clinical symptoms [76]. In 

addition, transgenic mice show deficits in cognitive impairment, cell function, and 

synaptic plasticity before the accumulation of significant quantities of amyloid plaques 

[77]. Importantly in this context, pre-fibrillar forms of the proteins that have no link 

with amyloid-associated disease, such as HypF-N, the PI3-SH3 and apomyoglobin from 

sperm whale, are also highly toxic to cultured fibroblasts and neurons, whereas the 

monomeric native states and the amyloid-like fibrils (all formed in vitro) displayed very 

little, if any, toxicity [69]. This result implies that the ability of pre-fibrillar aggregates 

to cause cell dysfunction arises from common characteristics of the supramolecular 

structure of the aggregates rather than from specific features of the amino acid 

sequences of the polypeptides. A wide variety of biochemical, cytological, and 

physiological perturbations has been identified following the exposure of neurons to 

such species, both in vivo and in vitro. It can be hypothesized that protofibrillar 

aggregates impair cell function because they expose on their surface an array of groups 

that are normally hidden in globular proteins or dispersed in highly unfolded peptides or 

proteins. Indeed the exposed regions could be rich in hydrophobic groups able to stick 

onto cell membranes. Pre-fibrillar assemblies have indeed been shown to interact with 

synthetic phospholipid bilayers and with cell membranes [78, 79], possibly destabilising 

them and impairing the function of specific membrane-bound proteins [80]. The precise 

molecular mechanism of toxicity of these aggregates is still unclear and it is also 

possible that different types of pre-fibrillar aggregates exert their toxicities in different 

ways. However, it is clear that the presence of toxic aggregates inside or outside cells 

can impair a number of cell functions that ultimately lead to cell death by an apoptotic 

mechanism [81]. Many evidence points to a central role of aggregate interaction with 

cell membrane and subsequent intracellular redox status modifications with free Ca2+ 

levels alterations [69, 78, 80], suggesting a mechanism of cell death possibly shared 

among prefibrillar aggregates of most peptides and proteins [82]. In conclusion, 

prefibrillar aggregates, although originated from different peptides and proteins, seems 
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to have common structural features. These characteristics are different from those of 

their precursors (not aggregated) or mature fibrils. The results obtained in the last few 

years suggest the idea that exists a distinct mechanism of pathogenesis, inherently 

associated with the aforementioned common structure. 

 
 

-HypF-N: A MODEL OF AMYLOID AGGREGATION UNRELATED T O 

DISEASE- 

 

Function, structure and aggregation of HypF-N 

An increasing number of proteins with no link to protein deposition diseases has been 

found to form, under various conditions in vitro, fibrillar aggregates that have the 

morphological, structural, and tinctorial properties that allow them to be classified as 

amyloid fibrils [40]. One example is HypF, a large protein of about 82 KDa that assists 

the folding of [NiFe]-hydrogenases, key enzymes in the hydrogen metabolism of 

prokaryotes [83]. In their fully functional forms, the iron atoms of the active sites of 

these [NiFe]-hydrogenases are stabilized in the low oxidation state (Fe2+) by binding to 

the carbon monoxide (CO) and cyanide (CN-) ligands [84]. Both molecules have been 

shown to originate from the processing of carbamoylphosphate [85]. Thus, the assembly 

of the complex hydrogenase system requires the coordinated action of different 

maturation and regulatory factors. Indeed, hydrogenase operons contain a number of 

accessory genes (HypA-F) encoding maturation and regulatory proteins, including the 

essential maturation factor HypF [86]. E. coli, as any other prokaryote, expresses a 

HypF protein, that contains an N-terminal acylphosphatase-like domain (residues 1-91) 

(HypF-N). The HypF-N displays sequence and structural homology with other members 

of the acylphosphatase-like structural family. Acylphosphatases (AcPs) are small 

enzymes specifically catalysing the hydrolysis of carboxyl-phosphate bonds in 

acylphosphates such as carbamoylphosphate, succinylsphosphate and 1,3-

bisphosphoglycerate [87]. Recent experiments shed light on the role of E. coli HypF in 

the conversion of carbamoylphosphate into CO and CN-, and on the coordination of 

these ligands to the assembled hydrogenase metal cluster [88]. According to these 

results, HypF-N acts as a carbamoyltransferase that transfers the carbamoyl moiety of 
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carbamoyladenylate to the C-terminal cysteine of the partner protein HypE, forming an 

enzyme-thiocarbamate. HypE dehydrates the S-carbamoyl moiety in an ATP-dependent 

process to yield the enzyme thiocyanate. Finally, the cyano group can be nucleophically 

transferred to an iron complex [88]. The structure of HypF-N has been resolved by X-

ray crystallography and is well defined for residues 5-91 (Fig. 8) [89]. The domain has a 

ferredoxin-like fold, which consists in a α/β sandwich, with βαββαβ topology. 

Following the sequence identity with AcPs, it has been assigned to the acylphosphatase-

like structural family. The five β-strands of the domain form a slightly twisted β-sheet 

(β4-β1-β3-β2-β5 strand arrangement), which faces on one side two antiparallel α-

helices; the other side is instead fully solvent-exposed. Overall, the domain has a size of 

about 43x28x27 Å. This compact globular state displays the main structural strategies 

exploited by all-β and α/β proteins to escape amyloid aggregation [26]. 

 

 

 

Figure 8. Three-dimensional structure of native HypFN from X-ray crystallography. The red 
and blue colours indicate α-helices and β-strands, respectively. From [90]. 
 

HypF-N forms amyloid-like fibrils under conditions that promote its partial unfolding, 

such as in the presence of trifluoroethanol (TFE) or following a decrease of pH. 

Formation of amyloid-like fibrils has been obtained initially at pH 5.5 with 30% (v/v) 

TFE or at pH 3.0 in citric acid [66]. The formation of a partially folded state is a key 
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event in the aggregation pathway of this protein in vitro, even under mild destabilising 

conditions in which the folded state is by far the predominant species. Indeed, under 

mild denaturing conditions generated by moderate concentrations of trifluoroethanol [6–

12% (v/v)], the native state of HypF-N is in rapid equilibrium with a partially unfolded 

state, whose population is about 1–2%; a kinetic analysis has shown that amyloid 

aggregation under these conditions arises from molecules accessing this amyloidogenic 

state [90]. Recently, new aggregation conditions for HypF-N, enabling the 

characterization of the partially folded state populated prior undergoing aggregation, 

have been described, such as at pH 5.5 in the presence of 12% (v/v) TFE, or at pH 1.7 in 

the presence of salts (NaCl). A detailed structural investigation of this partially folded 

state has also been performed and achieved by means of different biophysical and 

biochemical techniques. [91]. The resulting species have been imaged with tapping 

mode atomic force microscopy (TM-AFM), have been shown to increase the 

fluorescence of thioflavin T (ThT), indicating the presence of intermolecular β-sheet 

structure typical of amyloid aggregates. In general, the data obtained suggest that the 

aggregation process of this protein starts from a partially folded state that can be either 

fully populated or in rapid equilibrium with the native state when the latter is 

destabilized by mutations and/or mild unfolding conditions [90]. The results support an 

aggregation pathway in which the native protein first converts into a partially folded 

state separated from the native state by an energy barrier comparable to that of 

(un)folding. This monomeric state converts into globular small aggregates and small 

beaded fibrils that further associate into ring-like structures. Finally, the ring-like 

structures convert into ribbon-like fibrils that associate into fibrillar tangles [61]. As 

many disease-involved systems aggregate following similar pathways, HypF-N 

represents a useful model system to determine the common principles underlying 

amyloid formation. 

 

HypF-N protofibrils interact with cell membranes originating a cytotoxic cascade 

It is increasingly suggested that the oligomers formed by proteins that are not related 

to any human disease can be toxic when added to the extracellular medium of cultured 

cells, whereas the same proteins in monomeric or fibrillar forms are not [69]. The 

observation that the oligomers formed from such a heterogeneous group of proteins 
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impair cell viability suggests that these species share the ability to “misinteract” with 

the macromolecular components of living organisms, such as membranes and proteins, 

and interfere with their normal function. The early prefibrillar aggregates of HypF-N 

formed in 30% TFE were shown to be able to interact with, insert into, and eventually 

disassemble synthetic membranes and supported phospholipid bilayers [61, 92]. 

Moreover, these species can interact with the plasma membrane of cultured cells and be 

internalized inside the cytoplasm, resulting in cell impairment and death [93, 94]. 

Recently, it was found that their interaction with cell membranes is disfavoured by a 

high membrane cholesterol content [95, 96]. Similarly to the protofibrillar aggregates of 

disease-related proteins and peptides, treatment of the cells with HypF-N protofibrils 

leads to an increase of reactive oxygen species (ROS) and free Ca2+ levels inside the 

cells, which ultimately die by apoptosis or necrosis [93, 94]. Moreover, the increase of 

intracellular Ca2+ levels is associated with both the activation of plasma membrane 

receptors with Ca2+ channel activity, such as AMPA and NMDA, and unspecific 

membrane permeabilization, with the former effect being more important at early times 

[97]. The susceptibility of different cells to HypF-N aggregates was shown to depend on 

their ability to counteract these early impairments, which increases during cell 

differentiation [94, 96]. Remarkably, HypF-N protofibrils can also induce a loss of 

cholinergic neurons when injected into rat brains, demonstrating that these species can 

act as toxins even in higher organisms [98]. These data strongly support the hypothesis 

that a common mechanism of cytotoxicity exists, which is related to the misfolded 

nature and oligomeric state of a protein rather than to its sequence. In spite of this 

advancement, a structural characterization of the conformational properties of the 

oligomers finalized to an understanding of the relationship with their toxic effect is still 

lacking, mainly due to the fact that the transient formation of these species and their 

structural heterogeneity have hampered considerably their investigation. The structural 

determinants of the protein oligomers that are responsible for cell dysfunction are 

starting, only these days, to be elucidated. Recently, the functional and structural 

properties of the spherical aggregates formed by HypF-N in two distinct environmental 

conditions can be compared. It is therefore nowadays essential to determine in detail the 

structure of the toxic oligomeric species in order to identify new therapeutical targets, 
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and to understand whether it represents a single common fold or rather exhibits some 

polymorphism. 

 

A causative link between the structure of HypF-N oligomers and their ability to 

cause cellular dysfunction 

It is well known that incubation of the same protein/peptide under different 

experimental conditions causes the formation of oligomers or fibrils with different 

morphologies and that such differences result in different degrees of toxicity [99-101]. 

Similarly, mutations or covalent modifications result in different levels of oligomers or 

different fibrillar structures with completely different toxicities [102]. However, little 

experimental information is available on the structural features of oligomers grown 

under different conditions and on the relationship between their structure and their 

ability to cause cell dysfunction. Recently, it has been found that oligomers formed 

from the same protein (HypF-N) under different conditions (pH 5.5 in the presence of 

12%(v/v) TFE or pH 1.7 in the presence of 330 mM NaCl) exhibited similar 

morphological and tinctorial properties, yet differed in their molecular structure. 

Comparisons of the two types of aggregates, indicated that their structural differences 

resulted from different degrees of packing of the hydrophobic residues within their 

cores with a consequent different level of structural flexibility and solvent-exposure of 

such residues [91]. Thus, whilst the ability to form amyloid-like structures is generic to 

polypeptide chains, whether or not such species are pathogenic will depend on their 

structural features, notably the extent to which hydrophobic residues are flexible and 

exposed on their surfaces within the environment of a living organism. These findings, 

however, do not seem to be limited to the HypF-N aggregates, and could indeed explain 

the toxic properties of the oligomers formed by disease-related systems. In fact, several 

studies indicated a correlation between the size and surface hydrophobicity of Aβ40 

aggregates and their ability to decrease the bilayer fluidity of model membranes [103], 

suggesting that the exposure to the solvent of hydrophobic surfaces determines the 

ability of these species to interact with cell membranes. A correlation between 

hydrophobicity, tendency to form aggregates and aggregate cytotoxicity has also been 

observed in comparative studies where the behavior of different homopolymeric amino 

acid (HPAA) stretches was investigated [104]. It has been recently reported that 
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expanded huntingtin-exon1 forms fibrillar aggregates at two different temperatures that 

have different structural and physical properties as well as different cytotoxicities [99]. 

The structures and toxicities of both forms of the aggregates are comparable with those 

extracted from regions of mouse brains affected to different extents by huntingtin 

deposition. In both pairs of structures a direct relationship between structural flexibility 

and cytotoxicity of amyloid assemblies was found, supporting the generality of previous 

conclusions [99]. Finally, all these data lend support to the idea that a key feature in the 

generation of toxicity is the conversion of a species of aggregates where stability is 

associated with extreme burial of hydrophobic residues to one where such residues are 

substantially exposed and disorganized [105]. Recently, it has been suggested that for 

therapeutic purposes the toxicity can be dramatically reduced if the hydrophobic 

residues are incorporated to a greater extent within the interior of the oligomeric 

assemblies, even in the absence of an effective change in morphology [91]. Approaches 

of this type will facilitate the elucidation of the causative link between the molecular 

structure of aberrant protein oligomers and their ability to cause cell dysfunction, with 

the aim of understanding the pathogenesis of protein deposition diseases and identifying 

therapeutic strategies to combat them. Moreover, a detailed understanding of the forces 

that determine the structure of amyloid-like oligomers will also enable to identify the 

factors that can modulate it, and eventually alter the biological activities of these 

species.  

 
 

-ALZHEIMER’S DISEASE- 

 

APP processing and Aβ formation 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized 

by irreversible cognitive and physical deterioration and affects 5–15% of the population 

over the age of 65 years [106]. Causes involve multiple genetic and environmental 

factors. The pathology of AD is characterized by progressive accumulation of 

intraneuronal fibrillary tangles composed of abnormally phosphorylated tau protein, and 

by senile neuritic plaques composed of aggregated amyloid β-protein (Aβ), often 

surrounded by proliferating activated microglia and astrocytes [107]. Neurofibrillary 
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tangles (NFT) are predominantly composed of paired helical filaments (PHF), but 

straight 15-nm filaments, 10-nm intermediate filaments, dense granules of various sizes, 

and other structures are also present [108]. Tau is a multifunctional microtubule-

associated protein that regulates cytoskeleton structure. In normal brain, the equilibrium 

between phosphorylations and dephosphorylations of tau modulates the stability of the 

cytoskeleton and consequently axonal morphology [109]. In contrast, when highly 

phosphorylated, tau is sequestered into paired helical filaments [110] and causes 

disruption of microtubules that ultimately leads to cell death. Several kinases have been 

involved in the anomalous hyperphosphorylation of tau protein. Tau kinase I or GSK3 

phosphorylates tau but also interacts with other proteins, like presenilin-1, that are 

important in the onset of AD pathology. Tau kinase II or cdk5 also modifies tau protein 

and this kind of phosphorylation could be deregulated in a neurodegenerative disorder 

like AD due to proteolytic cleavage of the regulatory subunit, p35, of the kinase [111]. 

Additionally, it has been suggested that another kinase, cdc2, that is mainly present in 

proliferating cells, is abnormally upregulated in AD [112] and that it could 

phosphorylate tau protein. The consequences of this phosphorylation could be a 

conformational change that prevents the binding of phosphotau to microtubules. Tau 

phosphorylation by protein kinases precedes the formation of paired helical filaments 

that cause neurodegeneration [113]. In AD, the lack of binding to microtubules and the 

formation of aberrant aggregates, NFT, has been correlated with the level of dementia. 

In addition, the development of filamentous tau pathology in specific neural cells has 

been described. It has been suggested that the defects in a single cell, start with a 

modification of tau by phosphorylation, giving place to a “pre-tangle” stage [114]. After 

this stage, filamentous polymers (PHF) are assembled and the aberrant aggregation of 

these PHF results in the formation of cytoplasmic (intracellular) NFT. As a consequence 

of this, it has been suggested that neurons degenerate and die, thus leaving NFT in the 

extracellular space [115]. Aβ deposits in AD patients are almost exclusively composed 

of the highly amyloidogenic 1-42 form (Aβ42), which is normally produced by cells in 

much lower quantities than the 40 residues form (Aβ40). Aβ42 is more prone to 

aggregation in vitro than Aβ40, and its cytotoxicity is considered to be the main cause 

of neuronal impairment in AD. Aβ peptides arise from sequential proteolysis of the 

transmembrane amyloid precursor protein (APP), a type I membrane protein, expressed 
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in a wide variety of tissue and cell types, and whose main function has been clearly 

defined. APP is characterized by a large N-terminal extracellular/luminal domain and a 

small intracellular/cytosolic C-terminal domain [116]. Presently, the overproduction 

and/or the reduced clearance of Aβ peptides are considered key factors underlying their 

fibrillar polymerization. Recent studies have suggested that soluble Aβ oligomers 

correlate better than plaque load with cognitive impairment and neuronal dysfunction 

and may be the principal toxic species of Aβ involved in AD [117, 118]. APP is 

proteolytically processed following two different pathways, the so-called amyloidogenic 

and non-amyloidogenic processing, respectively (Fig. 9). These mechanisms are carried 

out by several different proteases called secretases in at least three main cleavages sites 

(known as the α, β and γ sites) in and around the transmembrane encompassing region 

[119]. The non-amyloidogenic pathway involves the activity of α-secretase (a 

metalloprotease) at a plasma membrane level, which cleaves APP within the Aβ domain 

to produce secreted sAPPα and the non-amyloidogenic C-terminal fragment C83. C83 

can undergo further processing mediated by γ-secretase cleavage at the C-terminal end 

of the Aβ domain to yeild non-amyloidogenic P3. The APP amyloidogenic processing 

results in the generation of Aβ peptides in AD and involves the combined activity of β- 

and γ-secretase [120, 121]. β-secretase has been identified as the beta-site APP-cleaving 

enzyme (BACE)-1, cleaving APP at the N-terminal end of the Aβ domain generate an 

extracellular soluble fragment called sAPPβ and an intracellular C-terminal 

amyloidogenic fragment C99 (βCTF). Subsequent, γ-secretase cleavage of C99 at 

residues 40/42/43 of the Aβ domain gives rise to the highly amyloidogenic Aβ peptides. 

Indeed, the γ-cleavage site is unusually located within the transmembrane domain itself. 

Sequential processing of APP in the extracellular domain by β-secretase followed by γ-

secretase cleavage within the transmembrane domain generates Aβ peptides and the 

APP intracellular domain (AICD).  
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Figure 9. Secretase mediated processing of APP. Non amyloidogenic APP processing. α-
Secretase mediated processing cleaves APP within Aβ domain to produce secreted sAPPα and 
the nonamyloidogenic C-terminal fragment C83. C83 can undergo further processing mediated 
by γ-secretase cleavage at the C-terminal end of the Aβ domain to yeild non-amyloidogenic P3. 
Amyloidogenic APP processing. Alternate APP processing initiated by β-secretase cleavage at 
the N-terminal end of the Aβ domain gives rise to sAPPβ and the amyloidogenic C99 fragment. 
Subsequent γ-secretase cleavage of C99, at the C-terminal end of the Aβ domain gives rise to 
the highly amyloidogenic Aβ. From [120]. 
 

Missense mutations in APP itself were the first genetic cause of AD to be identified, 

and these mutations are principally located at or near either the β- or γ-secretase 

cleavage sites [122]. The mutations enhance both cleavages, resulting in overproduction 

of the highly amyloidogenic and more neurotoxic Aβ42. Further genetic analysis of 

families with early-onset familial AD led to the identification of Presenilin-1 (PS-1) and 

Presenilin-2 (PS-2) as the causative genes. Missense mutations in PS increase the 

cellular production of Aβ42 by slightly altering the γ-secretase cleavage site and thus 

the protease specificity. Deletion of PS-1 in mice significantly lowers Aβ production 

and increases the C-terminal fragments of APP that are substrates for γ-secretases [123]. 

Evidence for the relationship between the development of AD and abnormal Aβ 

production also comes from the familial forms of AD (FAD). FAD only accounts for 

about 5% of all AD cases, but the most significant FAD mutations are all associated 

with APP processing to yield Aβ. Autosomal dominant forms of FAD are often 

characterized by specific mutations in the APP gene located on chromosome 21, or in 
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the genes mapped on chromosomes 14 and 1, encoding PS-1 and PS-2, respectively 

[124]. Mutations in these three different genes appear to affect very similar pathological 

mechanisms, which at the end accelerate Aβ aggregation, deposition and neurotoxicity 

[125]. These evidences point to a pathogenetic role for the metabolism of APP and for 

the deposition of Aβ, suggesting a role for Aβ in the non-genetic AD forms, since the 

pathological endpoint and hallmarks of familial and sporadic AD are very similar.  

 

APP alternative functions in AD and its relationship with specialized membrane 

regions 

Research efforts over the last two decades have clearly elucidated the fundamental 

role of APP and its proteolytic processing in the pathology of AD. This is also 

highlighted by the fact that 50% of familial AD forms (FAD) are caused by mutations in 

the APP gene itself or in the presenilin genes which encode components of the γ-

secretase complex [126]. The ubiquitous expression of APP in many tissues as well as 

the presence of homologues in a variety of species, including mammals and 

invertebrates, argue for an important physiological function of APP. Some biological 

properties have been attributed to APP, including adhesion, neuronal development, 

synaptogenesis, neurite outgrowth, neuroprotection, and stimulation of proliferation of 

neuronal progenitor cells [127]. However, beside amyloidogenic APP processing, other 

involvement of APP in direct or indirect neurotoxicity in AD is still unclear. Recent 

studies have proposed that the content of membrane cholesterol can modulate Aβ 

peptide production by affecting the stability of lipid rafts (ganglioside- and cholesterol-

enriched dynamic membrane microdomains) and other membrane domains where APP 

and some APP processing secretases are located. In particular, membrane cholesterol 

can affect the cellular localization and the activity of the APP and the secretases 

modulating APP processing through the amyloidogenic or the non-amyloidogenic 

pathway [128]. Moreover, membrane cholesterol can affect the way Aβ peptides 

interact with the plasma membrane favouring or disfavouring aggregate nucleation and 

it can hinder the interaction of Aβ oligomers with the cell membrane thus avoiding their 

cytotoxic effects [128]. Conflicting results have highlighted that altered cholesterol 

content in neuronal membranes could favour the amyloidogenic or the non-

amyloidogenic pathway of APP processing with increased or reduced Aβ40/42 
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production, respectively [128]. Several reports indicate that α-secretase and BACE1 

compete for APP and that such competition depends on APP compartmentalization in 

the cell membrane [130]; in addition, recent findings support the idea that the way APP 

is processed by the cell depends on the membrane localization of the APP itself and the 

various secretases. However, conflicting data have been reported on the effect of 

membrane cholesterol on APP processing. Several data indicate that in peripheral and 

neuronal cell lines low membrane cholesterol and increased membrane fluidity 

stimulate the non-amyloidogenic pathway (α/γ-secretase cleavage); this could result 

from reduced activity of BACE1, the enzyme starting the amyloidogenic pathway, and 

from increased α-secretase activity and APP content in the cell membrane, where it can 

undergo α-secretase cleavage [131]. The proposed model postulates that two pools of 

APP do exist in the cells, one associated with membrane rafts and another out of rafts, 

where α-cleavage occurs, suggesting that only the raft-localized APP processing results 

in Aβ generation [132]. According to this model, lipid raft clustering would bring into 

close contact APP and BACE1, with increased β-cleavage in the amyloidogenic 

pathway. Such a scenario would be favoured by high levels of brain cholesterol. 

According another theory, BACE1, but not APP, is localized to lipid rafts [128], as a 

consequence, a moderate loss of membrane cholesterol would result in raft disassembly 

and increased BACE1-APP colocalization in non-raft membrane domains, with 

increased β-cleavage and consequent Aβ generation. Such a scenario would be favoured 

by low levels of brain cholesterol. Gangliosides (GM1, GD1a, GD1b, GT1b etc.), 

mainly found in the outer leaflet of mammalian plasma membranes, are glycosylated 

sphingolipids enriched in membranes of the nervous system. Further studies pointed out 

that in AD brain tissue the total ganglioside pattern is significantly altered [133]. 

Micropathological analysis of amyloid plaques has revealed that GM1, like cholesterol, 

binds to Aβ and it was suggested that the GM1/Aβ complex might initiate amyloid fibril 

formation [133]. In addition, it has been demonstrated that GM1 is the most effective 

natural compound that increases Aβ production. In the presence of GM1, increased γ-

secretase and decreased α-secretase activity resulted in up to a 10-fold increase in Aβ 

levels [134]. The effect of gangliosides on Aβ production supports the notion that 

cholesterol is not the only lipid that mediates APP processing. Indeed, both cholesterol 

homeostasis and glycosphingolipids, especially the ganglioside GM1, can cause 
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significant alterations in Aβ production. Interestingly, both lipid classes, gangliosides 

and cholesterol, are major components of lipid rafts. The dynamic nature of lipid rafts 

means that both proteins and lipids can move in and out of raft domains with different 

partitioning kinetics, and there is evidence to indicate that lipid rafts influence the 

processing of membrane-anchored proteins [132]. Pertinent to AD, the proteins that 

could partition to lipid rafts include the secretases and APP, and changes in raft 

composition may result in altered APP processing. Findings such as these could provide 

the basis for novel AD therapeutics that specifically target the membrane. The 

processing of APP in membranes can be influenced by many factors, each of which can 

be important determinants of APP-mediated toxicity. Evidence from these studies 

further highlights the dynamic nature of the interactions between membrane proteins 

and cholesterol enriched membrane domains such as rafts in regulating both 

physiological and pathological processes at this site, and the implications of this for AD 

are becoming increasingly obvious. However, it is unknown whether APP is involved in 

the mechanism of neuronal degeneration in AD, apart from its role as the precursor of 

Aβ. It has been shown that the toxic fibrillar form of Aβ binds with high affinity to a 

subset of neuronal membrane proteins that includes APP. In particular, Aβ interacts 

with holo-APP and, to a much lesser extent, with the secreted soluble form of APP. Aβ 

neurotoxicity is significantly reduced in cortical cultures established from APP-null 

mice, suggesting that APP can modulate Aβ toxicity [135]. Thus an interaction of Aβ 

with its normal cellular precursor may lead to neuronal degeneration in a manner 

reminiscent of the pathogenic mechanism of prions. It has been seen that Aβ may also 

interact with APP at the level of APP processing. For example, Aβ can induce its own 

expression [136] and alter the metabolism of APP [137]. Several reports indicated that 

the over-expression of APP in neurons or neuronal cell lines is toxic in several studies 

[138, 139]. Over-expression of APP in differentiated NT2 cells activates caspase-3 and 

induces apoptosis [140]. APP could potentially transduce a pro-apoptotic signal through 

its interaction with the adapter proteins Fe65 and X11 or through an interaction with G 

proteins [141], suggesting that the  binding of Aβ to APP resulted in a toxic gain of 

function, possibly by inducing an APP conformational change that triggered cell death. 

Different cell phenotypes over-expressing APP were shown to undergo an intense 

amyloidogenic metabolism with elevated Aβ peptide production [142]. In line with 
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these data, a higher resistance threshold to cytotoxicity has been found in some APP 

over-expressing cell lines, such as B103 cells that exhibited rescue features against 

ultraviolet irradiation and staurosporine toxicity [143]. Thus, Aβ toxicity and APP 

biology may be linked. These mechanisms of toxicity involve anomalous 

processing/expression of APP or interaction between Aβ and APP either at the cell 

surface or in the secretory pathway, where the two proteins are in proximity.  

 

Peripheral cells as an investigational tool for Alzheimer's disease  

To identify those cellular and molecular abnormalities that cause the 

neuropathological lesions characteristic of AD, autopsied brains and extraneural tissues 

have been used. The use of peripheral cells is based on the hypothesis that AD might be 

a systemic disease that affects several tissues in the body. The specific brain damage 

could be the expression of a greater sensitivity to injury in postmitotic cells of the brain. 

Furthermore, a potential genetic defect underlying the disease may be manifest in 

several body tissues that express the gene involved. Peripheral tissues suitable for 

exploring pathophysiological hypotheses and possibly for providing a useful biological 

marker for diagnosis of AD comprise skin fibroblasts, platelets, lymphocytes, as well as 

body fluids such as plasma or cerebrospinal fluid (CSF) [144]. Among extraneural 

tissues, cultured skin fibroblasts have been used successfully to elucidate the molecular 

and biochemical bases of a large number of inborn errors of metabolism which cause 

neurological disease i.e. Refsum’s disease, Lesch-Nyhan disease  and Tay-Sachs disease 

[145]. Moreover, fibroblasts are an appropriate model for studies on those genetic 

diseases of the nervous system with late clinical onset, including familial Alzheimer’ s 

disease (FAD), because they can be cultured and amplified, and contain the complete 

genomic information of the organism from which they are derived. A number of 

abnormalities in metabolic and biochemical processes have been found in cultured FAD 

[146-149]. Some of the described alterations reflect events that have also been 

demonstrated to occur in the AD brain [147, 148]. Another piece of evidence in support 

of speculation that AD is not confined to the brain and that justifies the use of 

fibroblasts in AD research, is the finding that β-amyloid can accumulate in non neural 

tissues and blood vessels of AD patients, including skin, subcutaneous tissues and 

intestine [150] although it should be stressed that this finding has only been confirmed 
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by one group. When using cultured skin fibroblasts, some technical variables should 

also be considered. Growth properties and in vitro aging of AD and control fibroblast 

cultures have been shown to differ by some Authors [151] but not by others [152]. 

Since growth properties and biological age in culture can have profound effects on the 

properties of cells cultured from skin, including the expression of genes (which could be 

related to AD), this point is critical and requires reexamination in a larger population 

[153]. Accordingly, reproducible and interpretable results with the AD fibroblasts 

model require attention to the replicability of culture conditions including, but not 

limited to, matching AD and control cells for age, sex of the donors, and biological age 

in culture. Different growth conditions, aging of cultures in vitro and state of confluency 

of the cells at the time of the experiment may well account for discrepancies between 

data from different laboratories. Only abnormalities which replicate in larger series 

across different laboratories or characterize subgroups of AD patients are likely to be 

interesting in diagnosing AD. Alzheimer’s disease diagnosis appears to be the major 

challenge posed by AD in its sporadic late-onset form, which still represents the vast 

majority of all cases. On the other hand, data obtained using fibroblasts from individuals 

with known gene defects, although representing only a small proportion of all AD cases, 

could be very informative about the cellular pathophysiology of AD. Recent advances 

in understanding the genetics of AD allow identification of families bearing mutations 

in APP, presenilin-1 (PS-1), or presenilin-2 (PS-2) genes coded on chromosomes 21, 14 

and 1, respectively [154]. Fibroblast lines from FAD patients can therefore be classified 

according to the specific gene defect to see whether a particular genetic abnormality 

alters cellular function in a unique manner (Table 2).  

 

Table 2: Genetic defects and functional consequence in cultured human FAD fibroblasts  

 

Modified from [152] 
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In spite of these drawbacks, peripheral cells can be used to identity and to test 

hypothesis on the primary pathophysiological mechanisms leading to AD avoiding 

variables derived from a postmortem state. Studies of autopsied brain tissue cannot 

clarify whether abnormal oxidative processes are inherent properties of AD cells or are 

secondary to neurodegeneration [2], while studies on cultured skin fibroblasts from 

FAD patients bearing either APP or PS-1 gene mutations could reveal the early 

biochemical anomalies induced by various forms of Aβ aggregates, approaching to the 

identification of early modifications in living cells having a genetic drawback in tissues 

where AD lesions occur. On the other hand, peripheral cells can not be used to answer 

other clinically relevant questions that require a behaving organism, or intact brains. 

Low or absent expression of neuronal proteins by peripheral cells cultured under 

standard conditions is an important limiting factor. In the study of AD and other 

neurological diseases, peripheral cells are indeed an adjunct for studies of the brain and 

other clinically affected tissues, providing the tools to study in vitro the dynamic 

alteration of metabolic processes that neuropathological examination indicates might be 

targets of the disease [144].  

 
 

-THE MOLECULAR BASIS OF AMYLOID CYTOTOXICITY- 

 
The data reported in the last few years showing that protein aggregation into 

assemblies of amyloid type can be considered a generic property of the polypeptide 

chains suggest that protein aggregation in cells can be a more common phenomenon 

than previously believed. Furthermore, the findings that aggregates of disease-unrelated 

proteins display the same cytotoxicity as those formed by proteins and peptides 

associated with disease suggest that toxicity is a consequence of the common structure 

of aggregates and that, at least in most cases, it proceeds by impairing common cellular 

parameters such as free calcium (Ca2+) and reactive oxygen species (ROS) levels [155]. 

An increasing body of evidence supports the idea that the most highly cytotoxic 

aggregates are the early prefibrillar assemblies or, possibly in some cases, the individual 

misfolded molecules [156] rather than mature fibrils. In addition, the cascade of 

biochemical modifications triggered by the exposure of cells to any aggregated 

polypeptide chain ultimately leading to cell death, at least in most cases, starts with the 
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alteration of the same cellular parameters, such as the disruption of the integrity of cell 

membranes, the imbalance of ion homeostasis, the impairment of mitochondrial 

activity, the alteration of lipid metabolism [157]. 

 

Cell membranes as key sites of amyloid interaction and cytotoxicity 

A leading theory on the molecular basis of amyloid toxicity suggests that amyloid 

unstable assemblies interact with cell membranes destroying their ordered structure, 

eventually leading to membrane permeabilization with subsequent alteration of ion 

homeostasis and intracellular redox status [40, 58]. Indeed cell surfaces can catalyze 

aggregate nucleation and self-assembly on the bilayer surface is critical for membrane 

disruption [158]. However, in spite of the remarkable research efforts spent in the last 

years, the molecular basis of Aβ–membrane interaction and the ensuing structural 

modifications of the latter remains substantially elusive. Indeed, the question as to 

whether oligomer receptors or preferential interaction sites on the cell membrane do 

exist still awaits a convincing answer. The question is made even more intriguing by the 

increasing data indicating that amyloids grown from different peptides and proteins 

could behave similarly in their cytotoxic effects and, conversely, that structurally 

different amyloids grown under differing conditions from the same peptide/protein can 

display different cytotoxicities [159]. These evidences support the idea that amyloid 

cytotoxicity results from aggregate interaction with the cell membrane, with non-

specific permeabilization of the latter [40, 56, 58, 160]. Because amyloid oligomers 

share a common structure and they are all intrinsically toxic to cells, this suggests that 

they also share a common mechanism of toxicity. If soluble oligomers have a common 

mechanism of toxicity, it implies that they act on the same primary target. This 

fundamental unity restricts number of potential targets to ones that are plausible of all of 

the different types of soluble amyloid oligomers. Additionally, some amyloids are 

cytosolic, whereas others are luminal or extracellular, suggesting that the target of 

oligomers must be accessible to both compartments. The obvious target that satisfies 

this criterion is the plasma membrane, because it forms the interface between the two 

compartments [161]. It has also been reported that all types of oligomers specifically 

permeabilize cell membranes. The addition of amyloid oligomers to cell cultures causes 

a rapid and large increase in cytosolic free Ca2+ and leads to liberation of Ca2+ from 
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intracellular stores. This is consistent with reports that oligomers may subsequently 

penetrate into cells where they similarly disrupt intracellular membranes to cause 

leakage of sequestered Ca2+, but it could also result as a consequence of altered 

intracellular signaling [157] Amyloid oligomers also caused the leakage of the 

membrane impermeant dye calcein from cells, indicating that a variety of molecules 

diffuse across the membrane after oligomer treatment. This is in good agreement with 

previous reports of oligomer induced release of dye from phospholipid vesicles. [61, 

162]. Even though soluble oligomers may not be acutely toxic in vivo as they are in 

vitro, the chronic leakage of ions across the plasma membrane may be sufficient to 

disrupt normal neuronal function and serve as a source of chronic stress in maintaining 

a normal membrane potential [161]. The neurotoxicity of Aβ is exhibited in many 

fields. One of the potential mechanisms for inducing the neurotoxicity of Aβ is direct 

interaction with the membranes. It has been reported that Aβ–membrane interaction 

event may be followed by the insertion of Aβ into the membrane in a structural 

configuration which forms ionic pores [163]. Aβ can destroy the structure of brain 

membranes [164] and may stimulate free radical production by interfering with the 

regulation of Ca2+ homeostasis and cell enzymatic activity [165]. Aβ can also alter the 

physical-chemical properties of neuronal membranes, including membrane fluidity, 

membrane lipid dynamics, and the activity of various membrane-bound proteins [166]. 

The interaction of Aβ with non-protein components of the plasma membrane, such as 

monosialoganglioside GM1 and cholesterol, has been a subject of intense investigation. 

These studies have addressed the fundamental question about the conversion of 

elemental units of Aβ into its toxic aggregates. Indeed, a series of findings indicate that 

the lipid composition of the membrane governs the outcome of Aβ interactions with cell 

membranes and the effectiveness of this interaction closely correlates with Aβ 

secondary structure [167]. It has been shown that the ability of Aβ to insert into lipid 

bilayer is critically controlled by the ratio of cholesterol to phospholipids. Altering this 

ratio, by lowering the concentration of cholesterol, results in Aβ staying on the 

membrane surface region, mainly in a β-sheet structure. In contrast, as the ratio of 

cholesterol to phospholipids rises Aβ can insert spontaneously into lipid bilayer by its C 

terminus, generating α-helix and removing almost all β-sheet structure [168]. Moreover, 

increasing evidence reported that Aβ selectively recognizes GM1 clusters in membranes 
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and binds to, and accumulates on, GM1-rich domains in a time- and concentration-

dependent manner by adopting an altered conformation which could act as a seed for the 

assembly of soluble Aβ [169]. A recent paper has shown that annular protofibrils grown 

from Aβ peptides are relatively stable and harmless to cultured neuronal cells and do 

not permeabilize synthetic lipid vesicles, contrary to similar protofibrils grown from 

prefibrillar oligomers at the lipid surface [101]. These data, together with 

immunological evidence, led to suggest that the toxic annular protofibrils may form 

pore structures into the membrane resembling those arising from pore-forming toxins. 

In conclusion, the interaction of Aβ with the surface of the cell membrane may results 

in the activation of a chain of processes that, when large enough, become cytotoxic and 

induce cell death by apoptosis. However, the studies on membrane permeabilization 

have been carried out mainly on synthetic lipid vesicles lacking the complex lipid and 

protein structure of the cell membrane. Therefore, any conclusion that amyloids are 

endowed by themselves with non-specific lipid membrane permeabilizing behaviour, 

although of value, cannot be directly extrapolated to cells, both in culture and in tissue, 

mainly as far as the specificity of the permeabilization effect is concerned.  

 

Dysregulation of calcium homeostasis in Alzheimer's disease 

Rising evidence suggests that soluble amyloid oligomers, sharing common structural 

features and the ability to permeabilize membranes, may also share a common primary 

mechanism of pathogenesis in degenerative diseases. Indeed, membrane 

permeabilization by amyloid oligomers may initiate a common group of downstream 

pathologic processes, including intracellular Ca2+ dyshomeostasis, production of ROS, 

altered signaling pathways, and mitochondrial dysfunction that represent key effectors 

of cellular dysfunction and cell death in amyloid-associated degenerative disease [161]. 

The mechanism by which Aβ oligomer interaction with the membrane results in the 

generation of a subsequent Ca2+ influx remains elusive, and a variety of mechanisms 

have been proposed [161, 170]. Numerous studies have first showed that Aβ increases 

the level of cytoplasmic Ca2+ rendering neurons more susceptible to glutamate-induced 

neurotoxicity and that this increase in cytoplasmic Ca2+ is principally due to an influx of 

extracellular Ca2+ across the cell membrane [171, 172]. Another mechanism by which 

Aβ can disrupt calcium homeostasis is related to its ability to form ROS that may induce 
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membrane lipid peroxidation, which causes alterations in membrane properties and 

affects the function of membrane transporters and ion channels leading to an elevation 

of intracellular Ca2+ levels [173]. Interactions of Aβ oligomers and Fe2+ and Cu+ 

generate hydrogen peroxide and hydroxyl radicals [174]. A third mechanism by which 

Aβ disrupts Ca2+ homeostasis [163] suggests that Aβ may bind to the plasma membrane 

to form artificial membrane pores. The ability of Ab oligomers to form Ca2+-permeable 

channels in neuronal plasma membranes is consistent to recent in vivo Ca2+-imaging 

experiments performed with APP transgenic mice, by showing that resting Ca2+ levels 

were significantly elevated in approximately 35% of neurites located in the immediate 

vicinity of Aβ plaques [175]. Moreover, electrophysiological and atomic force 

microscopy (AFM) studies have shown that Aβ oligomers can form small annular 

structures on lipid membranes which resemble membrane pores [78]. Indeed, similar 

structures have also been seen using another neurotoxic protein α-synuclein [176]. 

Other studies also support the notion that Aβ peptides can disrupt lipid membranes. 

However, in these studies the investigators suggest that Aβ may cause weakening or 

thinning of the plasma membrane [160, 177]. Despite the large number of studies 

suggesting that Aβ may directly disrupt lipid membranes, most of the evidence for the 

membrane pore hypothesis comes from in vitro studies using purified Aβ and artificial 

lipid membranes. In contrast to the artificial pore hypothesis, there is abundant evidence 

both from cell culture and in vivo studies to indicate that Aβ can trigger Ca2+ influx 

through endogenous membrane ion channels. Several studies indicate that Aβ may 

trigger the opening of NMDA receptors. It has been observed that Aβ-induced toxicity 

in HEK293 cells expressing NMDA receptor subunits was blocked by a non-

competitive NMDA receptor antagonist [178]. It has also been proposed that effects of 

Aβ on NMDA receptors may be mediated by a direct action on a7nicotinic 

acetylcholine receptors (a7nAChR) [179]. Furthermore, it was reported that Aβ can 

block a fast-inactivating K+ current, potentially leading to prolonged cell depolarization 

and increased Ca2+ influx and intracellular accumulation [180]. Studies using other 

amyloidogenic proteins support the notion that oligomers stimulate Ca2+ influx via 

voltage-gated Ca2+ channels (VGCCs). Other studies  showed that prion protein (PrP) 

and Aβ raised intracellular Ca2+ through L-type channels [181]. In addition other reports 

show that amyloidogenic transthyretin can induce Ca2+ influx through both L- and N-
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type channels in SH-SY5Y neuroblastoma cells [182]. Other studies suggest that Ca2+ 

may enter through a non-selective cation channel in response to Aβ [183]. Finally, it has 

been found that changes in the lipid composition of the neuronal membranes may have 

regulatory consequences for interactions of Aβ with cells in the brain. The presence of 

cholesterol in artificial lipid bilayers inhibits the channel-forming activity of human 

amylin [184] and reduces the insertion and formation of ion channels by Aβ25–35 

[185]. It has also been suggested that cholesterol controls the incorporation of Aβ into 

cell membranes by modifying the fluidity of the neuronal membranes. This 

incorporation consequently results in formation of Aβ Ca2+ channels, and thus cell 

death. If the Aβ oligomer encounters a membrane with increased fluidity due to a lower 

than normal level of cholesterol, the insertion process occurs and a Aβ Ca2+ channel is 

formed. When the level of cholesterol in the membrane is higher than normal, the 

insertion process is prevented by the enhanced stiffness of the membrane [186]. In 

conclusion, it has been demonstrated that the magnitude of the toxicity expressed by Aβ 

on cells is modulated by the amount of cholesterol in the surface membrane. By 

affecting the physical properties of the membrane, cholesterol modulates the interaction 

and possibly the incorporation of Aβ ion channel protein into the cell membrane. Recent 

studies indicate that genetic factors could also play a role in the dysregulation of Ca2+ 

homeostasis in AD. It is now well established that mutations in the genes encoding 

presenilins-1 or 2 (PS-1or PS-2) cause familial AD (FAD) [187]. In the case of the PS-1 

gene, more than 150 FAD mutations have now been identified, and, 10 FAD mutations 

have been identified in the PS-2 gene. It seems very likely that all FAD mutations cause 

AD via a similar mechanism, i.e., by increasing the relative proportion of Aβ species 

that aggregate readily. Presenilin mutations have been found to increase release of 

intracellular Ca2+ from ryanodine or inositol 1,4,5-trisphosphate (IP3) channels [188]. It 

is possible that there is a link between γ-secretase activity and intracellular Ca2+ stores. 

In fact, it has been found that presenilin mutant-induced enhancement of Aβ secretion 

was abolished in IP3 receptor knockout cells [189]. The finding suggests that γ-

secretase cleavage must be downstream of IP3 signalling, but how this occurs is still 

very unclear. Recently, a polymorphism in a gene encoding a novel Ca2+ conducting 

channel was found to have linkage to AD [190]. This channel is called Ca2+ homeostasis 

modulator 1 (CALHM1) and is a conserved three transmembrane domain containing 
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glycoprotein. It localizes to both the ER and the plasma membrane. Overexpression of 

this channel induces a cytosolic Ca2+ influx pathway, which is unaffected by 

conventional Ca2+ channel blockers, but prevented by the removal of extracellular Ca2+ 

and non-specific ion channel pore blockers. The induction of this particular Ca2+ influx 

route into the cytosol results in an increase in APPα production, with a concomitant 

reduction in Aβ, suggesting an effect on one of the α-secretase enzymes.  Notably, 

knockdown of this channel, or the presence of the identified polymorphism for AD 

(rs2986017 encoding P86L substitution) decreases Ca2+ permeability and increases Aβ 

production. These data provide strong evidence that Ca2+ signalling and influx can 

contribute to the initiation of AD pathology in the aged brain, and that specific Ca2+ 

pathways can affect APP metabolism. While further studies are required to replicate the 

linkage of the CALHM1 rs2986017 polymorphism to AD, this important finding shows 

how changes in Ca2+ influx pathways can alter APP processing and Aβ production 

[190]. 

 

Oxidative stress and Alzheimer’s disease 

All aerobic organism are susceptible to oxidative stress simply because semireduced 

oxygen species, superoxide and hydrogen peroxide are produced by mitochondria 

during respiration [191]. The brain is particularly vulnerable to oxidative processes 

because: (I) glucose is the major nutrient and, therefore, the brain has a high glucose 

metabolism and respiratory turnover; (II) it has only low levels of antioxidant defense 

enzymes compared to other tissues; (III) it contains high concentrations of 

polyunsaturated fatty acids, which are potential substrates for lipid peroxidation; and 

(IV) it is rich in enzymatically active transition metals, which can potentially catalyze 

radical formation [192]. In addition to the oxidative phosphorylation in the 

mitochondria, numerous other enzymatic and non-enzymatic cellular mechanisms exist 

that can generate O2- or H2O2 [192]. The AD brain is under intense oxidative stress 

[193]. Among the mechanisms involved in Aβ-mediated neurotoxicity, oxidative stress 

(lipid peroxidation, protein oxidation, DNA and RNA oxidation) has largely been 

proposed to play a pivotal role in the development of AD (Fig. 10) [194-198].  
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Figure 10. Central role of Aβ in the oxidative stress in, and toxicity to, neurons in AD brain. 
The oxidative stress is manifested by ROS formation, lipid peroxidation and subsequent 
modification of proteins by the reactive lipid peroxidation products HNE and acrolein. Other 
consequences of Aβ-associated oxidative stress are free fatty-acid release, protein oxidation, 
Ca2+ dyshomeostasis (with subsequent alterations in mitochondrial function, oxidative stress, 
and induction of apoptosis pathways), mitochondrial impairment, peroxynitrite formation, 
inflammatory response, apoptosis and other cellular responses. Ultimately, the neuron dies. 
Antioxidants are able to interfere with most, if not all, of these processes, including the 
neurotoxicity. From [193].  
 

Aβ can fragmentate and generate free radical peptides with potent lipoperoxidizing 

effects on the synaptosomal membranes in the neocortex [199]. Indeed, cells 

experiencing amyloid toxicity usually exhibit impaired viability, oxidative stress, and 

mitochondrial dysfunction. Reactive oxygen species (ROS) and reactive nitrogen 

species (RNS) accumulation result in chemical modification of cell components 

including lipids, proteins, and nucleic acids leading to oxidative damage of these 
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biomolecules [200, 201]. Oxidative stress may be defined as an imbalance between the 

production of free radicals and the ability of the cell to defend against them through a 

set of antioxidants and detoxifying enzymes that include superoxide dismutase, catalase 

and glutathione peroxidase. When this imbalance occurs, oxidatively modified 

molecules (lipids, proteins, nucleotides) accumulate in the cellular compartment causing 

dysfunction [202]. It is well known that membrane destabilization by the insertion of 

Aβ aggregates into the lipid bilayer, and the subsequent early modifications of ion 

balance and intracellular redox status may trigger subsequent modifications eventually 

leading to cell death [56, 93, 157]. Small-angle X-ray studies showing the insertion of 

Aβ into the lipid domain of membranes [203], and electron microscopic 

immunolocalization of Aβ to the neuronal plasma membrane of cultured cells [204], 

confirm membranes as the target for Aβ damage. Moreover, it has recently described 

that amyloid oligomers exogenously added to the culture medium of fibroblasts bearing 

APPV717I gene mutation, obtained from familial AD (FAD) patients, can readily insert 

into oxidative-damaged surfaces where the membrane integrity is compromised, 

resulting in a prompt increase in the production of ROS [205]. These findings compel 

evidence that cells bearing increased membrane lipoperoxidation are more susceptible 

to aggregate toxicity as a result of their reduced ability to counteract amyloid oligomeric 

attack. These data support the rising consensus on major role of membranes as initial 

triggers of the biochemical modifications culminating with neuronal death [40]. Loss of 

membrane integrity leads to cellular dysfunction, such as inhibition of ion-motive 

ATPases, loss of Ca2+ homeostasis, inhibition of glial cell Na+-dependent glutamate 

uptake system with consequences on neuronal excitatory NMDA receptors, loss of 

protein transporter function, disruption of signaling pathways, and activation of nuclear 

transcription factors and apoptotic pathways [206]. Usually, in cells, the rise of free 

Ca2+ is associated with a marked increase in ROS. This is a result of the activation of 

oxidative metabolism following the increased need for ATP required by the Ca2+ pumps 

to clear the excess free Ca2+ [93]. In turn, ROS increase may reinforce the rise of free 

Ca2+ by inhibiting the Ca2+ pumps. In addition, ROS trigger mitochondrial impairment 

and consequent intrinsic or extrinsic apoptotic pathways [93], or in some cases lead to 

cell death by necrosis [93]. Several studies have shown that the role of methionine 35 

(Met-35), in conjunction with the secondary structure of the Aβ42 itself, is critical for 
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the oxidative and neurotoxic properties of the peptide [207]. Mutagenesis studies on the 

C-terminal helical region of the peptide suggest that presence of Aβ42 in the lipid 

bilayer is necessary for induction of Met-35 lipid peroxidation and subsequent 

neurotoxicity. The lipoperoxidation process could influence the pathogenesis of AD 

[201]. Lipid peroxidation can lead to changes in the membrane fluidity, formation of 

conjugated dienes, multiple aldehydes, and isoprostanes, the release of free fatty acids, 

and a consequent decrease in levels of polyunsaturated fatty acids (PUFA), etc. [206]. 

Indeed, 4-hydroxynonenal (4-HNE), which is one of the most reactive end products of 

lipoperoxidation, appears to induce neuronal death upon binding to proteins by altering 

important transporter proteins, such as the ATPases involved in Ca2+ homeostasis and 

the glutamate transporter EAAT2 [207, 208]. The healthy brain is protected from 

oxidative injury by antioxidant defences that include antioxidant enzymes and free 

radical scavengers. It has therefore been proposed that the weakening of cell antioxidant 

defenses (TAC) may contribute to AD pathogenesis [208]. This hypothesis agrees with 

data indicating that lymphoblasts and fibroblasts from FAD patients carrying mutations 

in the APP and PS-1 genes display a significant TAC impairment, with altered 

glutathione (GSH) levels and a marked increase in membrane lipoperoxidation 

compared to the same cells from age-matched healthy controls [205, 209, 210].  

 
 

-CHOLESTEROL IN THE CENTRAL NERVOUS SYSTEM- 

 
Sterols are essential components of eukaryote membranes. Their incorporation 

enhances the packing of the acyl chains of phospholipids in the hydrophobic phase of 

the bilayer, increases its mechanical strength, and reduces its permeability [211].  

Cholesterol is an essential component of the plasma membrane of all cells (nearly 90% 

of total cellular cholesterol), where it increases membrane rigidity reducing lipid 

disorder. Cholesterol determines the biophysical properties of cell membranes by its 

unique structure, lowers the permeability of membranes, possibly by compacting 

phospholipids, and regulates their fluidity in a temperature-dependent manner by 

changing the order of fatty acyl chains. Importantly, cholesterol also determines the 

functional properties of membrane-resident proteins like ion channels and transmitter 

receptors [212, 213]. Mammals and other vertebrates can either make sterols de novo or 
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get cholesterol from the diet. The homoeostasis of cholesterol in the brain is maintained 

by a series of interdependent processes that include synthesis, storage, transport, and 

catabolism. Glial cells and neurons can synthesize cholesterol de novo, while 

cholesterol can also be recycled from extracellular locations within the Central Nervous 

System (CNS). Essentially all the cholesterol used in the brain appears predominantly 

synthesized de novo in the CNS, where it enhances the production of pre-synaptic 

components and synaptic vesicles, whereas statins block dendrite outgrowth and axonal 

branching [214]. Neuronal cells appear to synthesize most of the cholesterol needed for 

their growth and synaptogenesis during development, whereas mature neurons 

progressively lose such ability, getting cholesterol from glial cells, particularly 

astrocytes, possibly as a consequence of the large metabolic requirement in the 

biosynthesis of cholesterol, and the need for optimal energy efficiency within the CNS 

[215]. The brain synthesizes essentially all of its cholesterol and does not appear to 

depend on the circulating pool of the steroid; actually, the plasma lipoproteins do not 

cross the blood brain barrier (BBB) and do not deliver significant amounts of 

cholesterol to the CNS [216]. In the adult brain, the astrocytes not only synthesize, but 

also internalize and recycle the cholesterol released from degenerating nerve terminals 

to deliver it back to neurons [217]; this transport requires cholesterol binding to one of 

the variants of apolipoprotein E (ApoE), a major lipoprotein in the CNS that is 

synthesized by astrocytes [218]. ApoE is a ligand for cell surface lipoprotein receptors 

such as the LDL receptor and the LDL receptor-related proteins (LRP); ApoE also 

regulates lipid transport to neurons and clears cholesterol from the extracellular space 

[219]. ApoE-cholesterol complexes internalized by endocytosis are then hydrolyzed in 

the neuronal lysosomes allowing the intracellular release of free cholesterol, with 

reduction of endogenous synthesis, by 3-hydroxy-3-methylglutarylCoA reductase 

(HMGCoAR) inhibition, and storage upon fatty acid esterification by acyl-coenzyme A 

cholesterol acyltransferase (ACAT) [219]. As neuronal membranes must be kept with a 

reasonably constant amount of cholesterol, so to guarantee proper function, a 

mechanism for cholesterol elimination is required. Because there is no degradation 

mechanism for this sterol any excess must exit the brain into the circulation. Cholesterol 

exchanges between the CNS and the circulating blood imply the participation of the 

BBB, that hinders the direct passage to the CNS of the blood cholesterol and limits the 
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reverse passage of cholesterol from the CNS to the venous circulation. Hydroxylation of 

the side chain of cholesterol by the cholesterol 24-hydroxylase allows the sterol 

molecule to cross the BBB freely [220]. In fact, the main product of brain cholesterol 

metabolism is the 24-hydroxy derivative that is translocated to the circulating blood 

through the BBB. This mechanism is responsible for the catabolism of most of the 

cholesterol that is turned over in the brain. In conclusion, the cholesterol content of 

cellular membranes is tightly controlled by elaborate mechanisms that balance the level 

of cholesterol synthesis, uptake, transport and release, allowing neurons and glial cells 

maintain proper sterol levels.  

 

Lipid rafts 

Cholesterol is not uniformly distributed in biological membranes, but it is found 

mainly in the cytofacial leaflet, where together with other lipids like sphingomyelin is 

concentrated in microdomains or rafts, and plays key roles in neuronal development as 

well as in the maintenance of neuronal plasticity and function [221]. The plasma 

membrane displays a complex structure with different regions coexisting in dynamic 

equilibrium. Among these, caveolae and lipid rafts – purified as detergent-resistant 

membrane fractions (DRMs) – appear to be involved in many cellular processes as well 

as endocytosis, signalling, oxidative stress, apoptosis, ion homeostasis and membrane 

protein trafficking and turnover [222, 223]. DRMs are cholesterol-, sphingolipid- and 

ganglioside-rich dynamic ordered microdomains freely diffusible throughout the cell 

membrane, which display very short half-lives and persistence times of the molecules 

embedded within them [224]. In lipid rafts, cholesterol is thought to act as a spacer 

between the hydrocarbon chains of the sphingolipids and as a dynamic glue that holds 

together rafts upon assembly. Cholesterol removal results in raft disassembly with 

dissociation, deregulation and/or inactivation of most raft proteins [225]. Many 

experimental data suggest that by means of raft formation, cholesterol contributes to the 

dynamic compartmentalization of molecules, allowing the fine-tuned modulation of 

signaling and proteolysis events [226], and it serves as a precursor or cofactor of several 

signaling molecules [226]. As the main constituent of rafts, cholesterol also contributes 

to raft molecule endocytosis [227], it is required for the formation of synapses [228] and 

it is a major component of the myelin sheath essential for an efficient electrical 
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transmission [229]. In particular, cholesterol is decisive for the ability of neurons to 

communicate. For that reason the brain posses a most robust mechanism to maintain the 

levels of cholesterol, in the neurons and their supporting cells, as independent as 

possible from the variations that occur in the circulation [215]. Due to the highly 

ordered nature of lipid rafts, glycosyl-phosphatidylinositol (GPI) anchored and doubly 

acylated proteins tend to cluster in these microdomains. Additionally, other proteins 

have shown the ability to move in and out of membrane rafts in response to ligand 

binding or oligomerization. Lipid rafts contain a variable set of membrane proteins and 

their clustering is thought to provide a spatial and temporal meeting point for signalling 

molecules, as well as for molecules involved in processing and trafficking of membrane 

proteins. This includes the APP and at least some of the proteases carrying on its 

cleavage [129, 230]. In particular, lipid rafts have been proposed to function as 

platforms where neurotoxic oligomers of proteins and peptides, including the prion 

protein (PrP) and the Aβ peptides, are assembled [231]. Actually, lipid rafts appear 

directly involved in prion protein stabilization and in the pathological conversion of the 

cellular (PrPc) to the scrapie (PrPsc) form [232]. Moreover, the PrPc conformation can 

be stabilized upon association with lipid rafts in the secretory pathway [233]. Increasing 

evidence shows that Aβ can also associate with lipid rafts and components of DRMs 

isolated from human and rodent brain as well as from cultured cells. Aβ was found to be 

tightly associated with monosialotetrahexosylganglioside (GM1), and it was originally 

postulated that this may act as a seed for its accumulation and aggregation [234]. 

Accordingly, it has been proposed that soluble Aβ peptide and PrP aggregation can be 

raft-associated processes [132] and that any alteration of cholesterol (as well as 

sphingolipid) homeostasis can be a shared primary cause of a number of 

neurodegenerative diseases [235]. All these findings, together with the presence, in the 

raft domains, of ligand-gated calcium channels (the AMPA and NMDA glutamate 

receptors) involved in Ca2+ influx into neuronal synaptic ends [236, 237] and in Ca2+ 

permeabilization of amyloid-exposed cells [238] has implicated lipid rafts also in 

functional impairment of cells exposed to β-amyloid [239]. However, no clear 

mechanistic evidence is presently available concerning the molecular and biochemical 

features of the relation between lipid rafts, their lipid content and dynamics, the 

generation of the aggregate precursors, as well as amyloid growth and toxicity. A recent 
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study aimed at providing information on the proteins involved in extracellular Aβ 

internalization inside primary neuronal cells has suggested a caveolae-independent, raft-

mediated mechanism. This implies lipid rafts as contributors not only to Aβ biogenesis 

and accumulation [132]  but also to extracellular Aβ translocation [240] and aggregation 

[239]. A recent report highlights a Fyn-dependent mechanism as a possible molecular 

basis of membrane-bound Aβ oligomer recruitment to lipid rafts [241], even if the 

relation between the preferential amyloid recruitment and physicochemical 

modifications of lipid rafts is currently unclear. 

 

A protective role for lipid raft cholesterol against amyloid-induced membrane 

damage  

Several reports showed that the disruption of cholesterol homeostasis can be 

detrimental to cells because toxic Aβ aggregates interact more easily with cholesterol-

poor membranes [94, 186, 242]. It has been recently demonstrated that membrane 

cholesterol can influence ADDL cytotoxicity to human neurotypic SH-SY5Y cells by 

modulating either the physical state of the cell membrane, mainly at the lipid raft level, 

or oligomer binding to the membrane itself, in most cases a key step in amyloid 

cytotoxicity. In particular, it seems that the cholesterol content of the cell membrane is 

inversely correlated with the membrane perturbing effects of Aβ42 oligomers [243]. 

Many reports suggest that Aβ binding and aggregation, as detected by ThT or Congo 

Red staining, occur in lipid raft domains where it is favoured by clusters of the key 

component GM1 ganglioside [241, 244]. It has also been hypothesized that Aβ42 adopts 

an altered conformation upon binding to GM1 and that in such an altered conformation 

it can act as a seed for Aβ fibrillogenesis in AD brain [244]. Moreover, numerous 

findings indicate that GM1 clusters are affected by membrane cholesterol depletion 

[245]. There are several reported findings on the effect of cholesterol on amyloid 

aggregate binding to the cell membrane [186, 242], in particular, in neuroblastoma cells, 

a mild loss of neuronal membrane cholesterol results in an increased binding of ADDLs 

to neuronal lipid rafts, while cholesterol-enriched membranes exhibited a significantly 

reduced ADDL-rafts colocalization [243]. There is no consensus on the steady-state 

fraction of rafts in the cell membranes, their size, location and lipid/protein 

composition, which might reflect rapid raft dynamics accounting for intrinsic raft 
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heterogeneity in different cultured or tissue cells. In fact, whether, and to what extent, 

these isolated DRMs reflect the physical, chemical and biochemical organization of 

lipid rafts in vivo remains to be elucidated. The ability of ADDLs to interact with 

purified DRMs and the effect of such interaction on physical and morphological 

features of the latter has been recently investigated [243]. The use of fluorescent probes 

to monitor the structural order and dynamics within the acyl chain region of liposome 

lipid bilayers is a technique abundantly used nowadays. The linear probe 1,6-diphenyl-

1,3,5-hexatriene (DPH) is the more widely and easily used and is seen as particularly 

useful when quantitative interpretation of observations in terms of details of bilayer 

dynamics and order are critical [246]. The DPH probe partitions equally between the 

ordered and the disordered phases of membrane lipid domains [247]. It is evenly 

distributed throughout all the lipidic regions in the plasma membrane of a living cell 

[246] and its location is similar in membranes with different content of cholesterol 

[248]. Anisotropy fluorescence measurements of DRMs purified from neuroblastoma 

cells confirmed that there is an inverse relation between cholesterol content and 

membrane perturbing effects of ADDLs. In particular, the DRMs microdomains 

purified from cholesterol-enriched cells are less susceptible to the decrease of fluidity 

caused by Aβ oligomers, conversely, the loss of cholesterol resulted in a higher 

susceptibility of disassembled lipid rafts, not only to Aβ42 oligomers but also to the 

Aβ42–1 monomeric peptide. This suggests that the more fluid the lipid raft membrane, 

the greater its ability to bind non-specifically Aβ42 and, possibly, other peptides [243]. 

The presence of β-sheet structure appears to be required for the membrane perturbing 

properties of Aβ oligomers only in DRMs mimicking raft microdomains with basal 

cholesterol content, but not in DRMs purified from cholesterol depleted plasma 

membranes, in agreement with previously reported evidences in synaptosomal plasma 

membranes [249]. In a recent study, rafts purified from the plasma membrane of 

neurotypic model cells previously enriched or depleted in cholesterol were for the first 

time imaged by atomic force microscopy (AFM) in liquid and it was shown that 

treatment of DRMs with ADDLs resulted in the formation of large cavities, or hollows. 

The size and depth of these cavities were significantly reduced in DRMs purified from 

cholesterol-enriched cells, suggesting cholesterol may protect against amyloid-induced 

cell membrane damage at the lipid raft level. The ADDL–lipid interaction may result in 
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lipid depletion from the bilayer, with the formation of steps reflecting differences 

between the thickness of a standard bilayer and that of a thinner phase [243]. Similar 

effects have been observed previously in supported lipid bilayers exposed to prefibrillar 

amyloid aggregates [92]. A thinner phase may result from lipid interdigitation, as 

observed in supported lipid bilayers interacting with transmembrane peptides [250]. 

Alternatively, oligomer interaction with the bilayer may induce trans–gauche 

conformational changes of the lipids, giving rise to a reduced bilayer thickness [251]. 

The formation of cavities was observed also in DRMs purified from cells pre-treated 

with Aβ42 oligomers [243]. However, in this case the depth and size of the cavities 

were significantly reduced, suggesting that living cells are able to resist, at least in part, 

ADDL-induced membrane damage. A typical feature of DRM samples observed by 

AFM was the presence of domains protruding from the lipid surface. These domains 

were shown to consist of fluid protein or lipoprotein complexes. In fact, they 

disappeared in the presence of proteases and displayed higher adhesion forces than the 

background [243]. Furthermore, it has been found that the domain size inversely 

correlates with the cholesterol content, reflecting increased environment fluidity, on the 

contrary, domain height directly correlates with the cholesterol content, as the result of 

an increased compliance of the cholesterol-depleted DRM environment. In addition, 

treatment of DRMs with ADDLs induced changes in domain morphology that appeared 

to depend on the content of cholesterol and suggested domain disassembly [243]. 

Overall, these data on DRM domains provide information on the structural and 

morphological features of the cell plasma membrane and its cholesterol- and GM1 

ganglioside-enriched raft domains. In particular, they suggest that the cholesterol 

content affects the ability of ADDLs to interact with the cell membrane by modulating 

membrane physical features at the raft level.  

 

Role of cholesterol in AD 

There is growing evidence that a link between cholesterol and the pathogenesis of AD 

exists [252]. ApoE is one of the major apolipoproteins in the plasma and the principal 

cholesterol carrier in the brain. In humans there are three common allele of APOE gene: 

ε2, ε3, ε4. Numerous independent studies have consistently confirmed that the ε4 allele 

of the APOE is the most prevalent risk factor for sporadic AD [253]. The risk for AD 
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conferred by APOE ε4 increases in a dose-dependent manner; however APOE ε4 is 

neither necessary nor sufficient to cause AD [254]. A key role of membrane cholesterol 

as a modulator of Aβ peptide production and clearance [128] as well as aggregation and 

neurotoxicity [186, 242, 255, 256] has recently been described. High cholesterol levels 

as risk factor for AD were first proposed in the early 1990s and since then considerable 

biochemical and clinical research has claimed the existence of a link between 

cholesterol, statin therapy and AD development [257-259]. Indeed, it was reported that 

lowering membrane cholesterol by statins and a cholesterol extracting drug (methyl-β-

cyclodextrin) resulted in the drastic reduction of amyloid production both in vitro and in 

vivo [257, 258]. Presently, the question of whether statins can lower the incident rate of 

AD remains unresolved [260]. In general, these observations lead to hypothesize that 

lowering the levels of cellular cholesterol would be a therapeutic target in the treatment 

of AD. On the other hand, high dietary cholesterol was shown to increase Aβ levels 

[258] and increased content of cholesterol in the brain appeared to correlate with an 

increased risk of developing AD. However, not all studies sustain this vision and 

epidemiological studies on the association between plasma cholesterol levels and the 

development of AD have produced contradictory conclusions [261]. Indeed, it is known 

that hydrophilic statins do not cross the BBB and that brain cholesterol progressively 

reduces with increasing age (the main risk factor for sporadic AD), such decrease 

appearing considerably accelerated in AD people [262, 263]. Two alternative scenarios 

involving lipid rafts, based on conflicting experimental results have been proposed to 

describe the effect of cholesterol in Aβ generation and aggregation in AD. The high 

neuronal membrane cholesterol model for AD claims that high cholesterol favours APP 

processing with increased Aβ generation and aggregation through lipid raft clustering 

bringing into close contact the resident populations of APP and its processing enzyme 

BACE-1 [264]. The alternative low neuronal membrane cholesterol model claims that 

most of the APP is normally located in non-raft membrane domains. Accordingly, low 

membrane cholesterol would favour raft disassembly and BACE-1 translocation to non-

raft domains supporting its contact with APP and enhancing cleavage of the latter with 

Aβ generation and aggregation (Fig. 11) [264]. Taken together, the findings reported in 

the last decade depict lipid rafts both as key domains where APP processing occurs and 

as primary interaction sites of ADDLs (and, possibly, other amyloid aggregates). 



Chapter I – Introduction 
 
_____________________________________________________________________________ 

Amyloid Cytotoxicity and New Acyl-SG Thioesters 

49 

However, much must still be learnt about the effective specificity and the biochemical, 

molecular and biological significance of such interaction.  

 

 

 

Figure 11. The high (A) and low (B) neuronal membrane cholesterol models of AD 
pathogenesis. The high cholesterol model assumes that low neuronal membrane cholesterol is 
protective against AD. In fact, high membrane cholesterol would result in increased lipid raft 
co-clustering and APP-BACE1 co-localization thus favouring the amyloidogenic pathway of 
APP processing with increased Aβ production. On the contrary, the low membrane cholesterol 
model envisages a protective role of relatively high amounts of membrane cholesterol assuming 
that APP is located in non-raft membrane domains. From [225]. 
 

The changes in the lipid composition of the neuronal membranes may have regulatory 

consequences for interactions of Aβ aggregates with cells in the brain. The presence of 

cholesterol in neuronal membranes is known to induce large changes in membrane 

physical features such as fluidity and density of lipid packing resulting in alterations of 

aggregate recruitment to the membrane and membrane permeabilization [184, 186]. In 

particular, it has been reported that the presence of cholesterol in artificial lipid bilayers 

inhibits the channel-forming activity of human amylin and reduces the insertion and 

formation of ion channels by Aβ40, Aβ42, and Aβ25–35 peptides [184-186]. Membrane 

cholesterol also interferes with neuronal apoptosis induced by soluble oligomers of Aβ 

peptide [256]. On the other hand, reducing membrane cholesterol makes the cell more 

vulnerable to the action of amyloid aggregates [186]. Accordingly, it has previously 

reported a significant correlation between resistance to amyloid toxicity and membrane 
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cholesterol content in various cultured cell types [94]. It has recently been shown that 

selective Alzheimer’s disease indicator-1 (seladin-1) gene, whose proteic product 

catalyzes the last steps of cholesterol biosynthesis, appears to be down-regulated in 

brain areas affected by AD [265]. Seladin-1 overexpression appears to protect 

neuroglioma H4 cells against Aβ-mediated toxicity by reducing oxidative stress and 

caspase-3 activity [265]. Some recent findings also indicate that seladin-1-induced 

membrane cholesterol enrichment protects SH-SY5Y cells against amyloid toxicity by 

reducing the interaction of Aβ42 oligomer with cell membrane, featuring seladin-1 as a 

susceptibility gene candidate for sporadic AD [266]. These data support a link between 

AD pathogenesis and loss of brain cholesterol suggesting that a fine modulation of the 

levels of this membrane sterol plays a crucial role in neuronal viability. 

 
 

-PROTECTIVE EFFECT OF GLUTATHIONE IN AD- 

 

Intracellular sources of reactive oxygen species 

The observation that biomolecules, which consist primarily of carbon, hydrogen, 

oxygen, nitrogen and sulfur, are disrupted by the presence of oxygen (O2) is an 

evolutionary paradox for aerobic life [267]. A wide variety of reactive oxygen species 

(ROS) can be found in biological systems. These ROS differ in their site of formation, 

their physiological function, their reactivity and their biological half-life. Mitochondria, 

nitric oxide synthase, arachidonic acid metabolism, xanthine oxidase, monoamine 

oxidase and P450 enzymes are sources of ROS in the brain. Correspondingly, healthy 

brain cells possess high concentrations of both enzymatic and small molecule 

antioxidant defenses (Fig. 12). The enzymes include CuZn-superoxie dismutase and 

Mn-superoxide dismutase, GSH-Peroxidase (GSH-Px) and catalase, as well as the small 

molecules glutathione (GSH), ascorbic acid, vitamin E and a number of dietary 

flavonoids. Thus, under normal physiological conditions cells manage with the flux of 

ROS. Oxidative stress describes a condition in which cellular antioxidant defenses are 

insufficient to keep the levels of ROS below a toxic threshold. This may be either due to 

excessive production of ROS, loss of antioxidant defenses or both (Fig. 12). 
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Figure 12. Balance of ROS generation and antioxidative systems. An imbalance of both 
systems due to either excessive production of ROS (left) or reduced antioxidant defense (right) 
leads to oxidative stress Modified from [268]. 
 

Glutathione homeostasis 

GSH is a tripeptide (L-γ-glutamyl-L-cysteinyl-glycine) that serves several essential 

functions within the cell [269-271]. It is the most abundant nonprotein thiol in almost all 

aerobic species, occurring at intracellular concentrations of 0.5 to 10 mM. In contrast, 

extracellular GSH concentrations are usually 3 to 4 orders of magnitude lower. Under 

physiological conditions, GSSG reductase maintains more than 98% of intracellular 

GSH in the reduced, thiol form (GSH). The rest is present within the cell as mixed 

disulfides (mainly GS-S-protein), as the disulfide (GSSG), and as thioethers. The key 

functional element of the GSH molecule is the cysteinyl moiety, which provides the 

reactive thiol group and is responsible for the many functions of GSH. These functions 

include (I) the maintenance of protein structure and function by reducing the disulfide 

linkages of proteins, (II ) the regulation of protein synthesis and degradation, (III ) the 

maintenance of immune function, (IV) protection against oxidative damage, and (V) 

detoxification of reactive chemicals. Moreover, GSH contributes as a storage and 

transport form of the cysteine moiety and it functions in leukotriene and prostaglandin 

metabolism [269-272]. The key structural elements of GSH are the γ-carboxyl peptide 
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linkage of glutamate and the presence of the C-terminal glycine, which directly 

determine its metabolism and function. The N-terminal glutamyl and cysteinyl moieties 

are linked through the γ-carboxyl group of glutamate instead of the more common α-

carboxyl peptide linkage, restricting cleavage to γ-glutamyl transpeptidase (γGT), which 

occurs on the external surface of certain cell membranes. Therefore, GSH is resistant to 

intracellular degradation and can only be cleaved by cell types that have γGT on the cell 

membrane. The presence of the C-terminal glycine protects the peptide against cleavage 

by intracellular γ-glutamylcyclotransferase. 

 

Glutathione biological functions 

GSH is predominantly involved in regulation of cellular sulfhydryl status via redox 

reactions. All aerobic organisms are subject to physiological oxidative stress as a 

consequence of aerobic metabolism. The intermediates that are formed, including 

superoxide and hydrogen peroxide, lead to the further production of toxic oxygen 

radicals that can cause lipid peroxidation and disrupt metabolic processes. GSH is the 

predominant defense against these toxic products of oxygen, particularly in the 

mitochondria, a major site for the synthesis of reactive oxygen intermediates [269]. 

Mitochondrial GSH is critical in the defense against both physiologically and 

pathologically generated oxidative stress. Mitochondria do not have the enzymes 

necessary for GSH synthesis, and they import cytosolic GSH. Endogenously produced 

hydrogen peroxide is reduced by GSH in the presence of selenium-dependent GSH 

peroxidase (GSH–Px) (Fig. 13). As a consequence, GSH is oxidized to GSSG, which in 

turn is rapidly reduced back to GSH by GSSG reductase at the expense of reduced 

nicotinamide adenine dinucleotide phosphate (NADPH), thereby forming a closed 

system (redox cycle) as illustrated in figure 13. Under normal conditions, GSSG 

reductase is quite effective at maintaining most cellular GSH in its reduced state (more 

than 98% GSH). However, under severe oxidative stress or where GSSG reductase 

activity is impaired, the ability of the cell to reduce GSSG may be overwhelmed, 

leading to its accumulation within the cytosol. To protect itself from a shift in redox 

equilibrium, the cell can actively transport GSSG out of the cell. However, GSSG may 

also react with cellular protein sulfhydryls via a mixed disulfide reaction, a process that 

can result in impaired protein function. Furthermore, GSH is implicated in regulation of 
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cellular sulfhydryl status via thiol-disulfide exchange. As oxygen tension in the 

environment increased during evolution, aerobic organisms needed a system to restore 

key sulfhydryl groups to their reduced state after exposure to oxidative stress [273, 

274]. Without a process to reduce protein disulfides, vulnerable cysteinyl residues of 

essential enzymes might remain oxidized, leading to changes in catalytic activity. 

 

 
 
Figure 13. The detoxification functions of GSH include the conjugation of electrophilic 
chemicals and reactive metals and the maintenance of the cellular thiol redox status. AH2 and 
A, reduced and oxidized forms, respectively, of compounds that participate in the synthesis of 
NADPH; RH and R, reduced and oxidized forms, respectively, of some organic molecules; 
ROOH, a hydroperoxide; ROH, an alcohol; RS-SG, a glutathione thioester; RS-SR’, a mixed 
disulfide of two organic molecules. From [275]. 
 

This function is fulfilled by the thiol-disulfide exchange catalyzed by thiol-

transferases in the presence of GSH, and may be essential to aerobic life (Fig. 13). The 
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thiol-disulfide equilibrium within the cell may regulate certain metabolic pathways by 

activating or inactivating key enzymes. Whereas many proteins are active when the key 

sulfhydryls are in the thiol form, others require them to be in the oxidized, disulfide 

form. Because the thiol-transferase reaction is bidirectional, the equilibrium will be 

determined by the redox state of the cell. Moreover, GSH regulates the cellular 

sulfhydryl status via storage and transfer of cysteine. Cysteine autooxidizes rapidly to 

cystine, producing potentially toxic oxygen radicals [276]. To avoid the toxicity of the 

autooxidation reaction, most of the nonprotein cysteine is stored as GSH. The liver and 

kidney play a major role in the homeostasis of GSH and cysteine [269]. Finally, GSH is 

implicated in conjugation of electrophiles and metals. GSH plays a major role in 

detoxifying many reactive metabolites by either spontaneous conjugation or by a 

reaction catalyzed by the GSH S-transferases [272, 277, 278]. GSH S-transferases have 

broad and overlapping substrate specificities, which allow them to participate in the 

detoxification of a chemically diverse group of compounds. The most common 

reactions involve nucleophilic attack by GSH on an electrophilic carbon: saturated 

carbon atoms (e.g., alkyl halides, lactones and epoxides), unsaturated carbon atoms 

(e.g., α, β-unsaturated compounds, quinones and quinonimines, and esters), or aromatic 

carbon atoms (e.g., aryl halides and aryl nitro compounds [279]. The substrates have in 

common a degree of hydrophobicity and possess electrophilic centers that undergo 

nucleophilic substitution, nucleophilic addition to α, β-unsaturated ketones or epoxides 

or, in the case of hydroperoxides, nucleophilic attack on electrophilic oxygen, resulting 

in reduction. GSH S-transferases are a family of multifunctional enzymes present in the 

cytosol of most cells as homodimeric or heterodimeric proteins, with subunit molecular 

weights ranging from 24,000 to 27,500 [278, 280]. GSH also forms metal complexes 

via nonenzymatic reactions [281]. GSH is one of the most versatile and pervasive metal 

binding ligands and plays an important role in metal transport, storage, and metabolism. 

GSH works (I) in the mobilization and delivery of metals between ligands, (II ) in the 

transport of metal across cell membranes, (III ) as a source of cysteine for metal binding, 

and (IV) as a reductant or cofactor in redox reactions involving metals. The sulfhydryl 

group of the cysteine moiety of GSH has a high affinity for metals, forming 

thermodynamically stable but kinetically labile mercaptides with several metals, 

including mercury, silver, cadmium, arsenic, gold, zinc, and copper. Conjugation with 
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GSH is not always protective but may actually activate compounds. For example, the 

GSH conjugation of dibromoethane, which is used as a lead scavenger in leaded gas, 

forms a 2-bromo-thioether, which is subsequently transformed into a highly reactive, 

mutagenic, and carcinogenic intermediate, possibly an episulfonium [282]. Sulfur 

mustards are capable of alkylating nucleophilic sites in proteins and DNA. Other classes 

of compounds, including nephrotoxic haloalkenes, quinones, and isothiocyanates, are 

also converted by GSH conjugate formation to toxic metabolites [283, 284]. 

 

Glutathione and aging 

The aging process represents various morphological and biochemical changes that 

occur from maturity to senescence, rendering the organism more vulnerable to disease 

and toxicity and eventually leading to death [285]. According to the oxidative stress 

hypothesis of aging, the senescence-associated loss of functional capacity is due to the 

accumulation of molecular oxidative damage [286] by toxic free radicals produced 

during normal respiration. The defenses evolved to limit the rate of production of free 

radicals and to scavenge those that are produced. The most reliable and robust risk 

factor for neurodegenerative diseases is normal aging. Aging results in the increased 

formation and release of ROS with consequent biochemical and functional alterations, 

increased protein oxidation, and DNA damage [287]. There is substantial evidence that 

mitochondrial function declines with age. Direct evidence for age-dependent increase in 

oxidative damage to mitochondrial DNA comes from measurements of 8-hydroxy-20-

deoxyguanosine (8OH20dG), which is an oxidized form of deoxyguanosine that occurs 

following attack by a variety of free radicals [288]. An involvement of oxidative stress 

in aging has been further strengthened by reports of increases in tissue lipid 

peroxidation with age. Therefore, antioxidant defenses may play a major role during 

normal aging. In particular, GSH may contribute to longevity in various ways. The 

protective capacity of GSH is due to the reactive sulfhydryl cysteine moiety which can 

bind to electrophilic sites on xenobiotics and endogenous toxins. The resulting highly 

water soluble conjugate is excreted through the kidney [289]. In addition, free radical 

scavenging by GSH can occur either non-enzymatically or in conjunction with GSH–Px 

[290]. An age-related decline in GSH has been observed in a number of senescent 

organisms including mosquitoes, adult houseflies, fruit flies, mice, rats and humans 
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[286]. Glutathione concentrations in the cerebral spinal fluid (CSF) of humans decrease 

during aging [291], while the forced ectopic expression of GSH prolongs the life span 

[286]. Such studies suggest that age-related decreases in GSH may represent a key 

factor in the aging process and may underlie a number of changes occurring in normal 

aging and the onset of various diseases. 

 

Glutathione in the nervous system 

The GSH system plays a central role in thiol status control in the brain. GSH, as free 

radical scavenger, is particularly effective against the ¯ OH radical. The ability of GSH 

to non-enzymatically scavenge both singlet oxygen and ¯ OH [292] provides a first line 

of antioxidant defense. Glutathione is synthesized and degraded in most cell types by a 

series of well characterized enzymatic reactions [293]. Reduced GSH strongly 

modulates the redox state (ratio of oxidizing to reducing equivalents) of the cell, a role 

which is critical for cell survival [191]. In addition to antioxidative actions, GSH is 

involved in a number of other essential tasks including DNA synthesis and repair, 

protein synthesis, amino acid transport, enhancement of immune function, and enzyme 

activation [294]. Roles specific to the nervous system appear to include actions as a 

redox modulator of some ionotropic receptor currents [295] and as a potential 

neurotransmitter [296]. Due to such multiple roles in normal tissue, there is a 

considerable potential for alterations in GSH to be causally associated with disease. 

Lowered levels of GSH have been reported in aging, e.g., in the human lens [297] and 

decreased GSH status is associated with various diseases, including a number of 

neurological disorders [298]. Free radicals can be generated in neural cells by oxidative 

phosphorylation, the breakdown of neurotransmitters such as dopamine and serotonin, 

the over-activation of neurons by Ca2+ or EAAs, and Aβ production. Oxidative stress 

arising from free radical formation can affect the ratio of reduced to total GSH and the 

GSH status of the cell as GSH is depleted to combat such radicals. It has been suggested 

that GSH depletion caused nerve cell death [299]. In particular, using immature cortical 

neurons and a neuronal cell line, it has been shown that a decrease in GSH triggered the 

activation of neuronal 12-lipoxygenase (12-LOX) which leaded to the production of 

peroxides, the influx of Ca2+ and ultimately cell death. Others  concluded that astrocytes 

in the CNS counteract oxidative stress due to their higher content of GSH as compared 
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to neurons [300, 301]. In addition, GSH appears to provide neuroprotection against 

excitatory amino acid excitotoxicity in stroke, ischemia and epilepsy [302]. GSH 

modulates ionotropic receptor action [303], thus, controlling transmembrane currents, 

and may also have excitatory neurotransmitter/neuromodulator actions in some neural 

pathways [296]. All of these actions together suggest that alterations in GSH status may 

be deleterious to normal neuronal function. 

 

GSH: oxidative stress,  mitochondrial damage and cell death 

Approximately 90% of total cellular glutathione is localized in the cytosolic fraction, 

the rest being compartmentalized within mitochondria [304]. The mitochondrial pool of 

GSH is likely to be involved in maintaining intra-mitochondrial protein thiols in a 

reduced state. These mitochondrial protein thiols are essential for a number of functions, 

such as the regulation of selective membrane permeability to Ca2+. A clear example of 

the relationship between GSH status, oxidative stress, mitochondrial damage and 

neuronal dysfunction/death due to excess free Ca2+ is shown by the effects of excessive 

production of H2O2 within mitochondria leading to depletion of mitochondrial GSH, in 

turn causing the oxidation of protein thiols and impairment of mitochondrial function. 

This relationship may have relevant implications in terms of the degeneration of 

dopaminergic neurons. Monoamine oxidase acts on monoamines including dopamine, 

producing H2O2 within mitochondria which may lead to a decrease in  mitochondrial 

GSH [305]. It is clear that the loss of GSH may cause mitochondrial damage [306] and 

it was demonstrated that the converse situation is also true, namely, that impairment of 

mitochondrial function may lead to a decrease in cytosolic GSH. As GSH synthesis 

requires ATP, a deficiency of energy supplied by mitochondria is likely to affect the 

cellular turnover of GSH. Such situation may be particularly crucial for neurons and it is 

notable that it has provided evidence that mitochondria in substantia nigra in cat and rat 

show higher immunoreactivity for GSH [307]. In fact, these data lend further support to 

the hypothesis that the oxidative stress and neuronal damage observed in the substantia 

nigra of patients with Parkinson disease could be caused by a mitochondrial defect in 

GSH. Loss of glutathione and oxidative damage have been suggested to constitute early, 

possibly signaling events in apoptotic cell death [308]. In thymocytes, a decrease of 

GSH and disruption of the mitochondrial transmembrane potential preceded the onset of 
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apoptosis [309]. Moreover, a direct depletion of mitochondrial and cytoplasmic GSH in 

cerebellar granule neurons and PC12 cells, resulted in increased generation of ROS, 

disruption of the mitochondrial transmembrane potential and rapid loss of mitochondrial 

function [310].  

 

GSH depletion in neurodegenerative disorders 

Oxidative stress may be initiated by a decline in the antioxidative defense system. The 

most robust and significant alteration in the antioxidant defense is a decrease in GSH 

concentration. Reduced GSH is one of the most abundant intracellular non-protein 

thiols present in the central nervous system where it acts as a major cellular antioxidant 

within both neurons and non-neuronal cells [271]. GSH plays an important role in the 

adult brain by removing reactive oxygen and nitrogen species (ROS/RNS) formed 

during normal cellular metabolism such as during oxygen utilization by the 

mitochondria. GSH is synthesized in the cytosol and transported into the mitochondria 

via energy-dependent transporters [311]. Decreases in GSH availability in the brain 

promotes morphological mitochondrial damage most likely via increases in levels of 

oxidative or nitrosative stress in this organelle [312]. GSH metabolism is reported to be 

altered in affected brain regions from AD patients and its levels are decreased in 

experimental models of AD [313, 314]. Application of exogenous Aβ fibrils to neurons 

in culture leads to intracellular GSH depletion [315]. Recent data directly test the 

hypothesis that GSH is part of the cellular response to stressors associated with either 

intraneuronal aggregation or exogenous addition of Aβ peptide, and not simply a marker 

of oxidative damage, which could merely act as a downstream radical scavenger [316]. 

GSH, as a critical component of antioxidant defense, has been linked directly to 

oxidative stress, and evidence that alterations in GSH status may play a role in 

neurological diseases is growing. However, the oxidative stress may be only one way 

that changes in GSH status could affect neural function and survival. In addition to its 

critical role as an antioxidant/free radical scavenger, GSH may act as redox modulator 

of ionotropic receptors, serve as neuroprotectant against the effects of glutamatergic 

excitotoxicity, and may also be a unique neurotransmitter. These roles are summarized 

in figure 14.  

 



Chapter I – Introduction 
 
_____________________________________________________________________________ 

Amyloid Cytotoxicity and New Acyl-SG Thioesters 

59 

 

 

Figure 14. GSH-depletion model for neurodegenerative disorders. From [285]. 
 

The hypothesis that oxidative damage may be causal to some forms of neural 

degenerative diseases is not novel [287]. A specific role for GSH in such diseases has 

also been previously proposed [294, 317-319]. Several account for a GSH depletion 

model of neural disease which is constituted of many possible elements:  (I) factors 

which determine the site of degeneration, such as selective alterations in GSH status due 

to abnormalities in synthesis (precursor pools or synthetic enzyme levels); GSH 

degradation (production of excessive glutamate or cysteine); GSH recovery from GSSG 

via GSH reductase; or alterations in local transport of GSH; (II) secondary stressors 

which increase free radical production (transition metals, H2O2, increased neural 

activity, an abnormal metabolic rate, or a defect in mitochondrial function); (III) 

specific neuronal vulnerability, such as the presence of ‘stressors’ (e.g., transition 

metals and/or aluminium), age, compensation by other antioxidant defenses, etc. 
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Depending on the above factors, the type of neural degeneration may be either necrotic 

or apoptotic and may strike more than one neural subset [285]. 

 

Glutathione in Alzheimer’s disease 

The brain is particularly vulnerable to oxidative damage due to the high utilization of 

inspired O2, the abundance of redox-active transition metal ions, and the relative dearth 

of antioxidant defense systems. Free radicals are produced from a number of sources, 

among which are enzymatic, mitochondrial, and redox metal ion-derived sources [320]. 

Aging, the major risk factor for AD, leads to loss of free radical scavenging ability by 

endogenous mechanisms [320]. Hence, the normal balance between free radical 

generation and free radical scavenging is disrupted with aging and other oxidative stress 

conditions [321]. Strong evidence that oxidative stress was involved in the pathogenesis 

of AD come from a clinical study showing that oral vitamin E intake delayed 

progression in patients with moderately severe impairment from AD [322]. A role of 

oxidative stress in AD is further supported by increased levels of thiobarbituric acid-

reactive substances, a measure of lipid peroxidation [323]. However, studies reporting a 

disturbance of GSH homeostasis are less clear. The total brain levels of GSH appeared 

to be unaffected in AD [324], whereas GSH peroxidase and GSSG reductase were 

found to be elevated in different brain regions [323] Transcription of GSH peroxidase 

and GSSG reductase was elevated in hippocampus and inferior parietal lobule, but not 

in cerebellum of AD patients, which may reflect the protective gene response to the 

increased peroxidation in the brain regions showing severe AD pathology [325]. In fact, 

in AD, oxidized GSH is increased [326], while the activity of glutathione S-transferase 

is decreased [327], consistent with the known increase in oxidative stress in this 

pathology [193, 206, 328]. In particular, among the mechanisms involved in Aβ-

mediated neurotoxicity, oxidative stress has largely been proposed to play a pivotal role 

in the development of AD [194-198]. Aβ can fragmentate and generate free radical 

peptides with potent lipoperoxidizing effects on the synaptosomal membranes in the 

neocortex [199, 329]. It has therefore been proposed that lipid peroxidation and the 

weakening of cell antioxidant defenses (TAC) may contribute to AD pathogenesis  

[208]. This hypothesis correlates with recent data indicating that lymphoblasts and 

fibroblasts from familial AD (FAD) patients carrying mutations in the APP and PS-1 
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genes display a significant TAC impairment, with altered GSH levels and a marked 

increase in membrane lipoperoxidation compared to the same cells from age-matched 

healthy controls [205, 209, 210]. Various reactive aldehydes, including 4-

hydroxynonenal (4-HNE), malondialdehyde (MDA), and 2-propenal (acrolein) [320], 

distinctive markers of lipid peroxidation, are neurotoxic in neuronal culture and have 

been detected immunochemically in AD brain, particularly in neurofibrillary tangles, 

one of the major hallmarks of AD [330, 331].  The levels of glutathione transferase, a 

protective enzyme against aldehydes and especially 4-HNE, were decreased in the brain 

and ventricular CSF of autopsied AD and normal control subjects [327].  Nonreactive 

iso- and neuroprostanes, two other typical markers of lipid peroxidation, have been 

found in excess in AD brain and induced by Aβ [332]. In addition to protection against 

ROS, GSH is an excellent scavenger of lipid peroxidation products. In fact, GSH plays 

an important role in protecting neurons against oxidative damage and metabolic insults 

by detoxifying 4-HNE [285], which levels are increased in AD [333]. It has been shown 

that GSH protects cultured neurons against oxidative damage resulting from Aβ peptide, 

iron, HNE and other oxidative insults. [333, 334]. It is interesting to note that level of 

HNE is increased in association with degenerating neurons in brains of subjects with 

AD. Coupled to the loss of glutamine synthetase (GS) activity in AD brain [335], excess 

glutamate-induced NMDA receptor-facilitated excitotoxicity could occur in AD brain 

with resultant neurodegeneration. GSH also forms metal complexes via nonenzymatic 

reactions. The sulfhydryl group of the cysteine moiety of GSH has a high affinity for 

metal ions such as Hg, Ar, Cd, As, Au, Zn, and Cu, forming a thermodynamically stable 

complex that can be eliminated. Redox metal ions can catalyze free radical reactions 

and may contribute to oxidative damage observed in AD brain. Fe(II) and Cu(I) induce 

the Fenton reaction, producing an abundance of hydroxyl free radicals for lipid 

peroxidation. GSH protects against oxidative damage [333] and lipid peroxidation 

caused by iron toxicity [336]. A significant decrease in Cu, and significant increases in 

Zn and Fe, were found in AD hippocampus and amygdala, areas showing severe 

histopathologic alterations in AD [337]. In contrast, copper, iron, and zinc are all 

elevated in senile plaques of AD [338]. Together these data imply that oxidative stress 

plays an important role in the pathogenic process but that alterations in the glutathione 

system are secondary to other events leading to neurodegeneration. Since oxidative 
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stress may underlie some, if not all, aspects of AD neurodegeneration, and since Aβ 

appears central to the disease [193], considerable research has been aimed at reducing 

the effects of oxidative stress by use of free radical scavengers. GSH as essential 

cellular antioxidant plays a key role in the defense of brain cells against oxidative stress 

[339, 340].  

 

Therapeutic approaches for neurodegenerative diseases  

One hallmark of AD is the accumulation of Aβ peptide, which invokes a cascade of 

oxidative damage to neurons that can eventually result in neuronal death. Aβ is the main 

component of senile plaques and generates free radicals ultimately leading to neuronal 

damage of membrane lipids, proteins and nucleic acids. The mechanisms involved in 

Aβ-mediated neurotoxicity are unknown, but there is evidence suggesting that oxidative 

stress plays a key role [193, 194, 196]. Growing attention has been focused to 

investigate the oxidative mechanism of Aβ toxicity and as well in the search for novel 

neuroprotective agents. Previous studies reported that Aβ peptide induces in vitro ROS 

production, protein oxidation, DNA and RNA oxidation and lipid peroxidation [195]. 

Because of the involvement of oxidative stress-mediated toxicity in neurodegenerative 

events and neuronal cell death [341, 342], various experimental approaches for effective 

protection by antioxidants have emerged. GSH is one of the major intracellular defense 

systems, and depletion of GSH is known to be involved in several neurodegenerative 

disorders [195, 328]. Moreover, if alterations in GSH metabolism play an important role 

in the pathogenesis of several neurodegenerative diseases, treatments that lead to 

enhanced synthesis of GSH or that inhibit its degradation may result in a slowing of 

disease progression. Numerous potential free-radical scavengers have been tested in 

different experimental paradigms of oxidative stress-induced cell death, natural 

antioxidants such as Vitamin E [343], vitamin C, melatonin [344], ginkgo biloba [345], 

steroid hormones [346], N-acetylcysteine [347], etc. However, many clinical trials are 

still unsuccessful because all the antioxidants tested are poorly active in crossing the 

blood brain barrier (BBB). Moreover GSH itself is poorly transported into most cells or 

tissues. For this reason many attempts to develop GSH derivatives able to easily cross 

the membranes of many cell types, mimicking GSH antioxidant properties, have been 

made. For instance, endogenous GSH levels have been increased by dietary or 
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pharmacological intake of GSH precursors or GSH mimetics or “thiol-delivering” 

compounds [348-350]. Moreover, because GSH itself penetrates the BBB only poorly 

and cannot be taken up by neurons directly, treatments with GSH monoethyl ester, 

glutathione precursors or other glutathione analogs have been used in patients or animal 

models. The GSH analog YM 737 provides protection against cerebral ischemia in rats 

by inhibiting lipid peroxidation [319]. Because glutathione synthesis in neurons is 

limited by the availability of cysteine [340], compounds that can be metabolized to 

cysteine could be used as pro-drugs to increase neuronal GSH concentrations. In the 

murine mutant wobbler, treatment with the glutathione precursor N-acetyl-l-cysteine 

resulted in a significant reduction of motor neuron loss and elevated glutathione 

peroxidase levels within the cervical spinal cord [351]. Treatment with l-2-

oxothiazolidine-4-carboxylate, a cysteine precursor, stimulates growth and normalizes 

tissue glutathione concentrations in rats fed a sulfur amino acid deficient diet [352]. 

Unfortunately, the therapeutic window for treatment with substances that increase brain 

cysteine may be narrow, because cysteine is potentially toxic for neurons [276]. 

Alternatively, GSH in brain can be increased by intracerebroventricular administration 

of the dipeptide γ-glutamylcysteine [353]. Neurons can utilize either γ-glutamylcysteine 

or cysteinylglycine for the synthesis of GSH [354]. In a study on 13 subjects with 

Amyotrophic Lateral Sclerosis, the safety and pharmacokinetic properties of 

procysteine, a cysteine prodrug that increases levels of intracellular glutathione was 

found. Procysteine entered the CSF after both intravenous and oral dosing and 

accumulated to significant levels in CSF [291]. However, no increase of CSF GSH 

concentrations were found at 4 h after i.v. infusion of procysteine. Furthermore, esters 

of GSH can increase cellular GSH in a variety of tissue types [355] and are particularly 

effective in restoring mitochondrial GSH [356]. A GSH mimetic, such as the xanthate 

D609 [357], protects primary neuronal culture against Aβ42-induced oxidative stress 

and neurotoxicity in vitro [358] and against Aβ42 in vivo [350]. D609 has the ability to 

scavenge hydrogen peroxide and hydroxyl free radicals. D609 can bind to reactive 

alkenals and detoxify their effect, thereby preventing these alkenals from damaging 

mitochondria [357, 359]. Although a disturbance of GSH homeostasis has been 

implicated in the pathogenesis of several neurodegenerative diseases it remains open to 

debate whether, at least in some illnesses, this is a primary defect or only a consequence 
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of ROS generation; brain GSH can be increased safely using different treatment 

strategies; and an increase of brain GSH will result in clinical benefit and/or 

neuroprotection in animal models or in human diseases [360]. The modulation of free 

radicals generated by Aβ might represent an efficient therapeutic strategy for treatment 

of Alzheimer’s disease and other oxidative-stress related disorders. A large number of 

natural antioxidants have been used; nevertheless, many clinical trials are still 

unsuccessful because all the compounds tested have difficulty in crossing the BBB and 

do not readily enter the brain in the adult [348]. Considering that Aβ42 is a potent 

inducer of oxidative stress and that the deposition of this peptide can induce the cascade 

of pathological changes occurring in AD, many attempts to test effective protection by 

antioxidants are currently under investigation. However, many clinical trials are 

unsuccessful due to a low brain-accessible capability of the antioxidant compounds 

tested. Based on these notions, searches for new potential antioxidant compounds could 

be of relevance for future directions of AD treatments. 

 

Role of dietary fatty acids in cognitive decline 

Recent attention has been paid to the possible role of dietary fatty acids in age-related 

cognitive impairment of degenerative diseases [361]. Fatty acids can be categorized 

briefly into saturated fatty acids (SFA) and unsaturated fatty acids (UFA). SFA, such as 

stearic acid, are present in products such as meat, dairy products, cookies and pastries. 

Monounsaturated fatty acids (MUFA) are most frequently consumed in olive oil. The 

principal series of polyunsaturated fatty acids (PUFA) are n-6 (i.e. linoleic acid) and n-3 

(i.e. a-linolenic acid, docosahexaenoic acid, and eicosapentaenoic acid). In the 

Mediterranean dietary pattern the main sources of n-6 PUFA are vegetable oils, while 

the principal sources of n-3 PUFA are fatty fish (salmon, tuna, and mackerel). In fact, 

olive oil contains 70–80% MUFA (oleic acid) and 8–10% PUFA (6–7% linoleic acid 

and 1–2% a-linolenic acid). Several studies suggested that an increase in SFA could 

have negative effects on cognitive functions. On the other hand, a reduction in the risk 

of cognitive impairment in population-based samples with a high intake of MUFA and 

PUFA has been found [361]. Higher SFA intake was associated with an increased risk 

of impairment in memory function, psychomotor speed, and cognitive flexibility by 15–

19%. Whereas, an inverse relationship between MUFA intake selective attention and 
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cognitive decline was found. Moreover, fatty fish and marine n-3 PUFA consumption 

were significantly associated with a decreased risk of global cognitive function 

impairment and psychomotor speed by 19–28% [362]. Finally, recent studies increased 

the evidence of a strict linkage between dementia and fatty acid intake [363, 364]. A 

high intake of saturated fat and trans-unsaturated fat may be associated with a higher 

risk of AD; while a high intake of n-6 PUFA and MUFA may be protective against AD 

[363]. Furthermore, a higher intake of n-3 PUFA and weekly fish consumption may 

reduce the risk of incident AD. The protective effect of dietary UFA could be related to 

their ability to maintain the structural integrity of neuronal membranes on which 

neuronal transmission depends [365, 366]. Furthermore, essential fatty acids can modify 

the activity of certain membrane-bound enzymes (phospholipase A2, protein kinese C), 

as well as the function of membrane proteins and ion channels [365]. Finally, an 

increase in MUFA and a decrease in PUFA content in aged neuronal membranes has 

been demonstrated, suggesting that during aging there is an increasing demand for 

MUFA [367]. In rats, dietary oleic acid deficiency leads to a reduction of the oleic acid 

concentration in many tissues, including the sciatic nerve, but not in the brain [368]. In 

many organs, endogenous synthesis therefore, does not compensate for the absence of 

oleic acid in food [369]. This fatty acid is therefore, not synthesized in sufficient 

quantities, at least in rats and especially during pregnancy-lactation, implying a need for 

dietary intake. It must be remembered that organization of the neurons is almost 

complete several weeks before birth, and that these neurons remain for the subject’s life 

time. Consequently, any disturbance of these neurons, an alteration of their connections, 

and impaired turnover of their constituents at any stage of life, will tend to accelerate 

aging [368]. Several studies confirmed that high intakes of n-6 PUFA, n-3 PUFA, and 

MUFA appear to be protective against the risk of AD. High MUFA intake may be a 

marker for other dietary factors responsible for the protection against cognitive 

disorders, i.e. the great amount of tocopherol and polyphenols, the antioxidant 

compounds of olive oil, and the low intake of SFA. Elevated UFA intake (MUFA and 

PUFA), high levels of antioxidant compounds, and very low SFA intake could act 

synergistically in improving cognitive performance. In conclusion, epidemiological 

studies on the association between diet and cognitive decline suggested a possible role 

of fatty acids intake in maintaining adequate cognitive functioning and possibly in 
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preventing or delaying the onset of dementia, both of degenerative or vascular origin. 

Appropriate dietary measures or supplementation with specific macronutrients might 

open new ways for the prevention and management of cognitive decline and dementia. 

 
 

-AIM OF THE STUDY- 

Recent remarkable findings of protein aggregation as a common key feature in several 

neurodegenerative diseases represent notable progress in understanding the basic 

mechanism of the “amyloid hypothesis” of Alzheimer’s disease (AD). A deeper 

knowledge of the modifications underlying the different cell vulnerability to death, 

following exposure to toxic aggregates, appears mandatory to improve our information 

on the chain of events eventually leading exposed cells to die. To better address this 

issue, in the present research, the molecular basis of cell damage induced by prefibrillar 

forms of different aggregates after the interaction with plasma membrane was 

investigated in depth. In particular, oxidative stress markers and either apoptotic or 

necrotic pathway activation in human SH-SY5Y neuroblastoma cells and fibroblasts 

from familial AD (FAD) patients in comparison to healthy cells were checked. In 

addition, the role of membrane cholesterol as a modulator of Aβ peptide interaction 

with cell membrane and the following neurotoxicity was investigated. Additionally, 

considering the importance of developing new antioxidant compounds and the relevance 

of their application in the treatment of neurodegenerative diseases, new S-

acylglutathione (acyl-SG) derivatives were synthesized, and their protective effect on 

cells experiencing amyloid aggregate oxidative insult was tested.  

Peptides or proteins can adapt from their soluble forms into highly ordered fibrillar 

aggregates, giving rise to pathological conditions ranging from neurodegenerative 

disorders to systemic amyloidoses. The N-terminal domain of the prokaryotic 

hydrogenase maturation factor (HypF-N) can quickly be converted into stable oligomers 

under conditions that promote its unfolding into partially folded species. In this study, 

we investigated in depth the cascade of events, resulting in cellular dysfunction and 

death, triggered by two HypF-N oligomer species that are morphologically and 

tinctorially similar, but possess distinct structural features, such as a different degree of 

flexibility of the exposed hydrophobic surfaces. In particular, the different interaction 

with and internalization into the cell membrane of these aggregates, and the various 
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downstream effects that these aggregates causes on SH-SY5Y cells were studied. Our 

results support the rising consensus on the role of plasma membranes as primary targets 

of toxic protein oligomers (Results I). The comparison between the biological properties 

of these protein aggregates shed light into the molecular basis of aggregate toxicity in 

protein deposition diseases.  

A link between AD pathogenesis and loss of brain cholesterol is increasingly 

recognized, suggesting that a fine modulation of the levels of this membrane sterol 

plays a crucial role in neuronal viability. Therefore this study also investigated the 

influence of membrane cholesterol modulation on cell vulnerability to amyloid toxicity, 

by checking the extent of amyloid aggregate interaction with the cell membrane, the 

oxidative stress and the cell death markers both in human SH-SY5Y neuroblastoma 

cells and in fibroblasts from FAD patients compared to cells from healthy subjects. In 

particular, membrane cholesterol levels modulation was achieved by cell culture media 

supplementation with water soluble cholesterol (PEG-chol and Chol), to increase the 

content of membrane cholesterol. On the other hand, cholesterol levels were reduced by 

exposing the cells to the cholesterol extracting drug methyl-β-cyclodextrin (β-CD) or 

mevastatin (Mev). Membrane cholesterol enrichment significantly slows the 

recruitment, and reduces the interaction, of Aβ42 oligomers with the cell membranes, 

thus preventing the cell damage associated to amyloid-induced imbalance of cytosolic 

Ca2+ and oxidative stress in our cell models (Results II). Our data suggest a key role of 

cholesterol in modulating Aβ42 oligomer accumulation at the cell surfaces and to the 

following Aβ42-induced cell death in AD neurons. In conclusion, these results support 

the idea that neuronal resistance to Aβ toxicity requires the maintenance of a proper 

steady-state level of membrane cholesterol.  

It has recently been reported that Aβ binding and aggregation to the cell surfaces 

occurs in lipid raft, cholesterol- and sphingolipids-rich ordered membrane 

microdomains, where it is mediated by clusters of the ganglioside GM1. To shed further 

light on the ability of lipid rafts to recruit Aβ-derived diffusible ligands (ADDLs) and 

on the resulting structural modifications induced by aggregate binding, we carried out a 

study on SH-SY5Y cells overexpressing the wilde-type amyloid precursor protein 

(APPwt) and a FAD mutated form of amyloid precursor protein (APPV717G) and on 

fibroblasts bearing the APPV717I gene mutation. We found that, in our model cells, 
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lipid rafts are chronic targets of Aβ-induced lipid peroxidation and physicochemical 

perturbation on the cell surface, leading to disruption of selective permeability of 

plasma membrane (Results III). Accordingly, membrane lipid peroxidation positively 

correlates with the perturbing effects of Aβ42 oligomers on detergent resistant 

microdomains (DRMs). Moreover, amyloid recruitment at the oxidative-damaged 

domains was prevented by enhanced cholesterol levels, anti-GM1 antibodies and the 

binding of B subunit of cholera toxin to GM1. This data identifies lipid rafts as primary 

target of oxidative injury and membrane degeneration as a result of their ability to 

recruit amyloid aggregates to the cell surfaces.  

Recent data support the role of oxidative stress in the pathogenesis of AD. In 

particular, glutathione (GSH) metabolism is altered and its levels are decreased in 

affected brain regions and peripheral cells from AD patients and in experimental models 

of AD. Therefore, therapeutic strategies based on intracellular increase in GSH levels by 

dietary or pharmacological intake of GSH precursors or substrates for GSH synthesis to 

protect the brain against oxidative stress have been developed. Because much 

experimental evidence suggests a possible protective role of unsaturated fatty acids in 

age-related diseases and considering the importance of developing new antioxidant 

compounds for the treatment of neurodegenerative diseases, we designed the synthesis 

of new S-acylglutathione (acyl-SG) thioesters with protective effects on cells 

experiencing amyloid aggregate oxidative insult. These acyl-SG derivatives were easily 

internalized into the cells and they significantly reduced Aβ42-induced oxidative attack 

in SH-SY5Y cells and primary fibroblasts from FAD patients (Results IV). In 

particular, acyl-SG coniugates can prevent the impairment of intracellular scavengers of 

reactive oxygen species (ROS), intracellular ROS accumulation, lipid peroxidation, and 

apoptotic pathway activation. Indeed, the observed increase in antioxidant and 

neuroprotective effects with the presence of the double bond and the lengthening of the 

chain suggests that, the partial lipophilic nature of such compounds might account for 

their intracellular uptake of these compounds. Therefore, our results present these acyl-

SG thioesters as new antioxidants with neuroprotective effects against Aβ-induced 

oxidative injury and put forward these derivatives as new compounds which could be 

excellent candidates for therapeutic treatment of AD and other oxidative stress-related 

diseases. 
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CHAPTER II - MATERIALS & METHODS 

-MATERIALS- 

Chemicals 

All reagents were of analytical grade or the highest purity available. Tissue plastic-ware 

was obtained from PBI international (Milan, Italy). Acetonitrile, methyl-β-cyclodextrin 

(β-CD), Bradford reagent and N,O-bis(trimethylsilyl)-trifluoroacetamide (BSTFA), 

cholesterol, cholesterol oxidase, water-soluble cholesterol balanced with methyl-β-

cyclodextrin (Chol), Congo Red (CR), N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-

phenylglycine t-buthyl ester (DAPT), dimethylsulfoxide (DMSO), 1,6-diphenyl-1,3,5-

hexatriene (DPH), ethylenediaminetetraacetic acid (EDTA), fetal bovine serum (FBS), 

filipin III, geneticin (G418), glutathione (GSH), hexafluoro-2-isopropanol (HFIP), 

lauroyl-CoA, media for cell cultures, mevastatin (Mev), palmitoleoyl-CoA, phosphate 

buffer saline (PBS), polyoxyethyl-cholesteryl sebacate (PEG-cholesterol), 

phospholipase C, propidium iodide (PI), pluronic acid F-127, Vitamin E (Vit E) and 

other chemicals were from Sigma (Milan, Italy). D-Threo-1-phenyl-2-decanoylamino-3-

morpholino-1-propanol (PDMP) (Matreya, LLC, PA, USA).  

 

Fluorescent probes 

Alexa Fluor 647-conjugated cholera toxin subunit B (CTX-B), 4,4-difluoro-3a,4adiaza-

s-indacene (BODIPY 581/591 C11), calcein-acetoxymethyl (Calcein-AM), 2’,7’-

dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2,DCFDA), fluo3-

acetoxymethyl ester (Fluo3-AM) and wheat germ agglutinin-conjugated with 

fluorescein or with Alexa Fluor 633 were purchased from Molecular Probes (Eugene, 

OR, USA). All the fluorescent probes were prepared as stock solutions in DMSO, 

purged with nitrogen and stored in light-protected vessels at −20 °C until use. 

 

Antibodies  

Mouse monoclonal anti-Aβ antibodies 6E10 were purchased from (Signet, DBA, Italy). 

Fluorescein-conjugated and Texas Red-conjugated anti-mouse secondary antibodies 

were from Vector Laboratories (DBA, Italy). Rabbit polyclonal A11 anti-Aβ oligomer 

antibodies and Alexa Fluor 488-conjugated anti-rabbit antibodies were from Invitrogen 
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(Milan, Italy). Rabbit anti-HypF-N polyclonal antibodies were provided from Primm 

S.r.l. (Milan, Italy). Mouse anti-flotillin-1 monoclonal antibodies were from BD 

Biosciences (San Diego, CA). Goat polyclonal sc-1615 antibodies against β-actin and 

peroxidase-conjugated anti-goat antibodies were obtained from Santa Cruz 

Biotechnology Inc. (CA, USA). Peroxidase-conjugated anti-mouse and anti-rabbit 

antibodies were purchased from Pierce (Rockford, IL, USA). Rabbit polyclonal anti-

GM1 antibodies were from Calbiochem EMD Chemicals Inc. (Darmstadt, Germany).  

 

Synthesis and purification of acyl-SG thioesters 

Acyl-SG thioesters, consisting of the tripeptide GSH linked by its sulfhydryl group to 

the carboxylic group of the SFA lauric acid (C12:0) and the MUFA palmitoleic acid 

(C16:1), were obtained by incubating 25 mM reduced GSH with 5 mM acyl-CoA 

thioesters of lauric acid or palmitoleic acid, in 50 mM sodium phosphate buffer, pH 7.5, 

at 37°C as previously described [370]. To determine the time-dependent acyl-SG 

thioester formation, aliquots of the reaction mixtures were withdrawn at various 

incubation times (0, 1, 2, 3, and 24 h) and injected onto a reversephase high-pressure 

liquid chromatography (HPLC) Shimadzu system equipped with an LC-10AD pump 

and an SPD-10A UV–Vis detector using a Vidac C18 column (5 µm, 4.6 mm × 25 cm). 

The kinetic of conjugate synthesis was monitored by UV detection of HPLC peaks at 

228 nm at various time points. Lauroyl-SG and palmitoleoyl-SG derivatives were 

purified from the water phase with solvent A (0.1%TFA, v/v, in water). A gradient 

elution of 20–60% B (0.1% TFA, v/v, in acetonitrile) in 60 min for lauroyl-SG 

derivative and of 20–70% B in 70 min for palmitoleoyl-SG derivative was performed at 

a flow rate of 0.7 ml/min. Fractions containing acyl-SG derivatives were collected, 

frozen, lyophilized to dryness, and stored at −80°C until use. The identity and the purity 

of acyl-SG derivatives dissolved in water/acetonitrile (50/50) in the presence of formic 

acid were analyzed by matrix-assisted laser desorption/ionization time-of-flight 

(MALDI/TOF) on a OmniFlex-NT (Bruker Daltronics) instrument. Acyl-SG thioester 

synthesis yield was indirectly determined by a quantitative analysis of the respective 

reduced GSH released after acidic hydrolysis in 50 mM HCl at 80°C for 48 h, according 

to the Ellman test for the detection of free thiols with minor modifications [371, 372]. 

Briefly, the samples were dissolved in 15% 5,5′-dithio-bis(2-nitrobenzoic acid) (DTNB) 
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stock solution (50 mM sodium acetate, 2 mM DTNB in H2O), 20% Tris buffer (1M 

Tris, pH 8.0), 50% H2O2, and 15% 50 mM HCl solution and incubated 5 min at 37°C. 

Upon oxidation, the colorless DTNB conversion to yellow TNB, in the presence of thiol 

compounds, was optically measured at 412 nm until it reached a plateau at 5–20 min. 

The results were calculated using a calibration curve with GSH as an internal standard. 

 

Peptides and aggregation protocols 

HypF-N protein, expressed and purified as previously reported [91], was converted into 

stable oligomers by incubation to 48 µM for 4 h or for 3 and 9 days at 25 °C in two 

different experimental conditions: 50 mM acetate buffer, 12% (v/v) trifluoroethanol 

(TFE), 2 mM dithiothreitol (DTT), pH 5.5 (condition A) and 20 mM trifluoroacetic acid 

(TFA), 330 mM NaCl, pH 1.7 (condition B). Both types of HypF-N oligomers were 

centrifuged at 16100 g, dried under N2 to remove the TFE and TFA when necessary, 

dissolved in the appropriate culture media at 48 µM concentration and immediately 

added to cultured cells at differing final concentrations. Native HypF-N was tested by 

diluting the protein stock solution in the same cell media. Tapping-mode atomic force 

microscopy revealed the presence of spherical bead-like aggregates with heights in the 

range of 2-6 nm and 2-7 nm under conditions A and B, respectively [91]. Aβ42 and 

Aβ42-1 reverse peptides were purchased from Sigma (Milan, Italy), Aβ42 amine-

reactive succinimidyl esters of carboxyfluorescein (Aβ42-FAM) was from AnaSpec 

(San Jose, CA) [373]. Lyophilized Aβ42, Aβ42-FAM and Aβ42-1 were initially 

incubated in 1 mM in hexafluoro-2-propanol (HFIP) at least for 1 h at room temperature 

to allow complete peptide monomerization. Then, aliquots of peptide solutions were 

dried under nitrogen and stored at −80 ◦C. Prefibrillar aggregates of the Aβ42 peptide 

were obtained according to Lambert’s protocol [374]. Briefly, aliquots of Aβ42 were 

dissolved in DMSO to a final concentration of 5.0 mM, incubated in ice-cold F12 

medium to a concentration of 100 µM at 4°C for 24 h and then centrifuged at 14,000 x g 

for 10 min to remove insoluble structures. The supernatant, defined as the amyloid β-

derived diffusible ligand (ADDL) preparation, consisted of a fibril-free solution of 

globular assemblies, as routinely assessed by atomic force microscopy [243]. 

Fluorescein-labeled Aβ42-FAM aggregates were prepared as described above, except 

that the aggregation mixture contained a combination of Aβ42-FAM peptide with 2 
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molar equivalents of unlabeled Aβ42 peptide (at a 1:2 ratio) to minimize possible 

interference of the fluorophore with the aggregation, while retaining sufficient 

fluorescence signal [373]. For fibrillar conditions, 10mM HCl was added to bring the 

peptide to a final concentration of 100 µM, and the peptide was incubated for 24 h at 37 

◦C [375]. Lyophilized amylin 1–37 (Sigma, Milan, Italy) was stored as powder at −20 

°C until reconstitution in HFIP at a concentration of 1.25 mM. The reconstituted peptide 

was stored as 10 µl aliquots at -80 °C until used. 

 

-CELL CULTURES- 

Human SH-SY5Y neuroblastoma cells (A.T.C.C., Manassas, VA, USA) were cultured 

in DMEM/F-12 Ham with 25 mM N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid 

(HEPES) and NaHCO3 (1:1) supplemented with 10% FBS, 1.0% glutamine and 1.0% 

antibiotics. The cell culture was maintained in a 5.0% CO2 humidified atmosphere at 37 

°C and grown until 80% confluence for a maximum of 20 passages. The SY5Y clones 

over-expressing wild-type APP gene (APPwt) and FAD-like mutant valine 717 to 

glycine APP gene (APPV717G) were prepared by transfecting 80% confluent cells with 

1 µg/well of the pcDNA-APPwt or with pcDNA-APPV717G constructs using 

LipofectamineTM 2000 reagent (Invitrogen, Milan, Italy). A SY5Y clone transfected 

with an empty pcDNA vector (SY5Y) was used as control cells. Then, G418 was added 

at a concentration of 800 µg/ml and drug resistant cells were collected after 2–3 weeks 

for single cell cloning, in which cells were seeded in 96-well plates. After 4–6 weeks, 

surviving clones reached confluence and were expanded for banking. Stable transfected 

cells expressing the APP constructs or an empty pcDNA vector were maintained in 300 

µg/ml G418. Fibroblasts were obtained from three patients belonging to Italian families 

bearing the APP Val717Ile mutation (mean ± SD age = 53.3 ± 7.1 years) and from three 

patients belonging to other Italian families bearing the PS-1 Leu392Val and Met146Leu 

mutations (mean ± SD age = 56.7 ± 8.6 years), respectively. They underwent clinical 

assessment according to published guidelines and the AD diagnosis fulfilled the 

Diagnostic and Statistical Manual of Mental Disorders criteria (DSM-IV) [376, 377]. 

Primary fibroblasts were also obtained from three age-matched healthy subjects (mean 

± SD age = 49.7 ± 8.3 years), carrying neither APP or PS-1 mutations nor diagnosis of 

neurological disorders.  The local ethical committee approved the protocol and written 
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consent was obtained from all subjects or, where appropriate, their caregivers. Skin 

biopsies of 3 mm punch were obtained from the volar side of the upper arm of FAD 

patients and healthy controls. The cells were grown in Dulbecco’s Modified Eagle’s 

Medium (DMEM), supplemented with 10% FBS, 1% L-Gln and 1% antibiotics and 

harvested in T-25 flasks until confluence, 7 days after previous subculture [205]. All 

nine fibroblast lines were subjected to an equal number of passages (ranging from 10 to 

18) and analyzed in three different experiments before confluence.  

 

-METHODS- 

Western blotting analysis  

Aβ42 soluble oligomers 

Western blotting analysis of Aβ42 soluble oligomers was performed on a Criterion XT 

Precast gel 4–12% Bis–Tris SDS/PAGE (Bio-Rad, Milan Italy), blotted onto a PVDF 

Immobilio-P Transfer Membrane (Millipore Corporation, Bedford, MA). The 

membrane was blocked in 1.0% (w/v) BSA in TBS-Tween (0.1% Tween 20 in 20mM 

Tris–HCl, pH 7.5, containing 100mM NaCl) and incubated with 1:1000 diluted mouse 

monoclonal 6E10 anti-Aβ antibodies and then with 1:5000 diluted peroxidase-

conjugated anti-mouse antibodies. The immunolabeled bands were detected using a 

Super Signal West Dura (Pierce, Rockford, IL, USA). 

APP expression 

Immunoblot analysis of APP expression in cell lysates and APP distribution in sucrose 

gradient fractions were carried out on a 12% (w/v) SDS/PAGE, blotted onto a PVDF 

Immobilio-P Transfer Membrane and incubated with 1:1000 diluted mouse monoclonal 

6E10 antibodies or with 1:5000 diluted goat polyclonal sc-1615 antibodies against β-

actin and with 1:5000 diluted peroxidase-conjugated anti-mouse antibodies or with 

1:5000 diluted peroxidase-conjugated anti-goat antibodies, respectively. The 

immunolabelled bands were detected using a Super Signal West Dura.  
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Detection of Aβ peptides 

Human Aβ42 peptides were quantified both in the cell extracts and in the media of SH-

SY5Y, APPwt and APPV717G clones (neuroblastoma cells) using a commercial ELISA 

kit (Invitrogen, Milan, Italy).  

 

Inhibition of enzymes 

In a series of experiments, inhibition of γ-secretase activity of neuroblastoma cells was 

achieved by cell treatment with 100 nM DAPT in fresh culture medium for 24 h [378]. 

In another set of experiments, inhibition of glucosylceramide synthase was realized by 

treatment with 25 µM PDMP in fresh culture medium for 48 h [379].  

 

Cholesterol content modulation 

The increase in the content of membrane cholesterol was achieved in FAD fibroblasts 

by supplementing cell culture media with 0.5 mM PEG-cholesterol for 2 h at 37 °C, 

whereas human SH-SY5Y cells were exposed to 0.1 mM PEG-cholesterol for 1 h at 37 

°C, before peptide aggregate treatments. The increase in membrane cholesterol content 

was also achieved by supplementing SH-SY5Y cell and FAD fibroblasts culture media 

with 200 µg/ml soluble cholesterol (Chol) for 3 h at 37 °C. Membrane cholesterol 

depletion was obtained by incubating SH-SY5Y cells and FAD fibroblasts with 1 mM 

β-CD for 30 min and 2 h, respectively, at 37 °C in the presence of 1 % FBS. Membrane 

cholesterol depletion was also performed by incubating the cells with 10 µM mevastatin 

(Mev) for 48 h at 37 °C in the presence of 1% FBS. Cells were then extensively washed 

with PBS and exposed to peptide oligomers. 

 

Separation processes 

Cell lysis 

Total cell lysates were obtained from cells by three freeze–thaw cycles followed by 5 s 

ultrasonication in ice in 20 mM Tris–HCl buffer, pH 8.0, containing 1.0% Triton X100, 

137 mM NaCl, 10% glycerol, 6.0 M urea, 0.1 mM PMSF, 10 µg/ml leupeptin, 10 µg/ml 

aprotinin and by centrifugation at 14,000×g for 10 min at 4 °C. Protein content was 

measured in cytosolic and nuclear fractions according to the colorimetric method of 

Bradford [380]. Briefly, the method involves the binding of Coomassie Brilliant Blue to 
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protein and it is based on the observation that Coomassie Brilliant Blue exists in two 

different color forms, red and blue. The red form is converted to the blue form upon 

binding of the dye to protein. This binding causes a shift in the absorption maximum of 

the dye from 365 to 595 nm, and it is the increase in absorption at 595 nm which is 

monitored [380]. 

Membrane purification 

The cells were homogenized in PBS containing 9.0% sucrose with three freeze-thaw 

cycles, 5 s sonication in ice and centrifugation at 700 × g for 10 min at 4.0 °C [266]. 

The membrane fractions were pelleted by a further supernatant centrifugation at 

110,000 × g for 1 h at 4.0 °C. Protein content was measured by the method of Bradford 

[380].  

Purification of DRMs 

 The cells were washed twice with ice-cold PBS, scraped, and collected by 

centrifugation at 1000 × g. To purify detergent-resistant membrane fractions (DRMs), 

the cells were dispersed in a 10 mM Tris-HCl buffer, pH 7.5, containing 150 mM NaCl, 

5.0 mM EDTA, 1.0 mM Na3VO4, 1.0% Triton X-100 (TNE), protease inhibitors (10 

µg/ml leupeptin and 10 µg/ml aprotinin) and incubated in ice for 20 min [381]. The 

cells were disrupted in a Dounce homogenizer (80 strokes) and centrifuged at 1500 × g 

for 5 min at 4.0 °C to obtain the post-nuclear fraction. The post-nuclear lysate was 

adjusted to 40% (w/v) sucrose by 1:1 addition of 80% sucrose prepared in TNE buffer, 

placed at the bottom of an ultracentrifuge tube and overlaid with two layers of 30% and 

5.0% sucrose in TNE buffer. The sucrose gradient was centrifuged at 170,000 × g for 22 

h at 4.0 °C using a Beckman SW50 rotor. Fractions were then collected from the top of 

the gradient as follow: 0.5 ml for fraction 1, 0.25 ml for fractions 2 to 11, 1 ml for 

fractions 12 and 13, while the pellet was dissolved in 0.08 ml of TNE buffer (fraction 

14) [243]. A representative amount of each fraction was subjected to immunoblot 

analysis of flotillin-1 marker on a 12% (w/v) SDS/PAGE, blotted onto a PVDF 

Immobilio-P Transfer Membrane, incubated with 1:500 diluted mouse monoclonal anti-

flotillin-1 antibodies (BD Biosciences, San Diego, CA) and 1:5000 anti-mouse 

antibodies. The flotillin-1-rich fractions were pooled as DRMs and extensively dialyzed 

against TNE buffer to remove sucrose. The amount of sphingomyelin in lipid rafts was 
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assayed using a photometric method with the Sphingomyelin Assay Kit (Cayman 

Chemical, Ann Arbor, MI, USA). Briefly, sample sphingomyelin was hydrolyzed by 

sphingomyelinase to phosphorylcholine and ceramide for 60 min at 37 °C. The choline 

resulting from the subsequent incubation of phosphorylcholine with alkaline 

phosphatase was oxidized by choline oxidase with production of H2O2. The latter was 

reacted in the presence of peroxidase with N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3,5-

dimethoxyaniline (DAOS) and 4-aminoantipyrine, yielding a blue color product with an 

optimal absorption at 595 nm [382]. Sphingomyelin was quantified by comparison with 

a reference curve built by assaying known amounts of sphingomyelin (25–800 ng). 

 

Cholesterol content measurements 

Microscope analysis  

A labeling of membrane cholesterol was achieved using the fluorescent probe filipin III. 

The cells seeded on glass coverslips were fixed in 4.0% buffered paraformaldehyde for 

20 min at 0 °C and then were incubated with 0.25 mg/ml cholesterol binding agent 

(filipin III) in PBS for 24 h at 37 °C. After washing, the cells were fixed again in 4.0% 

buffered paraformaldehyde for 20 min at 0 °C. Cell fluorescence was analyzed by 

inverted epifluorescence microscopy (Nikon, Diaphot TMD-EF) with a Ph 2-20DL 40 x 

oil immersion objective and using an UV filter for filipin excitation. To quantify the 

fluorescence intensity of filipin III, a variable number of cells ranging from 10 to 22 

were analyzed in each experiment. Fluorescence signals are expressed as fractional 

changes above the resting baseline, ∆F/F, where F is the average baseline fluorescence 

in control cells (assumed as 100%) and ∆F represents the fluorescence changes over the 

baseline in cells exposed to cholesterol modulation.  

Enzymatic assay 

The amount of cholesterol in membrane fractions and in purified lipid rafts was 

assessed using the sensitive fluorimetric Amplex Red Cholesterol Assay Kit (Molecular 

Probes, Eugene, OR, USA). Sample cholesterol was oxidized by 1.0 U/ml cholesterol 

oxidase for 30 min at 37 °C to yield H2O2 and the corresponding ketone product. In the 

presence of 1.0 U/ml horseradish peroxidase (HRP), H2O2 reacted with 150 µM 10-

acetyl-3,7-dihydroxyphenoxazine (Amplex Red reagent) with a 1:1 stoichiometry to 
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generate the highly fluorescent resorufin [383]. At the end of the incubation, sample 

fluorescence was measured at 544 nm excitation and at 590 nm emission. Cholesterol 

content was determined by comparison with a reference curve built by assaying various 

cholesterol amounts (0.01-1.0 µg) [384]. 

 

Dot blot analysis 

To detect ganglioside GM1 in the membrane fractions of SY5Y, APPwt and 

APPV717G cells, 2 µg of protein from each fraction was spotted onto PVDF 

Immobilio-P Transfer Membranes, incubated with 1:500 diluted rabbit polyclonal anti-

GM1 antibodies and with 1:5000 diluted peroxidase-conjugated anti-rabbit antibodies. 

The immunolabelled bands were detected using a Super Signal West Dura.  

 

Thioester cell treatment 

Lyophilized lauroyl-SG or palmitoleoyl-SG were dissolved in 0.1% DMSO, diluted in 

cultures and then added to cell culture media at various final concentrations and for 

various incubation times. Then, SH-SY5Y cells and fibroblasts were exposed to 5.0 µM 

Aβ42 aggregates obtained as above described. 

 

Determination of intracellular GSH uptake 

In order to verify cellular incorporation of acyl-SG thioesters and intracellular release of 

free GSH after thioester hydrolysis by cellular thioesterases. GSH uptake was stopped 

by washing the cell plates twice with ice-cold PBS, followed by addition of HClO4 5%. 

Then, the cells were collected by scraping and were lysed by twice sonication for 5 s 

after the addition of 1.0 mM γ-glutamylglutamate (internal standard). The homogenate 

was centrifuged at 12,000 x g for 5 min. The supernatant was neutralized with 2 M 

K2CO3, centrifuged again, and used to assay GSH content by HPLC as previously 

described [209]. The supernatants were derivatized with 5% fluorodinitrobenzene and 

then analyzed by liquid chromatography on a Bio-Sil NH2 90±5 S Bio-Rad column. The 

2,4-dinitrophenyl derivatives were detected at 365 nm. GSH was quantified by 

chromatogram integration using the internal standard. The precipitate was solubilized in 

0.5 M NaOH and used for protein determination by Bradford's method [380]. 
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Cell exposure to peptide aggregates  

Aliquots of solutions containing native or aggregated HypF-N in prefibrillar forms 

(condition A and B) were centrifuged, dried under N2 to remove the TFE or TFA when 

necessary, dissolved in the appropriate cell media at 48 µM concentration and 

immediately added to SH-SY5Y cultured cells at differing final concentrations. The 

cells were incubated in the presence of the aggregates for differing lengths of time. 

Previous AFM data confirmed that, under conditions A and B, HypF-N prefibrillar 

aggregates are mainly present as spherical bead-like aggregates [91].  

SH-SY5Y cells, APPwt and APPV717G clones, or FAD and wild-type fibroblasts were 

exposed to 1 µM Aβ42 and Aβ42-FAM prefibrillar aggregates obtained according to 

Lambert’s protocol as above reported [374]. In some experiments, the oligomers were 

added to cell culture media to appropriate final concentrations for differing lengths of 

time. Neither disassembly nor microscopic differences in the aggregate structure were 

observed following dilution in the cell culture media. Aggregate concentration was 

calculated as monomeric peptide concentration. In some experiments cells were also 

exposed to Aβ42-1 reversed sequence peptide, as negative control, processed as 

reported for Aβ42 peptides. For cell culture treatments with amylin, aliquots of 1.25 

mM stock solution were dried under N2 to remove HFIP and immediately dissolved in 

the cell culture media at a final concentration of 4 µM. 

 

Analysis of aggregate interaction with the cells 

Congo Red staining 

The quantitation of aggregate adsorption to the surface of our different cell models -

with basal or increased/diminished membrane cholesterol - was performed using the 

specific Congo Red dye as previously described [266]. The same number of cells was 

treated for differing times with 1.0 µM Aβ42 prefibrillar aggregates in a 96-well plate 

and washed twice with PBS. The residual aggregate-cell complex was stained with 100 

µl of 1:1 Congo Red to aggregate concentration in PBS for 20 min. The Congo Red 

content was measured photometrically at 490 nm (free Congo Red) and 550 nm (bound 

Congo Red) by an ELISA plate reader. Under these conditions, the optical density at 

550 nm of aggregate-Congo Red complex is a measure of the amount of prefibrillar 
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aggregates adsorbed to the cell membrane [385]. Congo Red values are reported as % 

increases with respect to corresponding untreated cells (assumed as 100%). 

Flow cytometric analysis  

The aggregate adsorption to the cell surface of neuroblastoma cells and fibroblasts was 

quantified using flow cytometric analysis. Briefly, cells were incubated in culture 

medium containing 3.0 µM Aβ42-FAM aggregates, containing a mixture of Aβ42-FAM 

and Aβ42 peptide at 1:2 ratio, for differing times and then analyzed by a FACSCanto 

(Beckton Dickinson Bioscences, San Jose, CA, USA).  

Confocal microscope analysis 

The interaction of different HypF-N and Aβ42 aggregates with plasma membranes was 

monitored in SH-SY5Y cells, APP overexpressing clones, FAD and wild-type 

fibroblasts by confocal scanning microscopy, as previously described [91]. Briefly, cells 

were incubated for 60 min with HypF-N aggregates formed under conditions A or B, at 

differing final protein concentrations or for different periods at 12 µM final protein 

concentrations. Neuroblastoma cells were then counterstained for 10 min with 5.0 µg/ml 

Alexa Fluor 633-conjugated wheat germ agglutinin and fixed in 2% buffered 

paraformaldehyde for 10 min at room temperature. After plasma membrane 

permeabilization with a 3% glycerol solution for 5 min, the coverslips were incubated 

for 60 min with 1:1000 diluted rabbit polyclonal anti-HypF-N antibodies and then for 

90 min with 1:1000 diluted Alexa Fluor 488-conjugated anti-rabbit antibodies. In 

another set of experiments, SH-SY5Y cells - pre-treated or not with DAPT or PDMP - 

and fibroblasts were exposed to 1.0 µM ADDLs for differing length of times. Then, the 

cells were counterstained with 5.0 µg/ml fluorescein-conjugated wheat germ agglutinin 

for 10 min to detect plasma membrane profiles and fixed in 2% buffered 

paraformaldehyde for 10 min at room temperature. After plasma membrane 

permeabilization with a 3% glycerol solution, the coverslips were incubated for 60 min 

with 1:1000 diluted mouse monoclonal 6E10 anti-Aβ antibodies. The immunoreaction 

was revealed by incubation for 90 min with 1:1000 diluted Texas Red-conjugated anti-

mouse antibodies. Negative controls were obtained by substituting the blocking solution 

for the primary antibody. Aggregate adsorption to the cells was also analyzed by cell 

treatment with 3.0 µM Aβ42-FAM oligomers, counterstaining the plasma membranes 
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with Alexa Fluor 633-conjugated wheat germ agglutinin and fixing in 2% buffered 

paraformaldehyde, without plasma membrane permeabilization or using antibodies. In 

another set of experiments, the cells were incubated for 60 min with 1:300 diluted rabbit 

polyclonal A11 anti-oligomer antibodies and revealed by incubation for 90 min with 

1:1000 diluted Alexa Fluor 488-conjugated anti-rabbit antibodies. The colocalization of 

Aβ42 aggregates with the monosialotetrahexosylganglioside (GM1), marker of lipid 

rafts, was monitored in neuroblastoma cells seeded on glass coverslips using mouse 

monoclonal 6E10 anti-Aβ antibodies and with 1:1000 diluted fluorescein-conjugated 

anti-mouse antibodies and 4.5 µg/ml Alexa Fluor 647-conjugated cholera toxin subunit 

B. The cell fluorescence was analyzed by a confocal Leica TCS SP5 scanning 

microscope (Mannheim, Germany) equipped with an argon laser source for 

fluorescence measurements using excitation lines at 488 nm, 568 nm, 633 nm, and 647 

nm for fluorescein and Alexa Fluor 488-conjugated anti-rabbit secondary antibodies, 

Texas Red, Alexa Fluor 633-conjugated wheat germ agglutinin and Alexa Fluor 647-

conjugated CTX-B, respectively. A series of optical sections (1024 x 1024 pixels) 1.0 

µm in thickness was taken through the cell depth for each examined sample using a 

Leica Plan Apo 63 x oil immersion objective and projected as a single composite image 

by superimposition. GM1 colocalization with Aβ42 aggregates on the cell membrane 

was estimated on areas of interest (12–13 cells) using the ImageJ (NIH, Bethesda, MD, 

USA) and JACOP plugin (rsb.info.nih.gov) softwares [386]. 

 

Analysis of membrane permeability 

In order to assess whether Aβ42 or HypF-N aggregates disrupt cell membrane integrity, 

neuroblastoma cells and fibroblasts were pre-treated for 20 min at 37°C with 2.0 µM 

calcein-AM, dissolved in DMSO and resuspended in cell culture medium [266]. The 

decay in fluorescence was analyzed by confocal microscopy at 488 nm excitation 

wavelength after cell exposure to 1.0 µM Aβ42 aggregates or to 12 µM HypF-N 

aggregates at 37°C for differing length of times. 

In another set of experiments, the cells were exposed to calcein-AM and then incubated 

for 20 min in the absence or in the presence of 4.5 µg/ml Alexa Fluor 647-conjugated 

CTX-B or 1:100 diluted rabbit polyclonal anti-GM1 antibodies, before treatment with 

1.0 µM Aβ42 aggregates for 60 min.  
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Analysis of cytosolic Ca2+ dyshomeostasis  

The effect of Aβ42 or HypF-N aggregates on cytosolic free Ca2+ levels was analyzed in 

SH-SY5Y cells, cholesterol-enriched, cholesterol-depleted and basal fibroblasts, plated 

on glass coverslips and loaded with Fluo3-AM, a Ca2+-specific fluorescent probe. The 

cells were first exposed to 1.0 µM Aβ42 aggregates or to12 µM HypF-N aggregates  for 

differing length of times at 37°C. Cytosolic Ca2+ levels were also examined in SH-

SY5Y cells exposed to HypF-N aggregates in Ca2+-free medium, including 5 mM Mg2+ 

and 10 mM EGTA, according to Demuro [160] or in cells pre-treated for 24 h with 100 

µM vitamin E prior to aggregate exposure in Ca2+-containing medium. The cells were 

then loaded for 30 min at 37°C with 10 µM Fluo3-AM, 0.01% (w/v) pluronic acid F-

127 in Hank’s Balanced Salt Solution (HBSS) and subsequently fixed in 2.0% buffered 

paraformaldehyde for 10 min at room temperature. Fluorescence was detected at 488-

nm excitation by collecting the emitted fluorescence with the confocal scanning system 

described above. 

 

Evaluation of ROS production  

Confocal microscope analysis 

Intracellular ROS production was detected by using CM-H2,DCFDA, a ROS-sensitive 

fluorescent dye. CM-H2,DCFDA esterified derivative is loaded more effectively within 

the cytoplasm of the cells because it is more cell permeant before ester groups are 

hydrolyzed by the cellular esterases. Only a negligible leakage of the probe occurred, 

since chloromethyl-DCF is negatively charged at physiological intracellular pH. SH-

SY5Y cells, cholesterol-enriched, cholesterol-depleted and basal fibroblasts were first 

cultured on glass coverslips and exposed to Aβ42 or HypF-N aggregates for different 

times at 37°C. Cells were also exposed to aggregates in a Ca2+-free medium or pre-

treated for 24 hours with 100 µM vitamin E prior to aggregate exposure in Ca2+-

containing medium. The cells were then incubated with 5 µM CM-H2,DCFDA, 

dissolved in 0.1% DMSO and Pluronic acid F-127 (0.01% w/v), in the final 10 min of 

aggregate exposure. The cells were then fixed in 2.0% buffered paraformaldehyde for 

10 min at room temperature and the emitted CM-H2,DCFDA fluorescence was detected 

at 488-nm excitation by a Leica Plan Apo 63 x oil immersion objective.  
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Spectrofluorimetric analysis 

Intracellular ROS levels were detected in SH-SY5Y cells cultured in 6-well plates, 

exposed to 1.0 µM acyl-SG thioesters for 3 h and then treated with 5.0 µM Aβ42 

aggregates or 250 µM H2O2 for differing length of times. Then, the cells were loaded 

with 5 µM CM-H2DCFDA for 20 min, washed twice with PBS and lysed with RIPA 

buffer (50mM Tris–HCl, 150 mM NaCl, 1.0% Triton X-100, 100 mM NaF, 2.0 mM 

EGTA, 1.0 mM vanadate, pH 7.5) containing 0.1 mM PMSF, 10 µg/ml leupeptin, and 

10 µg/ml aprotinin. CM-H2DCFDA fluorescence was measured using a Perkin–Elmer 

LS 55 spectrofluorimeter at 485 nm excitation and 538 nm emission wavelengths. The 

fluorescence of the oxidized probe was also read directly on intact cells using a 

fluorescence multiwell plate reader. Untreated cells were used for background readings. 

 

Cellular redox status  

Total antioxidant capacity (TAC) assay 

The total antioxidant capacity (TAC), accounting for non-enzymatic hydrophilic ROS 

scavengers, was assayed in cytosolic fractions of SH-SY5Y cell lysates by a 

competition-based chemiluminescence assay using the photoprotein Pholasin (ABEL 

Antioxidant Test Kit, Knight Scientific Ltd., UK) as previously reported [205]. In 

particular, this test assesses the capacity of a sample to scavenge superoxide and other 

free radicals. If the sample has already been exposed to superoxide and/or other free 

radicals then its complement of antioxidants will be very much reduced, leaving the 

sample with a diminished capacity to deal with free radicals that are generated in the 

assay. In a series of experiments, the time course of intracellular scavengers after cell 

exposure to 1.0 µM acyl-SG thioesters for differing times was evaluated. Moreover, the 

time course of cellular antioxidant defense was evaluated after cell incubation with 1.0 

µM acyl-SG thioesters for 180 min and then with 5.0 µM Aβ42 aggregates or 250 µM 

H2O2 for different length of times. In another set of experiments, intracellular 

hydrophilic ROS scavengers were measured in cell lysates of FAD and healthy 

fibroblasts exposed to 1.0 µM Aβ42 aggregates for 3 h. The results were calculated 

from a standard curve based on the soluble antioxidant L-ascorbic acid. 100 µM Vit E 
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cell exposure for 24 h at 37 °C, before cholesterol content modulation and aggregate 

treatments of FAD fibroblasts, was used as negative control for oxidative stress. 

 

Analysis of lipid peroxidation  

Measurement of lipid peroxidation products 

To assess the rate of lipid peroxidation after Aβ42 or HypF-N cell treatment, the levels 

of 8-OH isoprostane were measured photometrically in the neuroblastoma and 

fibroblasts cell lysates and in the neuroblastoma raft fractions at 405 nm using the 8-

isoprostane EIA kit (Cayman Chemical Company, Ann Arbor, MI). In addition, to 

confirm the protective effect of acyl-SG thioesters on lipid peroxidation in our 

experimental models, isoprostane levels were measured in the cytosolic fraction of cells 

incubated or not with 1.0 µM acyl-SG thioesters and then with 5.0 µM Aβ42 aggregates. 

Alternatively, the levels of typical end products of the process such as malonaldehyde 

(MDA) and hydroxyalkenals (4-HNE) were determined in the raft fractions of SH-

SY5Y using a colorimetric method at 586 nm, according to the reaction of the 

chromogen N-methyl-2-phenylindole with MDA and 4-HNE in the presence of 

methanesulfonic acid at 45 °C [387].  

Confocal microscope analysis 

Lipid peroxidation after cell exposure to Aβ42 or HypF-N aggregates was also 

investigated in neuroblastoma cells and fibroblasts by confocal scanning microscope 

analysis, using the fluorescent probe BODIPY 581/591 C11, which is intrinsically 

lipophilic thus mimicking the properties of natural lipids [388]. In particular, BODIPY 

581/591 C11 can be used to measure antioxidant activity in lipid environments since it 

behaves as a fluorescent lipid peroxidation reporter that shifts its fluorescence from red 

to green when challenged with oxidizing agents [389]. FAD and wild-type fibroblasts 

with differing cholesterol content were cultured on glass coverslips and exposed to 1 

µM Aβ1-42 aggregates for 3 h at 37 °C. As a negative control, fibroblasts were 

pretreated with 100 µM Vit E for 24 h at 37 °C, before membrane cholesterol 

modulation and aggregate exposure. In another set of experiments, neuroblastoma cells, 

cultured on glass coverslips, were pre-incubated for 20 min in the absence or in the 

presence of 4.5 µg/ml Alexa Fluor 647-conjugated CTX-B or 1:100 diluted rabbit 
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polyclonal antibodies against GM1 and then exposed to 1.0 µM Aβ42 aggregates for 60 

min. Parallel experiments were also performed on cells pre-treated with acyl-SG 

thioesters to investigate their protective effects against aggregate- or H2O2-induced lipid 

peroxidation. Neuroblastoma cells were exposed to 1.0 µM acyl-SG thioesters for 3 h 

and then to 5.0 µM Aβ42 aggregates or 250 µM H2O2 treatments for 3 h at 37°C. Dye 

loading was achieved by adding 5.0 µM fluorescent BODIPY, dissolved in 0.1% 

DMSO, to the cell culture media for 30 min at 37 °C. The cells were fixed in 2% 

buffered paraformaldehyde for 10 min and the BODIPY fluorescence was measured by 

simultaneous acquisition of the green (ex 485nm/em 520nm) and red signal (ex 

581nm/em 591nm), by confocal microscope analysis, as described above. 

Flow cytometric analysis 

The lipid peroxidation was also quantified in SH-SY5Y cells by flow cytometric 

analysis using the fluorescent probe BODIPY 581/591 C11. Briefly, cells were incubated 

for 24 h at 37°C in culture medium containing 12 µM native or aggregated HypF-N. 

Then, the cells were loaded with 2.5 µM fluorescent BODIPY dissolved in 0.1% DMSO 

as above reported. After labeling, cells were washed and resuspended in PBS and 

analyzed using a FACSCanto flow cytometer (Beckton Dickinson Bioscences, San Jose, 

CA, USA). 

 

Mitochondrial status 

Cytotoxicity assay  

The toxic effect of the differing aggregates on metabolic cell functions was assessed in 

cell models by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

assay in 96-well plates [205]. Native or aggregated HypF-N were added to the SH-

SY5Y cell culture media at differing final concentrations for 24 h at 37 °C. The cells 

were also treated with 12 µM HypF-N species grown for different times of aggregation 

(4h, 3 and 9 days). In another set of experiments, cholesterol-enriched, cholesterol-

depleted and basal fibroblasts were exposed to 1.0 µM Aβ42 monomers, oligomers or 

fibrils or to Aβ42-1 reversed peptide or amylin for 24 h at 37 ◦C. As a negative control, 

fibroblasts were pre-treated with 100 µM vitamin E for 24 h at 37 ◦C, before membrane 

cholesterol modulation and aggregate exposure. Moreover, the protective effects of 
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acyl-SG derivatives against amyloid aggregate or H2O2 cytotoxicity were also assessed 

by MTT assay. In a series of experiments, cells were incubated or not with acyl-SG 

thioesters for differing lengths of time. In another set of experiments, various final 

concentrations of acyl-SG thioesters were added to cell culture media for 3 h at 37°C. 

Comparative experiments with 1.0 µM acyl-CoA thioesters of lauric and palmitoleic 

acids and GSH alone were performed.  

After cell treatments, 100 µl of  0.5 mg/ml MTT solution in PBS was added to the cell 

cultures and the samples were incubated for 4 h at 37°C. Finally, 100 µl of cell lysis 

buffer (20% SDS, 50% N,N-dimethylformamide, pH 4.7) was added to each well and 

the samples were incubated for at least 3 h at 37°C in a humidified incubator, before 

determination of absorbance value of blue formazan at 590 nm with an ELISA plate 

reader. Cell viability was expressed as a percentage of MTT reduction in aggregate or 

H2O2-exposed cells compared to untreated cells (assumed as 100%). 

 

Cell death analysis: apoptotic and necrotic markers 

Caspase-3 activity 

The extent of the apoptotic program activation in SH-SY5Y cells was evaluated by 

confocal microscope and flow cytometric analyses of caspase-3 activity, which is the 

main effector caspase in apoptosis. For flow cytometric analysis, the cells were exposed 

to 12 µM native or aggregated HypF-N aggregates for 24 h at 37 °C. For confocal 

experiments, cells cultured on glass coverslips were exposed to 1.0 µM acyl-SG 

thioesters for 3 h and then to 5.0 µM Aβ42 aggregates or 250 µM H2O2 for 6 h at 37°C. 

After the appropriate treatment, the culture media were removed and replaced with 

FAM-FLICA Caspases 3&7 solution (Caspase 3&7 FLICA kit; FAM-DEVD-FMK; 

Immunochemistry Technologies, LLC, Bloomington, MN, USA) for  30 min, following 

the manufacturer's instructions. Cells were then washed three times with a wash buffer 

provided by the kit. For flow cytometric analysis, fluorescence was analyzed by a 

FACSCanto (Beckton Dickinson Bioscences, San Jose, CA, USA). For confocal 

experiments, the cells were fixed on glass coverslips in 2.0% buffered 

paraformaldehyde for 10 min at room temperature and then fluorescence was detected at 

488 nm excitation.  
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Hoechst staining 

Nuclear alterations eventually induced by the amyloid aggregates were investigated by 

Hoechst 33342 dye staining. Briefly, cholesterol-enriched cholesterol-depleted and 

basal fibroblasts were exposed to 1.0 µM Aβ42 monomers, oligomers or fibrils or to 

Aβ42-1 reversed sequence peptide or amylin for 24 h at 37 ◦C. As a negative control, 

fibroblasts were pre-treated with 100 µM vitamin E for 24 h at 37 ◦C, before membrane 

cholesterol modulation and aggregate exposure. Then, the cells were incubated with 20 

µg/ml Hoechst for 15 min at 37 °C and fixed in 2% buffered paraformaldehyde for 10 

min at room temperature. Blue fluorescence micrographs of cells were obtained under 

UV illumination in an epifluorescence inverted microscope (Nikon, Diaphot TMD-EF) 

with an appropriate filter set.  

LDH release 

The presence of necrotic cells was assessed by measuring the activity of lactate 

dehydrogenase (LDH), a typical necrotic marker released into the cell culture medium 

after plasma-membrane rupture. LDH activity was measured in the culture media of 

SH-SY5Y cells and fibroblasts after exposure to 12 µM native or aggregated HypF-N 

for differing times, or  to 1.0 µM Aβ42 aggregates, or to Aβ42-1 reversed sequence 

peptide for 48 h at 37 ◦C using the LDH assay kit (Roche Diagnostics, Mannheim, 

Germany) at 490 nm, after blank subtraction at 595 nm. 

 

Steady-state fluorescence anisotropy 

Fluorescence anisotropy (r) of DPH was used to measure the structural order of the 

hydrophobic region of the purified lipid rafts under steady-state conditions [243]. 

Anisotropy measurements were performed at 37 °C by a Perkin-Elmer LS 55 

luminescence spectrometer equipped with manual polarisers with excitation and 

emission wavelengths set at 360 nm and 425 nm, and with a slit-width of 2.5 nm and 4 

nm, respectively. Our system was initially calibrated using DPH in mineral oil, which 

should give an anisotropy value of 1.0. The g factor was calculated using horizontally 

polarized excitation and subsequent comparison of the horizontal and vertical 

emissions. Lipid rafts were incubated for 10 min in the absence or in the presence of 

Aβ42 aggregates at differing final concentrations and then further incubated for 30 min 
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with DPH at a 1:250 probe-to-lipid ratio. In another set of experiments, lipid rafts were 

incubated for differing times in the presence of 1.0 µM Aβ42 aggregates before dye 

loading. Fluorescence intensity was measured with the excitation polariser in the 

vertical position and the analysing emission polariser in both the vertical (IVV) and the 

horizontal (IVH) positions; the anisotropy constant, r, was calculated using the equation: 

 

 

 

 

Statistical analysis  

All data are expressed as mean ± standard deviation (SD). Comparisons between the 

different groups were performed by ANOVA followed by Bonferroni’s t-test. A p value 

less than 0.05 was accepted as statistically significant. 

r = 
- IVV    gIVH 

IVV 2gIVH + 
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CHAPTER III – RESULTS 

 
-RESULTS I- 

 
RELATIONSHIP BETWEEN CELLULAR IMPAIRMENT AND OLIGOM ER 

STRUCTURE IN PROTEIN DEPOSITION DISEASES 

 

Peptides or proteins can convert from their soluble forms into highly ordered 

fibrillar aggregates, giving rise to pathological conditions ranging from 

neurodegenerative disorders to systemic amyloidoses. The N-terminal domain of 

the prokaryotic hydrogenase maturation factor (HypF-N) can rapidly be converted 

into stable oligomers under conditions that promote its unfolding into partially 

folded species. In the first part of the result section, the different abilities to cause 

cell dysfunction of two types of HypF-N oligomers with distinct structural features 

were shown. In particular, only the oligomers exposing hydrophobic surface and 

endowed with sufficient structural plasticity are able to penetrate the plasma 

membrane and to increase cytosolic Ca2+ levels, intracellular ROS production and 

lipid peroxidation, resulting in the activation of the apoptotic pathway. In contrast, 

cellular stress markers and viability were unaffected in cultured neuronal cells 

exposed to HypF-N oligomers with a higher degree of packing and lower structural 

flexibility. The comparison between the biological properties of these protein 

aggregates shed light into the molecular basis of aggregate toxicity in protein 

deposition diseases. 
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Differential cytotoxic effects of two distinct types of HypF-N oligomers 

Several studies report that early prefibrillar aggregates can interact with the plasma 

membrane of cultured cells, resulting in cell impairment and death [40, 58, 94, 160]. 

Two types of stable oligomeric species of HypF-N were obtained by incubation for 4 h 

at 48 µM, 25°C in (i) 50 mM acetate buffer, 12% (v/v) trifluoroethanol (TFE), 2 mM 

DTT, pH 5.5 (condition A) and (ii) 20 mM trifluoroacetic acid (TFA), 330 mM NaCl, 

pH 1.7 (condition B) [91]. These species did not resolubilize when placed under 

physiological conditions and preserved their ability to bind the amyloid specific dye 

ThT [91]. Both HypF-N types of oligomers were able to bind to SH-SY5Y cells; but 

only aggregates formed under condition A could penetrate cell membranes. Indeed, the 

ability to cross the hydrophobic bilayer of the cell membrane appeared to correlate with 

a higher flexibility and solvent-exposure of the hydrophobic regions in the oligomers 

formed under condition A (Fig. 15).  
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Figure 15. Interaction of the aggregates formed under conditions A and B with cells. a-d, 
Confocal scanning microscopy images of SH-SY5Y cells untreated (a), or treated with 12 µM 
native HypF-N (b), 12 µM HypF-N pre-incubated under condition A (c) and 12 µM HypF-N 
preincubated under condition B (d). e-l, Optical sections taken through the cells after treatment 
with 12 µM HypF-N pre-incubated under conditions A (e-g) and B (h-l) at basal (e, h), median 
(f, i) and apical (g, l) focal lengths. In all images red and green fluorescence indicate cell 
profiles and HypFN, respectively. 

 

Then, we investigated by confocal microscopy whether the different ability of the 

oligomeric species to penetrate cell membranes was dependent on different 

concentrations of HypF-N aggregates (0.12, 1.2, 12 and 48 µM). HypF-N aggregates 

formed in condition A were able to cross cell membranes and be internalized in the 

cytoplasm, reaching maximal internalization at 12 µM concentration (Fig. 16). By 

contrast, although HypF-N oligomers formed in condition B could accumulate near the 

plasma membrane, none of the investigated concentrations allowed aggregate 



Chapter III - Results  
 
_____________________________________________________________________________ 

Amyloid Cytotoxicity and New Acyl-SG Thioesters 

91 

internalization. Moreover, cytotoxicity tests on cultured cells indicated that only the 

aggregates formed in condition A are able to impair the cell viability (Fig. 16). In 

particular, a strict correlation between the impairment in SH-SY5Y cell viability and the 

amount of aggregates formed in condition A was observed. By contrast, no inhibition of 

MTT reduction was detected when cells where treated with various concentrations of 

HypF-N aggregates formed under condition B. Taken together, these results indicate 

that only oligomers able to cross the cell membrane and reach the interior of the cell, 

rather than the outer species, cause cell dysfunction. 

 

 

Figure 16. Representative confocal microscope images showing HypF-N aggregates in contact 
with, or penetrating into, the plasma membrane and cytoplasm of SH-SY5Y cells after exposure 
to 12 µM native protein or with differing concentrations (0.12, 1.2, 12 and 48 µM) of HypF-N 
oligomers grown under condition A or B. After plasma membrane permeabilization with a 3% 
glycerol solution, counterstaining was performed with Alexa Fluor 633-conjugated wheat germ 
agglutinin to detect plasma membrane profile (red) and with 1:1000 diluted rabbit polyclonal 
anti-HypF-N antibodies and 1:1000 diluted Alexa Fluor 488-conjugated anti-rabbit antibodies 
(green) to detect the oligomers. Cell viability was checked by the 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) reduction test in SH-SY5Y cells treated for 24 h at 37 
°C with 12 µM native protein or with varying amounts of HypF-N oligomers formed under 
condition A and B. Cell cultures were incubated with 0.5 mg/ml MTT solution for 4 h and with 
cell lysis buffer (20% SDS, 50% N,N-dimethylformamide, pH 4.7) for 3 h. Absorbance values 
of blue formazan were determined at 590 nm using an ELISA plate reader. Cell viability was 
expressed as percent of MTT reduction in treated cells with respect to untreated cells (assumed 
as 100%). The values shown are means ± SD of three independent experiments carried out in 
triplicate. *Significant difference (p ≤ 0.05) vs untreated cells.  
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Differential membrane interaction of two distinct types of HypF-N oligomers 

The idea that the most highly cytotoxic species are the early prefibrillar aggregates 

whereas mature fibrils are substantially armless is currently gaining increasing support 

[40, 55]. In the present study, we investigated whether changes in HypF-N aggregate 

maturation affected the interaction with cell membranes and consequently 

internalization and cytotoxicity. In particular, the two types of HypF-N oligomers were 

grown for different times (4, 24 and 60 h) in conditions A and B, and then added to SH-

SY5Y cell culture media. As revealed by the MTT assay, the aggregates formed in 

condition B maintained their benign effect after prolonged incubation up to 2 weeks, 

while the initially toxic aggregates formed in condition A decreased their toxicity with 

time until they reach, after 60 h, a value of MTT reduction similar to that of untreated 

cells (Fig. 17a). The observed decrease in cytotoxicity correlates with a reduction of 

oligomers internalization into the cells. In fact, when cells were exposed for 60 min to 

HypF-N species formed in condition A and B upon prolonged aggregation times (3 and 

9 days), only few aggregates in the proximity of cell membranes were found (Fig. 17a). 

These results indicate that HypF-N species, grown -at longer times-in both aggregation 

conditions, are less able to penetrate plasma membranes, enter the cells and trigger 

cytotoxicity. Then, we evaluated whether the period of SH-SY5Y cell exposure to 

HypF-N aggregates could affect the ability of the membrane to bind and internalize 

HypF-N oligomers. Thus, a time course of aggregate binding to the plasma membranes 

was performed by exposing cells to HypF-N aggregates formed under condition A or B 

for 5, 10, 30, 60 and 180 min. Toxic HypF-N aggregates accumulated quickly (see 10 

min) at the plasma membrane, showing a rapid kinetic of interaction with cell surfaces 

and internalization to a considerable extent in cell model (Fig. 17b). On the other hand, 

non-toxic HypF-N aggregates assembled outside the plasma membrane without entering 

the cytoplasm even at longer times of incubation. Our findings suggest that the absence 

of internalization in cells treated with aggregates formed in condition B is not 

determined by the period of cell incubation with these oligomers. 
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Figure 17. a, Cell viability was checked by the MTT reduction assay in SH-SY5Y cells treated 
for 24 h at 37 °C with 12 µM HypF-N pre-incubated in condition A (red) and in condition B 
(blue) for the lengths of time reported in the x axis. The inset shows the data corresponding to 
the aggregates formed in condition B on a time scale of up to 2 weeks. On the right, 
representative confocal microscope images showing cells exposed for 60 min to 12 µM HypF-N 
species aged for 4h, 3 and 9 days in conditions A or B. b, Representative confocal images 
showing time course analysis of HypF-N aggregates, grown in conditions A and B, in contact 
with, or penetrating into, the plasma membrane and cytoplasm of SH-SY5Y cells. In all images 
red and green fluorescence indicate cell profiles and HypF-N protein, respectively. 

 

Toxic oligomers disrupt plasma membrane integrity and trigger a cytosolic Ca2+ 

spike 

Several studies suggest that cell membranes play an important role in determining 

amyloid aggregate cytotoxicity, not only because the interaction of amyloidogenic 

proteins with the membrane favours aggregation, but also because aggregates are 

thought to permeabilize the lipid bilayer, resulting in unregulated calcium influx into the 

cells [92, 160, 390, 391]. Accordingly, SH-SY5Y cells loaded with calcein-AM 

exhibited a marked decrease in intracellular fluorescence when exposed for 60 minutes 

to HypF-N oligomers formed under condition A (Fig. 18). The decay in calcein 
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fluorescence was less marked when SH-SY5Y cells were treated with aggregates 

formed under condition A for only 10 minutes, which suggests that greater membrane 

permeabilization occurred at longer periods of aggregate exposure. By contrast, any 

decrease in calcein fluorescence was observed in cells treated with HypF-N oligomers 

formed under condition B or with the native protein for 60 minutes.  

 

 

 
Figure 18. Representative confocal images showing plasma membrane permeabilization in SH-
SY5Y cells treated with or without 12 µM native HypF-N or HypF-N aggregates formed under 
condition A or condition B for the lengths of time reported up the figure. The cells were pre-
loaded with 2.0 µM calcein-AM (green fluorescence) for 20 min at 37°C, then exposed to 
HypF-N aggregates and, fixed in 2.0% buffered paraformaldehyde for 10 min at room 
temperature.  

 

Then, a time course of intracellular Ca2+ levels was performed in SH-SY5Y cells by 

confocal microscope analysis. Oligomers formed under condition A induced an early 

and sharp increase in cytosolic free Ca2+ (Fig. 19a). The cytosolic Ca2+ spike is marked 

after only 5 min of cell exposure to aggregates and increases over the time course, 

peaking after 60 min. By contrast, cells treated with HypF-N oligomers formed under 

condition B didn’t exhibit any increase in intracellular fluorescence over the time 

course, even at longer periods. No increase in intracellular Ca2+ was also observed in 

cells exposed to native HypF-N (Fig. 19b). The sharp increase in cytosolic free Ca2+ 

was inhibited when cells were treated with toxic oligomers in a Ca2+-free medium, 

suggesting that ion influx from the extracellular medium is responsible for this effect. 

The vitamin E pre-treatment also prevented the cytosolic Ca2+ spike. 
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Figure 19. a, Representative confocal microscope images showing time course analysis of 
cytosolic Ca2+ dysregulation in SH-SY5Y cells exposed to 12 µM oligomers formed under 
conditions A and B. The cells were treated with 10 µg/ml Fluo-3-AM for 30 min, resuspended 
in HBSS in a 1:1 ratio with Pluronic acid F-127 (0.01% w/v) and subsequently fixed in 2.0% 
buffered paraformaldehyde for 10 min at room temperature. b, SH-SY5Y cells were treated for 
60 min with or without native HypF-N protein or with 12 µM oligomers formed under condition 
A in a Ca2+-free medium or following a pre-incubation with 100 µM vitamin E for 24 h.  

 

Toxic oligomers induce ROS production and membrane lipid peroxidation  

The generation of intracellular ROS is one of the earliest biochemical changes that 

cells exposed to amyloid aggregates undergo [95, 196, 392]. ROS production in SH-

SY5Y cells exposed to both types of oligomers as well as to the native protein was also 

investigated. A time course analysis revealed that HypF-N oligomers formed under 

condition A triggered a ROS increase after only 5 min, peaking after 30-60 min of cell 

exposure to aggregates (Fig. 20a). By contrast, the cells treated with oligomers formed 

under condition B showed an intracellular redox status similar to that found in untreated 

cells. Treating the cells with native HypF-N for 60 min also failed to induce ROS 

production. Almost complete inhibition of ROS production was achieved by pre-

incubating cells with 100 µM vitamin E for 24 h or exposing cells to oligomers formed 

under condition A in a Ca2+-free medium. Then, membrane lipid peroxidation after cell 
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exposure to oligomers was evaluated by flow cytometric analysis using the fluorescent 

probe BODIPY. The fluorescence curves detected in native and condition B-oligomer 

treated cells was similar to that obtained in untreated cells. By contrast, a fluorescence 

shift toward higher intensity levels was evident in SH-SY5Y cells, suggesting an 

increase in membrane lipid peroxidation after 24 h of cell exposure to oligomers formed 

under condition A (Fig. 20b). 

 

 

 
Figure 20. a, Representative confocal microscope images showing time course analysis of 
intracellular ROS production in SH-SY5Y cells exposed to 12 µM HypF-N oligomers formed in 
conditions A and B. b, Cells were treated for 60 min with or without native HypF-N protein or 
with 12 µM oligomers formed under condition A in a Ca2+-free medium or following a pre-
incubation with 100 µM vitamin E for 24 h. All images were acquired by simultaneously 
incubating aggregate-exposed cells with 10 µM CM-H2,DCFDA resuspended in culture medium 
in a 1:1 ratio with Pluronic acid F-127 (0.01% w/v), in the last 10 min of aggregate exposure. 
Representative histograms illustrate the flow cytometric analysis of lipid peroxidation in SH-
SY5Y cells treated or not for 24 h with 12 µM native HypF-N or 12 µM HypF-N aggregates 
grown under conditions A or B. Then, single-cell suspensions were washed with PBS and 
incubated, in the dark, for 30 minutes at 37°C with 2.5 µM BODIPY. After labeling, the cells 
were washed, resuspended in PBS and analyzed using a FACSCanto flow cytometer. 
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Differential apoptotic and necrotic effects of two distinct types of HypF-N 

oligomers 

Finally, we evaluated whether the different ability of HypF-N oligomers to induce 

cytosolic ROS and Ca2+ increases resulted in a different apoptotic outcome by flow 

cytometric analysis of caspase-3 activity. In agreement with our aforementioned results, 

a marked increase in caspase-3 activity was apparent in SH-SY5Y cells treated for 24 h 

with oligomers formed under condition A, whereas a negligible caspase-3 activation by 

native HypF-N or oligomers formed under condition B was detected (Fig. 21a). Then, 

we investigated whether cells exposed to HypF-N aggregates for longer times (48 h) 

also underwent a necrotic cell death. A significant LDH release, supporting the presence 

of a necrotic outcome, was observed only in the culture media of cells exposed to 

oligomers formed under condition A (Fig. 21b).  

 

 

 
Figure 21. a, Caspase-3 activity was quantified in SH-SY5Y exposed or not for 24 h to 12 µM 
native HypF-N or to oligomers formed under conditions A and B by flow cytometric analysis. 
Single-cell suspensions were incubated with FAM-FLICA™ Caspases 3 solution for 60 min at 
37°C, washed with PBS and analyzed using a FACSCanto flow cytometer. b, Cell viability was 
checked by LDH release into the culture medium after 48 h exposure at 37 °C to 12 µM native 
HypF-N or to aggregates formed under conditions A and B. The values shown are means ± S.D. 
of three independent experiments, each performed in triplicate. *Significant difference (p ≤ 
0.05) vs untreated cells.    
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-RESULTS II- 

 
MEMBRANE CHOLESTEROL ENRICHMENT PREVENTS A β-INDUCED 

OXIDATIVE STRESS IN ALZHEIMER’S FIBROBLASTS 

 

Cell degeneration in Alzheimer’s disease is mediated by a toxic mechanism that 

involves Aβ peptide interaction with the plasma membrane of the target cells. A 

growing body of evidence implicates low membrane cholesterol in the pathogenesis 

of Alzheimer’s disease (AD). In the second part of the result section, Aβ42 soluble 

oligomers are shown to accumulate more slowly and in reduced amount at the 

plasma membranes of PS-1L392V (PS-1) and APPV717I (APP) fibroblasts from 

familial AD (FAD) patients enriched in cholesterol content than at the counterpart 

membranes. The permeabilization of the cell membranes and the early cytosolic 

Ca2+ rise following exposure to Aβ42 aggregates were reduced by increasing 

membrane cholesterol whereas the opposite effects were found in cholesterol-

depleted cells. Moreover, the Aβ42-induced production of reactive oxygen species 

(ROS) and the increase in membrane lipoperoxidation were also prevented by high 

membrane cholesterol, thus resulting in a higher resistance to amyloid toxicity 

with respect to control fibroblasts. On the other hand, the recruitment of amyloid 

assemblies to the plasma membrane of cholesterol-depleted fibroblasts was 

significantly increased, thus triggering an earlier and sharper production of ROS 

and a higher membrane oxidative injury. These results identify membrane 

cholesterol as being key to Aβ42 oligomer accumulation at the cell surfaces and to 

the following Aβ42-induced cell death in AD neurons. 
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Membrane cholesterol enrichment reduces Aβ aggregate binding to the cell 

membrane 

Cell degeneration in amyloid diseases appears to be mediated by a toxic mechanism 

involving some interaction of the aggregated species with the plasma membrane of the 

affected cells [40, 58, 393]. Moreover, Aβ42 aggregates accumulate quicker near the 

plasma membrane in FAD fibroblasts than in wild-type cells possibly as a result of 

increased membrane lipoperoxidation [205]. Here, the dependence of the membrane 

binding capacity of Aβ42 soluble oligomers (Fig. 22a) on membrane cholesterol content 

in PS-1, APP and wild-type fibroblasts was investigated. In particular, we induced 

modifications of membrane cholesterol content by incubating FAD and healthy 

fibroblasts in the presence of either PEG-cholesterol or β-CD followed by extensive 

washing with PBS. As shown in Fig. 22b, a morphological evaluation of FAD and 

healthy fibroblasts by confocal microscopy revealed a clear modulation of membrane 

cholesterol content under our experimental conditions. Quantitative analysis confirmed 

that cell exposure to soluble cholesterol resulted in a significant increase in membrane 

cholesterol (about 20%) vs respective control cells in all investigated fibroblast lines 

(Fig. 22b). Conversely, fibroblasts treated with β-CD underwent a significant reduction 

in membrane cholesterol (about 25%) vs counterpart fibroblasts.  
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Figure 22. Modulation of membrane cholesterol in FAD and healthy fibroblasts. a, 
Representative Western blotting analysis of Aβ42 soluble oligomers separated by SDS/PAGE 
on a 4–12% criterion XT Precast Bis–Tris gel and probed with monoclonal mouse 6E10 
antibodies and with peroxidase-conjugated anti-mouse antibodies. (b) Representative confocal 
microscope analysis of membrane cholesterol in WT, PS-1 and APP fibroblasts probed by the 
fluorescent dye filipin. Membrane cholesterol enrichment was achieved by incubating WT, PS-1 
and APP fibroblasts with 0.5 mM PEG-cholesterol (Chol) for 2 h at 37 ◦C; membrane 
cholesterol depletion was performed by adding 1.0 mM β-CD for 2 h at 37 ◦C in the culture 
media. The reported values are representative of three independent experiments. *Significant 
difference (p≤0.05) vs relative control cells with basal cholesterol levels. 
 

The increase in plasma membrane cholesterol resulted in a reduced amyloid-binding 

capacity to the plasma membrane of FAD fibroblasts with respect to relative cells, as 

assessed by confocal microscope analysis of cells exposed for 30, 60 and 180 min to 

Aβ42 aggregates (Fig. 23a). Accordingly, the Congo Red assay showed that cell media 

supplementation with soluble cholesterol resulted in a significant reduction of Aβ42 

aggregate binding to the cell plasma membranes with respect to controls (Fig. 23b). On 

the other hand, in fibroblasts from healthy subjects just few aggregates following longer 

time of protein exposure can be observed (Fig. 23a). Conversely, the same amyloid 

oligomers added to the cell culture medium appear to accumulate more rapidly and to a 

greater extent at the plasma membrane in β-CD treated cells characterized by a reduced 

content of cholesterol than in counterpart cells (Fig. 23a and 23b). Furthermore, Aβ42 

assemblies share a more rapid kinetic of interaction with cell surfaces in APP than in 

PS-1 fibroblasts. No significant difference in Congo Red absorbance values between 

wild-type and FAD groups of Aβ42-untreated cells was observed. An equal cell number 

from cultures with a comparable division rate from different donors were exposed to the 

aggregates in order to exclude the influence of these factors on the amount of Aβ 
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bounded to the cell surface. The ability of exposed cells to bind Aβ aggregates appeared 

saturable, reaching its limit in the first 30–60 min (Fig. 23b).  

 

 

 

Figure 23. Increasing cell cholesterol reduces Aβ aggregate binding to the cell membrane. a, 
Confocal microscope images show aggregates penetrating into the plasma membrane of wild-
type, PS-1 and APP fibroblasts under different experimental conditions. After treatment for 0, 
30, 60 and 180 min with 1.0 µM Aβ42 aggregates, counterstaining was performed with 
fluorescein-conjugated wheat germ agglutinin to detect plasma membrane profile (green). The 
aggregates were labeled with monoclonal mouse 6E10 anti-Aβ antibodies and Texas Red-
conjugated anti-mouse antibodies after plasma membrane permeabilization with glycerol. b, 
Time-course of amyloid aggregate binding to PS-1 and APP fibroblasts. After the exposure to 
1.0 µM Aβ42 aggregates for 0, 10, 20, 30, 60 min, cells were washed and the residual 
aggregate-cell complex was stained with 1.0 µM Congo Red for 20 min. Under these 
conditions, Congo Red-staining is a measure of the amount of Aβ42 aggregates adsorbed to cell 
membrane surface. The reported values (means ± SD) are representative of three independent 
experiments each carried out in triplicate. *Significant difference (p≤0.05) vs relative control 
cells with basal cholesterol levels.  
 

Moreover, the red fluorescence signals related to 6E10 antibody, that recognizes also 

the full length human APP, are negligible in all the analyzed conditions before Aβ 

treatment (see time 0). This evidence let us to rule out the possibility that the differences 

in the accumulation of exogenous Aβ at the cell surface were due to different levels of 
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APP expression or to the presence of APP mutant forms in these cells. In order to 

exclude the contribute of intracellular Aβ to 6E10 red signals, a set of experiments was 

carried out in the same experimental conditions with fluorescein-labeled Aβ42-FAM 

aggregates. Confocal microscope images of fibroblasts treated with Aβ42-FAM 

aggregates also confirmed the idea that the ability of Aβ42 aggregates to bind to the 

plasma membrane is significantly affected by its content in cholesterol (Fig. 24a). The 

staining profile of APP fibroblasts exposed to Aβ42-FAM aggregates retained a less 

fluorescent signal compared to images shown in Fig. 23a, since to minimize fluorophore 

interference with the aggregation process, the oligomers were prepared by mixing just 

one Aβ42-labeled molecule with two equivalents of Aβ42-unlabeled peptide. Amyloid 

binding to APP fibroblasts, as a function of membrane cholesterol content, was also 

quantified by flow cytometric analysis. Histograms illustrating the distribution for 

Aβ42-FAM-positive fibroblasts are shown in Fig. 24b. A higher percentage of 

fluorescent positive cells (+42%) in fibroblasts with low membrane cholesterol with 

respect to controls was evident, as indicated by the shift of the distribution curve toward 

higher intensity levels. On the other hand, the increase in membrane cholesterol resulted 

in a lower percentage of fibroblasts (−39%) with surface-binding affinity toward 

fluorescent Aβ42-FAM aggregates.  
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Figure 24. Aβ aggregate binding inversely correlates with membrane cholesterol content. a, 
Confocal microscope images show fluorescein-labeled Aβ42-FAM aggregates (green) 
penetrating into the plasma membrane of APP fibroblasts with different membrane cholesterol 
content. Membrane profile was counterstained with Alexa Fluor 633-conjugated wheat germ 
agglutinin (red). b, Flow cytometric analysis of Aβ42-FAM binding to APP fibroblasts after 
treatment for 60 min with 1.0 µM Aβ42 aggregates in basal (solid line), in cholesterol-depleted 
(dotted line) and in cholesterol-enriched conditions (thinner solid line). Histograms of the 
number of cells vs Aβ42-FAM fluorescence. Fluorescent gates were used to separate cells with 
lower Aβ42-FAM binding affinity and cells with higher Aβ42-FAM binding affinity with 
respect to control cells.  
 

To make these data more relevant, we extended our study to human SH-SY5Y 

neuroblastoma cells in basal condition (10.84±0.54 µg membrane cholesterol/mg of 

protein), in cells significantly enriched in cholesterol content (13.55±0.68 µg membrane 

cholesterol/mg of protein; p≤0.01) and in cells significantly depleted in cholesterol 

content (8.26±0.73 µg membrane cholesterol/mg of protein; p≤0.01). According to 

fibroblast data, the increase in plasma membrane cholesterol resulted in a reduced Aβ 
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oligomer binding to the plasma membrane in human neuroblastoma cells as detected by 

confocal microscope analysis using monoclonal anti-Aβ antibodies (Fig. 25). On the 

other hand, the same oligomers added to the neuroblastoma culture medium appeared to 

accumulate to a greater extent at the plasma membrane in β-CD treated cells 

characterized by reduced membrane cholesterol content. 

 

 

 

Figure 25. Membrane cholesterol modulates Aβ aggregate binding to human SH-SY5Y 
neuroblastoma cells. Representative confocal microscope images showing aggregates 
penetrating into the plasma membrane of neuroblastoma cells after cell treatment for 0 or 1 h 
with 1.0 µM Aβ42 aggregates in basal conditions, in cholesterol enriched cells (Chol) and in 
cholesterol-depleted cells (β-CD). 

 

Membrane cholesterol enrichment reduces Aβ42-induced membrane 

permeabilization and alteration of intracellular Ca2+ levels 

A leading theory on the molecular basis of amyloid toxicity is that pore-like pre-

fibrillar aggregates interact with the cell membranes leading to membrane 

permeabilization and free Ca2+ imbalance [40, 58, 390]. The alteration in membrane 

integrity, upon exposure to Aβ42 aggregates, on membrane cholesterol content in PS-1 

and APP fibroblasts was investigated (Fig. 26). FAD fibroblasts loaded with calcein-

AM exhibited a marked decrease in intracellular fluorescence when exposed for 30 

minutes to Aβ42 oligomers. In particular, the higher decline of calcein fluorescence was 
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observed in FAD fibroblasts depleted in membrane cholesterol and exposed to Aβ42 

aggregates (Fig. 26). Additionally, a greater calcein leakage in APP than in PS-1 

fibroblasts was evident (Fig. 26), suggesting an extensive alteration of membrane 

permeability induced by Aβ42 aggregates in the former. Moreover, the lower calcein 

fluorescence in APP fibroblasts compared to PS-1 fibroblasts, before exogenously 

addition of Aβ42 aggregates, indicated a chronic amyloid-induced membrane damage in 

cell facing a higher Aβ production. 

 

 

Figure 26. Cholesterol enrichment reduces the Aβ-induced increase in membrane permeability. 
Representative confocal microscope images of PS-1 and APP fibroblasts loaded with 2.0 µM 
calcein-AM for 20 minutes and then exposed to aggregates for 0 and 30 minutes in basal 
conditions, in cholesterol enriched fibroblasts (Chol) and in cholesterol depleted fibroblasts (β-
CD).  
 

Then, a time course of intracellular Ca2+ levels was performed in PS-1 and APP 

fibroblasts enriched or depleted in membrane cholesterol by confocal microscope 

analysis. A higher membrane cholesterol content prevented the early and sharp increase 

in cytosolic free Ca2+ levels induced by Aβ42 aggregates in FAD fibroblasts with basal 

cholesterol content (Fig. 27). Conversely, loss in membrane cholesterol, resulting from 

cell treatment with β-CD, triggered an accelerated and greater increase of cytosolic free 

Ca2+. Notably, the free Ca2+ increase was earlier, higher and more prolonged in APP 

than in PS-1 fibroblasts under the same experimental conditions. 



Chapter III - Results  
 
_____________________________________________________________________________ 

Amyloid Cytotoxicity and New Acyl-SG Thioesters 

106 

 

 

Figure 27. Cholesterol enrichment reduces the Aβ42-induced increase in cytosolic free Ca2+. 
Representative confocal microscope images of cytosolic Ca2+ levels in PS-1 and APP fibroblasts 
treated with 1.0 µM Aβ42 prefibrillar aggregates for 0, 10, 30 and 60 min. Cells were then 
treated for 30 minutes with 10 µg/ml Fluo-3-AM, resuspended in HBSS in a 1:1 ratio with 
Pluronic acid F-127 (0.01% w/v) and subsequently fixed in 2.0% buffered paraformaldehyde for 
10 min at room temperature.  
 

Membrane cholesterol enrichment reduces ROS production and ROS scavenger 

impairment 

There is strong experimental evidence that oxidative stress is an early biochemical 

modification in cells facing amyloid aggregates [394]. Therefore, we investigated the 

dependence of ROS production on membrane cholesterol content in human fibroblasts 

exposed to amyloid aggregates. A time-course analysis showed that in APP and, to a 

lesser extent, in PS-1 fibroblasts an earlier and sharper increase in intracellular ROS 
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content than in wild type fibroblasts (Fig. 28a). The reduced ability of APP cells to 

counteract Aβ42 aggregate oxidative attack was also confirmed by a significant 

impairment in intracellular ROS scavengers with respect to that observed in PS-1 and 

wild type fibroblasts. Indeed, ROS scavengers were significantly different among the 

investigated fibroblast lines with basal cholesterol content (1500±52 nmol ascorbate/mg 

of proteins in wild-type, 1170±39 nmol ascorbate/mg of proteins in PS-1, and of 

821±49 nmol ascorbate/mg of proteins in APP fibroblasts), according to our previous 

reported data [210]. Interestingly, PEG-cholesterol addition to the cell culture media 

was as effective as vitamin E in reducing ROS production induced by Aβ aggregates 

with respect to relative cells with basal cholesterol content (Fig. 28a). Moreover, the 

impairment of ROS scavengers was less in cholesterol-enriched FAD cells, matching 

the almost complete prevention of aggregate-induced oxidative stress obtained by pre-

incubating the cells with 100 µM vitamin E. Conversely, loss in membrane cholesterol, 

resulting from cell treatment with β-CD, induced a greater increase in intracellular ROS 

production and consumption of ROS scavengers (Fig. 28a and 28b). Notably, PEG-

cholesterol and β-CD exposure do not induce ROS production in amyloid untreated 

fibroblasts, as we can see at time 0 (Fig. 28a). 
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Figure 28. Cholesterol enrichment reduces Aβ42-induced ROS production and ROS scavenger 
weakening. a, Representative confocal images of intracellular ROS levels in WT, PS-1 and APP 
fibroblasts under different experimental conditions. After treatment for 0, 30, 60 and 180 min 
with 1.0 µM Aβ42 prefibrillar aggregates, cells were incubated for 10 min in the presence of the 
redox fluorescent probe CM-H2DCFDA and then fixed. Vitamin E (Vit E) was used as negative 
control. For details see Materials and Methods. b, Intracellular ROS scavengers were assessed 
in cell lysates, after 3 h of exposure to 1.0 µM Aβ42 aggregates by a chemiluminescent assay 
and expressed in ascorbate-equivalent units. The reported values (means ± SD) are 
representative of three independent experiments each carried out in triplicate. *Significant 
difference (p≤0.05) vs relative untreated cells. 

 

Membrane cholesterol enrichment reduces Aβ aggregate-induced lipoperoxidation  

Membrane lipoperoxidation after aggregate exposure was analyzed by confocal 

microscope analysis using the fluorescent probe BODIPY. The red fluorescence 

observed in basal cholesterol and in β-CD cholesterol-depleted fibroblasts from healthy 

subjects shifted to green after 3 h of amyloid aggregate exposure (Fig. 29a). According 

to previous reported data [210], PS-1 and, to a greater extent, APP fibroblasts showed a 

basal oxidative-stressed condition, as revealed by the orange fluorescence in untreated 

fibroblasts. Anyway, the fluorescence signals observed in membrane cholesterol-
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enriched cells exposed toAβ42 aggregates did not significantly differ from their 

respective in untreated cells, confirming a fair protective role of membrane cholesterol 

in FAD cells. Similar experiments carried out in the presence of vitamin E on all 

investigated fibroblast lines confirmed the specificities of the fluorescence signals. 

Moreover, we measured the levels of 8-OH isoprostanes, as quantitative 

lipoperoxidation marker. As shown in figure 29b, isoprostanes were significantly higher 

in APP than in PS-1 fibroblasts, since at a basal level. Cellular isoprostane levels were 

further increased following Aβ42 exposure both in cells with basal and, to a greater 

extent, with reduced membrane cholesterol content. Conversely, membrane cholesterol 

enrichment was effective in reducing isoprostane production like as vitamin E in FAD 

fibroblasts treated with Aβ42 aggregates compared to relative control cells. 
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Figure 29. Cholesterol enrichment protects FAD fibroblasts from Aβ42 peptide-induced 
lipoperoxidation. a, Representative confocal microscope images of lipid peroxidation in WT, 
PS-1 and APP fibroblasts under different experimental conditions. Cells were treated with 1.0 
µM Aβ42 for 3 h, with or without vitamin E (Vit E), and lipid peroxidation was measured using 
the fluorescent probe BODIPY as a probe according to Materials and Methods. b, Lipid 
peroxidation was also measured as cytosolic levels of 8-isoprostanes (for details see Materials 
and Methods). The reported values (means ± SD) are representative of three independent 
experiments carried out in triplicate and are expressed as % with respect to untreated cells. 
*Significant difference (p≤0.05) vs relative untreated cells. 

 

High membrane cholesterol prevents Aβ aggregate cytotoxicity  

Next we investigated whether changes in oxidative markers also resulted in 

modulation of Aβ aggregate toxicity to exposed cells. As shown in figure 30a, 

morphological evaluation of healthy and FAD fibroblasts using Hoechst 33342 staining 

revealed no marked characteristics of apoptosis (i.e. nuclear condensation or DNA 

fragmentation) in cells enriched in membrane cholesterol after 24 h of exposure to Aβ42 

aggregates with respect to similarly exposed control cells with basal cholesterol content. 
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Accordingly, as revealed by the MTT assay (Fig. 30b), both FAD and wild-type 

fibroblasts with cholesterol-rich membrane were significantly more resistant to Aβ42 

aggregate toxicity with respect to similarly exposed control cells with basal cholesterol 

content. Conversely, loss in membrane cholesterol, following cell treatment with β-CD, 

resulted in a significant increase in the number of cells showing nuclear condensation, 

as revealed by the increase in Hoechst fluorescence (Fig. 30a), and in a significant 

impairment of cell viability (Fig. 30b) upon exposure to the aggregates. Cell treatment 

with PEG-cholesterol or β-CD do not affect cell viability (data not shown). Vitamin E 

and Aβ42-1 reversed sequence peptide were used as negative controls. In particular, the 

absence of any cytotoxic effect in Aβ42-1 treated cells highlighted the selectivity of the 

cellular response to Aβ42 peptide aggregates. Moreover, the selectivity of the 

cytoprotective role of high membrane cholesterol was investigated in cells exposed to 

different forms of Aβ42 aggregates and to amylin prefibrillar aggregates (Fig. 31). 

Under our experimental conditions, cholesterol-depleted fibroblasts showed an apparent 

susceptibility to theAβ42 mature fibrils, but to a lesser extent than to Aβ42 oligomers. 

In any case, Aβ42 fibrils induced a more evident DNA damage in APP than in PS1 

fibroblasts. On the other hand, cholesterol-enriched fibroblasts displayed no significant 

change of cell viability upon exposure to Aβ42 fibrils, suggesting that membrane 

cholesterol enrichment also protects cells from perturbation by fibrillar aggregates. 

Overall, FAD fibroblasts exposed to fibrils displayed variable susceptibility to damage 

and to apoptotic death, confirming a significant inverse relation to membrane content in 

cholesterol. A reduced vulnerability to the stress induced by amylin oligomers was also 

observed in cholesterol-enriched fibroblasts with respect to cells with low cholesterol 

content, further supporting the generality of these effects. On the other hand, a 

negligible cytotoxicity after treatment with Aβ42 monomeric peptide further tightly 

linked previous results to the β-sheet structure found in Aβ42 and amylin aggregates. 

Thought displaying the typical features of apoptotic cells, FAD and wild-type 

fibroblasts with basal and reduced mem- brane cholesterol content appeared to be 

similarly affected by 24 h of Aβ42 aggregate exposure. Then, we investigated whether 

fibroblasts exposed to Aβ42 prefibrillar aggregates for longer times (48 h) underwent a 

necrotic, rather then apoptotic, cell death. As shown in figure 30c, a significant release 

of LDH in the cell culture media was observed in fibroblasts with basal and, to a greater 
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extent, reduced cholesterol content exposed to Aβ aggregates. Again, cholesterol 

enriched fibroblasts displayed a higher resistance to amyloid toxicity, compared to 

relative control cells, as revealed by the significant reduction of LDH release into the 

culture media. 

 

 

 
Figure 30. Cholesterol enrichment prevents Aβ aggregate toxicity. a, The toxic effect of Aβ42 
aggregates on FAD and healthy fibroblast morphology was evaluated using the Hoechst 33342 
dye staining. Representative blue fluorescence micrographs of untreated (−Aβ42) or exposed 
fibroblasts to 1.0µM Aβ42 aggregates for 24 h (for details see Materials and Methods). b, Cell 
viability was checked by the MTT reduction test in cells treated with 1.0 µM Aβ42 aggregates 
for 24 h. The reported values (means ± SD) are representative of four independent experiments, 
each performed in triplicate. c, Fibroblast viability was checked by LDH release into the culture 
medium after exposure to 1.0 µM Aβ42 aggregates for 48 h. The values shown are means ± SD 
of three independent experiments, each performed in triplicate. *Significant difference (p≤0.05) 
vs relative untreated cells. 
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Figure 31. Cholesterol protects against Aβ fibrils and amylin aggregate toxicity. The toxic 
effect of 1.0 µM Aβ42 monomers (Aβ42 M), Aβ42 oligomers (Aβ42 O), Aβ42 fibrils (Aβ42 F) 
and amylin aggregates on FAD fibroblasts was evaluated using Hoechst 33342 dye staining. 
Representative blue fluorescence micrographs of PS-1 and APP fibroblasts exposed to different 
forms of Aβ42 or amylin prefibrillar aggregates for 24 h. Cell viability was checked by the 
MTT reduction test in PS-1 and APP fibroblasts exposed to the same aggregates. The reported 
values are representative of three independent experiments, each performed in duplicate. 
*Significant difference (p≤0.05) vs relative untreated cells. 
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-RESULTS III- 

 
LIPID RAFTS ARE PRIMARY TARGETS OF AMYLOID OXIDATIV E 

ATTACK ON PLASMA MEMBRANE  

 

Increasing evidence indicates that cell surfaces are early interaction sites for Aβ-

derived diffusible ligands (ADDLs) and neurons in the pathogenic process of 

Alzheimer’s disease (AD). Previous data showed significant oxidative damage at 

the plasma membrane in fibroblasts from familial AD patients with enhanced Aβ 

production. In the third part of the result section, lipid rafts, ordered membrane 

microdomains rich in cholesterol and sphingolipids, are reported as chronic 

targets of Aβ-induced lipid peroxidation in SH-SY5Y human neuroblastoma cells 

overexpressing amyloid precursor protein (APPwt) and APPV717G genes and in 

fibroblasts bearing the APPV717I gene mutation. Confocal microscope analysis 

showed that Aβ-oxidized rafts recruit more ADDLs than corresponding domains 

in control cells, triggering a further increase in raft lipid peroxidation and loss of 

membrane integrity. Moreover, amyloid pick up at the oxidative-damaged 

domains was prevented by enhanced cholesterol levels, anti-ganglioside (GM1) 

antibodies and the B subunit of cholera toxin (CTX-B) binding to GM1. A time- 

and dose-dependent increase of the structural rigidity of the detergent resistant 

domains (DRMs), isolated from APPwt and APPV717G cells and exposed to 

ADDLs, indicates a specific perturbation of raft physicochemical features in cells 

facing increased amyloid assembly at the membrane surface. This data identifies 

lipid rafts as key targets of oxidative damage as a result of their ability to recruit 

aggregates to the cell surface. 
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Higher lipid peroxidation levels in APPwt and APPV717G overexpressing cells  

SH-SY5Y neuroblastoma cells, stably transfected with APPwt and APPV717G 

constructs expressed higher APP levels (about threefold) compared to cells transfected 

with an empty pcDNA vector (SY5Y) (Fig. 32a). In particular, APPwt and APPV717G 

clones showed very similar APP expression levels, providing a useful tool for 

investigating the dependence of ADDLs binding to neuronal cells on Aβ production 

level. Indeed, APP undergoes proteolytic β-secretase and γ-secretase activities and 

generates elevated amounts of Aβ42 peptide both in APPwt and APPV717G 

neuroblastoma cells and in their culture media (Fig. 32a). However, APPV717G cells 

produced and released a significant higher level of Aβ42 peptide then APPwt cells. In 

amyloid diseases, the aggregated species of Aβ peptides interact with the plasma 

membrane of the affected cells, triggering a free radical-mediated injury that ultimately 

results in cell degeneration [40, 394]. A confocal microscope analysis showed a higher 

membrane lipid peroxidation in APPV717G and, to a lesser extent, in APPwt than in 

SY5Y cells as assessed using the fluorescent probe BODIPY 581/591 (Fig. 32b). By 

contrast, no difference in the lipid peroxidation levels in the presence of DAPT, a 

specific γ-secretase inhibitor, was observed among the three clones. These results 

suggest that the enhanced lipid peroxidation in APP overexpressing clones is 

predominantly the result of a chronic exposure to increased levels of Aβ42 peptide, 

rather then to a higher APP content. Accordingly, 8-OH isoprostane levels were 

significantly higher in APPwt and APPV717G cells compared to SY5Y cells (Fig. 32b), 

suggesting an oxidative-stressed condition associated with chronic exposure to Aβ in 

the former. Then, we investigated whether the surface lipid peroxidation enhances the 

binding process of exogenously added Aβ42 aggregates in APPwt and APPV717G 

cells. Flow cytometric analysis of the distribution of Aβ42-FAM fluorescent-positive 

cells showed a curve shift toward higher intensity levels in APPwt and APPV717G cells 

compared to SY5Y cells exposed to ADDLs for 60 min (Fig. 32c). In particular, the 

mean fluorescent signal of aggregate-binding cells was significantly higher in APP 

overexpressing clones than in SY5Y clone.  
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Figure 32. APPwt and APPV717G overexpressing cells show higher lipid peroxidation levels 
and attract more Aβ42-FAM aggregates to the plasma membrane. a, Representative Western 
blot analysis of total extracts from SH-SY5Y neuroblastoma cells overexpressing wild-type 
APP gene (APPwt), FAD-like mutant 717 valine-to-glycine APP gene (APPV717G) or mock 
transfected (SY5Y) was carried out using monoclonal mouse 6E10 antibodies. β-actin 
expression analysis was used as control loading. Aβ42 levels were measured using an ELISA 
kit in the cellular extracts and in the conditioned media of the three clones. b, Representative 
confocal microscope images of lipid peroxidation in SY5Y, APPwt and APPV717G cells pre-
treated or not with 100 nM DAPT for 24 h, obtained using the fluorescent probe BODIPY 
581/591. Lipid peroxidation was quantified by measuring 8-OH isoprostane levels in the three 
clones. c, Representative curves illustrate the flow cytometric analysis of Aβ42-FAM binding to 
the three clones before and after exposure to ADDLs for 60 min. On the right, in the histograms, 
the reported values (means ± SD) are representative of three independent experiments carried 
out in triplicate. *Significant difference (p ≤ 0.05) vs SY5Y cells. § Significant difference (p ≤ 
0.05) vs APPwt cells. 
 

Accordingly, confocal microscope analysis showed that when 1.0 µM ADDLs were 

added to the culture media for 60 min, they accumulate and are internalized mostly in 

APPwt and APPV717G than in SY5Y cells (Fig. 33). By contrast, DAPT strongly 

reduced the aggregate-binding to plasma membranes of all three clones exposed to 

ADDLs, excluding the possibility that amyloid pick up at the cell surfaces is merely 
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affected by the APP content. Moreover, an increased aggregate-binding capacity was 

apparent in APPwt and APPV717G clones compared to SY5Y cells also using A11 

antibodies, unable to cross-react with the full length human APP (Fig. 33). This 

evidence let us to rule out the possibility that the differences in 6E10 fluorescence 

signal were due to different APP expression levels among the three clones. The elevated 

accumulation of aggregates to the cell surfaces resulted in a sharper increase in 

membrane oxidative-injury as assessed using the fluorescent probe BODIPY 581/591 

(Fig. 33). Indeed, APPwt and APPV717G cells showed a significantly higher shift to 

green fluorescence signal with respect to their respective change in SY5Y cells, when 

exposed to ADDLs, confirming an enhanced oxidative insult in cellular surface facing a 

higher Aβ production.  

 

 

 
Figure 33. APPwt and APPV717G overexpressing cells show a greater Aβ42 aggregate 
recruitment to the plasma membrane. Representative confocal microscope images showing 
aggregates penetrating into the plasma membrane of SY5Y, APPwt and APPV717G 
neuroblastoma cells exposed to 1.0 µM ADDLs for 60 min (+) compared to untreated cells (−). 
Cells cultured in the absence (−) or in the presence (+) of 100 nM DAPT for 24 h are compared 
by labelling Aβ42 aggregates with monoclonal mouse 6E10 antibodies (red). The plasma 
membrane profile was stained with fluorescein-conjugated wheat germ agglutinin (green). In the 
third set of images ADDLs were counterstained using polyclonal rabbit A11 anti-oligomer 
antibodies (green), while the plasma membrane profile was stained with Alexa Fluor 633-
conjugated wheat germ agglutinin (red). Bottom, the fourth set of images was obtained using 
the fluorescent probe BODIPY 581/591 as a marker of lipid peroxidation in SY5Y, APPwt and 
APPV717G clones before (−) and after (+) Aβ42 exposure. 
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Membrane cholesterol depletion increases Aβ aggregate binding to the cell surface  

Then, the dependence of membrane capacity to bind Aβ42 oligomers on membrane 

cholesterol content in APPwt and APPV717G clones was investigated. In particular, we 

induced modifications of membrane cholesterol content by incubating neuroblastoma 

cells in the presence of either water soluble cholesterol (Chol) or mevastatin (Mev). 

Quantitative analysis showed a significant increase in membrane cholesterol in SY5Y, 

APPwt and APPV717G cells (17.01 ± 2.8 µg/mg protein, p ≤ 0.05) after treatment with 

soluble cholesterol with respect to untreated control cells (12.93 ± 1.52 µg/mg protein). 

Conversely, clones treated with mevastatin underwent a significant reduction in 

membrane cholesterol (8.96 ± 0.91 µg/mg protein, p ≤ 0.05) vs counterpart cells. 

Anyway, no significant difference was observed in the cholesterol content among these 

three clones. The increase in cholesterol content resulted in a reduced membrane 

capacity to bind amyloid aggregates in APPwt and APPV717G clones with respect to 

corresponding cells, as assessed by confocal microscope analysis of cells exposed to 1.0 

µM ADDLs for 60 min (Fig. 34a). To exclude the contribute of intracellular Aβ, a time-

course of aggregate binding to APPwt and APPV717G cells was also performed by a 

quantitative flow cytometric analysis of cells exposed to fluorescent Aβ42-FAM 

aggregates. Cell supplementation with cholesterol resulted in a lower membrane ability 

to bind Aβ42-FAM. Conversely, ADDLs appeared to accumulate more rapidly and to a 

greater extent at the plasma membrane in mevastatin treated clones, with a reduced 

content of cholesterol, than in counterpart cells (Fig. 34a). Moreover, amyloid pick up at 

the membranes was higher in APPV717G than in APPwt cells. Notably, a slight red 

fluorescence signal is evident in both the analyzed clones without exogenous addition of 

Aβ42 aggregates, supporting a constant overproduction of Aβ42 in these cells (Fig. 

34b). However, APP overexpression could also explain the presence of 6E10 

fluorescent signal in the absence of Aβ oligomers [395]. According to the above 

reported data, a complete absence of red fluorescence signal in the presence of DAPT in 

both clones occurred (Fig. 34b). 
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Figure 34. Membrane cholesterol depletion increases Aβ aggregate binding to APPwt and 
APPV717G cells. a, Flow cytometric analysis of Aβ42-FAM binding to the two clones after 
treatment for differing lengths of time (0, 2, 10, 15, 30, 60 and 180 min) with 3.0 µM Aβ42-
FAM aggregates in basal (Control), in cholesterol-enriched (Chol) and in cholesterol-depleted 
(Mev) conditions. The reported values (mean ± SD) are representative of three independent 
experiments carried out in duplicate. On the right, representative confocal microscope images 
showing aggregates penetrating into the plasma membrane of APPwt and APPV717G clones 
after exposure to 1.0 µM Aβ42 aggregates for 60 min, in basal conditions and after treatment 
with Chol or Mev. b, Representative confocal microscope images showing APPwt and 
APPV717G clones cultured in the absence (-) or in the presence (+) of 100 nM DAPT for 24 h. 
The plasma membrane profile was stained with fluorescein-conjugated wheat germ agglutinin 
(green) and Aβ42 aggregates were labelled with 6E10 antibodies (red). 
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Lipid rafts are primary recruitment sites and oxidative targets of amyloid 

aggregates  

Recently published research indicates that exogenously applied Aβ in the form of 

ADDLs can be trafficked on the neuronal membrane and accumulate in lipid rafts, 

liquid-ordered microdomains rich in cholesterol [241]. Therefore, the role of cholesterol 

in the modulation of Aβ42 aggregate interaction with these liquid-ordered structures 

was investigated. Confocal microscope analysis showed a marked colocalization of 

Aβ42 oligomers with GM1, a well known lipid raft marker, on the plasma membranes 

(Fig. 35a). When the scatter plots of fluorescence signals were analyzed using the 

Pearson’s correlation coefficient and the overlap coefficient, according to Manders, 

yielded a colocalization of about 51% between GM1 and Aβ42 aggregates in APPwt 

and APPV717G cells and 42% in SY5Y cells. A moderate enrichment of membrane 

cholesterol reduced the interaction of ADDLs with GM1 to about 35% colocalization in 

APPwt and APPV717G clones and to 25% in SY5Y cells. By contrast, in cholesterol 

depleted cells an increase in ADDL-GM1 colocalization (about 68%) in APPwt and 

APPV717G cells and (61%) in SY5Y cells was detected. Then, an APP redistribution in 

membrane compartments, induced by cholesterol modulation, accounting for the altered 

membrane ability to bind amyloid aggregates in APP clones was investigated. When 

APPwt membrane components were separated on a sucrose gradient, no shift in APP 

immunoreactivity was evident in cholesterol enriched compared to depleted cells, 

whereas a flotillin-1 transfer to the higher density fractions in the presence of raft 

reorganization occurred (Fig. 35b). Overall, these data showed that Aβ oligomers 

interact with the plasma membrane preferentially at the raft domains and that any 

structural modification induced by cholesterol results in alterations of the aggregate-raft 

interactions. To make these data more relevant, this study was extended to human 

primary fibroblasts carrying APPV717I gene mutation, obtained from a FAD patient. A 

higher lipid peroxidation was evident in APPV717I fibroblasts with respect to wild-type 

fibroblasts obtained from a healthy subject as assessed by the fluorescent BODIPY 

581/591 shift (Fig. 35c), suggesting that cells carrying an altered proteolytic APP 

process have an increased amyloid assembly at the membrane surface. Then, I 

investigated whether the more oxidized membranes of APPV717I fibroblast bind more 

exogenous ADDLs at the lipid raft levels. A higher Aβ42-GM1 colocalization (59%) 
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was evident in APPV717I than in wild-type fibroblasts (40%) (Fig. 35c). This resulted 

in a further increase of membrane lipid peroxidation in mutated fibroblasts, when 

exposed to ADDLs (Fig. 35c). By contrast, wild-type fibroblasts are more resistant to 

Aβ-oxidative attack with a slight fluorescence shift, likely because of their plasma 

membrane integrity.  
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Figure 35. Aβ42 oligomers preferentially colocalize with the raft domains and generate high 
lipid peroxidation in APPV717I fibroblasts. a, Representative confocal microscope images 
showing Aβ42-GM1 colocalization in SY5Y, APPwt and APPV717G cells exposed to 1.0 µM 
Aβ42 for 60 min in basal conditions and after treatment with Chol or Mev. Aβ42 aggregates 
were labelled with 6E10 antibodies (green), while GM1 was stained with Alexa Fluor 647-
conjugate CTX-B (red). The scatter plots compare the pattern of Aβ42-GM1 colocalization in 
the three clones. The sampled pixels are plotted as a function of red (x axis) and green (y axis) 
fluorescence intensity, resulting in partial colocalization (left panel), a low degree of 
colocalization (middle panel) and a high degree of colocalization (right panel) of Aβ42 
aggregates with GM1. b, Representative immunoblot analyses of APP and flotillin-1 
distributions in 14 sucrose gradient fractions of APPwt cells enriched (Chol) or depleted (Mev) 
in membrane cholesterol levels. The gradient fractions were collected from the top (low density) 
to the bottom (high density) of the gradient tube, run on 12% SDS/PAGE and labelled with 
6E10 and mouse anti-flotillin-1 monoclonal antibodies. c, Representative confocal images 
showing Aβ42-GM1 colocalization in wild-type (WT) and mutant 717 valine-to-isoleucine APP 
(APPV717I) fibroblasts are shown on the left-hand side. ADDLs were labelled with 6E10 
antibodies (green), while GM1 was stained with Alexa Fluor 647-conjugated CTX-B (red). The 
scatter plots show the pattern of Aβ42-GM1 colocalization. Representative confocal microscope 
images of lipid peroxidation in WT and APPV717I fibroblasts exposed (+) or not (−) to 1.0 µM 
Aβ42 for 60 min using the fluorescent probe BODIPY 581/591 are shown on the right-hand 
side.  
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Oxidative effects of Aβ42 oligomers on detergent resistant membranes (DRMs) 

To confirm Aβ42 specific interaction with lipid rafts, the biophysical modifications 

induced by ADDLs in Triton X-100 detergent resistant membranes (DRMs) isolated 

from SY5Y, APPwt and APPV717G cells at low temperature were investigated. The 

sucrose gradient fractions rich in flotillin-1 raft marker (fractions from 3 to 5) were 

pooled and analyzed for the 8-OH isoprostane content and malondialdehyde (MDA) 

plus 4-hydroxynonenal (4-HNE) levels (Fig. 36a and 36c). A significant higher lipid 

peroxidation in DRMs from APPwt and APPV717G clones with respect to SY5Y 

DRMs was evident whereas no APP redistribution in membrane compartments occurred 

(Fig. 36a and 36c). Moreover, a significant higher level of 8-OH isoprostanes in DRMs 

from APPV717I fibroblasts with respect to wild-type fibroblasts occurred (Fig. 36b). In 

particular, the increase in lipid peroxidation levels was higher (about tenfold) in DRM 

compartments than in the entire membrane, confirming lipid rafts as a preferential site 

for aggregate binding to cell surface. Then, the effect of Aβ42 oligomers on the 

structural order of the hydrophobic regions of DRMs was evaluated by measuring the 

fluorescence anisotropy of DPH dye under steady-state conditions at 37 °C. The relative 

motion of the DPH molecule within the acyl chain space of the lipid bilayer was 

determined by polarized fluorescence and expressed as r, the anisotropy constant, 

whose value is inversely proportional to the degree of membrane fluidity. DRMs 

obtained from APPwt cells displayed a dose dependent anisotropy increase upon 

exposure to Aβ42 oligomers (Fig. 36c). Then, when the influence of the APP expression 

levels on the DRM disturbing properties of ADDLs was investigated. DRMs from 

APPwt and APPV717G cells showed a higher reduction of fluidity with respect to 

corresponding rafts from SY5Y cells when exposed to ADDLs for different lengths of 

time (Fig. 36c). Notably, the more ordered structure was reached in less than 10 min of 

exposure to the oligomers in all cell models. The basal anisotropy level in DRMs from 

APPwt and APPV717G clones was significantly higher (threefold) than in relatives 

from SY5Y cells, supporting an increased alteration of membrane structure likely as a 

result of a chronic exposure to increased levels of Aβ42 peptide.  
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Figure 36. Oxidative effect of Aβ42 aggregates on DRMs. a, Representative immunoblot 
analyses of flotillin-1 and APP distributions in sucrose membrane fractions using specific 
antibodies. Flotillin-1-rich fractions (from 3 to 5), consisting of detergent resistant membranes 
(DRMs) were pooled. b, Representative immunoblot analysis of flotillin-1 levels in sucrose 
gradient fractions. 8-OH isoprostane levels were quantified both in cell lysates and in pooled 
flotillin-1-rich fractions (from 3 to 5) consisting of DRMs purified from WT and APPV717I 
fibroblasts. The reported values (mean ± SD) are representative of three independent 
experiments carried out in duplicate. *Significant difference (p ≤ 0.05) vs WT cells. c, The 
amount of 8-OH isoprostanes and MDA plus 4-HNE was quantified in DRMs of the three 
clones. The reported values (mean ± SD) are representative of three independent experiments 
carried out in triplicate. *Significant difference (p ≤ 0.05) vs SY5Y cells. DPH fluorescence 
anisotropy, r, measured by incubating DRMs from APPwt cells with differing concentrations 
(0.01, 0.1, 1.0 and 10µM) of ADDLs for 30 min. On the right, DRMs from SY5Y, APPwt and 
APPV717G cells were incubated for 0, 2, 10, 30 and 60 min with 1.0 µM Aβ42 aggregates. The 
reported values (mean ± SD) are representative of six independent experiments, each performed 
in duplicate. *p ≤ 0.05, significant difference vs untreated DRMs. 
 

GM1-mediated accumulation of Aβ42 oligomers on plasma membranes 

Previous AFM analysis on DRMs, isolated from SY5Y cells, demonstrated an 

abundant distribution of GM1 granular structures in these membrane compartments 

[243]. In order to assess whether lipid rafts are specific targets of membrane oxidative 

injury, APPwt and APPV717G cells were pre-incubated with anti-GM1 antibodies 

(AbGM1) or with the B subunit of cholera toxin (CTX-B) before exogenously Aβ42 
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treatment. The specific binding of anti-GM1 antibodies and of CTX-B to raft 

monosialoganglioside prevented the BODIPY fluorescence shift both in APPwt and 

APPV717G cells, suggesting a major role of raft domain GM1 in lipid peroxidation 

process induced by ADDLs (Fig. 37a). Derangement of ion distribution across the 

plasma membrane is an early biochemical modification displayed by cells exposed to 

amyloid aggregates [160, 170]. Accordingly, a sharp calcein leakage in SY5Y, APPwt 

and APPV717G cells was evident (Fig. 37b), suggesting an extensive alteration of 

membrane permeability induced by Aβ42 aggregates. Moreover, the lower calcein 

fluorescence in APPwt and APPV717G cells compared to SY5Y cells, before 

exogenously addition of ADDLs, indicated a chronic amyloid-induced membrane 

damage in cell facing a higher Aβ production. In order to assess whether raft ability to 

bind Aβ42 aggregates triggers the loss of membrane integrity, the cells were pre-

incubated with anti-GM1 antibodies (AbGM1) or with CTX-B and then membrane 

permeability were analyzed in cells exposed to ADDLs. Anti-GM1 antibodies and 

CTX-B binding to GM1 reduced the calcein fluorescence decay (Fig. 37b), supporting a 

major role of lipid rafts in aggregate recruitment to the cell membrane and in the 

subsequent alterations of surface properties. To confirm lipid rafts as main targets of 

Aβ42 incorporation, a specific inhibition of GM1 biosynthesis was achieved in SY5Y 

APPwt, APPV717G clones using the D-threo-1-phenyl-2-decanoylamino-3-

morpholino-1-propanol (PDMP) (Fig. 37c), while maintaining cell viability (data not 

shown). The pharmacological interference with lipid raft structure almost prevented 

Aβ42 incorporation in all clones exposed to ADDLs.  
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Figure 37. GM1 mediates accumulation of Aβ42 oligomers on plasma membranes. a, On the 
top, representative confocal images of lipid peroxidation in APPwt and APPV717G 
neuroblastoma cells pre-incubated for 20 min with 1:100 diluted rabbit polyclonal anti-GM1 
antibodies (AbGM1) or with 4.5 µg/ml CTX-B and subsequently exposed to Aβ42 aggregates for 
60 min as assessed using the fluorescent probe BODIPY581/591. b, Representative confocal 
microscope images of SY5Y, APPwt and APPV717G neuroblastoma cells loaded with 2.0 µM 
calcein-AM for 20 min. The cells were then incubated for 20 min with or without AbGM1 or 
CTX-B and subsequently exposed to 1.0 µM ADDLs for 60 min. (c) Representative dot blot 
analysis of membrane GM1 content in SY5Y, APPwt and APPV717G cells cultured in the 
absence (-) or in the presence (+) of 25 µM PDMP for 48 h. Bottom, representative confocal 
images of the three clones pre-treated with PDMP and exposed to 1.0 µM Aβ42 aggregates for 
60 min. The plasma membrane profile was stained with fluorescein-conjugated wheat germ 
agglutinin (green) and Aβ42 aggregates with 6E10 antibodies (red). 
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-RESULTS IV- 

 
PROTECTIVE EFFECT OF NEW S-ACYL-GLUTATHIONE DERIVATIVES 

AGAINST AMYLOID-INDUCED OXIDATIVE STRESS 

 

Recent data support the role of oxidative stress in the pathogenesis of Alzheimer 

disease (AD). In particular, glutathione (GSH) metabolism is altered and its levels 

are decreased in affected brain regions and peripheral cells from AD patients and 

in experimental models of AD. In the past decade, interest in the protective effects 

of various antioxidants aimed at increasing intracellular GSH content has been 

growing. In this fourth part of the result section the ability of new S-acyl-

glutathione (acyl-SG) thioesters to prevent the synaptotoxic and neurodegenerative 

effects putatively triggered by Aβ accumulation was investigate. Because much 

experimental evidence suggests a possible protective role of unsaturated fatty acids 

in age-related diseases, the synthesis of new acyl-SG thioesters was designed. S-

lauroyl-glutathione (lauroyl-SG) and S-palmitoleoyl-glutathione (palmitoleoyl-SG) 

were easily internalized into the cells and they significantly reduced Aβ42-induced 

oxidative stress in human neurotypic SH-SY5Y cells. In particular, acyl-SG 

thioesters can prevent the impairment of intracellular ROS scavengers, 

intracellular ROS accumulation, lipid peroxidation, and apoptotic pathway 

activation. Palmitoleoyl-SG seemed more effective in cellular protection against 

Aβ-induced oxidative damage than lauroyl-SG, suggesting a valuable role for the 

monounsaturated fatty acid. Moreover, acyl-SG derivatives completely avoid the 

sharp lipoperoxidation in primary fibroblasts from familial AD patients occurring 

after exposure to Aβ42 aggregates. Hence, these new antioxidant compounds could 

be excellent candidates for therapeutic treatment of AD and other oxidative stress-

related diseases. 
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Synthesis and analysis of lauroyl-SG and palmitoleoyl-SG thioesters 

The GSH acylation by long-chain fatty acids required prior thioesterification to their 

respective fatty acyl-CoA products, which may then serve as the immediate acylating 

nucleophiles [396, 397]. Indeed, the activation of fatty acids to their corresponding 

high-energy acyl-CoA thioester derivatives is a required step before the use of fatty 

acids for cellular reactions, including fatty acid synthesis [398] and fatty acylation 

[399], both of which require a reactive carbonyl carbon. The reaction of the carboxylic 

group of the lauric acid (C12:0) and of the palmitoleic acid (C16:1) of acyl-CoA's with 

the sulfhydryl group of GSH resulted in a time-dependent synthesis of lauroyl-SG (Fig. 

38a) and palmitoleoyl-SG (Fig. 39a) derivatives, reaching a maximum after a 24-h 

incubation time in sodium phosphate at 37°C (Fig. 38b and 39b). After the purification 

of glutathione derivatives from reaction mixture by reverse-phase HPLC, the mass 

spectra of each peak were acquired by MALDI/TOF. Mass peaks distinctive of each 

conjugate at the expected molecular weights of 490.2 (m/z) for lauroyl-SG (Fig. 38c) 

and 544.5 (m/z) for palmitoleoyl-SG (Fig. 39c) were revealed. The identity and the 

purity of the reaction products were also confirmed by ESI–MS/MS analysis (not 

shown). A quantitative analysis of acyl-SG peaks was performed by Ellman's test, 

which is based on the conversion of colorless DTNB into yellow TNB in the presence 

of thiol compounds. A time-dependent increase in the release of GSH after the acid 

hydrolysis of lauroyl-SG (Fig. 38d) and palmitoleoyl-SG (Fig. 39d) was observed. The 

amount of synthesized products, after a 48-h complete acid hydrolysis reaction, 

indicated a purification yield for lauroyl-SG thioester approximately twofold higher 

(25.8±1.6 nmol GSH) than for palmitoleoyl-SG thioester (9.1±1.3 nmol GSH), starting 

from 250 nmol of acyl-CoA and 1250 nmol of GSH. 

 



Chapter III - Results  
 
_____________________________________________________________________________ 

Amyloid Cytotoxicity and New Acyl-SG Thioesters 

129 

 

 

Figure 38. Synthesis, purification, and characterization of lauroyl-SG. a, Scheme for chemical 
synthesis, performed with 25 mM GSH and 5 mM lauroyl-CoA in 50 mM phosphate buffer, pH 
7.5, at 37°C. b, Representative reverse-phase HPLC chromatograms with UV detection (228 
nm) showing the kinetic of lauroyl-SG synthesis after 0, 2, and 24 h of incubation. The arrows 
indicate the lauroyl-SG peak. c, Mass spectrum of product ions obtained by MALDI analysis of 
the HPLC-purified adduct. For details, see Materials and Methods section. d, The amount of 
lauroyl-SG thioester was indirectly determined by quantitative analysis of the GSH release after 
acid hydrolysis of HPLC-purified thioester, using a calibration curve with GSH as an internal 
standard. Values are expressed as means ± SD and are representative of three independent 
experiments carried out in duplicate. 
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Figure 39. Synthesis, purification, and characterization of palmitoleoyl-SG. a, Scheme for 
chemical synthesis, performed with 25mM GSH and 5 mM palmitoleoyl-CoA in 50 mM 
phosphate buffer, pH 7.5, at 37°C. b, Representative reverse-phase HPLC chromatograms with 
UV detection (228 nm) showing the kinetic of palmitoleoyl- SG synthesis, after 0, 2, and 24 h 
of incubation. The arrows indicate palmitoleoyl-SG peak. c, Mass spectrum of product ions 
obtained by MALDI analysis of the HPLC-purified adduct. For details, see Materials and 
Methods section. d, The amount of palmitoleoyl-SG thioester was indirectly determined by 
quantitative analysis of the GSH release after acid hydrolysis of HPLC-purified thioester. 
Values are expressed as means ± SD and are representative of three independent experiments 
carried out in duplicate. 
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Intracellular GSH increase in SH-SY5Y and FAD cells 

Then, I investigated whether exposure to the synthetic compounds can increase 

intracellular content of free GSH in SH-SY5Y neuroblastoma cells and in skin primary 

FAD fibroblasts. In particular, the ability of acyl-SG thioesters to cross the plasma 

membrane and to enter the cells and, once inside, to release free GSH after hydrolysis 

by cellular thioesterases was evaluated. A time-course analysis showed a significant 

increase in intracellular GSH levels in SH-SY5Y cells exposed to 1.0 µM lauroyl-SG 

for 3 and 5 h (Fig. 40a). Accordingly, the more prolonged the palmitoleoyl-SG 

derivatives treatment time, the higher the increase in intracellular GSH levels. To test 

whether the acyl-SG derivative uptake was a dose-dependent process, intracellular GSH 

levels were determined in SH-SY5Ycells exposed to different acyl-SG thioester 

concentrations. Palmitoleoyl-SG thioester was more effective in increasing intracellular 

GSH levels than lauroyl-SG thioester at various conjugate concentrations (from 0.2 to 5 

µM) (Fig. 40b). Similar experiments carried out on FAD fibroblasts confirmed the 

internalization process of acyl-SG derivatives. In particular, intracellular GSH levels 

were significantly raised in fibroblasts treated for 3 h with 1.0 µM palmitoleoyl-SG 

thioester (29.6± 2.0 nmol/mg of protein, p<0.01) or with 1.0 µM lauroyl-SG thioester 

(25.8±1.5 nmol/mg of protein, p<0.05) with respect to untreated cells (21.3±1.6 

nmol/mg of protein). 
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Figure 40. a, Time-course analysis of intracellular GSH levels in SH-SY5Y cells after 
incubation for 1, 3, and 5 h with 1.0 µM acyl-SG conjugates. b, Intracellular GSH content in 
SH-SY5Y cells after exposure to various final concentrations of acyl-SG thioesters (0.2, 1.0, 
and 5.0 µM) for 3 h. Values are means ± SD of three independent experiments, each performed 
in duplicate. *Significant difference (p≤0.05) vs control cells. °Significant difference (p≤0.05) 
vs lauroyl-SG-pretreated cells. 
 

Acyl-SG derivatives counteract amyloid cytotoxicity 

Neuronal cells exposed to toxic amyloid assemblies usually exhibit impaired viability, 

oxidative stress, and mitochondrial dysfunction [195, 196, 400]. A time-course analysis 

of SH-SY5Y cell viability in the presence of 1.0 µM acyl-SG derivatives, followed by 

exposure to 5.0 µM Aβ42 prefibrillar aggregates, was performed using the MTT test, 

taking into account the cautions due to the increase in the cell number in dividing cell 

samples [401] (Fig. 41). A significant impairment (about 35%) in SH-SY5Y cell 

viability was evident after exposure to Aβ42 aggregates for 24 h. A significant recovery 

of cell viability was evident when cells were pretreated with lauroyl-SG and much more 
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with palmitoleoyl-SG thioesters before exposure to Aβ42 aggregates (Fig. 41a). In 

particular, the more prolonged the acyl-SG treatment time, the higher the protection 

against aggregate toxicity. As a result, the following experiments were performed by 

incubating SH-SY5Y cells with acyl-SG thioesters for 3 h, because at this time the 

protective effect of such compounds did not significantly differ from that observed at 5 

h. On the other hand, no significant increase in cell viability was detected in cells 

exposed to lauroyl-CoA (about 71.3±3.9%), palmitoleoyl-CoA (about 68.0±2.3%), and 

GSH (about 63.5±6.8%), compared to control cells (about 65.8±4.4%). The ability of 

palmitoleoyl-SG thioester to protect SH-SY5Y cells against aggregate cytotoxicity was 

higher than that of lauroyl-SG thioester at various conjugate concentrations (from 0.2 to 

5.0 µM) (Fig. 41b). In particular, at 1.0 µM a significant difference in the protective 

effect of palmitoleoyl-SG thioester with respect to lauroyl-SG was observed. Similar 

results were obtained in H2O2-exposed cells, in which the ability of palmitoleoyl-SG to 

counteract H2O2 oxidative injury overcame that of lauroyl-SG thioester at all the 

investigated concentrations (Fig. 41c). 
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Figure 41. Acyl-SG thioesters improve the viability of SH-SY5Y cells experiencing oxidative 
damages. a, Cell viability was measured by the MTT reduction test in cells treated with 1.0 µM 
acyl-SG thioesters for various lengths of time (0, 1, 3, and 5 h), before exposure to 5.0 µM 
Aβ42 aggregates for 24 h. Viability of cells exposed for 3 h to varying amounts of acyl-SG 
derivatives was checked both in b, 5.0 µM Aβ42 prefibrillar aggregates and in c, 250 µM H2O2 
24-h-treated cells. Blank column represents cells treated with Aβ42 or H2O2, without thioester 
pretreatment. The reported values are expressed as percentage of MTT reduction in treated cells 
with respect to untreated cells (means ± SD) and are representative of three independent 
experiments carried out in triplicate. *Significant difference (p≤0.05) vs treated cells. 
°Significant difference (p≤0.05) vs lauroyl-SG-pretreated cells. 
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Antioxidant properties of acyl-SG derivatives 

It is well known that oxidative stress can be the effect of either any increased free 

radical production or the weakening of the cell antioxidant defenses, including 

antioxidant enzymes, lipophilic, and hydrophilic scavengers. In the present study, the 

changes in non enzymatic hydrophilic ROS scavengers after exposure to acyl-SG 

thioesters in SH-SY5Y cells were measured. As shown in figure 42a, cells underwent a 

significant increase in ROS scavengers in the presence of both 1.0 µM lauroyl-SG and 

palmitoleoyl-SG thioesters in the cell culture medium, reaching a maximum after 3 h of 

exposure (1044.39±45.58 and 1174.30±48.63 nmol mg−1 of total proteins, respectively), 

compared to the basal antioxidant defenses of untreated cells (703±33.33 nmol mg−1 of 

total proteins). In particular, a higher palmitoleoyl-SG thioester antioxidant property 

compared to lauroyl-SG derivative was evident just after 20 min of GSH thioester 

treatment. These data confirmed that palmitoleoyl-SG permeates neuronal membrane 

more quickly than lauroyl-SG. Much experimental evidence suggests that oxidative 

stress is an early biochemical modification in cells facing amyloid aggregates [74, 329]. 

Therefore, the ability of acyl-SG derivatives to counteract intracellular ROS scavenger 

impairment after amyloid aggregate or H2O2 exposure was investigated. SH-SY5Y cells 

after Aβ42 aggregate treatment underwent a significant early scavenger decline (30 

min), with any recovery at longer times of exposure (Fig. 42b). On the other hand, cells 

pretreated with both lauroyl-SG and palmitoleoyl-SG derivatives, though displaying a 

significant decrease in intracellular defense levels during the first 30 min, recovered 

almost completely at longer times of aggregate exposure. In particular, the palmitoleoyl-

SG protective effect against Aβ42-induced antioxidant defense impairment was higher 

than that of lauroyl-SG. In contrast, after H2O2 oxidative injury SY5Y cells can partially 

preserve their antioxidant capacities, especially in the presence of palmitoleoyl-SG (Fig. 

42c).  
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Figure 42. Antioxidant properties of lauroyl-SG and palmitoleoyl-SG thioesters. Intracellular 
ROS scavengers were measured by a chemiluminescence assay in the cytosolic fractions of cell 
lysates and expressed in ascorbate-equivalent units. a, Time course of intracellular antioxidant 
defenses measured in SH-SY5Y cells exposed to 1.0 µM acyl-SG thioesters for 10, 20, 30, 60, 
and 180 min at 37°C. The cells were also incubated with 1.0 µM acyl-SG thioesters for 180 min 
and then treated with (b) 5.0 µM Aβ42 aggregates or (c) 250 µM H2O2 for 10, 20, 30, 60, and 
180 min at 37°C. The reported values (means ± SD) are representative of three independent 
experiments each carried out in triplicate. *Significant difference (p≤0.05) vs treated cells. 
°Significant difference (p≤0.05) vs lauroyl-SG-pretreated cells. 
 

As a result, GSH thioester-pretreated cells were able to counteract the early rise in 

intracellular ROS seen in control cells (Fig. 43). In particular, palmitoleoyl-SG was 
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more effective than lauroyl-SG in facing both aggregate (Fig. 43a) and H2O2 (Fig. 43b) 

oxidative injury. 

 

 

 

Figure 43. Intracellular ROS production in SH-SY5Y cells. Cells exposed or not to 1.0 µM 
acyl-SG thioesters were treated with (a) 5.0 µM Aβ42 aggregates or (b) 250 µM H2O2 for 10, 
20, 30, 60, and 180 min. CM-H2DCFDA fluorescence was measured using a spectrofluorimeter. 
Values are expressed as % with respect to untreated cells. The values shown are means ± SD of 
three independent experiments, each performed in duplicate. *Significant difference (p≤0.05) vs 
treated cells. °Significant difference (p≤0.05) vs lauroyl-SG-pretreated cells. 
 

In addition, the increased ability of SH-SY5Y cells pretreated with acyl-SG thioesters 

to counteract oxidative stress resulted in an evident reduction in lipoperoxidation. As 

shown in figure 44a, the BODIPY 581/591 red fluorescence, assessing lipid 

peroxidation in untreated control cells, shifted to green after 3 h of exposure to the 

aggregates and, more evidently, to H2O2. On the other hand, the fluorescence signals of 

cells pretreated with both lauroyl-SG and palmitoleoyl-SG thioesters, exposed to Aβ42 

aggregates or to H2O2, did not notably differ from their counterpart untreated cells. 
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Accordingly, a significant decrease in lipoperoxidation levels was evident in 

neuroblastoma cells pretreated with acyl-SG thioesters before exposure to 5.0 µM Aβ42 

aggregates, as revealed by the 8-OH isoprostane assay (Fig. 44b).  

 

 

 

Figure 44. a, Representative confocal microscopy images of BODIPY fluorescence correlated 
with lipid peroxidation in SH-SY5Y cells. The cells exposed or not to 1.0 µM acyl-SG 
thioesters were treated with 5.0 µM Aβ42 or 250 µM H2O2 for 3 h. b, Cytosolic levels of 8-OH 
isoprostanes in SH-SY5Y cells pretreated or not with 1.0 µM acyl-SG thioesters and then with 
5.0 µM Aβ42 aggregates for 3 h. The reported values (means ± SD) are representative of three 
independent experiments carried out in duplicate. *Significant difference (p≤0.05) vs Aβ-treated 
cells. °Significant difference (p≤0.05) vs lauroyl-SG-pretreated cells. 
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Previous data on lymphoblasts and fibroblasts carrying APP and PS-1 gene mutations 

have shown a significant TAC impairment and a marked increase in membrane 

lipoperoxidation compared to healthy controls [210]. Previous results suggest that Aβ42 

aggregates can easily induce a prompt and sharp ROS production in fibroblasts from 

FAD patients [205]. In the present study, the protective effect of acyl-SG thioesters 

resulted in an apparent reduction of lipoperoxidation in primary APPV717I mutated 

fibroblasts as evaluated by a confocal analysis of the fluorescent BODIPY 581/591 

reporter (Fig. 45a). Accordingly, as revealed by the 8-OH isoprostane assay reported in 

figure 45b, a significant decrease in lipoperoxidation levels was induced by a higher 

ability of fibroblasts pretreated with acyl-SG thioesters to counteract Aβ aggregate 

oxidative attack. No significant difference with respect to the basal level of controls in 

cells exposed for 3 h to the acyl-SG derivatives was evident. 

 



Chapter III - Results  
 
_____________________________________________________________________________ 

Amyloid Cytotoxicity and New Acyl-SG Thioesters 

140 

 

 

Figure 45. a, Representative confocal microscopy images of BODIPY fluorescence correlated 
with lipid peroxidation in primary APPV717I mutated fibroblasts. Cells exposed or not to 1.0 
µM acyl-SG thioesters were treated with 5.0 µM Aβ42 or 250 µM H2O2 for 3 h. b, Cytosolic 
levels of 8-OH isoprostanes in primary APPV717I mutated fibroblasts incubated or not with 1.0 
µM acyl-SG thioesters and then with 5.0 µM Aβ42 aggregates for 3 h. The reported values 
(means ± SD) are representative of three independent experiments carried out in duplicate. 
*Significant difference (p≤0.05) vs Aβ-treated cells. °Significant difference (p≤0.05) vs lauroyl-
SG-pretreated cells. 
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Acyl-SG derivatives prevent aggregate-induced apoptotic cell death 

Abundant data indicate that amyloid aggregate toxicity eventually results in apoptotic 

or, less frequently, necrotic cell death [157, 329, 402]. The extent of the apoptotic 

program activation in acyl-SG derivative-pretreated cells, exposed or not to Aβ42 

aggregates or H2O2, was evaluated by confocal microscopy analysis of caspase-3 

activity, which is the main effector caspase in apoptosis. According to the above-

reported results, the increase in caspase-3 activity was prevented by cell pre-treatment 

with acyl-SG thioesters (Fig. 46). 

 

 

 

Figure 46. Representative confocal microscopy images of caspase-3 activation. Cells exposed 
or not to 1.0 µM acyl-SG thioesters were treated with 5.0 µM Aβ42 or 250 µM H2O2 for 3 h. 
Caspase-3 activity was measured using the fluorescent probe FAM-FLICA Caspases 3&7 
according to Materials and Methods section. 
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CHAPTER IV – DISCUSSION 

 

Relationship between cellular impairment and oligomer structure in protein 

deposition diseases 

A number of biochemical modifications eventually leading to cell death have been 

reported in cells exposed to toxic aggregates of several differing peptides and proteins 

either in whole animals or in differing cultured cell lines [81, 157, 403-407]. The small 

(91-residues) globular HypF-N peptide is a valuable model system for investigating the 

structural basis of the cellular dysfunction caused by misfolded protein oligomers. In 

fact, HypF-N is able to form amyloid-like fibrils and protofibrils in vitro under 

conditions that promote its partial unfolding [91]. In the present study, the different 

biological activities, on cells, exerted by two types of HypF-N oligomers, grown under 

different environmental conditions were explored. These oligomers have a similar 

hydrophobic core and are sufficiently stable to maintain their structure and properties 

when transferred to physiological solution such as culture medium and phosphate 

buffer. To address this issue, the ability of the two different HypF-N oligomers to be 

cytotoxic to human neurotypic SH-SY5Y cells by modulating aggregate binding to the 

cell membrane, in most cases a recognized key step in amyloid cytotoxicity was 

investigated. A close relation between the cytotoxicity and the amount of aggregate 

inclusion into the membrane of cells exposed to oligomers formed under condition A 

was found. By contrast, no impairment in cells exposed to differing amount of 

oligomers grown under condition B was observed, suggesting that the lack of toxicity of 

this species is not due to an insufficient amount of oligomers being in contact with the 

cells. These results suggest that the structural differences in HypF-N oligomers, such as 

the different degrees of packing of the hydrophobic residues within their cores, 

determine a different ability to permeate the membrane associated with the structural 

flexibility of such residues. Furthermore, the cytotoxic effect of early aggregates formed 

in condition A decreased with longer time of aggregate growth, while the aggregates 

formed in condition B maintained their lack of toxicity after prolonged grown periods. 

These results are consistent with recent data suggesting that oligomers, rather than 

mature amyloid fibrils, act as toxins in many protein misfolding pathologies such as 
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Alzheimer’s and Parkinson’s diseases [37]. Interestingly, the decline in cytotoxicity is 

strictly related to a reduced internalization of aggregates into the cells. These findings 

further confirms the ability of early aggregates with respect to older species to bind and 

penetrate cell membrane. Moreover, the ability of cell membrane to bind and internalize 

HypF-N oligomers is influenced by the period of cell exposure to aggregates. The 

present results indicate that the toxicity is associated with the ability of the oligomeric 

species to form a more pronounced and disruptive interaction with the cells, stimulating 

Ca2+ influx and leading to cell death. These results also indicate that HypF-N oligomers 

formed under condition A caused a great modification of membrane permeability, 

resulting in a sharp increase in cytosolic free Ca2+ in SH-SY5Y cells. This increase is 

inhibited when cells are exposed to oligomers in a free Ca2+-medium, indicating that 

Ca2+ influx from the extracellular medium is responsible for this effect. By contrast, 

membrane integrity and cytosolic Ca2+ homeostasis are maintained when cells are 

treated with oligomers formed under condition B. ROS accumulation, lipid peroxidation 

and direct oxidative damage to membranes are also a major outcome of oligomers 

grown under condition A compared to cells treated with aggregates grown under 

condition B. Moreover, the increase in oxidative stress is almost completely inhibited 

when cells are exposed to oligomers formed under condition A in a Ca2+-free medium 

or after a pre-incubation of cells with vitamin E. Accordingly, caspase 3 levels and LDH 

release in the cell culture media are markedly increased only in cells exposed to 

oligomers grown under condition A. Therefore, these results suggest that cell treatment 

with HypF-N oligomers, showing a low degree of packing of the hydrophobic residues 

within their cores and a high structural flexibility of such residues, induces oxidative 

stress, intracellular Ca2+ dyshomeostasis and membrane damage, which initially triggers 

the apoptotic pathway and can ultimately lead to necrosis. In contrast, cell exposure to 

native or more structurally packed oligomers avoid protein internalization, oxidative 

attack, membrane damage, cationic influx and ultimately cell dysfunction. In 

conclusion, these data depict membrane destabilization and the subsequent early 

derangement of ion balance and intracellular redox status as key events in targeting 

exposed cells to apoptotic death. These data contribute to the elucidation of the 

causative link between the molecular structure of aberrant protein oligomers and their 

ability to cause cell dysfunction. Finally, the conversion of amyloid aggregates into 
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species unable to damage cell membranes represents a valuable target for therapeutic 

interventions aimed at preventing the onset of protein deposition diseases. 

 

Membrane cholesterol enrichment prevents Aβ-induced oxidative stress in 

Alzheimer’s fibroblasts 

Growing data indicate that changes in membrane cholesterol content, by modulating 

lipid fluidity, have regulatory consequences for Aβ interactions with the cell plasma 

membranes and neurotoxicity [186, 221, 242, 256, 266, 408-410]. The present study 

provides evidence supporting the hypothesis that membrane cholesterol modulation 

might affect the sensitivity to Aβ42 aggregates of primary fibroblasts carrying APP 

Val717Ile or PS-1 Leu392Val or Met146Leu gene mutations by modulating Aβ 

aggregate binding to the cell membrane, recognized as a primary step in amyloid 

cytotoxicity. In particular, confocal microscopy images, flow cytometric analysis and 

Congo red assay revealed that Aβ42 assemblies accumulate faster, and are internalized 

to a greater extent into, the plasma membranes of cholesterol-poor fibroblasts than in 

cholesterol-enriched cells. Indeed, it seems likely that when the level of cholesterol in 

the membrane is higher than normal, the insertion process can be prevented by the 

enhanced stiffness of the membrane. On the other hand, when the Aβ oligomer 

encounters a membrane with increased fluidity due to a lower cholesterol level, the 

insertion process can occur [186]. Despite a relatively low number of patient samples 

employed in our study that limits the statistical power of the results, these findings 

strongly support the idea that the ability of Aβ42 aggregates to bind to the plasma 

membrane is significantly affected by its content in cholesterol [94]. Even in human 

SH-SY5Y neuroblastoma cells, mild cholesterol enrichment appears to prevent Aβ42 

aggregate binding to the plasma membrane, corroborating this hypothesis in a neuronal 

system. However, it cannot be excluded that different APP distribution and/or 

accessibility in the plasma membranes, likely resulting from lipid raft reorganization at 

the different experimental conditions used, may contribute to the interaction of the Aβ 

aggregates with the cell membranes. Indeed, recent evidence suggests that Aβ interacts 

with the APP present at the cell surface and acts as a ligand of its own precursor, 

resulting in a cell death-related signal [411].  
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One leading hypothesis of the molecular basis of amyloid toxicity claims that single 

misfolded molecules or a subpopulation of prefibrillar aggregates interacts with the cell 

membrane disassembling the lipid bilayer [242]; the resulting impairment of membrane 

permeability would then lead to an imbalance of ion homeostasis [390]. In the present 

study, confocal microscope images with the fluorescent probe calcein show a rapid 

fluorescence signal decay in FAD fibroblasts, suggesting the presence of a fluorescent 

dye leakage invoked by an increase in membrane permeability induced by Aβ42 

aggregates. Notably, enrichment in membrane cholesterol reduced the calcein 

fluorescence decay induced by Aβ42, supporting a major role of cholesterol in 

aggregate recruitment to the cell membrane. Moreover, our confocal images reveal that 

in FAD fibroblasts exposed to Aβ42 aggregates an early and sharp increase of free 

cytosolic Ca2+ does occur. Actually, our cholesterol-poor fibroblasts displayed a prompt 

and enhanced Ca2+ increase upon aggregate binding to the cell membrane respect to 

control cells, whereas cholesterol-enriched fibroblasts displayed slower and reduced 

Aβ42 aggregate binding to the plasma membrane resulting in a delayed and 

substantially reduced rise of free Ca2+ content respect to control cells.  

The relevance of these finding is stressed by the well known association between 

alterations of intracellular free Ca2+ and either oxidative stress [412] and cell death 

[413]. Oxidative stress has largely been implicated as a major cause of neurotoxicity in 

AD and there is strong evidence linking lipid peroxidation and amyloid plaques within 

the AD brain [196, 198, 392, 414]. Oxidative damage, possibly induced by Aβ, may 

further exacerbate Aβ toxicity by modulating the Aβ amyloid pathway [120]. Indeed, 

Aβ is reported to accumulate faster in membranes containing oxidatively damaged 

phospholipids than in membranes containing only unoxidized or saturated 

phospholipids [415]. A previous study showed a marked increase in oxidation levels of 

lipids and proteins in peripheral cells from FAD patients [210]. Moreover, amyloid 

oligomers can readily insert into oxidative-damaged APPV717I fibroblasts where the 

membrane integrity is compromised [205]. The early appearance of amyloid aggregates 

bounded to fibroblast surfaces therefore suggests that these species are the main source 

of oxidative stress for cells. Actually, cholesterol poor cells displayed a prompt and 

enhanced ROS increase upon aggregate binding to the cell membrane with respect to 

control fibroblasts with basal membrane cholesterol content. Conversely, membrane 
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cholesterol enrichment resulted in a delayed and significantly reduced rise of ROS 

production in the affected PS-1 and APP fibroblasts exposed to Aβ aggregates. In these 

cellular models the protective role of membrane cholesterol against amyloid oxidative 

damage seem particularly hopeful. This approach allows to study the potential defensive 

role of a mild membrane cholesterol enrichment against Aβ-induced cytotoxicity in 

living cells having a genetic drawback in tissues where AD lesions occur. Indeed, 

mutated fibroblasts displayed a lower level of basal ROS scavengers, thus suggesting 

that a modified redox status is a common feature of cells carrying these genetic lesions. 

This evidence could reflect chronic exposure to an oxidizing environment in mutated 

fibroblasts with a continuous over-production of amyloid peptide. Several studies 

provide evidence for excess lipoperoxidation and protein oxidation associated with Aβ 

deposits in APP and PS-1 AD brain and mutant mice [196, 394]. Accordingly, the 

reported confocal microscopy images and the quantitative analysis of 8-OH isoprostane 

levels show that Aβ42 aggregates added to the cell culture media induce a more 

extensive lipoperoxidation and membrane oxidative injury in APP than in PS-1 mutated 

fibroblasts. Nevertheless, cholesterol-enriched FAD fibroblasts appear more resistant to 

amyloid oxidative attack with respect to control cells with basal membrane cholesterol. 

On the other hand, membrane cholesterol depletion strongly exacerbates Aβ-induced 

lipid peroxidation. These results therefore suggest that membrane cholesterol content 

negatively correlates with lipoperoxidant effects on polyunsaturated fatty acids in cell 

membrane phospholipids induced by Aβ42 oligomers. Membrane cholesterol 

enrichment cannot completely revert Aβ42 oxidative damage in APP mutated 

fibroblasts, suggesting that other important factors are involved in Aβ42 aggregate 

binding to cell membranes. Previous findings provided compelling evidence that 

mutated fibroblasts bearing increased membrane lipoperoxidation are more susceptible 

to aggregate binding to the plasma membrane and to the resulting amyloid toxicity 

[205].  

This study indicates that membrane cholesterol can readily modulate FAD fibroblast 

sensitivity to Aβ-induced oxidative attack. In particular, membrane cholesterol 

enrichment resulted in almost complete recovery of mitochondrial function and in a 

significant reduction of LDH release into the culture media of exposed FAD fibroblasts 

according to previous data on SH-SY5Y cells, PC12 cells and rat embryo cortical 
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neurons [186, 242, 256]. On the other hand, cell sensitivity to the cytotoxic effect of 

Aβ42 aggregates was significantly enhanced by low cholesterol levels. Remarkably, 

amylin treatment of low cholesterol fibroblasts affects cell viability resembling Aβ42 

outcome. These data suggest that the modification of membrane cholesterol is generally 

able to modulate the toxic effect of amyloidogenic peptides independently from their 

amino acid sequence. Moreover, these data are consistent with increasing evidence that 

oligomeric aggregates, compared to mature fibrils, are likely the more toxic species of 

amyloid peptides [40, 58, 205]. Therefore, it can be concluded that the presence of β-

sheet structure seems to be stringent for the membrane perturbing properties of Aβ 

oligomers. A moderate, but significant increase of cell resistance to fibril toxicity in 

fibroblasts with higher membrane cholesterol is likely to be the result of binding 

inhibition of minute amounts of residual prefibrillar aggregates, although a specific 

modulation of the toxic effect of the fibrils cannot be ruled out. It has recently been 

shown that seladin-1 gene, whose proteic product catalyzes the last steps of cholesterol 

biosynthesis [416], appears to be down-regulated in brain areas affected by AD [265]. 

Recent findings also indicate that seladin-1-induced membrane cholesterol enrichment 

protects SH-SY5Y cells against amyloid toxicity by reducing the interaction of Aβ42 

oligomer with cell membrane, featuring seladin-1 as a susceptibility gene candidate for 

sporadic AD [266]. In this view one might propose that, by modulating the membrane 

fluidity, plasma membrane cholesterol content may specifically influence APP 

processing and Aβ production as well as the insertion of soluble Aβ in the phospholipid 

bilayer and its properties to disturb the membrane structure which ultimately trigger cell 

death. 

 

Lipid rafts are primary targets of amyloid oxidativ e attack on plasma membrane  

Lipid peroxidation is a major outcome of free radical-mediated injury to brain, where it 

directly damages membranes and generates a number of oxidized products [417]. In the 

present study, human SH-SY5Y neuroblastoma cells stably expressing about threefold 

levels of APP and more than threefold levels of Aβ42 showed a higher membrane lipid 

peroxidation compared to SY5Y control cells, suggesting a chronic oxidative stressed 

condition associated with enhanced Aβ production. These findings are in agreement with 

several studies that provide evidence for excess lipid peroxidation associated with Aβ 
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deposits in APP and PS-1 AD brain and mutant mice [418]. Oxidative damage may 

further exacerbate Aβ toxicity. Indeed, Aβ is reported to accumulate faster in membranes 

containing oxidatively damaged phospholipids than in membranes containing only 

unoxidized or saturated phospholipids [415]. In particular, a marked increase in lipid 

peroxidation levels and an early amyloid binding to oxidative-damaged membranes in 

fibroblasts from FAD patients have been previously shown [205]. In the present study, a 

higher membrane oxidative-damage resulted in an enhanced ADDL binding to the 

plasma membrane in neuroblastoma cells overexpressing APPwt and APPV717G as 

compared to control cells. As recent evidence suggests that Aβ interacts with the APP 

present at the cell surface and acts as a ligand of its own precursor [411], a minor 

contribute to Aβ binding could be given by APP over-expression. However, amyloid pick 

up at the plasma membrane was higher in APPV717G than in APPwt cells, suggesting a 

causative role for APP mutation in cell surface ability to bind ADDLs. Moreover, DAPT, 

a specific γ-secretase inhibitor,  strongly reduced both the lipid peroxidation levels and 

the aggregate-binding to plasma membranes of all three clones exposed to ADDLs, 

excluding the possibility that amyloid pick up at the cell surfaces is merely affected by 

the APP content. Anyway, the early appearance of amyloid aggregates bounded to cell 

surfaces suggests a main role for these species in oxidative stress process. Indeed, when 

Aβ42 aggregates were added to cell culture media, they induced a quick membrane lipid 

peroxidation in APPwt and APPV717G neuroblastoma clones as well as in APPV717I 

mutated fibroblasts.  

There is a growing consensus that cell surfaces are patchworks of domains, local 

concentrations of membrane proteins, and lipids quite different from the average for an 

entire membrane. Cholesterol is likely important in organising some types of domains, 

usually termed lipid rafts [419]. Increasing data indicate that changes in membrane 

cholesterol content have regulatory consequences for Aβ interactions with the cell plasma 

membranes and neurotoxicity [158, 186, 266]. Confocal and cytofluorimetric evidence on 

neuroblastoma cells, carrying wild-type and V717G mutated APP, supports this 

hypothesis. Indeed, when ADDLs were added to the culture medium of cells depleted in 

membrane cholesterol following treatment with mevastatin, the Aβ42 oligomers appeared 

to accumulate earlier and to a greater extent at the cell plasma membrane. Recent data 

suggest that cholesterol depletion, dispersing phosphatidylinositol 4,5-bisphosphate from 
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sites of functional interaction with cell proteins, can alter cell actin organization and 

inhibit lateral diffusion of membrane proteins [420]. However, it can be excluded that 

different APP distribution in plasma membrane compartments, likely resulting from lipid 

raft reorganization in the present experimental conditions, may contribute to Aβ42 

binding to the cell membrane. It has recently been reported that Aβ binding and 

aggregation occurs in lipid raft domains where it is mediated by clusters of the 

ganglioside GM1 [241, 245]. Confocal laser microscope analysis showed a marked 

Aβ42-GM1 colocalization on membrane rafts in APPV717I mutated fibroblasts obtained 

from a FAD patient. Moreover, lipid peroxidation and 8-OH isoprostane quantitative 

analysis at the raft levels showed that ADDLs induced a more extensive membrane 

oxidative-injury in APPV717I fibroblasts than in control fibroblasts from a healthy 

subject. These data are also supported by the evidence that lipid composition can 

influence ADDL recruitment to raft microdomains on neuroblastoma cells. In particular, 

cholesterol-depleted membranes displayed enhanced ADDL-GM1 colocalization with 

respect to control cells, whereas a lower Aβ42 binding to cholesterol-enriched lipid rafts 

compared to control cells occurred in SY5Y, APPwt and APPV717G cells. Furthermore, 

the pharmacological interference with lipid raft structure achieved by PDMP, a specific 

inhibitor of GM1 biosynthesis, prevented Aβ42 incorporation in all clones exposed to 

ADDLs. Moreover, the anti-GM1 antibody or CTX-B binding to the raft GM1 prevented 

the amyloid lipid peroxidation process on plasma membrane, suggesting that lipid rafts 

are specific targets of membrane oxidative injury in APPwt and APPV717G 

neuroblastoma cells exposed to Aβ42 aggregates. Interestingly, membrane lipid 

peroxidation positively correlates with the perturbing effects of Aβ42 oligomers on 

DRMs. Indeed, DRMs purified from APP overexpressing cells were more susceptible to 

the decrease of fluidity produced by ADDL exposure as compared to rafts purified from 

control cells. As a consequence, APPwt and APPV717G overexpressing cells were more 

unsuccessful than SY5Y cells in facing aggregate oxidative injury, resulting in a more 

significant increase in DRM lipid peroxidation. Moreover, the higher increase in lipid 

peroxidation levels in DRM compartments than in entire membrane of Alzheimer 

fibroblasts defines lipid rafts as a preferential site for Aβ aggregate binding to cell 

surface. These results suggest that the more oxidized the DRMs, the greater its ability to 

bind specifically ADDLs.  
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Recent evidence suggest that DRMs differ substantially from lipid rafts [421]. 

Moreover, membrane microdomains can arrange themselves into larger detergent-

resistant membrane during triton treatment. Taking into account these limitations, the 

present data are consistent with previous reports indicating that ADDLs affect membrane 

physical features such as fluidity and density of lipid packing, hindering both membrane 

oxidation and permeabilization [222, 224, 239]. Recent AFM data also showed that 

treatment of DRMs with ADDLs induced the formation of large steps reflecting 

differences between the thickness of a standard bilayer and that of a thinner phase [243]. 

A leading theory on the molecular basis of amyloid toxicity is that pore-like aggregates 

interact with the cell membranes leading to membrane permeabilization and free Ca2+ 

imbalance [40, 58, 170]. In the present study, confocal microscope images with the 

fluorescent probe calcein suggest that DRM disturbing properties of ADDLs were 

associated to the loss of membrane integrity in SY5Y, APP overexpressing cells. The 

lower calcein loading in APPwt and APPV717G cells compared to SY5Y cells, before 

exogenously addition of ADDLs, suggests a chronic amyloid-induced membrane damage 

with a loss of surface integrity and a constant calcein leakage in cell facing a higher Aβ 

production. Notably, anti-GM1 antibodies and CTX-B binding to raft GM1 reduced the 

calcein fluorescence decay induced by ADDLs, supporting a major role of lipid rafts in 

aggregate recruitment to the cell membrane. This finding suggests that these two ligands 

can prevent raft structure alteration by decreasing the ADDL binding to GM1 

amphipathic targets and subsequently disfavouring Aβ42 incorporation into the 

membrane. Indeed, the partial lipophilic nature of raft GM1 can account for Aβ42 

intracellular uptake. We did not investigate in depth, in our cell system, any direct 

inhibition of GM1 redistribution by CTX-B and anti-GM1 antibodies. However, the 

addition of stoichiometric amounts of cholera toxin to samples containing ganglioside 

GM1 seems to produce only a small decrease in the measured diffusion coefficient [422]. 

This pattern relies on a progressive amplification mechanism of the early reactive free 

radicals by repeated chain reaction processes in raft lipids consistent with the age 

dependence of AD. This data identifies lipid rafts as key targets of oxidative damage as a 

result of their ability to recruit Aβ42 aggregates to the cell surface. Finally, an altered 

APP processing in Alzheimer’s fibroblasts strengthens the claim that the changes 
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observed could be the direct outcome of the chronic presence of an increased grade of 

cellular oxidising environment induced by Aβ. 

 

Protective effect of new S-acylglutathione derivatives against amyloid-induced 

oxidative stress  

Reduced levels of GSH in specific regions of the central nervous system and in 

peripheral cells from AD patients carrying mutations in the APP and PS-1 genes have 

been described [195, 209, 423]. The alteration of GSH homeostasis impairs neuronal 

viability, leaving neurons vulnerable to oxidative stress injury. Therefore, therapeutic 

strategies based on intracellular increase in GSH levels by dietary or pharmacological 

intake of GSH precursors or substrates for GSH synthesis to protect the brain against 

oxidative stress have been developed [195]. Because GSH itself poorly penetrates the 

blood–brain barrier and does not freely cross cellular membranes, other treatment 

options to increase the brain concentration of GSH, including GSH carriers, analogs, 

mimetics, or precursors, have been used in patients or animal models [195, 348, 424-

426]. Taking into account these considerations, the synthesis of new acyl-SG 

derivatives able to cross neuronal plasma membranes was designed. In particular, the 

synthesis of GSH thioesters was performed by reacting the electrophilic species of two 

active acyl-CoA's (lauroyl-CoA and palmitoleoyl-CoA) with GSH, to form the 

respective acyl-SG products. According to previously published results, our data show 

that lauroyl-CoA and palmitoleoyl-CoA, reactive thioester derivatives of lauric and 

palmitoleic acids, are able to acylate a thiol-containing nucleophile as the free cysteine 

sulfhydryl group of GSH in vitro [370, 427]. After the one-step procedure of reverse-

phase HPLC, the purification yield of acyl-SG was about 10% as indirectly determined 

by quantitative analysis of the respective GSH release after subjecting these thioesters to 

acid hydrolysis. No difference in the absorbance values between sample and 

background readings were observed at time 0 of the hydrolysis reaction, indicating that, 

under our experimental conditions, the formation of GSH derivatives involves the free 

thiol group of the GSH cysteine, and not the free amino group of glutamine. The 

identity and the purity of acyl-SG thioesters were validated by MALDI/TOF analysis. 

As expected, GSH reacts with lauroyl CoA or palmitoleoyl CoA in a 1:1 ratio. In 

particular, the molecular weights of conjugates totally match with the hypothesized one, 
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ruling out the possibility that two equivalent molecules of S-acyl-CoA have reacted 

simultaneously with the same molecule of GSH, one with the cysteine sulfhydryl group 

and the other with the glutamyl amino group.  

The addition of fatty acyl CoA's at the free thiol group of GSH cysteine represents a 

useful approach in the production of potential diffusible drugs because of the 

hydrophobic properties of the aliphatic chains. Here, these compounds acting as GSH 

carriers allowed GSH to enter the cell and, once internalized in the cytoplasm, to be 

converted back to the corresponding free fatty acid and GSH by cellular thioesterases. 

Moreover, the results showed that these compounds possessing long hydrocarbon 

chains, with or without the presence of a double bond in the structure, do not show 

exactly the same biological aptitude. Indeed, an increase in antioxidant and 

neuroprotective effects with the presence of the double bond and the lengthening of the 

chain occurred. This finding suggests that the double-bond portion and the hydrophobic 

backbone might be important to this series of compounds for the activity expression, 

increasing the lipophilicity of the molecules, facilitating diffusibility of these 

compounds into the cells and allowing the increase of intracellular GSH. Indeed, the 

partial lipophilic nature of such compounds can account for their intracellular uptake. 

We did not investigate in depth, in our cell system, whether the direct antioxidant 

properties of the GSH conjugate's fatty acid counterpart were involved. However, fatty 

acids could play a key role in maintaining the structural integrity and fluidity of 

neuronal membranes, which account for neuronal transmission [365].  

In the present study, cell culture supplementation with the newly synthesized acyl-SG 

derivatives protects human SH-SY5Y neuroblastoma cells against Aβ42 aggregate-

induced oxidative stress, as shown by a significant increase in cell viability. In 

particular, pre-treatment of the cells with acyl-SG thioesters caused a significant 

decrease in intracellular ROS accumulation and in lipid peroxidation by the 

enhancement of the intracellular antioxidant scavengers. Moreover, the severe oxidative 

stress in cells after exposure to H2O2 was partially reversed by the pre-treatment with 

acyl-SG thioesters. In particular, cells pre-treated with palmitoleoyl-SG displayed 

milder and almost completely reversible oxidative stress after exposure to the 

aggregates and to H2O2 than cells pre-treated with lauroyl-SG, which also partially 

recovered the ability to counteract redox status alteration. Moreover, when Aβ42 
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aggregates were added to cellular culture media, they induced a quick lipoperoxidation 

and membrane oxidative injury in APPV717I mutated fibroblasts. These findings on 

peripheral cells are in agreement with several studies that provide evidence for excess 

lipoperoxidation and protein oxidation associated with Aβ deposits in APP and PS-1 

AD brain and mutant mice [195, 268]. These findings imply a systemic abnormality in 

FAD that could be important for the use of peripheral cells in preclinical trials of 

antioxidant drugs. Indeed, Alzheimer fibroblasts seem more resistant to amyloid 

oxidative attack after pre-treatment with acyl-SG thioesters, as a result of their increase 

in GSH intracellular levels. In particular, the addition of palmitoleoyl-SG to the 

APPV717I fibroblast culture medium triggers more extensive and powerful protective 

effect against lipid peroxidation than lauroyl-SG. These findings provide compelling 

evidence that cells bearing increased powerful antioxidant capacity are more resistant to 

aggregate toxicity as a result of their increased ability to counteract amyloid oligomeric 

attack. We have previously shown that familial Alzheimer fibroblasts exhibited lower 

levels of GSH and TAC than fibroblasts from healthy subjects [209, 210]. TAC 

impairment could reflect chronic exposure to an oxidizing environment in mutated 

fibroblasts with a continuous over-production of amyloid peptide. The daily intake of 

such thioesters in AD patients could therefore minimize the cytotoxic effects of 

oxidative stress after neuronal exposure to extracellular amyloid plaques. GSH was 

found in eukaryotic cells at millimolar concentrations. A moderate increase in 

intracellular GSH levels in pre-treated Alzheimer fibroblasts strengthens the claim that 

the changes observed could be the direct outcome of the chronic presence of a reduced 

grade of cellular oxidizing environment induced by micromolar concentrations of acyl-

SG thioesters. This encourages to provide for further studies aimed at addressing the 

potential role of acyl-SG thioesters versus amyloid aggregates in other experimental in 

vivo models.  

Several studies suggest that cell death associated with protein aggregates begins with 

stimulation of the apoptotic response, although recent data show necrotic rather than 

apoptotic death in some cases [157, 402]. Because the involvement of caspases has been 

proposed in amyloid-induced apoptosis in cultured neurons [428], I also investigated the 

activation of caspase-3/CPP32. Accordingly, caspase-3 levels were significantly 

increased in Aβ42-treated cells. On the other hand, cells pre-treated with acyl-SG 
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thioesters underwent a significant reduction in caspase-3 activity. Based on these 

observations, a mechanism was proposed by which acyl-SG thioesters can offer 

neuronal protection against Aβ42 aggregate toxic insult by increasing the intracellular 

levels of GSH. Further studies are required to gain insight into the potential use of such 

acyl-SG thioesters as modulators of Aβ42 cytotoxicity. The trial of these compounds in 

in vivo models could be useful to design therapeutic strategies for AD and other 

oxidative stress-related diseases. 
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CONCLUDING REMARKS 

 

Taken together, these results provide information useful to depict a mechanism of cell 

impairment and death that can be common to prefibrillar aggregates of most peptides 

and proteins. It apparently starts with aggregate binding to the cell membrane resulting 

in membrane destabilization and the subsequent early derangement of ion balance and 

intracellular redox status as key events in targeting exposed cells to apoptotic death.  

These results implement the recently published data on the role of a moderate 

reduction of membrane cholesterol in AD pathogenesis. In particular, they suggest that 

the extent of amyloid aggregate cytotoxicity depends, among others, by the amount of 

cholesterol in plasma membrane. By affecting the physical properties of the membrane, 

at the lipid raft level, cholesterol modulates the interaction and the uptake of the 

amyloid aggregates into the cell membrane. Therefore, neuronal integrity appears to 

require the maintenance of a proper steady-state level of brain cholesterol and its 

reduction can result in severe impairment of cell viability. Indeed, a mild loss of 

neuronal membrane cholesterol results in a quicker and increased binding of Aβ 

oligomers to the neuronal membrane with subsequent alteration of Ca2+ distribution and 

cellular redox status eventually leading to cell death. In particular, these data identifies 

lipid rafts as specific targets of oxidative damage and membrane degeneration as a 

result of their ability to recruit amyloid aggregates to the cell surface.  

Moreover, these results put forward new acyl-SG derivatives as new antioxidants with 

neuroprotective effect against amyloid-induced oxidative injury. The novel findings 

propose a useful approach in the production of potential diffusible drugs because of the 

hydrophobic properties of the acyl-SG thioesters, which can cross the plasmalemma and 

be trapped intracellularly following hydrolysis, thus releasing the parent carboxylic acid 

and free GSH. In this view, this study introduce substantial innovations in biochemical 

analysis and pharmaceutical sector research, with new antioxidant compounds, which 

could be excellent candidates for therapeutic treatment of AD and other oxidative stress-

related diseases. 
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ABBREVIATIONS 

Aββββ Amyloid-β peptide Fluo3-AM Fluo3-acetoxymethyl ester 

Aβ42-FAM Aβ42 amine-reactive 
succinimidyl esters of 
carboxyfluorescein 

G418 Geneticin 

Acyl-SG S-acyl-glutathione GM1  Monosialotetrahexosylganglioside  
AD Alzheimer’s Disease GSH Glutathione 
ADDLs Amyloid β-Derived Diffusible 

Ligands 
HBSS Hank’s Balanced Saline Solution 

AFM Atomic Force Microscopy HEPES N-(2-hydroxyethyl)piperazine-N’-
(2-ethanesulfonic acid) 

APOE Apolipoprotein E HFIP Hexafluoro-2-isopropanol 

APP Amyloid Precursor Protein HPLC High-Pressure Liquid 
Chromatography 

β-CD methyl-β-cyclodextrin HypF-N N-terminal domain of the 
prokaryotic hydrogenase 
maturation factor HypF 

BACE Beta site APP Cleaving Enzyme 
or β-secretase 

HRP Horseradish Peroxidase 

BBB Blood Brain Barrier 4-HNE 4-hydroxyalkenals 
BODIPY 4,4-difluoro-3’,4adiaza-s-

indacene 
IAPP Islet Amyloid Polypeptide 

BSA Bovine Serum Albumin LDH Lactate Dehydrogenase 
BSTFA N,O-bis(trimethylsilyl)-

trifluoroacetamide 
MALDI/TOF Matrix-Assisted Laser 

Desorption/Ionization Time-Of-
Flight 

calcein-AM calcein-acetoxymethyl MDA Malonaldehyde 
CM-H2, DCFDA 2’-7’ dichlorodihydrofluorescein 

diacetate, acetyl ester 
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide 
CNS Central Nervous System MUFA Monounsaturated Fatty Acids 
CR Congo Red PBS Phosphate Buffer Saline 
CSF Cerebro Spinal Fluid PDMP D-Threo-1-phenyl-2-

decanoylamino-3-morpholino-1-
propanol 

CTX-B Cholera Toxin subunit B PMSF Phenylmethylsulphonylfluoride 
DAPT N-[N-(3,5-difluorophenacetyl)-l-

alanyl]-S-phenylglycine t-buthyl 
ester 

PI3-SH3 SH3 domain from bovine 
phosphatidyl-inositol-3’ –kinase 

DMEM Dulbecco’s modified Eagle’s 
medium 

PS-1 Presenilin-1 

DMSO Dimethylsulfoxide PS-2 Presenilin-2 
DPH 1,6-diphenyl-1,3,5-hexatriene PUFA Polyunsaturated Fatty Acids 
DRMs Detergent-Resistant Membranes PVDF Polyvinylidene difluoride 
ECL Enhanced Chemiluminescence RNS Reactive Nitrogen Species 
EDTA Ethylenediaminetetraacetc acid ROS Reactive Oxygen Species 
EGTA Ethylene glycol-bis(β 

aminoethylether) N,N,N’,N’-
tetraacetc acid 

SDS-PAGE Sodiumdodecylsulfate 
Polyacrylamide Gel 
Electrophoresis 

ELISA Enzyme-linked immunosorbent 
assay 

SFA Saturated Fatty Acids 

FAD Familial Alzheimer’s Disease TAC Total Antioxidant Capacity 
FBS Foetal Bovine Serum TEM Transmission Electron 

Microscopy 
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TFA Trifluoroacetic acid   
TFE Trifluoroethanol   
ThT Thioflavin T   
Vit E Vitamin E   
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