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Trace metals are one of the groups of pollutants that reduce genetic variability in natural populations,
causing the phenomenon known as “genetic erosion”. In this study we evaluate the relationship between
trace metals contamination (Hg, Cd and Cu) and genetic variability, assessed using fluorescent Inter-Simple
Sequence Repeats (fISSRs). We used eight populations of a well-established biomonitor of trace metals on
sandy beaches: the amphipod Talitrus saltator. The trace metals analysis confirmed the ability of sand-
hoppers to accumulate Hg, Cd and Cu. Moreover, populations from sites with high Hg availability had the
lowest values of genetic diversity. Our results validate the use of fISSR markers in genetic studies in
sandhoppers and support the “genetic erosion” hypothesis by showing the negative influence of Hg
contamination on sandhopper genetic diversity. Therefore, genetic variability assessed with fISSR markers
could be successfully employed as a biomarker of Hg exposure.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The genetic composition of natural populations is constantly
modified by natural events (mutations, natural selection, stochastic
processes and migrations). The evaluation of genetic diversity is
especially important for species inhabiting transitional ecosystems,
such as the supralittoral band of sandy shores, subjected to periodic
and aperiodic changes in biotic and abiotic stress factors. Anthropo-
genic impact, such as pollution, can cause severe perturbations of the
genetic structure. Understanding the effect of pollutants on genetic
variability is fundamental in preserving the evolutionary potential of
natural populations. Among the various groups of contaminants
present in coastal areas, heavy metals seem to strongly affect genetic
variability, both directly (via germ cell mutations) and indirectly (via
somatic mutations or ecological and physiological effects) (Bickham
et al., 2000; Belfiore and Anderson, 2001; De Wolf et al., 2004). By
favoring more tolerant genotypes and causing demographic bottle-
necks, trace metals exposure can alter the genetic composition of
a population, leading to a decrease of genetic variability known as
“genetic erosion” (Van Straalen and Timmermans, 2002).

* Corresponding author. Tel.: +39 055 2288219; fax: +39 055 2288565.
E-mail address: alberto.ugolini@unifi.it (A. Ugolini).
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Talitrid amphipods, one of the main components (in terms of
biomass) of the supralittoral of sandy beaches, play an important
role in the energy flow within the sandy beach ecosystem because
they feed on organic matter of marine and terrestrial origin and
provide nourishment for many species of beetles, fishes, birds and
mammals (e.g. see Griffiths et al., 1983). The sandhopper Talitrus
saltator is a well-established biomonitor of trace metals contami-
nation, since studies carried out on the Baltic coast of Poland
(Rainbow et al., 1998; Fialkowski et al., 2000, 2009), on the UK.
coast (Moore and Rainbow, 1987; Rainbow et al., 1989; Moore et al.,
1991) and on Mediterranean shores (Ugolini et al., 2004, 2005,
2008) have demonstrated that T. saltator accumulates trace metals
(mainly Cu, Cd, Hg, Zn, Mn, Al, Fe and Ni).

Despite the importance of the species, little is known about the
genetic structure of T. saltator populations, especially at the micro-
geographical scale where cycles of extinction and colonization may
be frequent and detailed knowledge of population diversity and
structure could be crucial for risk assessment of beach ecosystems.
Previous studies have reported data on large-scale geographical
variation in the whole Mediterranean basin (De Matthaeis et al.,
1995, 1998, 2000; Scapini et al., 1999). They showed a high level of
genetic variation and a pattern of genetic differentiation between
populations fitting the isolation-by-distance model (De Matthaeis
et al., 2000). However, it is unclear how the described patterns are
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applicable on a small geographical scale, i.e. how predictable is it
that populations of T. saltator living in close proximity will exchange
alleles.

To date, no molecular markers have been developed for analyses
of T. saltator population genetics. Due to the low variability, the use
of allozyme patterns has little use when high-resolution studies,
such as those performed at the micro-geographical scale, have to be
performed. Inter-Simple Sequence Repeats (ISSRs) are molecular
markers with high resolving power at the population level which
do not need prior molecular knowledge of the organisms (e.g.
genome sequence, microsatellites, etc.); they also allow a large
number of samples to be analyzed thanks to the possibility of
automation by the use of fluorescently labeled primers and capil-
lary electrophoresis in an automated sequencer (fISSR, Nagaraju
et al., 2002). ISSR markers have been widely used in plants for
germplasm characterization and population genetics studies (see
for instance Semagn et al., 2006; He et al., 2007), and their use is
now extending to animal population studies (e.g. Wink, 2006;
Pazza et al., 2007; Machkour-M’'Rabet et al., 2009) and taxon and
cell line identification (e.g. Maltagliati et al., 2006; Tan et al., 2006).

In this study we evaluated the effects of three accumulated trace
metals with high toxicity and harm for biological systems and
human health (Hg, Cu and Cd) on the genetic variability of Medi-
terranean populations of T. saltator, assessed using fluorescent ISSR
markers. Since previous research has shown that genetic variability
in T. saltator seems to vary according to shoreline stability (Ket-
maier et al., 2003; Scapini et al., 2005), we also took this factor into
account.

2. Materials and methods
2.1. Collection of samples
Eight populations of T. saltator were collected in June 2008 along the Tyrrhenian

coast of central Italy (Fig. 1), from 10°16/31”E latitude to 11°11’41”E latitude, at sites
with different degrees of trace metals contamination (Ugolini et al., 2004) and
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Fig. 1. Map of the Tyrrhenian coast of central Italy showing the sites where
populations were collected.

coastal stability (Albani et al., 1940; Ferretti et al., 2003; Rossi et al., 2008) (Table 1).
Adult individuals (except for ovigerous female) were collected, transported alive to
the laboratory and stored frozen at —80 °C prior to DNA extraction and trace metals
analysis. Since size can influence the amount of accumulated metals (Marsden and
Rainbow, 2004) in amphipods, only individuals of similar weight (0.015-0.02 g)
were used for Hg, Cd and Cu analysis. At each sampling site, a sample of sand was
collected in the zone frequented by the sandhoppers during the day and analyzed for
trace metals contamination.

2.2. DNA extraction and fluorescent ISSR amplification

DNA was extracted from animals stored at —80 °C using a NucleoSpin Tissue kit
(Macherey-Nagel). Single animals were washed in physiological solution to elimi-
nate sand and residual material from the legs, ground in sterile 1.5 ml polypropylene
tubes with sterile Teflon pestles and then subjected to DNA extraction according to
the kit manufacturer’s instructions. DNA was quantified by spectrophotometric
readings (Biophotometer, Eppendorf) and gel electrophoresis after ethidium
bromide staining.

ISSR amplification was carried out in a total volume of 25 pL containing 10 ng
of template DNA, 2 U of Taq DNA polymerase (GoTaq, Promega), 10 pmol of
fluorescently labeled ISSR primer, 0.2 mM of each dNTP, 1.5 mM MgCl, and
1x concentration of Taqg DNA polymerase buffer (GoTaq, Promega). Cycling condi-
tions were as follows: 5 min 95 °C, followed by 40 cycles composed 0of 20595 °C,30 s
66°C-1°C/cycle for the first 10 cycles and then 55 °C, 2 min 72 °C and a final
extension step of 5 min 72 °C. Amplification products from all 130 animals were
resolved by capillary electrophoresis on an Applied Biosystems ABI PRISM® 3100
Automated Capillary Genetic Analyzer (Applied Biosystems, Foster City, CA, USA)
using GenScan ROX 2500 (Applied Biosystems) as size standard. Fifteen animals
from different populations were amplified twice to establish the reproducibility and
background noise cut-off.

2.3. Trace metals analysis

The samples of sand and sandhoppers were dehydrated at 40 °C until constant
weight (minimum 0.5 g dry weight) and then finely ground. Around 150 mg of each
sample were mineralized in Teflon vessels containing 3 ml of HNOs3 at 120 °C for 8 h.
After digestion, the solution was brought to a volume of 10 ml by addition of
deionized water. During each mineralization, several “blank trials” were performed
to verify the absence of contamination.

The analyses of metal contents were performed by atomic absorption spec-
trometry. Cd and Cu were determined by atomization with a graphite furnace and
Zeeman background corrector, while the FIMS (Flow Injection Mercury System) was
used for Hg. Each analysis was carried out three times and the accuracy of the
analytical procedures was assessed by comparing the results of contemporary
digestions and analyses of Standard Reference Materials (SRMs): SRM 1566 “oyster
tissue” from the National Institute of Standards and Technology (NIST, Gaithersburg,
USA). The results of the determinations were only accepted if the values measured
for the SRMs were within the certified concentration range. The element concen-
trations (expressed as ug/g) were calculated by the method of “internal additions”.
The coefficients of variation for the elements analyzed were between 5% and 10%.

2.4. Data analysis

The bioaccumulation of each metal in T. saltator was investigated by comparing
the sand and sandhopper concentrations by means of the Sign test (Siegel and
Castellan, 1989).

For the ISSR data, chromatogram files from automated sequencer sizing were
imported into GeneMarker ver. 1.71 software (SoftGenetics LLC, State College, PA,
USA) by filtering with the default options of the module for AFLP analysis. The cut-off
values (200 fluorescence units for background noise and size range from 100 to
2000 nt) were set after analysis of replicate samples, taking into account only bands

Table 1

Main features and genetic diversity of the analyzed populations. Population name,
code, number of animals analyzed and geographical coordinates are shown. See text
for further explanations.

Population name Code No. of Longitude Latitude Coastal
animals stability
Morto Vecchio river FM 16 43°44'55"N  10°16/31”E  Stable
Arno river FA 18 43°40'55"N  10°16’52”E  Unstable
Calambrone C 18 43°34'56"N  10°17’56"E  Unstable
Rosignano Solvay RS 14 43°22'24"N  10°26/'23"E  Unstable
Piombino P 17 42°57'07"N  10°34'11”E  Stable
Ombrone river (0] 16 42°39'30’N  11°00’'50”E  Unstable
Albegna beach AM 10 42°30'36"N  11°11’30”E  Unstable
Albegna river AF 14 42°30'16"N  11°11'41”E ~ Stable
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present in duplicate reactions from 15 test animals. Consequently, only peaks with
the above-mentioned characteristics were considered for profile analysis of the
whole dataset of 130 animals. Statistical analyses were performed on a binary matrix
produced by linearly combining the results of different primers, assigning 1/0 values
to band presence/absence. A matrix of genetic similarity between animals was
computed with NTSYS-pc ver. 2.02 (Rohlf, 1990) based on presence/absence of
bands, using Jaccard’s coefficient of similarity. Unlike Lynch and Milligan’s param-
eters for dominant markers (Lynch and Milligan, 1994), Jaccard’s coefficient takes
into account only band presence sharing between individuals and is commonly used
for the analysis of markers treated as dominant, such as ISSRs (Lowe et al., 2004).

Within-population genetic variation was computed as “mean number of pair-
wise differences” and “average gene diversity over loci” using Arlequin 3.11 software
(http://cmpg.unibe.ch/software/arlequin3/). Analysis of Molecular Variance
(AMOVA) (Excoffier et al., 1992) as implemented in Arlequin 3.11 was used to analyze
the partition of total genetic variation at three hierarchical levels: within pop-
ulations, between populations and between groups of populations. The statistical
significance was computed by a permutation test after 10 000 random permuta-
tions. The Bayesian clustering method for dominant markers, implemented by
a Markov chain Monte Carlo algorithm present in Structure 2.2 (Pritchard et al.,
2000; Falush et al., 2007), was also used to identify the population structure. Data
were obtained with runs of 100 000 iterations (three times for each K-value) and
a burning of 20 000 iterations.

Genetic distances between populations were estimated by computing a matrix
of pairwise Fsr values (Slatkin, 1995) which was then used to infer a Neighbor-
Joining dendrogram with MEGA4 software (Tamura et al., 2007). The significance of
pairwise Fsy values was computed by a permutation test after 1000 random
permutations.

Pairwise Fsr values were compared with the linear and log-transformed
geographical distances between populations according to Mantel’s test (Mantel,
1967) as implemented in NTSYS-pc ver. 2.02 (Rohlf, 1990); normalized Mantel Z
statistics were calculated after 1000 permutations.

The Spearman rank-order correlation coefficient test (Siegel and Castellan, 1989)
was used to establish if there were relationships between trace metals pollution and
genetic variability and between stability of the coastal environment and genetic
variability.

3. Results
3.1. Trace metals accumulation

Fig. 2 and Table 2 show that the concentrations of Hg, Cd and Cu
in amphipod tissues were generally higher than those in the sand
(n=8,x=1,p=0.035for Hg,n =8, x =0, p = 0.004 for Cu and Cd).

3.2. ISSR fingerprinting

Ten primers [ISSR#1: HVH(TTC)4; ISSR#2: YG(CA)g; ISSR#3:
(CA)7; ISSR#4; (CA)7RY; ISSR#5: RY(CA)7; ISSR#6: V(CT)sD; ISSR#7:
B(GA)sH; ISSR#8: (TGA)s; ISSR#9: YG(GA)g; ISSR#10: YG(CT)g] were
initially screened for the presence of amplification products,
reproducibility, readability and pattern polymorphism in DNA of
two animals from different populations. Two of the primers (ISSR#5
and ISSR#9) gave the most successful results and were used for the
analysis of all samples. These two primers produced 54 polymorphic
bands (markers) ranging from 242 to 1014 bp for ISSR#9
(46 markers) and from 369 to 581 bp for ISSR#5 (8 markers). In
total, 504 bands were retrieved in 130 animals. Each animal showed
an average of 3.77 + 1.16 markers.

3.3. Genetic diversity

The variation of within-population genetic diversity was quite
high (Table 2), ranging from 4.30 (mean number of pairwise
differences) of population FM to 6.89 of population AF. Only two
markers were present in all populations (public alleles), 40 were
distributed in 2-6 populations, while 12 were restricted to one
population only (private alleles). The distribution of private
markers among populations is also reported in Table 2. Four pop-
ulations did not show private alleles (AM, FM, O, RS), while the
others showed one or two private alleles.
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Fig. 2. Trace metals concentrations (ppm)in the sand (black bars)and in the sandhoppers
(white bars). For each element, sampling sites are ordered according to the latitude. For
further explanations, see Fig. 1 and Table 1.

3.4. Hierarchical structure of genetic variation

AMOVA (Table 3) showed that the genetic differentiation among
populations was relatively high (Fsr = 0.165). The greatest propor-
tion of the total variation in our sample (83.45%) was due to intra-

Table 2

Genetic diversity of analyzed populations, estimated as “average gene diversity over
loci” and “mean number of pairwise differences”; Npm: number of private markers.
Hg, Cd and Cu concentration in sandhoppers is also shown. For further explanations,
see Table 1 and text.

Population Genetic diversity Npm Metals
code concentration
(ppm)
Mean number of Average gene Hg Cd Cu
pairwise differences diversity over loci
FM 4.30 0.0796 0 0.18 0.76 54.2
FA 5.75 0.1065 1 0.07 0.50 44.9
C 5.41 0.1000 2 0.08 041 73.6
RS 4.83 0.089 0 021 0.69 40.6
P 6.11 0.1132 2 0.11 0.40 43.7
(0] 5.40 0.1001 0 0.11 1.74 472
AM 4.33 0.0802 0 0.17 0.70 424
AF 6.89 0.1275 2 0.08 1.06 45.0
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Table 3
Analysis of molecular variance (AMOVA) in 123 individuals from eight T. saltator
populations: a) overall; b) and c) geographical partition with different groupings.®

Source of variation df. Sumof Variance % Total P
squares

a) Overall

Among populations 7 76.749 0.53848 16.55 <0.0001

Within populations 115 312357 271615 83.45 <0.0001

Total 122 389.106 3.25463

b) Five groups partition

Among groups 4 63.693 0.51342 15.39 <0.008

Among populations/groups 3 13.056 0.10604 3.18 <0.0001

Within populations 115 312357 271615 8143 <0.0001

Total 122 389.106 3.33560

c) Six groups partition

Among groups 5 70.157 0.58480 17.54 <0.02

Among populations/groups 2 6.592 0.03350 1.00 <0.0001

Within populations 115 312357 271615 81.46 <0.0001

Total 122 389.106 3.33445

2 The AMOVA was performed attributing the following two types of geographical
groupings: b) north-south gradient with five groups (FM, FA, C); (RS); (P), (0); (AM,
AF); ¢) north-south gradient with six groups (FM, FA, C); (RS); (P), (O); (AM); (AF).
For each grouping, the percentage of total variance observed was attributed to two
or three hierarchical partitions: among groups; among populations within groups;
among single individuals within populations. Data show the degrees of freedom
(d.f.), the sum of squared deviation, the variance component estimate, the
percentage of total variance contributed by each component and the probability of
obtaining a more extreme component estimate by chance alone (P). p-values were
estimated by computing 10 000 permutations.

population differences, rather than to among-population differ-
ences (16.55%). The geographical differentiation of populations was
also tested. The partition of populations into five and six groups
gave the highest among-group variance components (also with
significant p-values). Moreover, the Bayesian inference of pop-
ulation structure performed with Structure 2.2 gave similar results,
with maximal Ln-likelihood at K = 5 (—1191.4).

3.5. Genetic differentiation between populations

The Neighbor-Joining dendrogram of populations based on
pairwise Fsr (Fig. 3a) showed a well-structured pattern of genetic
distances. Two main clusters could be recognized within the
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o
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b AF AM C FA FM o] P RS
AF 0.000

AM | 0.093 | 0.000
[of 0.255 | 0.000 | 0.000
FA 0.246 | 0.255 | 0.026 | 0.000
FM | 0.307 | 0.000 | 0.002 | 0.016 | 0.000
(o] 0.107| 0.145| 0.178 | 0.152 | 0.204 | 0.000
P 0.033 | 0.131] 0.247 [ 0.233 | 0.291 | 0.079 | 0.000
RS |0.158 | 0.222| 0.075| 0.078 | 0.000| 0.074 | 0.104 | 0.000

Fig. 3. Genetic differentiation between populations. a) Neighbor-joining dendrogram;
b) pairwise Fsr (values in bold indicate non-significant values at p < 0.05).

T. saltator group: populations P, AM, AF and populations O, RS, FA, C,
FM, corresponding to the southern and northern groups of locali-
ties indicated in Fig. 1. This subdivision was statistically well
supported and accounted for 15.1% of the variation (as computed
with AMOVA, p < 0.04). Within the cluster corresponding to the
northern populations, the most similar ones (C, FM and FA) formed
a tight sub-cluster. Since there was no statistical support for the
pairwise Fst values between them (Fig. 3b), it can be assumed that
these three populations form a unique group with no differentia-
tion among them. In contrast, there are significant pairwise Fsr
values between all three populations (P, AM, AF) in the southern
cluster, supporting their genetic differentiation.

To test for a geographically-based distribution of genetic diver-
sity, we carried out Mantel’s test of correlation between genetic and
geographical distances. The results indicated a high level of corre-
lation with both linear (r = 0.805; p < 0.005) and log-transformed
(r = 0.640; p < 0.007) geographical distances.

3.6. Trace metals accumulation and genetic diversity

Among all the metals analyzed, only Hg showed a significant
correlation between metal concentration and genetic variability of
populations (rs = —0.74, d.f. = 7, p < 0.05) (Fig. 4). In fact, the
sandhoppers collected from the sampling sites with the highest Hg
levels (RS = 0.21 ppm, FM = 0.18 ppm, AM = 0.17 ppm, Fig. 4) had
the lowest levels of genetic variability (Table 2). There was no
significant correlation between genetic diversity and metal
concentration for Cd and Cu (rs = —0.54, d.f. = 7, p = N. S. for Cd;
rs = —0.02, d.f. = 7, p = N.S. for Cu) (Fig. 4).

3.7. Coastal stability and genetic diversity

The sampling sites were divided into “stable” and “unstable”
based on data recorded from late 1800 (Albani et al., 1940) to 2008
(Ferretti et al., 2003; Rossi et al.,, 2008). The Spearman rank-order
correlation test did not show a significant correlation between
coastal stability and genetic variability (r; = —0.28,d.f. = 7,p = N.S.).

4. Discussion

The results of our trace metals analysis agree with previous data
regarding the Tuscan coast (Ugolini et al., 2004, 2008) and confirm
the ability of sandhoppers to accumulate Hg, Cd and Cu showing
differences among sampling sites (see Marsden and Rainbow, 2004
for a review).

The developed markers, based on two primers having a (CA);
and a (GA)g repeat motif (ISSR#5 and ISSR#9, respectively), resul-
ted in 54 highly polymorphic markers which produced 502 alleles
(bands) in 130 animals. In spite of the narrow geographical range,
the analysis of private markers revealed that populations AF, P, C, FA
present unique alleles, suggesting that the gene flow between
populations is quite low or that several bottlenecks, with reduction
in effective population size followed by rapid expansion, could have
taken place. In this view, the mismatched distribution for pop-
ulations AF, P and FA (data not shown) approximates a bimodal
curve, which could support the hypothesis of bottlenecks for those
populations. However, an analysis with other markers (e.g.
co-dominant microsatellites) is needed to resolve this issue.
Genetic diversity values varied relatively little. However, pop-
ulations with no private alleles tended to have lower values of
genetic diversity; in particular, populations RS and AM showed
some of the lowest genetic diversity values. Populations with the
lowest diversity values also inhabited sites heavily contaminated by
Hg, and there was a significant negative correlation between Hg
concentration and genetic variability of populations. Exposure to
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Fig. 4. Relationship between trace metals concentrations in tissues of T. saltator
(expressed in ppm) and genetic variability (expressed as mean number of pairwise
differences). For each metal the value of Spearman rank-order correlation coefficient
test (rs), degrees of freedom (df) and probability (p) are given. For further explanations
see also Table 2.

genotoxic chemicals such as Hg can act as a selective force, elimi-
nating sensitive genotypes within a population with predictable
changes in genetic variability in affected populations. Results of
other studies support the correlation between Hg exposure and
genetic diversity. Populations of the sunfish Lepomis auritus from
Hg-contaminated rivers showed differences in genetic distances
with respect to unexposed populations (Nadig et al., 1998). Indi-
viduals of the marine gastropod Monodonta turbinata from
Hg-contaminated areas had high amounts of Hg-tolerant allozymes
with respect to animals sampled in uncontaminated areas (Nevo
et al,, 1984). Our findings seem to confirm the important role of Hg
contamination as a selective force in contaminated populations.

Hg contamination in the most polluted localities is well docu-
mented. RS is located near the Solvay chemical plant (built in 1918)
whose effluents, characterized by high levels of Hg, discharge
directly into the sea (Ferrara et al., 1989). AM is affected by the
cinnabar (HgS) geological anomaly on Mt. Amiata and in particular
by the Hg mining conducted from the Etruscan period (8th - 1st
century B.C.) to 1980 (Barghigiani et al., 1996).

The high sensitivity of T. saltator to Hg contamination is also
supported by the LCsg data reported by Ungherese and Ugolini
(2009). For this species, Hg is more toxic than Cu and Cd, with wide
differences in the LCsg values: 0.02 ppm for Hg, 13.28 for Cu and
27.66 for Cd (Ungherese and Ugolini, 2009). Therefore, although we
cannot exclude the influence of other pollutants, Hg seems to have
an important role in the reduction of genetic variability in T. saltator.
Moreover, on the Tuscan coast, genetic erosion has recently been
detected in the littoral crab Pachygrapsus marmoratus from sites
with different degrees of As, Cd, Pb and Cu contamination (Fratini
et al., 2008). Our analyses did not reveal a correlation between
coastal stability and genetic diversity, as proposed by other authors
(Ketmaier et al., 2003; Scapini et al., 2005). Therefore, contrary to
the results of these authors, trace metals contamination (particu-
larly Hg) rather than coastal stability seems to have a negative
influence on the genetic diversity of T. saltator populations.

The gene flow between T. saltator populations was then inves-
tigated by analysis of the population structures. We found a good
correlation between geographical distance and genetic distance
between populations, in agreement with an isolation-by-distance
model as previously proposed for this species over a larger
geographical range (De Matthaeis et al., 2000). Moreover, we found
structuring of populations in a northern and a southern group. In
the latter, there was unexpected differentiation, even at a very
small scale (AM-AF, about 600 m apart). Sympatric differentiation
in tidal and estuarine animals due to behavioral and ecological
causes has already been detected (Stanhope et al., 1992; Bilton
et al,, 2002; Vesakoski et al., 2009). However, further investigations
into the eco-ethology and physiology of these two populations are
necessary to fully understand the basis of the quasi-sympatric
differentiation. In the northern Tuscany populations (FM, FA, C),
only the last one (C) was differentiated from the others, revealing
higher gene flow between northern populations than between
southern ones. This suggests that local conditions have a high
impact on the T. saltator population structure and may strongly
influence gene flow between sites, even at a very small scale.

5. Conclusions

Talitrid amphipods such as the sandhopper T. saltator are well-
established biomonitors of trace metals contamination. Despite
their recognized role as bioindicators of human impact on sandy
beaches, no molecular markers have been developed to allow rapid
and high-throughput screening of genetic diversity in talitrids. We
applied fluorescent Inter-Simple Sequence Repeats (fISSRs) to
T. saltator, aiming to investigate the genetic diversity and structure
of eight populations inhabiting the Tyrrhenian (western) coast of
central Italy and their relationships with trace metal contents (Hg,
Cd, Cu). This study demonstrates the usefulness of fISSR markers in
investigations of T. saltator population genetics. Indeed, these
markers reveal differences among populations despite the small
geographical range.

Our results also support the “genetic erosion” hypothesis (Van
Straalen and Timmermans, 2002) and highlight the role of Hg
pollution in the reduction of population genetic diversity. The Hg
concentrations in the sandhopper tissues were negatively correlated
to the genetic variability. Coastal stability seems not to affect the
genetic variability of sandhoppers. Therefore, genetic differences
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assessed with fISSR markers could be used as valid biomarkers to
detect Hg exposure in T. saltator and could be used to identify coastal
areas where Hg contamination is particularly strong.
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