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Chapter 1

Introduction

The Phenomena of energy and charge transfer are ubiquitous in natural and arti-

ficial photochemically active systems. Energy transfer is present in antenna sys-

tems of photosynthetic organisms, in photodynamic therapy in multichromophoric

β-cyclodextrins in photomolecular devices and in photochemical synthesis. On the

other hand, the charge transfer processes are the basic steps in the functionality of

biological systems, in the development of photovoltaic devices and in the identifi-

cation of different magnetic states of molecular and supramolecular compounds. In

this framework, we developed two different field of research. On one hand we studied

the energy transfer mechanism in an organic antenna model system, while on the

other hand we undertook the study of the optically activated valence tautomerism

in a Manganese complex.

The characterization of the energy transfer mechanism has been developed by

means of static and time resolved spectroscopy. In particular, UV-Vis ground state

absorption and static fluorescence measurements are extremely useful tools for the

preliminary characterizations. The aim of the work was the development of a model

molecular system in which we could indirectly promote a molecular reaction. For

that reason, in collaboration with the organic synthesis research group of prof. Al-

berto Brandi and Dr. Stefano Cicchi, we begin a preliminary screening of possible

donor and acceptor candidates. On the basis of canonical prerequisites that donors
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1. Introduction

and acceptors chromophores have to meet and with the precise purpose to utilize

natural derivatives, the final choice fell on the Umbelliferone as donor molecule and

Alizarin as acceptor compound. The Alizarin molecule was particularly indicated

for our project since it is characterized by the intramolecular proton transfer reac-

tion in the first singlet excited state. The first part of the work was dedicated to the

study of the photophysical properties of the isolated donor and acceptor molecules.

In particular, ground state absorption and static fluorescence experiments were uti-

lized in conjunction with ab initio calculation to obtain a complete information of

the energetic levels involved in the experimentally observed electronic transitions.

Concerning the Alizarin molecule we performed a detailed analysis, by means of ab

initio calculation with Density Functional methods, of the excited state intramolec-

ular proton transfer reaction. At the same time transient absorption technique was

employed for the characterization of excited state’s dynamic. The final part was

dedicated to the study of the energy transfer in the bichromophoric compound.

The study of molecular systems whose physical properties can be reversibly

changed and controlled following a variation of an external parameter constitute

an appealing perspective for the realization of molecular scale electronic devices.1,2

In particular, molecules showing photoreactivity or photochromic properties are of

potential interest as materials for optical data storage. Although undoubtedly at-

tractive, the uncompleted comprehension of the factors affecting the photochromic

behavior, has hampered the possibility of designing new systems following a pre-

determined strategy. This part of the work has been dedicated to the study of

the photophysical properties of a Manganese-Dioxolene complex with time resolved

spectroscopy. The synthesis and preliminary characterization was performed by

prof. Andrea Dei, while transient absorption measurements were carried out with

the purpose of characterize the mechanism of the valence tautomerism.

In the second chapter I will propose the fundamental concept of the femtosecond

transient absorption experiment. The third chapter deals with the detailed char-

acterization of the photophysics of the Umbelliferone (donor unit). In the fourth
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chapter the Alizarin chromophore will be discuss with particular attention to the

intramolecular proton transfer process, In the fifth chapter we describe the time

resolved characterization of the bichromophore and, in the end, the sixth chapter is

dedicated to the characterization of the Manganese-Dioxolene complex. There are

also two appendixes where I give a detailed explanation of the data analysis methods

for time resolved experiments and of the rotational contribution to the time resolved

fluoresce and transient absorption signal.
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Chapter 2

Experimental part

In this chapter we’ll define the quantities measured in the transient absorption ex-

periment. We will further discuss the effects introduced by the temporal dispersion

of the spectral components of the probe pulse on the evolution of the transient

spectra.

2.1 Transient Absorption Experiment

The experimental instrumentation for femtosecond time-resolved transient absorp-

tion spectroscopy has been described in detail in previous reports.3,4 Briefly, ul-

trashort pulses (duration ∼100 fs at 800 nm, repetition rate 1 kHz, energy 700

µJ/pulse) are produced by a regenerative amplified Ti:Sapphire laser system. Tun-

able excitation pulses are obtained by means of a BBO-based optical parametric

generator (OPG-OPA). In the present experiments the excitation wavelength of 325

nm was produced by the FHG (fourth harmonic generation) of the the signal’s (1.3

µm) pulses, obtaining ∼2 mW average power. The 400 nm wavelength was obtained

simply by the frequency doubling of the fundamental (800 nm) frequency by means

of a BBO crystal. A small portion (2 µJ/pulse) of the 800 nm beam was focused on

a 2.5 mm thick calcium fluoride plate to generate the white-light continuum used for

probing. The resulting spectrally broadened laser pulse spanned the entire visible
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2. Experimental part

region and extended in the near UV to roughly 350 nm. The white-light contin-

uum was further split into two parts of equal intensity by a 50/50 fused-silica-Al

beam splitter. One part, acting as a probe beam, was spatially overlapped with the

excitation beam in the sample. The second part crossed the sample in a different

position and always before the interaction of the pump pulse with the sample pro-

viding a convenient reference signal. Transient absorption spectra of Umbelliferone,

of 2metO-1HAQ with 300 nm excitation wavelength and the spectra of the bichro-

mophore adduct has been acquired by the help of the following detector system: the

probe and reference beams were spectrally dispersed in a flat-field 25 cm Czerny-

Turner spectrometer, and detected by means of a back illuminated CCD camera

with spectral response in the region 300-1000 nm. The acquisition of the transient

absorption signal of all the others molecular system has been performed by the help

of a different detection system. In this last configuration the pump and probe beams

were spectrally dispersed by a jobin-Yvon CP 140-1824 spectrometer and detected

by a Hamamatsu double linear-array CCD system. The electric signals, obtained

by a home made front-end circuit, were converted by the help of a simultaneous

two-channels analog to digital acquisition board (ADLINK DAQ-2010). The last

detection system, although characterized by a lower spectral resolution, allowed us

to acquire transient spectra with an increased signal to noise ratio.

Sample’s solution is usually inserted in a quartz cell (Hellma) with 2mm optical

path. The irradiated volume is refreshed by stirring the sample with a micro mag-

net inside the 2mm cell and transient absorption spectra were recorded reducing the

repetition rate from 1KHz to 100 Hz to avoid photo-damage of the sample. All the

samples were prepared to have an optical density of approximately 1 at the exci-

tation wavelength. Steady-state absorption spectra of the solutions were measured

before and after the experiments to check for possible sample decomposition. All

measurements were carried out at room temperature (22± 1◦).

Two different detection configurations were utilized to obtain the data sets herein

presented, which are composed of both transient spectra (Absorbance of the excited
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2.1 Transient Absorption Experiment

state vs. wavelength at a given pump-probe delay time) and kinetic plots (Intensity

of the probe vs. delay time at a fixed wavelength).

2.1.1 Transient Transmittance

In the transient spectra, the transmittance at a given delay time t and wavelength

λ, T (t, λ), is defined as

T (t, λ) =
I(t, λ)

I0(λ)
(2.1)

where I(t, λ) and I0(λ) are the intensities of the white-light continuum components

reaching the detector having and having not interacted with the pump pulse, re-

spectively.

In practice is not possible to substitute I(t, λ) and I0(λ) with the probe and

reference intensities Ip(t, λ) and Ir(t, λ) because the latter two beams will never have

the same spectral content. To obtain the correct value of T (t, λ) two measurements

were performed: the first without the pump beam, thus acquiring the intensities

of the probe I ′p(λ) and reference pulses I ′r(λ); the second with both excitation and

probe beams, thus measuring I ′′p (t, λ) and I ′′r (λ). The transient transmittance T (t, λ)

is then given by

T (t, λ) =
I ′′p (t, λ)

I ′′r (λ)
∗ I ′r(λ)

I ′p(λ)
=

I ′′p (t, λ)

I ′p(λ)
∗ I ′r(λ)

I ′′r (λ)
(2.2)

The reference pulse interacts with the sample always before the the pump pulse,

hence, I ′′r (λ) and I ′r(λ) are, neglecting little fluctuations, identical quantities and

the rate I ′r(λ)/I ′′r (λ) is the normalization function.

When the irradiated sample shows luminescence emission, the intensity acquired

by the detector system is not related only to transient phenomena. The detector

system collects the light continuously and it is not able to discriminate the light

pulses synchronized with the pump excitation from the delayed emissions (fluores-

cence and phosphorescence). Some part of static fluorescence emitted by the sample

propagates collinearly with the probe pulse and it is acquired by the detector sys-

tem, producing a transient spectrum affected by some fluorescence contribution: the
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2. Experimental part

stimulated emission (whose intensity is related to the amount of excited state pop-

ulation and hence to the delay between the pump and probe pulse) and the static

fluorescence. To avoid the static fluorescence contribution we performed a third

acquisition step with the pump beam only. The fluorescence has different intensities

on the detection surfaces of the probe and reference beams: Fr and Fs. Hence the

three steps concerning the acquisition of a transient spectrum are

1. Pump off Probe on 



S1 = I ′p(λ)

R1 = I ′r(λ)
(2.3)

2. Pump on Probe on 



S2 = I ′′p (t, λ) + Fp

R2 = I ′′r (λ) + Fr

(2.4)

3. Pump on Probe off 



S3 = Fp

R3 = Fr

(2.5)

The transient transmittance, corrected for the fluorescence contribution, is ob-

tained as

T (t, λ) =
S2 − S3

R2 −R3

∗ R1

S1

=
[I ′′p (t, λ) + Fp]− Fp

[I ′′r (λ) + Fr]− Fr

∗ I ′r(λ)

I ′p(λ)
=

I ′′p (t, λ)

I ′p(λ)
∗ I ′r(λ)

I ′′r (λ)
(2.6)

2.1.2 Single Wavelength Measurements

Recording kinetic plots requires narrow bandwidth detection. The desired wave-

lengths were selected by means of a 5 nm bandwidth interference filters. The in-

tensity of the probe pulse was measured by a silicon differential photodiode and a

lock-in amplifier synchronized to a chopper, switching the pump pulse on and off at

half the repetition-rate of the laser system (500 Hz). In this way, the reading of the

phase-locked amplifier gave the modulation of the probe pulse intensity due to the

interaction with the pump pulse.
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2.2 Transient Absorption Signal in the Time Domain

2.2 Transient Absorption Signal in the Time Do-

main

The transient absorption signal is proportional to the concentration of excited states

which absorbs the photons of the probe beam at wavelength λ. Within the linear

response regime the signal of a pump & probe experiment, in the time domain and at

a wavelength λ, is given by the convolution of the molecular response function with

the functions associated to the pump and probe pulses. If s(t) is the signal, R(t) is

the molecular response function, p1(t) and p2(t) are the functions of the pump and

probe pulses, then we can write

s(t) = R(t)⊗ p1(t)⊗ p2(t) (2.7)

where ⊗ is the convolution operation defined as

a⊗ b =

∫ +∞

−∞
a(t− t′) b(t′) dt′ (2.8)

Equation 2.7 can be rewritten as

S(τ) =

∫ +∞

−∞

∫ +∞

−∞
p2(t− τ) p1(t− t′) R(t′) dt dt′ (2.9)

Considering the associative properties for the convolution operation

(a⊗ b)⊗ c = a⊗ (b⊗ c) (2.10)

we obtain

g(t) = p1(t)⊗ p2(t) (2.11)

g(t′ − τ) =

∫ +∞

−∞
p2(t− τ) p1(t− t′) dt (2.12)

The function g(t′ − τ) is the instrumental function and, considering the convo-

lution theorem, it is given by the crosscorrelation function between the pump and

probe pulse. We can rewrite Equation 2.7 as

s(t) = R(t)⊗ p(t) (2.13)

11



2. Experimental part

Hence

S(τ) =

∫ +∞

−∞
g(t′ − τ) R(t′) dt′ (2.14)

The molecular response function is generally associated with the response of

the molecular system to an applied perturbation and, therefore, it contains the

information about the temporal evolution of the system itself. Hence, R(t) defines

the evolution of the molecular property that we want measure.

Transient absorption provides information about the photophysics and the pho-

tochemistry of the sample with a temporal resolution limited by the instrumental

function. In this framework let’s consider the limiting cases of Equation 2.14

1. If the duration of the applied perturbation is negligible in respect to the re-

sponse time of the molecular system, then the weight of the instrumental

function in the description of the signal’s shape will be very low. From a

mathematical point of view, this condition is equivalent to substituting the

instrumental function g(t′ − τ) with a δ function, obtaining

S(τ) =

∫ +∞

−∞
δ(t′ − τ) R(t′) dt′ = R(τ) (2.15)

The acquired signal is directly the molecular response; this is the condition of

maximum accuracy of the transient measure.

2. If the molecular response time is much shorter than the applied perturbation,

i.e. R(t) can be approximated to a δ function, we obtain

S(τ) =

∫ +∞

−∞
g(t′ − τ) δ(t′) dt′ = g(τ) (2.16)

The acquired signal is then virtually undistinguishable from the instrumental

function and we say that the observed dynamic is instantaneous in relation to

the temporal resolution of the apparatus.

When the time constants of photophysical and photochemical processes are com-

parable with the instrumental function, the molecular response function can be ob-

tained by a de-convolution operation on the acquired signal. The former operation

assumes the detailed knowledge of the instrumental function’s profile.
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2.3 Group Velocity

2.3 Group Velocity

The characteristics of an ultrashort light pulses can be completely described in the

time domain as well as in the frequency domain.5,6 The pulse spectral properties are

directly linked to the temporal properties by the following Fourier relation7

Ẽ(ω) =

∫ +∞

−∞
E(t) e−iω t dt = |Ẽ(ω)| e iΦ(ω) (2.17)

where the complex notation has been employed for the representation of the

amplitude spectrum: |Ẽ(ω)| is the amplitude and Φ(ω) is the spectral phase. Anal-

ogously we can obtain E(t) from Ẽ(ω) by means of the inverse Fourier transform:

E(t) =
1

2π

∫ +∞

−∞
Ẽ(ω) e iω t dω (2.18)

Equations 2.17 and 2.18 comprise the existence of negative frequencies which, of

course, do not have any physical meaning. In this framework it’s helpful to adopt

the complex notation also for the electric field E(t):

Ẽ+(t) =
1

2π

∫ +∞

−∞
Ẽ(ω) e iω t dω (2.19)

Hence, in the frequency domain, we obtain the following power spectrum

Ẽ+(ω) = |Ẽ(ω)| e iΦ(ω) =





Ẽ(ω) ω ≥ 0

0 ω ≤ 0

(2.20)

The complex electric field Ẽ(t) can be expressed as the product of the amplitude

profile and the phase term; assuming that the spectrum is centered around the

frequency ωl, called the carrier frequency, we have

Ẽ+(t) =
1

2
E(t) e i (ϕ(t)+ωlt) (2.21)

The complex envelope of the electric field varies with time with the carrier fre-

quency; the latter modulated by the time fluctuations of the phase term ϕ(t). The
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2. Experimental part

instantaneous oscillation frequency is given by the first derivative of the exponential

argument of Equation 2.21:

ω = ωl +
d

dt
ϕ(t) (2.22)

If the carrier frequency varies with time, then the pulse is frequency modulated;

this effect is called chirping effect.

The frequency modulation of the pulse is due to the interaction with dispersive

media, such as, for example, lenses or absorption and interference filters. Usually

the high frequency (low wavelength) spectral components of the pulse experiences

a higher refractive index than the low frequency ones. The frequency dependence

of the phase difference can be expressed by the Taylor expansion of the phase term

around the carrier frequency ωl:

ϕ(ω) = ϕ(ωl) +
dϕ(ω)

dω

∣∣∣∣∣
ωl

(ω − ωl) +
1

2

d2 ϕ(ω)

dω2

∣∣∣∣∣
ωl

(ω − ωl)
2 + . . . (2.23)

The first derivative of the phase-difference in respect to the frequency ω has the

dimension of a time ([sec]) and can be expanded in Taylor series around the carrier

frequency:

τ(ω) =
dϕ(ω)

dω
=

dϕ(ω)

dω

∣∣∣∣∣
ωl

+
d2 ϕ(ω)

dω2

∣∣∣∣∣
ωl

(ω − ωl) + . . . (2.24)

The first term of Equation 2.24 is associated to a constant delay for all the pulse

spectral components. The second term is related the value of the second derivative of

the phase-difference in respect to the frequency and, if the value is positive, it implies

a delay which linearly grows as a function of the frequency of the pulse’s spectral

components within the pulse envelope. This kind of pulse is called upchirped. The

relation between the temporal profile and the spectral content of a linearly chirped

pulse can be written as:

Ẽ(t) = E0 e−(1+ia)(t/τ) (2.25)

where

τ =
√

2 ln 2 FWHM (2.26)
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2.3 Group Velocity

is obtained by the Fourier relation:

Ẽ(ω) = K exp[i ϕ(ω)] exp[(ω2τ)/4(1 + a2)]2 (2.27)

where K is a constant. The profile of the spectral intensity is given by the square

module of the electric field:

I(ω) = K exp[(ω2τ)/4(1 + a2)]4 (2.28)

The Full Width at Half Maximum (FWHM ) of the pulse, in the frequency domain,

is given by

2π∆ν =
1

τ

√
8 (1 + a2) ln2 (2.29)

The product between the temporal and frequency widths FWHM of the pulse is

given by

2π∆ν · FWHM =
2 ln2

π

√
1 + a2 = 0.441

√
1 + a2 (2.30)

In the limiting case of no frequency modulation (a = 0) the pulse duration and the

pulse spectral width are related by a constant and the pulse is Transform Limited.

When the pulse is affected by the chirping effect (positive or negative), the spectral

content is enlarged and, consequently, the intensity temporal profile is broadened.

2.3.1 Group Velocity Dispersion

The propagation velocity of a pulse, whose spectral content is continuous within a

given frequency range, is different from the propagation velocity of the individual

monochromatic spectral components which compose the pulse itself. If we assume

that the spectral content of the pulse is centered around the carrier frequency ωl,

then the pulse propagation velocity (called group velocity) is given by the first deriva-

tive of the frequency in respect to the wavevector k:

vg =

∣∣∣∣∣
dω

dk

∣∣∣∣∣
ωl

(2.31)
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2. Experimental part

The propagation trough a dispersive medium involves a frequency dependent

phase-difference of the chromatic components of the pulse itself. The effect of such

phase-difference is described as group velocity dispersion (GVD):

kl = − 1

v2
g

dvg

dω

∣∣∣∣∣
ωl

(2.32)

the dispersion parameter, kl, is then proportional to the first derivative of the group

velocity calculated on ωl with respect to the frequency. If the spectral and temporal

amplitudes of the pulse are negligible in respect to the central value of the wavevector

and of the frequency, i.e. the spatial and temporal variation of the pulse is slow, and

if the variation of the dielectric constant as a function of the frequency is negligible,

we can rewrite the wave equation for the propagation in a dispersive medium as:

∂

∂ζ
Ẽ(η, ζ)− I

2
Kl

∂2

∂η2
Ẽ(η, ζ) = 0 (2.33)

where

η = t− z

vg

(2.34)

This equation is valid for a wave-packet propagating in the direction ζ = z in a

delayed reference system which travels at the group velocity. If the group velocity

variation in respect to the frequency is negligible, the pulse profile is obviously not

affected.

The solution for Equation 2.33 in the frequency domain is given by:

Ẽ(ω, z) = Ẽ(ω, 0) e
− i

2
kl ω

2z
(2.35)

This means that an initially transform limited pulse acquires, traveling trough a

dispersive media, a spectral phase which is a quadratic function of the frequency:

the result is a chirped pulse.

2.3.2 Group Velocity Mismatch

The modification of the pulse duration due to the chirp effect can be minimized by

a suitable choice of the optical components and avoiding the crossing of dispersive
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2.3 Group Velocity

media. Anyway, the increase of the pulse duration and, therefore, of the instrumen-

tal function (due to GVD) is negligible in respect to the effect of the group velocity

mismatch (GVM ). The "zero timing" of the experiment, i.e. the zero on the exper-

imental temporal scale, is associated to the temporal coincidence of the pump and

probe pulses and to the fact that they travel trough the sample with the same phase

velocity. In practice the beams travel trough a finite thickness of dispersive mate-

rials (the sample and the cell’s window) and then the above mentioned condition

is verified for the whole optical path (defined by the length of the spatial overlap

between the pump and the probe beam within the sample) only when the probe

wavelength equals that of the pump wavelength. For probe wavelengths different

from that of the pump, the temporal coincidence condition is verified only for one

point of the optical path; in fact the refractive index causes a different delays at dif-

ferent wavelengths and then the pulses propagate with different velocity. The effect

of the group velocity mismatch (GVM ), in the time domain, is an enlargement of

the instrumental function which is proportional to the difference between the pump

and probe wavelength. The GVM effect can be analytically evaluated writing the

relative delay between the pump and the spectral component of the probe beam as:

∆τ(λ) =
x

c
∆n(λ) (2.36)

where x is the position within the sample and ∆n(λ) is the difference between the

refraction indexes experienced by the two beams.

The cross-correlation integral can be calculated by assuming a gaussian profile

for the pump and probe beams, then we obtain

g(τ) =
c

a∆n(λ)

{
erf

[
a

(
τ +

l

c
∆n(λ)

)]
− erf(a τ)

}
(2.37)

where erf indicates the error function. The a constant is given by

a = 2

√
ln2

∆τ 2
pump + ∆τ 2

probe

(2.38)
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2. Experimental part

where ∆τ indicates the FWHM of the pulse. The temporal resolution of the exper-

iment is limited not only by the duration of the pump and probe pulses, but also

by the difference between their wavelength.

2.4 Instrumental Function and Group velocity Char-

acterization

In this section we’ll describe the procedure for the characterization of the spectral

and temporal properties of the white pulses in conditions which are set as close as

possible to those utilized in TAS experiment. A possible method is that of measuring

TAS on a fast responding sample, possibly with broad transient absorption band

in order to cover the spectral range of interest. However, a better suited method

consists in making use of Optically Heterodyne Detected Optically Kerr Effect (OHD-

OKE) or, to a lesser extent, of a Stimulated Raman Gain (SRG) experiment. These

technique have the same content of information regarding the instrumental function

g(t) of Equation 2.12.

2.4.1 Optical Kerr Effect OHD-OKE

OKE is generally a non-resonant process, therefore one has the possibility to obtain

information about dispersion, position of zero delay and cross-correlation time with-

out the need of changing the excitation wavelength that is going to be utilized in the

TAS experiment. In a transient OKE experiment an intense linearly polarized pulse

(pump) induces a birefringence in an isotropic sample. A second pulse, linearly po-

larized at 45◦ in respect to the pump, probes at a delay τ the transient birefringence.

The response function of the Kerr medium is due to the third order susceptibility

χ(3). Two major contributions to χ(3) can be identified: an instantaneous contri-

bution due to the third order electronic hyperpolarizability and a retarded one due

to nuclear motions. By choosing a medium whose nuclear response is negligible or
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2.4 Instrumental Function and Group velocity Characterization

absent the cross-correlation function between pump and probe can be measured.

From the experimental point of view, one polarizer (analyzer), crossed with re-

spect to the probe polarization and placed immediately after the sample, is needed

to measure the transient anisotropy induced by the pump pulse. The modifications

applied to the transient absorption set-up are, then, limited to inserting a thin polar-

izer after the sample and to rotate the pump polarization to 45◦ with respect to the

probe polarization direction, simply adjusting the universal rotator(specification).

The sheet polarizer, having an extinction ratio worse than 1 : 103, is not as efficient

as the calcite polarizers usually utilized in a typical OKE experiment (extinction

ratio 1 : 106). A residual signal is hence detected through the crossed analyzer also

in the absence of the pump pulse. This fields plays the role of local field that, by

beating with the Kerr field on the detector, gives rise to the heterodyne detection

of the signal.

The Kerr polarization is given by

P (t− τ)KERR = E(t− τ)probe

∫ ∞

−∞
χ(t′)(3) I(t− t′)pump dt′ (2.39)

Provided that the χ(t)(3) response is instantaneous in comparison to the pulse du-

ration (the nuclear contribution is negligible) the signal is directly proportional to

the cross-correlation of the two pulses

S(τ)OHD−OKE ∝
∫ ∞

−∞
P (t− τ)KERR · E(t− τ)loc dt

=

∫ ∞

−∞
I(t− τ)probeI(t)pump dt (2.40)

where Eloc is proportional to Eprobe as both derive from the same pulse.

The light seen by the detector is the result of three contributions

I(τ) = I(τ)KERR ± S(τ)OHD−OKE + Iprobe (2.41)

where the first two contributions in the r.h.s term depend respectively quadratically

and linearly on the pump intensity. The sign and the weight of the second term
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2. Experimental part

depend on the rotation angle, both in size and direction (clockwise or counterclock-

wise), of the preparing polarizer. In the present case the experiment is performed

with a high and uncontrollable local field. In a typical OHD-OKE experiment the

intensity of local field is about 10−5 − 10−4 times lower than the probe, that’s to

say at least an order of magnitude weaker than that of the present case. This means

that in the experimental conditions described in section 2.1 there is no possibility to

controlling the phase of the local field in respect to that of the OKE field: a small

rotation of few degrees of the preparing polarizer is not enough to change the sign

of the phase of the local field.

It has been experimentally verified that in liquids with small Kerr response and

at low intensities of the pump pulses (≤ 2µJ), the first contribution to the r.h.s.

term of Equation 2.41 is negligible. In this conditions, introducing Equation 2.41

into Equation 2.2: it is possible to obtain the form of the Kerr signal transmitted

through the analyzer:

T (τ)KERR ≈ 1± S(τ)OHD−OKE

Iprobe

(2.42)

Therefore at any delay the intensity is proportional to the cross-correlation between

pump and probe.

2.4.2 Stimulated Raman Gain SRG

In a Transient Stimulated Raman Gain (SRG) experiment pump and probe pulses

interact via χ(3) resonant at the frequency of a Raman active mode.

If ωpump is the central frequency of the pump pule, components of the continuum

will be amplified or absorbed (inverse Raman effect) at frequencies equal to (ωpump−
Ω) and (ωpump +Ω), respectively, Ω being the frequency of a Raman active mode. In

the cases of diluted solutions the signal derives only from the solvent. Strong signals

mainly due to C-H stretching modes (for example cyclohexane around 3000 cm−1)

and to vibrational modes like C-N stretching ∼ 1500 cm−1 (as acetonitrile) are easily

observed (Figure 2.1). As in the case of OHD-OKE , by plotting the intensity of SRG
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Figure 2.1: Stimulated Raman Scattering Band in water and acetonitrile

signal versus delay τ the cross-correlation between pump and probe is obtained (the

same result is achieved if the area under the SRG band is considered). This second

arrangement has the limitation that the instrumental function can be measured in a

narrow spectral range in which the raman bands show-up (typically 1500-3000 cm−1

from ωpump), i.e quite close to the excitation wavelength.
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2. Experimental part

2.4.3 Characterization of the Continuum

The OHD-OKE experiment described in section 2.4.1, in which the broadband con-

tinuum acts as the probe, is utilized to measure the cross-correlation function of the

apparatus at various probe wavelengths and to characterize the temporal dispersion

of the probe pulse over its very broad spectral width. In fact, if the spectral compo-

nents of the continuum are all coincident in time (no chirp), the Kerr or SRG signal

will appear at the same time delay, whatever the probe wavelength selected. On the

contrary, if a positive chirp is present, the transient signal will show up at increas-

ingly delay with increasing probe wavelength. This effect produces an artificial time

evolution of the transient spectra as shown in Figure 2.2.
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Figure 2.2: Evolution of transient absorption band of 2metO-1HAQ in acetonitrile

following 400 nm excitation.

The measurement of the peak to peak temporal offset within the spectral width

of the probe defines the temporal dispersion of the white pulse. The plot in Figure

2.3 a plot show a typical dispersion curve obtained with the method described in

section 2.4.1. It is worth to notice that the extent of the dispersion itself might

undergo day by day fluctuations of the order of 15% due to specific conditions (as,
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Figure 2.3: Group velocity dispersion of the white light continuum pulse, mea-

sured by OKE (circles), of an acetonitrile solution of 2metO-1HAQ; λpump = 400

nm . The red curve has been obtained by polynomial fitting procedure.

for example, the focal position inside the fluorite plate of the white light generator)

which happen to be the aftermath of the continuum stabilization procedure.
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Chapter 3

7-Hydroxycoumarin

3.1 Introduction

7-Hydroxycoumarin or Umbelliferone is one of the most investigated coumarin and

its schematic structure is shown in Fig.3.1. Just to introduce this compound and to

O
O

OH

Figure 3.1: Umbelliferone structure

give a general overview of its applications we can directly cite the description given

by the famous free on-line encyclopedia Wikipedia:

"Umbelliferone or 7-hydroxycoumarin is a widespread natural product of the

coumarin family. It occurs in many familiar plants from the Apiaceae (Umbellif-

erae) family such as carrot, coriander and garden angelica, as well plants from other

families such as the mouse-ear hawkweed. It is a yellowish-white crystalline solid

which has a slight solubility in hot water, but high solubility in ethanol. Despite

several indications that this chemical is photomutagenic it is used in sunscreens.

25



3. 7-Hydroxycoumarin

Umbelliferone absorbs strongly at 300, 305 and 325 nm, with logε values of 3.9,

3.95 and 4.15 respectively, and it fluoresces blue in both ultraviolet and visible light.

The powerful absorption at three different wavelengths, coupled with the fact that

the energy is dissipated safely as visible light, make umbelliferone a useful sunscreen

agent. The ultraviolet activity of umbelliferone lead to its use as a sunscreen agent,

and an optical brightener for textiles. It has also been used as a gain medium for dye

lasers. Umbelliferone can be used as a fluorescence indicator for metal ions such as

copper and calcium. It acts as a pH indicator in the range 6.5-8.9." 8–10

This is nothing more than a nice introduction, but it’s useful to understand that

Umbelliferone is widely employed by industries and it is an easy-available product.

3.2 Proton Dissociation Equilibria

Derivatives of hydroxycoumarin are known to be characterized by large frequency

shift of emission and absorption bands in dependence of the solution’s pH. Particular

attention has been devoted to the characterization of 7-Hydroxy-4-methylcoumarin

(7H4MC) and 7-Hydroxycoumarin (7HC) in the ground singlet S0 and first singlet

S1 excited states. Several authors investigated the behavior of this compounds in dif-

ferent solvents and pH conditions by means of static11–33 and time resolved27,28,34,35

spectroscopic techniques.

Fink et al.16 found that the Umbelliferone’s absorption spectrum in acid solution

(pH<6) has a maximum of absorbance at ∼ 325nm; but at higher pH (pH>8)

the band maximum shifts to 370nm. At the same time, the emission spectrum

is characterized by a blue fluorescence in the pH range 2.2 ≤ pH ≤ 11.2, with

maximum around 460nm. When the pH is lowered till 1.2, a red shift is observed

and the band’s maximum moves around 480nm.

A large number of papers have been published on the spectroscopic properties

of 7H4MC, and strong analogies have been found between 7H4MC and 7HC. This

allowed us to follow the results obtained for 7H4MC to rationalize the absorption
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3.2 Proton Dissociation Equilibria

and emission spectra of 7HC.30

In the next section we present a detailed analysis of the changes of absorption

and emission spectra in dependance to the solution’s pH for 7H4MC.

3.2.1 Absorption Spectra

Hoshiyama et al.30 measured the ground state absorption of 7H4MC in MeOH-

water mixture, because solvents with excellent hydrogen-bonding affinities are able

to support dissociation equilibria. The results can be extended also to water, but in

different pH conditions.27

Titration curve of 7H4MC (inset of Fig.3.2) shows that in alkaline solutions

(pH=11) the absorption maximum shifts from 320nm to 360nm.

Figure 3.2: pH dependence of the UV absorption spectrum of 7H4MC (5.0×10−5

mol dm−3) in 2% vol. MeOH H2O containing KCl (0.1 mol dm−3) at 24 ±1 C◦.

pH: (a) 5.0; (b) 9.0; (c) 9.5; (d) 10.5.
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3. 7-Hydroxycoumarin

This shift is related to the presence of anionic species in the ground state and

Hoshyama et all.30 show that the anionic form undergoes to the following tautomeric

equilibrium:

O
O

OH

OH-

H+

O
O

-O
O

O-O

Figure 3.3: Ground state tautomeric equilibrium in alkaline solutions.

The ground state species is the neutral form from pH=1 to pH=4.5, while in

strong acid media the protonated species prevail.

O
OH

HO

Figure 3.4: Protonated form of 7H4MC.

The distribution, as a function of pH, of the absorbing species can be summarized

as follow:

• pH>10.0⇒ Tautomeric equilibrium between anionic forms; absorbance max-

imum at 360nm.

• 5.0<pH<10 ⇒ Equilibrium between the neutral and anionic form.

• 1.0<pH<5 ⇒ Neutral form with absorbance maximum at 322nm.

• pH<1 ⇒ Cationic Form with absorbance maximum at 345nm.17
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3.2 Proton Dissociation Equilibria

3.2.2 Emission Spectra

We can rationalize the behavior in the S1 excited state of 7H4MC with the help of

the spectrofluorimetric titration curve obtained by Hoshyama et all.30 (Figure 3.5)

and taking into account the results of Yakatan et al..17

Figure 3.5: pH dependence of the fluorescence spectrum of 7H4MC (5.0×10−5

mol dm−3) in 2% vol. MeOH H2O containing KCl (0.1 mol dm−3) at 24± 1 C◦.

Excitation wavelength (λexc): 333 nm. pH: (a) 1.0 (0.1 mol dm−3 HCL); (b) 2.0;

(c) 3.0; (d) 10.5. Inset: spectrofluorimetric titration curve for 7H4MC.

We divided the whole pH range in four intervals to better define the spectral

features of a particular species.

1. Strong alkaline solutions (pH>10)

For [H+] lower than 10−10 the fluorescence maximum is around 450 nm and

both ground and excited state species are in the anion form: the tautomeric
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3. 7-Hydroxycoumarin

pair. In this range of pH the absorption and emission spectra are well described

by the potential well scheme of Fig.3.6.

Abs. max 360 nm 

   Emission max 450 nm 

A

A
*

Figure 3.6: Potential well scheme of 7H4MC in strong alkaline solutions.

2. Alkaline solutions 6<pH<10

When the pH is gradually lowered, a different behavior of the absorption and

emission spectra is observed.

Until pH= 3 the fluorescence spectrum shows a band centered at 450 nm,

meaning that the emitting species is the anionic tautomer pair.

On the contrary, the ground state species is not well defined. The titration

absorption curve (Fig.3.2) shows that the anion tautomer pair is the main

ground state species only at pH>10. Then, in this pH range the ground S0
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3.2 Proton Dissociation Equilibria

state is characterized by the equilibrium between the anionic pair and the neu-

tral form. The absorbing and emitting species are schematically represented

in Fig.3.7.

O
O

OH

OH-

H+

O
O

-O
O

O-O

A

Emission max. at 

450 nm

Emission max.  

at 450 nm

A

A
*

N
*

N

A
*Abs max. 

360 nm

Abs. max

322 nm 

Figure 3.7: Ground and excited state species of 7H4MC in alkaline solutions.

3. Acid solutions 1<pH<6

Neutral form is the main absorbing species in this pH region, as confirmed

by the comparison between the absorption maximum in Methanol-Water mix-

tures30 (322 nm) and the absorption in polar non-protic33 solvent (320 nm),

and the fluorescence spectrum is characterized by three bands (Fig.3.5).
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3. 7-Hydroxycoumarin

(a) 480 band is attributed to the protonated C∗ species because this band dis-

appears increasing the pH and because the basicity of the ester carbonyl

group increases in the singlet excited state of 7HC.

(b) 450 nm band is related,as stated before, to the tautomer anion form.

(c) 380 nm band (very low intensity in this 2% MeOH - Water mixture) is

related to the emitting excited neutral form N∗. The assignment of this

band is made by comparison of fluorescent measurements in pure polar

non-protic or low-protic solvents: 384 nm (pure ethanol or chloroform).36

The various spectral features can be schematically correlated as shown in Fig-

ure 3.8.

N
*

N

Emission band

at 380 nm

Emission band

at 450 nm

A

A
*

Abs = 322 nm

N
*
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N

N
*

C
*

C

O
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HO

OH-
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O -OO-O
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HO

OH-

H+

Figure 3.8: Ground and excited state species of 7H4MC in acid solutions.

4. Strong acid solution -10<H0-pH<1
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This pH range, for both absorption and fluorescence spectra, is dominated

by the protonated form of 7H4MC. This is the result that Yakatan et al.17

reported in their work. The maximum of absorption band is at 345 nm, while

the fluorescence emission is centered around 412 nm. Hence, the spectra are

consistent with the model depicted in Fig.3.9.

Emission band at 412 nm

C

C
*

Abs = 345 nm

Figure 3.9: Ground and excited state species of 7H4MC in strong acid solutions.

3.3 Absorption and Emission spectra

Fluorescence and absorption spectra of Umbelliferone have been recorded in pure

acetonitrile. The absorption spectrum, shown in Figure 3.10, consists of an intense

band centered at 320 nm: ε ' 13000 l ∗ mol−1 and oscillator strength f= 0.3 ±
0.02. Acetonitrile is an aprotic solvent of low polarity, so that no tautomeric equi-

librium is observed in the S0 ground state. As discussed above, we can associate

the absorption spectrum to the Neutral form N . The fluorescence spectrum (λexc =
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Figure 3.10: Ground state absorption and fluorescence (λexc = 325 nm) spectra

of 7HC in acetonitrile.

325 nm) is characterized by a broad and not structured band centered at 380 nm

(Φ= 0.0035 ± 0.0005). This indicates that also the emitting species is in its neutral

form. We noticed some modification of the fluorescence spectrum during the various

measurement sessions. In particular, after one day of measurement, we observed an

enhancement of the fluorescence at 450 nm while the absorption spectrum is not af-

fected (Figure 3.11). As stated before, Hoshyama et al.30 found that Umbelliferone,

in ethanol-water mixture, undergoes proton dissociation equilibria; when the pH is

gradually increased (from pH=5 to pH=10), they observed an intensity enhance-

ment of the 450 nm band. Therefore, the observed modifications can tentatively

be associated to the formation of anionic form in the S1 excited state due to the

presence of a very small percentage of water molecules in the solvent. Then, all

measurements have been performed with particular care of avoiding air exposure of
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Figure 3.11: Modifications of Umbelliferone’s absorption and emission spectra:

(black) altered solution and (red) just prepared solution.

solid 7HC and acetonitrile.

3.4 Electronic structure characterization

In the previous chapter we emphasized that 7HC and 7H4MC have a peculiar be-

havior in aqueous and protic solvent for the ground and excited state spectroscopic

properties. This is the main reason for the characterization of electronic transitions

(Absorption and Fluorescence) and electronic structure by means of ab initio meth-

ods. Georgieva et al.37–39 performed a detailed analysis of the ground and excited

state properties of 7H4MC in the gas phase and in water, while Adamo et al.40,41

presented an investigation of the fluorescence and absorption spectra of 7HC and

7H4MC in the gas phase and in protic solvents (water, Methanol and Ethanol). On

the basis of these works we can state that DFT for the ground state and TD-DFT

for the excited state represent good theoretical approaches for coumarins, well re-

producing the experimental data at a low computational cost. The purpose of this

part of the work is to calculate the geometric parameters and the vertical transitions

in the solvent reaction field (acetonitrile) with the perspective of extending the ab

initio calculation to the bichromophore. Hence, particular attention has been payed

to compare the results obtained by different basis sets in order to choose the least ex-
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3. 7-Hydroxycoumarin

pensive, from the computational point of view, level of theory without compromising

the accuracy of the calculation.

3.4.1 Computational procedure

All calculation were performed with the GAUSSIAN03 program package.42 In all

cases the self-consistent field (SCF) convergence criteria have been tightened to,

at least, 10−9 a.u. and all geometry optimizations have been performed until the

residual mean force is smaller than 1.0 × 10−5 a.u. (tight threshold in Gaussian).

The calculations has been performed with the 6-31+G(d,p) and, further, to verify

the reliability of the obtained results, larger basis set, 6-311++G(2df,2pd) was used

to calculate geometry optimization and vertical transitions. Pople style basis set.

The non local three-parameter hybrid exchange B3LYP density functional,43,44 as

implemented in the Gaussian03 package, was employed. The frequencies associated

to the vertical ground-to-excited state transitions have been calculated by means of

the TD-DFT method with the above mentioned density functional and basis sets.

The bulk solvent effects are evaluated by means of the PCM (polarizable continuum

model) in its integral equation formalism form.45In continuum models, one divides

the model into a solute part, the dye, lying inside a cavity, surrounded by the

solvent part: acetonitrile in our study. The PCM-TD-DFT calculations have been

performed with the linear response method and the absorption maxima computed

in the presence of the solvent reaction field have been determined with the so called

non-equilibrium solutions.46

3.4.2 Ground state properties and geometry optimization

As emphasized in section 3.3, the absorbing and emitting species are the neutral form

of 7HC due to the low polar and aprotic character of the solvent (acetonitrile). This

allowed us to limit the calculation only to the neutral enol species. A detailed ab

initio DFT calculation concerning the properties of the various species that compose
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3.4 Electronic structure characterization

the ground state equilibrium, was performed by Georgieva et al 37 for the 7H4MC

chromophore.

The crystal structure of 7HC was determined by Ueno 47; a schematic "ball and

stick" representation, with atoms numbering, is given in Figure 3.12. Crystals of

7HC were obtained from an aqueous ethanol solution and the diffraction pattern

revealed the presence of some crystallization’s water molecules. Ueno 47 found that

the molecule was nearly planar, the H(18)−O(12)−C(6)−C(1) torsion angle being

177.3(7)◦, and that the various molecules were stacked along the a axes of the crys-

tal. 7HC molecules formed inter-molecular hydrogen-bonds O(12)−H(18)....O(11)

giving rise to a ribbon along the c axis and stabilizing the crystal packing.

Figure 3.12: "Ball and Stick" representation of α conformer (ϑ=0◦) of Umbellif-

erone.

Before going in a detailed analysis of the calculated geometric parameters, we

have to consider that the experimental data were obtained from crystals in which

each molecule is involved in inter-molecular hydrogen bonds. The hydrogen bonds

constrain the molecule in a fixed conformation: the one which allows the molecular

system to form a chain and to maintain the crystal’s symmetry. We performed a

conformational analysis on the rotation angle along the C(6)-O(12) bond in order

to get information about the conformational rigidity and to compare these results

with the experimental structure. The structure found by Ueno 47 was nearly planar,
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3. 7-Hydroxycoumarin

Table 3.1: Relative energy ( corrected with ZPVE Kcal*mol-1) between α and β

conformer.

B3LYP/6-31+G(d,p) B3LYP/6-311++G(2df,2pd)

Conformer gas phase solution gas phase solution

α 0 0 0 0

β 0.46 0.05 0.29 0.009

what led us to consider only two possible conformers: one with the torsion angle

ϑ ∼ 0◦ (showed in Figure 3.12) that we denoted as α, and the second one with

ϑ ∼ 180◦ that we denoted as β. We optimized the geometry of both the conformers

at the B3LYP/6-31+G(d,p) and B3LYP/6-311++G(2df,2pd) level of theory in gas

phase and in the solvent reaction field (acetonitrile). All the optimized structures

were minima of the hyper-potential well, as confirmed by the absence of imaginary

vibrational frequencies, all belonging to the Cs symmetry group. The experimental

and calculated geometric parameters are collected in Table 3.2 and 3.4. The average

deviations of the calculated bond length were in the range of 0.7% − 1.3%, while

the standard deviation for the calculated bond valence angles were in the range

0.45%− 1.7%.

We found the conformer α having the lowest energy in the gas phase and in the

presence of the solvent, and we obtained the same energy ordering with the two

employed basis set. The computed energy differences (corrected for the Zero Point

Vibrational Energy ZPVE) are listed in Table 3.1. Adopting a larger basis set not

only improved the calculated geometric parameters, as we can see from the standard

deviation’s values reported in Table 3.2 and Table 3.4, but also reduced the energy

difference between the two conformers.

The obtained results are in contrast with the experimental structure: in fact,

Ueno 47 found that the stable structure is characterized by the ϑ torsional angle ∼
180◦. Nevertheless, the calculated energy differences between the two conformations
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3.4 Electronic structure characterization

are very low and the geometry optimizations were performed in gas phase and in

acetonitrile, where hydrogen-bonding interactions are not present (gas phase) or not

explicitly considered (solvent reaction field simulated with PCM method).

In order to calculate the energy barrier for the rotation around ϑ we performed

a geometry optimization of the transition state structure followed by an intrinsic

reaction path (IRC) calculation. By definition a transition state is identified as a

-3 -2 -1 0 1 2 3

0

1

2

3

4

5

Reaction Coordinate ( Bohr amu
-1/2

 )

E ( Kcal mol
-1

 ) 

Figure 3.13: Intrinsic Reaction Path, along the reaction coordinate, in gas phase

(black bullet) and in the solvent reaction field red bullet

first order-saddle point on the potential energy surface: a maximum in the reac-

tion coordinate direction and a minimum along all the other coordinates. In the

normal coordinate system this is equivalent to say that the transition state (TS) is

characterized by the presence of one and only one negative eigenvalue of the dy-

namical matrix, which corresponds to an imaginary frequency. At the transition

state the eigenvector for the imaginary frequency is the reaction coordinate and the
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3. 7-Hydroxycoumarin

reaction path can be followed taking small steps along the TS eigenvector. The

calculation was performed in the gas phase and in the solvent reaction field with the

6 − 31 + G(d, p) basis set only. The path along the reaction coordinate connecting

the two conformers is shown in Figure 3.13, where the reported energies were not

corrected for the ZPVE. The inclusion of solvent effect, through the PCM method,

causes only a small increase of the energy barrier going from 4.64 Kal ∗mol−1 (gas

phase) to 4.81 Kal ∗mol−1 (solvent). Hence, due to the low energy barrier of the

α− β interconversion, both the conformers can be present in solution at room tem-

perature. Since the obtained results for the two conformers are virtually identical,

hereafter we decide to consider only the conformer α.

To select an efficient basis set, which reliably describes the geometrical param-

eters in the ground state, we considered a reduced list of bond lengths, and com-

pared our data with the results obtained by Georgieva et al.38 for 7H4MC and

by Adamo et al.41 for 7HC. In the gas phase, the calculated bond lengths with

B3LYP/6-31+G(d,p) set are characterized by similar percent standard deviation, in

respect to the experimental data, similarly to the results obtained by Adamo41 and

Georgieva37,38. Extending the basis set does not bring any a sensible improvement

of the calculated bond lengths and the percent standard deviation is comparable

with the B3LYP/6-31+G(d,p) method.

Better agreement in respect to the experimental data is obtained introducing the

solvent effect. The main consequences of the interaction between molecule and the

solvent reaction field are the elongation of the carbonyl double bond (C(8)-O(11))

and the shortening of single C-O bond (C(6)-O(12)) and O-H bond (O(12)-H(18)).

We conclude that the introduction of diffuse functions on the hydrogen atoms

and the triple-ζ description of the valence orbitals does not result in an improvement

of the geometric parameters; hence, from this perspective, the B3LYP/6-31+G(d,p)

level of theory seems to be a reasonable balance of accuracy/computational time.
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3. 7-Hydroxycoumarin

3.4.3 Calculation of Vertical Transitions

Vertical excitation energies have been calculated at the TD-B3LYP /6-31+G(d,p)

and /6-311++G(2df,2pd) level of theory both in the gas phase and in the solvent.

Values obtained for the first singlet transitions, along with the estimated oscillator

strength, are reported in table 3.5

Within the Kohn-Sham approach the character of the various transitions can

be estimated from the coefficients of the orbitals involved in the electron excitation

process. Under this assumption, we obtain that the first vertical transition is (ππ∗)

in character, being essentially due to the promotion of one electron from the HOMO

to the LUMO orbital. The extension of the basis set, brings to a systematic increase

of the excitation energy, especially for the first (nπ∗) transition (∼ 0.04 eV).

The solvent effect has been estimated on the basis of the PCM model. In general,

a bathochromic solvent shift is calculated for the (ππ∗) excitation energies and an

hypsochromic shift is found for the (nπ∗) transitions. The gas phase 1(ππ∗) exci-

tation energies (4.11 eV and 4.13 eV) are higher than the experimental one (3.82

eV) by 0.29 eV and 0.31 eV. The calculated PCM solvent shift decreases the 1(ππ∗)

excitation energies and brings them into better agreement with the experiment.

We conclude that for the calculation of the ground state parameters and for the

vertical excitation energies, there are not sensible improvements by extending the

basis set. On the contrary, the inclusion of solvent effect is of great relevance to

obtain a better description of the molecular system.

3.5 Transient Absorption Spectra

Transient spectra of Umbelliferone have been recorded following the excitation at

325 nm. The excitation wavelength has been obtained by (fourth harmonic gen-

eration) FHG of the output of a BBO-based OPA (section 2.1). The spectra are

characterized by an excited state absorption (ESA) band centered at 355 nm and

a stimulated emission (SE) band at 405 nm (Figure 3.14(a)). There is also evi-
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3. 7-Hydroxycoumarin

dence of an absorption band on the low frequency side of the SE band. We have

two sets of Umbelliferone’s transient spectra, recorded with two different detector

systems. The spectra shown in Figure 3.14(a) have been recorded with an UV-

enhanced CCD 1100 × 330 pixels (Princeton-Instrument), while the spectra shown

in Figure 3.14(b) were obtained with a home-made acquisition system based on two

silicon arrays (256 channels each) as photosensible surface (section 2.1). The shape

of the long wavelength spectral feature is better appreciated in the transient spectra

recorded with the second detector. This band is broad compared to the blue ESA

(350 nm) and it is probably peaked at low frequency. The temporal behavior in

the first picosecond is shown in Figure 3.14(a) and Figure 3.14(b). The spectra in

the figures are not corrected for the group velocity dispersion of the probe beam.

Once corrected for the dispersion, we observe that the three bands grow-up with the

same rise time: they appear simultaneously. This means that they are associated

to transitions from the same excited state. In Figure 3.14(a) the band associated

to the solvent’s stimulated raman gain (SRG) is evident (peaked around 370 nm);

the SRG is a parametric and coherent effect that is observed only when the pump

and probe pulses are temporally coincident and it is one of the commonly employed

internal standard for determining the instrumental function (cross-correlation func-

tion between pump and probe pulses) in transient absorption experiments. The ESA

and SE bands grow-up in the same temporal interval of the SRG signal’s evolution,

meaning that for our instrumental resolution they are instantaneous. The observed

bands are then associated to transitions from the state directly populated by the ex-

citation pulse. The qualitative analysis of the transient spectra lead us to conclude

that the photoexcitation of the Umbelliferone with λexc = 325nm involves the direct

transfer of electron population from the ground state (S0) towards the first singlet

excited state (S1). The S1 state is characterized by two ESA bands (centered at

355nm and 600nm), associated to transitions towards higher energy excited states,

and the SE band (centered at 405nm).

The temporal evolution of the main spectral features has been inspected by
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350 400 450 500 550
-0.04

-0.02

0.00

0.02 SRG SE

-
A
bs

Wavelength (nm)

ESA

(a) Early evolution (delay in ps): -0.4 (black); 0 (red);

0.2 (green); 0.3 (blue); 0.4 (cyan); 0.6 (magenta);

0.8 (yellow); 0.9 (D.yellow).

400 450 500 550 600
-0.06

-0.04

-0.02

0.00

0.02

-
bs

Wavelength (nm)

(b) Early evolution (delay in ps): -0.5 (black); 0 (red);

0.3 (green); 0.5 (blue); 0.6 (cyan); 0.8 (magenta);

0.9 (yellow); 1 (D.yellow).

350 400 450 500 550
-0.04

-0.02

0.00

0.02

-
A
bs

Wavelength (nm)

(c) Long time evolution (delay in ps): 0.9 (black); 2

(red); 5 (green); 10 (blue); 20 (cyan); 50 (magenta);

200 (yellow); 500 (D.yellow).

Figure 3.14: Transient absorption spectra, following 325 nm excitation with ∼ 0.8

µJ/pulse, of a solution of Umbelliferone (solvent=CH3CN) with Abs325nm '=0.95.

means of single wavelength measurements (section 2.1.2). We choose four different

wavelengths: 405, 450, 500 and 550 nm and the acquisition was performed in the

same experimental conditions as the transient spectra. We were not able of recording

the temporal evolution of the ESA band on the blue side of the SE band because

the interference filter, employed to select the probe wavelength, has spectral range

limitation (at high frequencies) at about 370 nm. All the kinetics have been recorded

during the same measurement session without changing the spatial overlap between
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3. 7-Hydroxycoumarin
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Figure 3.15: Single wavelength measurements following 325 nm excitation

with ∼ 0.8 µJ/pulse, of a solution of Umbelliferone (solvent=CH3CN) with

Abs325nm '=0.95.

the pump and probe beams. The measurement was repeated on different days and on

different samples in order to guarantee the reproducibility of data. The maximum

intensity I(t) of each kinetic trace was normalized to the value of −∆Abs(t) at

the same wavelength. This quantity was obtained from the transient absorption

experiment; the various traces are shown, along with their fitting curves, in Figure

3.15. The transient signal in the time domain was analyzed with the help of a home

developed global fitting program. As described in section 2.2, the time domain signal

can be reproduced, within the linear response approximation, by the convolution

of the instrumental function with the suited molecular response function (Equation
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3.5 Transient Absorption Spectra

2.14). The instrumental function (cross-correlation between pump and probe pulses)

was measured as described in section 2.4.2; the fitting procedure yields a gaussian

shape function with 300 fs FWHM . The model assumed for the molecular response

in the global fitting program, is shown in equation (3.1). The λ subscript means

that a different response function for each probed wavelength is considered: all the

Rλ(t) have the same time constants but they are characterized by different pre-

exponential factors and by different values for the konst parameter. The strategy

of global fitting methods is, indeed, the simultaneous simulation of multiple decay

traces, usually spread on the spectral range of interest, with the same kinetic model.

Rλ(t) =
3∑

i=1

Aλi exp−t/τi + konst (3.1)

Therefore the temporal evolution of all the main spectral features can be simul-

taneously simulated. This method improves the accuracy for the estimate of the

various decay constants because the number of equations available is substantially

larger than the number of time constants to be determined.

In order to properly apply the fitting procedure we have to correct the tempo-

ral shift between the various kinetics, introduced by the group velocity dispersion.

Each single wavelength measurement is, by definition, not affected by the GVD

artefact. Nevertheless, when multiple traces at different wavelengths are considered,

a temporal shift between them is present.

In single wavelength experiments, the "zero time" is obtained by an initial mea-

surement session of transient spectra in which the delay associated to the maximum

of the SRG is identified. Thus we obtain the absolute delay value at which we have

temporal coincidence between the pump and the portion of the probe pulse whose

wavelength corresponds to the maximum of the SRG. Any portion of the probe pulse

peaked at higher wavelengths, will overlap the pump pulse at longer delay. Once

the "zero" has been found, the position is kept fixed for the whole single wavelength

experiment. Hence the temporal shift between the various kinetics is given by the

GVD curve, which has been obtained by means of an optical kerr effect experiment
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3. 7-Hydroxycoumarin

(section 2.4.1).

Table 3.6: Fitting results of single wavelength measurements.

λprobe (nm) A2 ∗10−3 τ2 (ps) A3 ∗10−3 τ3 (ps) konst ∗10−3

405
1.3 ± 0.3

3 ± 0.5

26.4 ± 0.4

27 ± 3

-1.1 ± 0.1

(4.5%) (91.7%) (3.8%)

450
1.9 ± 0.3 14.9 ± 0.4 -1.8 ± 0.1

(10.3%) (80.1%) (9.7%)

500
1.8 ± 0.2 2.7 ± 0.3 -1.5 ± 0.1

(29.6%) (45.3%) (25.1%)

550
− -0.81 ± 0.2 -0.7 ± 0.1

(53.6%) (46.4%)

The kinetics traces, corrected for the GVD, was then fitted with the global fit-

ting method; the results are shown in Table 3.6. In the table only the parameters

related to the second and the third exponential function and the value for the konst

parameter are reported. The first exponential function is indeed associated to the

temporal evolution that takes place during the first few hundreds femtoseconds: the

delays till ∼ 1 ps are affected by the cross-phase modulation (XPM) artefact.48–50

So we did not take into account the transient signal’s evolution in this temporal

interval for the discussion about the relaxation of excited state population.

3.6 Conclusions

From qualitative analysis of the transient spectra we conclude that the S1 excited

state is directly populated by the excitation pulse. The fluorescence emission shows

that a radiative channel, associated to the deactivation of this excited state, is

present. The time evolution of the SE band is therefore directly related to the de-

population of the S1 excited state. With the help of the global fitting analysis we

50
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found that both the SE band and the lower energy ESA band have the same tem-

poral evolution and that the kinetic traces are characterized by two main temporal

components:

• The faster temporal component (τ2 = 3ps) is associated with vibrational re-

laxation in the S1 potential energy surface.

• The second temporal component (τ3 = 27ps) is directly related to the depop-

ulation of the S1 excited state.

So the S1 is completely depopulated 200 ps after the excitation, but, as shown

in figure 3.15, the transient signal does not go to zero (baseline) on the time scale

experimentally accessible (maximum delay ∼ 1.8ns). All the kinetics are indeed

characterized, for delays greater than 200 ps, by a constant transient absorption

signal (negative values of −∆Abs). We were not able to appreciate the evolution of

this transient absorption: its intensity is constant in the whole inspected temporal

window. For this reason we introduced a constant in the molecular response function

to account for this contribution.

This behavior can be explained by the presence of a lower energy excited state

which is populated during the decay of the S1 excited state. This means that two

channels for the S1 depopulation are present: a radiative channel, given by the

fluorescence emission, and a non-radiative channel. Static and time resolved stud-

ies26,34,35 were carried-out to characterize the behavior of 7H4MC and 7-methoxy-

4-methylcoumarin (7Met4MC) on long time scales (microseconds up-to seconds).

All the authors agree that both chromophores are characterized by an excited triplet

T1 state which is populated after the decay of the population from the S1 excited

state.

In particular, De Melo et al.35 performed transient absorption experiment on

the microseconds time scale of dioxane solutions of 7H4MC and 7Met4MC. They

obtained transient spectra characterized by a broad absorption band which covers

the spectral region between 350 525 nm. In Figure 3.16 we show the comparison
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Figure 3.16: (Full) Transient spectra of 7HC (solvent=CH3CN) recorded 500 ps

after 325 nm excitation with ∼ 0.8 µJ/pulse. (Inset) Transient spectra of 7H4MC

in dioxane (−N−) collected 8 µs and (− M −) 1.5 µs after pump excitation.35

between the transient spectrum recorded for 7HC in acetonitrile solution 500 ps after

the pump pulse, and the transient spectra recorded by de Melo et al.35 on 7H4MC

in dioxane solution 1.5 and 8 µs after excitation. The intensity and the shape of

the spectra are quite similar but the 7HC transient spectra is slightly red shifted.

7HC and 7H4MC belong to the Umbelliferones’s family and they are known to be

characterized by similar behavior in the ground and exited singlet states.31 This led

us to conclude that the S1 excited state of 7HC is rapidly (τ3 = 27ps) depopulated

by fluorescence emission (radiative transition) and by inter-system crossing ISC

towards the first triplet excited state T1. The evolution of the S1 excited state is

schematically depicted in Figure 3.17, where the vibrational relaxation in the S1

potential surface is shown.

Now we can calculate the fluorescence lifetime: we know the S1 lifetime and the

fluorescence quantum yield. We know also that the relaxation pathway involves the
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Figure 3.17: Jablonski diagram of 7HC after 325nm pump excitation.

radiative decay (fluorescence emission), the internal conversion (IC ) towards S0 and

the inter-system crossing (ISC ) towards the T1 excited state. We can write then the

following equation:

Φf =
Kf

Kf + KIC + KISC

(3.2)

where Φf is the fluorescence quantum yield, Kf is the rate constant for the spon-

taneous emission and Kf + KIC + KISC is the global rate constant for the decay of

the emitting S1 state. We can rewrite equation 3.2 as

Φf = τS1 ∗Kf (3.3)

where τS1 is defined as

τS1 =
1

Kf + KIC + KISC

(3.4)

and is expressed in sec. From equation 3.3 we obtain the following values for Kf

Kf =
Φf

τS1

=
0.0035± 0.0005

(27± 3)× 10−12
= (1.3± 0.3)× 108 sec−1 (3.5)

and the fluorescence lifetime given by

τ 0
f =

1

Kf

= 8± 1 ns (3.6)
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3. 7-Hydroxycoumarin

Once obtained the value of Kf , we can calculate the rate constant associated to the

non radiative relaxation channels Knr = KIC + KISC . It is given by

Knr = KIC + KISC = Kf
1− Φf

Φf

= (3.7± 0.8)× 1010 sec−1 (3.7)
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Chapter 4

1-Hydroxy-2-Methoxy-9,10-

Anthraquinone

In this chapter we will focus our attention on the Acceptor unit of the bichro-

mophore compound. The isolated acceptor is virtually an alizarin or 1,2-Dihydroxy-

Anthraquinone molecule. However, when the acceptor molecule is inserted in the

bichromophore unit, it is linked to the molecular bridge by 2-hydroxyl group. Hence,

to reproduce the molecular structure that the acceptor has in the bichromophore

molecule a modified alizarin molecule has been synthesized, substituting the 2-

hydroxyl group with the 2-methoxy group.

4.1 Introduction

Anthraquinone and its derivatives are well known chromophores and are employed

in many fields due to their optical properties.

Dihydroxyanthraquinones have important applications as a prominent family

of pharmaceutically active and biologically relevant chromophores: they are the

chromophores of anthracyclines, which are widely used as antibiotics and antitu-

mor drugs.51–54 In particular 1,2-Dyhydroxyanthraquinone (Alizarin-AZ) is the core

moiety of adriamycin, an important anti-tumor drug.55
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Figure 4.1: HydroxyAnthraquinone’s derivatives

Recently the interests for this class of organic dyes moved also towards other

applications: dyes for liquid-crystal displays and sensitizer for titanium dioxide.

Huber et al.56 recorded transient absorption spectra of the Alizarin chromophore

directly attached to the surface of titanium-doixide (TiO2) nanoparticles; the goal

of this study was the characterization of the Alizarin system as sensitizer for wide

band gap semiconductors. Duncan et al.57,58 performed theoretical analysis of the

electron injection process from the Alizarin chromophore to the TiO2 surface; they

investigated the coupling by ab initio electronic structure calculations and by ab

initio molecular dynamics simulations.

The context in which we studied and characterized the photophysical proper-

ties of the 1-Hydroxy-2-Methoxy-9,10-Anthraquinone derivative is its use in the

antenna-like system that we are investigating. We need a full characterization of

the photophysical properties of the isolated acceptor molecule if we want to fully

understand the efficiency and the temporal evolution of the energy transfer process

in the donor-acceptor compound.
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Figure 4.2: Proton transfer reaction for 1-Hydroxyanthraquinone

4.2 Absorption and Emission Spectra

Steady state properties of Hydroxyanthraquinone (HAQ) derivatives has been in-

vestigated by several authors with different spectroscopic techniques. One of the

most important properties associated to the HAQ is its ability to give rise to in-

tramolecular proton transfer in the excited state. The tautomeric reaction takes

place in the S1 electronic state and only the 9,10 -CO and 1,4,5,8 -OH functional

groups are involved in the process (Fig.4.2). The excited state intramolecular proton

transfer (ESIPT) reaction induces a large change of the electronic configuration of

the molecule resulting in dual (normal and tautomeric) emission that, since Weller’s

studies on methyl salicylate,59,60 has been used as a marker to identify the ES-

IPT process. Owing to the ESIPT in the excited singlet-state, an enol-tautomer is

converted to a keto-one (Fig.4.2), and consequently a largely Stokes-shifted fluores-

cence is observed. The dual emission of some HAQ derivatives in Shpolskii matrix,

supersonic jet and solution has been reported by several authors61–75 and it has

been interpreted on the basis of an ESIPT process. A dual emission was observed

for 1,5-dihydroxyanthraquinone (1,5-DHAQ)67,70 and 1,8-dihydroxyanthraquinone

(1,8DHAQ Chrysazin )66,71 but not for 1,4-dihydroxyanthraquinone (1,4-DHAQ);61,69

this is probably due to the greater stability of the six-membered ring formed by

the two intramolecular hydrogen bonds respect to the proton-transferred configu-
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4. 1-Hydroxy-2-Methoxy-9,10-Anthraquinone

ration. The dual emission has been observed also for 1-Hydroxyanthraquinone and

the presence of ESIPT reaction is confirmed by steady state68,70 and time resolved

measurements.76,77

The photophysics and photochemistry of anthraquinone and of its derivatives

show interesting features that vary with the substituent group. First, the lowest

electronically excited state of the unsubstituted anthraquinone lies in the near UV

region (∼ 400 nm) and is of nπ∗ character, with a ππ∗ state lying above it. When a

substituent group is inserted such as -OH or -NH2 that donate electrons to the aro-

matic π system, the energy ordering of these states is reversed so that the ππ∗ state

becomes the lowest excited state and the absorption edge moves to the visible region.

This red shift of the ππ∗ transition is commonly attributed to the electron transfer

from the electron donating substituent to the π ring, which leaves the n− π∗ tran-

sition virtually unaffected. The optical absorption of substituted anthraquinones

progressively shifts to the red as the electron donating capability of the substituent

increases. Second, when an -OH group is substituted at a position that allows the

formation of an intramolecular hydrogen bond, the excited-state lifetime is consid-

erably reduced. The normalized absorption and fluorescence spectra are shown in
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Figure 4.3: Absorption (black) and Emission (red) spectra (λexc=400 nm) of

2-metO-1HAQ in acetonitrile.
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figure 4.3. The absorption maximum is located at 420 nm with ε = 5950 l ∗mol−1

and oscillator strength f=0.113 ± 0.003. The fluorescence emission, following 420

nm excitation, is centered at 620 nm and is characterized by a quantum yield Φ=

0.02 ± 0.003.

4.3 Electronic Structure Characterization

The characterization of ultrafast intramolecular proton transfer reactions by means

of ab initio calculations allows understanding and to rationalizing the mechanisms of

the ultrafast process. Several authors investigated this phenomenon either combin-

ing ultrafast transient absorption measurements and ab initio calculations,78,79 with

a theoretical approach only80–87. It is well known that the proton transfer reaction

takes place on a sub-100 fs time scale for hydroxyanthraquinones derivatives;88,89

the characterization of the excited states potential well is of primary importance to

understand this ultrafast process.

4.3.1 Computational Procedure

All calculations were performed with the GAUSSIAN03 program package.42 In all

cases the self-consistent field (SCF) convergence criteria were tightened to, at least,

10−9 a.u. and all geometry optimizations were performed until the residual mean

force was smaller than 1.0× 10−5 a.u. (tight threshold in Gaussian). Generally the

calculations were performed with the 6-31+G(d,p) basis set; in order to verify the

reliability of the obtained results, a larger basis set, 6-311++G(2df,2pd), was used

for geometry optimization and to calculate the vertical transitions. The non local

three-parameter hybrid exchange B3LYP density functional,43,44 as implemented in

the Gaussian03 package, was employed. The frequencies associated to the verti-

cal ground-to-excited state transitions were calculated by means of the TD-DFT

method with the above mentioned density functional and basis sets.

For the characterization of the ground state potential surface we employed the
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4. 1-Hydroxy-2-Methoxy-9,10-Anthraquinone

"relaxed (potential energy surface) PES scan" method. The PES scan gives an idea

of the shape of the potential well along one particular coordinate (internal or Carte-

sian). This calculation is based on the choice of a coordinate that is allowed to vary,

on the definition of the amplitude of its variation, and the number of steps to be

considered. During each step this coordinate is kept fixed (frozen) while the others

are free and constitute the variables along which the minimization of the internal

and Cartesian gradient is performed. In this way for each step along the selected

coordinate the free variables (valence angles, bond distances and dihedral angles) of

the molecule are adjusted (relax) to minimize the internal forces with the imposed

constraints. The simulation of the reaction coordinate for the proton transfer pro-

cess was assumed coincident with the distance R H2 −O1 (Figure 4.4). There exist

Figure 4.4: "Ball and Stick" representation of 2-metO-1HAQ and atom number-

ing.

a number of different theoretical methods, such as CASSCF, CASPT2, CCSD and

TDDFT, which in principle are capable of dealing with proton transfer in a given ex-

cited state. However, the large size of the systems precludes an advanced theoretical

characterization (CASSCF, CCSD and CASPT2) of the potential energy surfaces of

ESIPT. Fortunately, recent calculations78,79,81,83–85 showed that TDDFT (in partic-
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4.3 Electronic Structure Characterization

ular with the B3LYP functional) can reliably predict the potential energy surface of

ESIPT. In this work, we constructed the potential energy surface (PES) of ESIPT

by TD-DFT theoretical calculations of the Franck-Condon vertical transitions for

each point of the ground state potential surface.

4.3.2 Ground state properties and Geometry Optimization

Ground state geometry, for the Enol form, has been optimized at the DFT B3LYP

level of theory with 6-31+G(d,p) and 6-31++G(2df,2pd) basis sets. Selected geo-

metric parameters are collected in table 4.1. The molecule, being essentially com-

posed of the 9,10-Anthraquinone aromatic skeletal, is planar with two of the hy-

drogen atoms of the methyl group symmetrically disposed above and below the

molecular plane. The optimized structures for the Enol form correspond to min-

Table 4.1: Calculated selected bond length (Å) and bond angles (A-valence)

(degrees) for the ground state geometry (Enol form) of 2metO-1HAQ. (1)Atom

numbering is given in Figure 4.4 .

Name definition(1) 6-31+G(d,p) 6-311++G(2df,2pd)

O(2)-C(3) 1.248 1.239

C(14)-O(15) 1.230 1.220

C(3)-C(27) 1.466 1.463

C(27)-C(28) 1.411 1.405

C(28)-O(29) 1.336 1.331

O(29)-H(1) 0.995 0.991

H(1). . .O(2) 1.656 1.655

O(2)-C(3)-C(27) 121.3 121.4

C(3)-C(27)-C(28) 119.1 119.1

C(27)-C(28)-O(29) 122.9 122.9

C(28)-O(29)-H(1) 106.3 106.3

O(29)-H(1)-O(2) 148.0 147.9

ima of the potential surface, as confirmed by the absence of imaginary vibrational
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4. 1-Hydroxy-2-Methoxy-9,10-Anthraquinone

frequencies. Extension of basis set brings in general to the shortening of the bond

lengths; in particular, the two carbonyl double bonds are shortened by ∼ 0.01 (Å),

while the distance O(2). . .H(1) is virtually unchanged. The potential energy curve

for the proton transfer reaction (GSIPT) in the ground state was calculated by fix-

ing the H(1). . .O(2) distance and imposing a constant variation of -0.05 Å starting

from the equilibrium values: 1.656 Å 6-31+G(d,p) and 1.655 Å 6-311++G(2df,2pd).

For each value of the distance H(1). . .O(2) the geometry was optimized by mini-

mizing the gradient in respect to all the "free" geometric parameters. Results are

collected in Figure 4.5. The calculation provides the ground state intramolecular
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Figure 4.5: GSIPT curves obtained from B3LYP/6-31+G(d,p) (black) and

B3LYP/6-311++G(2df,2pd) (red) optimized structures.

proton transfer curves with a single minimum; the Keto form (H(1). . .O(2) ' 0.95

Å) is found about 4 eV (∼9.6 kcal/mol) above the enol form. Extension of the basis

sets results in a small increase of the "curvature" of the first part of the potential

well, while the relative energy of the keto form is unchanged from the calculation

with the 6-31+G(d,p) basis set. The PES curves show the presence of an inflection
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4.3 Electronic Structure Characterization

at H(1). . .O(2)' 1.1 Å; this could indicate the presence of a minimum, unidentified

because of the high amplitude of the sampling step. Then we tried to optimize the

geometry of a possible intermediate structure, starting from the the keto geometry

in the ground state, without any constraint. We performed the calculation with both

basis sets and in all cases we obtained the same result: the calculations diverged

from the keto form and converged into the enol form. This led us to conclude that

there is no intermediate minimum structure between the keto and enol form in the

ground state. The only stable structure is the enol form.

4.3.3 Calculation of Vertical Transitions and ESIPT Curve

The vertical excitation energies were calculated at the B3LYP/6-31+G(d,p) and

B3LYP/6-311++G(2df,2pd) level of theory. The values obtained for the first sin-

glet transitions of the enol form, along with the estimated oscillator strengths, are

collected in table 4.2. Extension of the basis set involves an increase of the transition

energies (up to ∼ 0.06 eV) except for the last excited state, for which a lowering of

∼ 0.02 eV is observed. Within the Kohn-Sham approach, the character of each tran-

Table 4.2: TDDFT Vertical excitation energies, in eV and cm−1, and Oscillator

strength for the first six singlet excited states of the enol form of 2metO-1HAQ. .

6-31+G(d,p) 6-311++G(2df,2pd)

state ∆E (eV) ∆E (cm−1) f state ∆E (eV) ∆E (cm−1) f

21A (ππ∗) 2.80 22589 0.14 21A (ππ∗) 2.83 22833 0.13

31A (nπ∗) 2.97 23971 − 31A (nπ∗) 2.99 24076 −
41A (ππ∗) 3.44 27731 0.01 41A (nπ∗) 3.48 28069 −
51A (nπ∗) 3.46 27918 − 51A (ππ∗) 3.49 28124 0.01

61A (ππ∗) 3.83 30911 0.07 61A (ππ∗) 3.89 31375 0.08

71A (ππ∗) 3.99 32177 0.03 71A (ππ∗) 3.97 32029 0.02

sition can be estimated from the coefficient of the orbitals involved in the electron
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excitation process. We found that the lowest singlet excited state is of ππ∗ charac-

ter with both basis sets, the transition from the ground to the first singlet excited

state being associated to the promotion of one electron from the occupied HOMO

(Figure 4.6) to the unoccupied LUMO (Figure 4.7). This is in agreement with the

Figure 4.6: HOMO (π) of the Enol form of 2metO-1HAQ.

Figure 4.7: LUMO (π∗) of the Enol form of 2metO-1HAQ.

findings of Diaz et al.90, who predict a ππ∗ character for the first singlet excited

state with transition energy in the visible range. Concerning the ordering of higher

energy excited states, we observe an inversion between the calculation performed
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with 6-31+G(d,p) and with 6-311++G(2df,2pd): 6-31+G(d,p) calculation predicts

that the third singlet excited state is a ππ∗ state, while 6-311++G(2df,2pd) predicts

a nπ∗ state. This is related to the low energy difference between the third and the

fourth excited state (∼ 0.01 eV) according to the two calculations. The calculated

excitation energies were directly compared with the experimental absorption spec-

trum recorded in acetonitrile solution. The second derivative of the spectrum allows

to better appreciate the maxima of the absorption bands. In Figure 4.8 we reported

Frequency (cm-1)
20000 25000 30000

Figure 4.8: Ground state absorption spectrum (black), Second derivative of the

absorption spectrum (red), vertical excitation energies associated to (ππ∗) states

calculated at B3LYP/6-31+G(d,p) (blue bar) and B3LYP/6-311++G(2df,2pd)

(green bar) level of theory of the Enol form of 2metO-1HAQ.

only the (ππ∗) transitions, obtaining an excellent agreement with the experimental

spectrum. Not significant improvement for the vertical excitation energies of the

equilibrium structure of the Enol form of 2metO-1HAQ is obtained by extending

the basis set. The B3LYP/6-31+G(d,p) method then is to be preferred as it offers

a better balance of accuracy and computational time.

We calculated the potential energy curve for the ESIPT reaction in the S1 excited
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state by computing the vertical excitation energies at each point of the GSIPT

curves, and by adding the computed values to the relative (in respect to energy of

the ground state Enol form) energy of each point. We employed 6-31+G(d,p) and 6-

311++G(2df,2pd) basis set to further characterize the effect of the basis extension.

Results are collected in Figure 4.9, where the ESIPT curves obtained with the
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Figure 4.9: GSIPT curves obtained from B3LYP/6-31+G(d,p) (black) and

B3LYP/6-311++G(2df,2pd) (red) and ESIPT curves obtained from TD-B3LYP/6-

31+G(d,p) (blue) and TD-B3LYP/6-311++G(2df,2pd) (green).

two different basis sets are shown. ESIPT curves exhibit a double minimum: the

Enol excited form has its lowest energy value for H(1). . .O(2) ' 1.46 Å, while

the minimum for the excited Keto form is located between 1.06 and 1.01 Å. The

calculation with TD-B3LYP/6-31+G(d,p) predicts an ESIPT curve characterized

by two minima having almost the same energy (∆E∼ 0.009 eV) and barrier energy

of ' 0.04 eV (' 0.91 Kal/mol) in respect to the excited Enol form. The ESIPT

curve calculated with TD-B3LYP/6-311++G(2df,2pd) is characterized by a global

shift towards higher energy. The calculated shift (∆E ∼ 0.03) is comparable, for
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values of H(1). . .O(2) lower than 1.21 Å, with the shift observed for the excitation

energies calculated at the equilibrium Enol geometry.

The ESIPT curve calculated with TD-B3LYP/6-31+G(d,p) has two minima,

the Enol excited form being the lower one. On the contrary, the curve calculated

with TD-B3LYP/6-311++G(2df,2pd) exhibits two minima, the Keto form being the

lower. Also in this case the energy difference between the minima is not so high (∆E

∼ 0.003 eV) and the energy barrier is ' 0.04 eV. From this point of view, extension of

the basis improves the description of the excited state properties. Indeed, according

to the TD-B3LYP/6-31+G(d,p) calculation, the excited Enol form is the most stable

structure, so that no proton transfer reaction should take place. However, it is

necessary to stress that only qualitative results should be expected from calculation

of this type. There are two main reasons for this:

1. The GSIPT curve is not the true reaction path, because we impose the reaction

coordinate. A better approach should involve the identification of the transi-

tion structure and should follow the appropriate reaction coordinate towards

the minimum structure. This is not possible in this case, since the ground

state Keto form is not a minimum and the standard procedure for searching

a transition structure fails.

2. The ESIPT curve is calculated from the vertical excitation energies, so that

molecular relaxation in the excited electronic state is not allowed.

Anyway, the calculated curves for the excited state proton transfer reaction pre-

dict a small (' 0.91 Kal/mol) energy barrier for the transfer process. Furthermore,

considering that the calculations were performed in the gas phase and that the ener-

gies are not corrected for the ZPVE and for the thermal contribution, the calculated

value for the energy barrier is consistent with an ultrafast proton transfer process.
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4.4 Transient Absorption Spectra

In this section the transient spectra of 1-hydroxy-2methoxy-anthraquinone will be

discussed. We will focus our attention on the temporal evolution of the transient

signal and we will extract the main temporal components with the help of Singu-

lar Value Decomposition (SVD) analysis. Our goal is the characterization of the

temporal evolution of the excited state’s population when the acceptor system is

directly excited. In order to isolate the temporal dynamics related to the energy

transfer process in the bichromophoric compound, we excited the acceptor molecule

with two different wavelengths: 400 nm and 325 nm.

400 nm This excitation wavelength is associated with the lowest energy band in

the ground state absorption spectrum and promotes the S0 → S1 transition.

This is the transition towards the excited state which is directly involved in

the proton transfer reaction. The ESIPT is the fundamental event which,

in the bichromophoric system, is indirectly promoted by the energy transfer

process. Therefore, the characterization of the spectral features related to the

ESIPT process in the isolated molecule, along with their temporal evolution,

is a fundamental step.

325 nm This excitation wavelength promotes the S0 → S1 transition of the isolated

umbelliferone molecule and the transition localized on the donor subunit in

the bichromophore. It is essential to characterize the response of the isolated

acceptor to this excitation wavelength because this allows us to extrapolate

the contribution of the direct excitation in the bichromophoric molecule.

4.4.1 Excitation with 400 nm Wavelength

Ultrafast ESIPT reactions have been studied at femtosecond up to picosecond time

scales.88,89,91–94 The ESIPT process, in this class of compounds, is known to oc-

cur within a time scale of few hundreds of femtoseconds or less. For example, the
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proton transfer time-constant of 1,8-dihydroxyanthraquinone (1,8-DHAQ) has been

reported as shorter than 50 fs88. Besides the very fast temporal components (few

hundreds of femtoseconds) related to the proton transfer process, additional de-

cay components are frequently reported in the range of several picoseconds and,

few tens of picoseconds.88,93–96 These components are attributed to intramolecular

vibrational relaxation and vibrational cooling processes, respectively. Vibrational

relaxation is considered to take place in few picoseconds or even sub-picoseconds

time scales93,97–101 meanwhile, the vibrational cooling process proceeds with a time

constant of 10-20 ps.102 The transient signal is also affected by rotational diffusion

dynamics. A detailed description of the rotational diffusion’s effects on time resolved

fluorescence and transient absorption signal is reported in appendix B, while below

we’ll briefly describe the behavior of the chromophore following laser excitation.

Polarized excitation pulse produces orientational selection of the excited molecule

(photoselection),depending on the scalar product between the polarization direction

and the orientation of the chromophore transition dipole. During the delay time

between the absorption of the pump’s photons and the absorption of probe’s pho-

tons, the molecules in solution are subjected to translations and then collisions

between molecules, including the solvent ones and to vibrational and rotational dy-

namics. Molecular rotations (rotational diffusion) modify the component of the

electric dipole moment projected onto the electric field of the probe pulse. If the

scalar product between the molecular dipole moment and the electric field changes

then the transition probability rate will change too. Equation B.30 is the Fermi

golden rule and it is valid also for absorption and stimulated emission from an

excited state. The intensity of the transient signal is therefore related to the mu-

tual orientation between the molecular dipole moment of the excited state and the

probe’s electric field.

Let’s consider for a moment the distribution probability function depicted in

Figure B.6. This distribution function tell us that the highest transition probabil-

ity, for a single immobile molecule, is associated to the molecules whose transition
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dipole moments are oriented parallel to the excitation beam’s polarization. If the

dipole moment of the excited state was identical to the ground state one, then this

function would represent the distribution of excited state’s electric dipole moments

(as a function of angle θ and φ). The result would be a symmetrical distribution

around z-axes. The probability distribution function is a randomly oriented solution

is obtained by weighting the transition probability distribution by the probability

that the orientation of the transition dipole moment of a molecule is comprised be-

tween θ and θ + dθ. The result (Equation B.35) is the distribution function of the

molecules excited by a vertically polarized infinitely short pulse (δ-type pulse). This

distribution probability is again symmetrical around the z-axes. Both distribution

functions well represent the case of a molecule, whose ground and excited state

electric dipole moment are parallel, inside a rigid medium like a vitrified solution.

In general, the dipole of the excited state is not parallel to that of the ground

state. Therefore the distribution function for the excited state dipole moment will

not be symmetrical around the z-axes, the axes of symmetry will be tilted respect

to the z-axes of an angle α, where α is the angle between the ground and the excited

state electric dipole moment.

In solution the molecules are subjected, as already noticed, to random rotational

motions. If the molecules can rotate freely during the excited state lifetime the

symmetrical distribution of the orientation of the electric dipole moments is lost.

The preferred orientation of molecules resulting from photoselection at time zero is

indeed gradually lost due to the rotational Brownian motion. This process eventually

causes the complete loss of preferential orientation, resulting in a randomly oriented

excited state population. In section B.3.1 we derive equation B.46 which describes

the effect of the rotational diffusion on the anisotropy r, showing that r(t) depends

on the orientation autocorrelation function (Equation B.47).

The description of the events which follow the excitation of the sample by the

pump beam is fundamental to understand the initial temporal evolution of the tran-

sient signal. In general the parallel (‖) and the perpendicular (⊥) transient signal
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have differen intensities and different time evolutions. Usually the parallel compo-

nent has a greater intensity respect to the perpendicular one. This is because the

pump photoselection results in a higher excited state population of molecules whose

dipole moments are oriented close to the pump polarization (see section B.2.3). The

parallel component initially decays more rapidly than the horizontal component.

This occurs because the population of vertically oriented excited chromophores de-

cays by two mechanisms: the excited state population decay (lifetime τ) and the

rotational randomization (angular correlation time τc). The same processes act in

opposite directions on the decay of the horizontal component: the repopulation of

the horizontally oriented excited molecules compensate the energy decay, making

the overall decay slower.

Hereafter we define A‖(λ, t) as the transient absorbance acquired when pump

and probe are parallel, while A⊥(λ, t) the transient absorbance for perpendicular

pump and probe.

4.4.1.1 Parallel and Perpendicular Transient Spectra

Following the same strategy of Choi et al.76 we recorded the transient absorption

spectra for parallel (‖) and perpendicular (⊥) polarization geometry of the the 400

nm pump and the white light probe pulses. The 400 nm pump wavelength was

obtained from second harmonic generation of the regenerative amplifier’s output

(frequency = 800 nm and power ∼ 600 mW). The pump polarization was con-

trolled by a λ/2 waveplate, and that of the white light probe was established by

means of a suitably oriented polarizer (vertical polarization). Transient spectra of

2metO-1HAQ are characterized, both in parallel and perpendicular polarization con-

figurations, by an excited state absorption (ESA) and a stimulated emission (SE )

band centered at 508 nm and 600 nm respectively. The spectra were corrected for

the group velocity dispersion (GVD) of the probe pulse and the GVD curve has was

obtained from an optical Kerr effect experiment on the same 2metO-1HAQ solution

employed in the transient absorption experiment. The GVD corrected spectra are
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shown in Figure. 4.10 and 4.11. In the following we will discuss separately the

evolution of the transient spectra during the first hundreds of femtoseconds after

the photo-excitation, and that in the picosecond time scale.

The spectrum recorded at the temporal coincidence of pump and probe pulses

(the red spectrum in the left panel of Figure 4.10 and 4.11) shows, for the parallel

and perpendicular configuration, the presence of the stimulated raman gain (SRG)

bands and a broad absorption band.
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Figure 4.10: Transient spectra recorded after 400 nm pump excitation (∼ 0.5

µJ pulse), with ‖ polarization (delays in ps), of a solution of 2metO-1HAQ (sol-

vent=CH3CN, Abs400nm ' 1).

The stimulated raman scattering process (SRS ) involves vibrational levels of

the solvent and it is observed only at the temporal coincidence between the pump

and the probe pulses. The SRG bands of the transient spectrum of figure 4.10 and

figure 4.11, corresponding to the C-H stretching of Acetonitrile are centered around

455 nm and 440 nm. The SRS effect was employed for the characterization of the

instrumental function (cross-correlation function between pump and probe pulse)

and for the determining the "zero time" of the experiment, by evaluating the area

under the 455 nm SRG band of the transient spectra. The delay of the spectrum

corresponding to largest area was then identified and taken as the "zero time" of the

experiment. The instrumental function was estimated by fitting, with a gaussian-

type function, the curve obtained by plotting the area of the SRG band versus the
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Figure 4.11: Transient spectra recorded after 400 nm pump excitation (∼ 0.5

µJ pulse), with ⊥ polarization (delays in ps), of a solution of 2metO-1HAQ (sol-

vent=CH3CN, Abs400nm ' 1).

delay time. The resulting instrumental function has a FWHM of 200 fs.

The broad absorption band is the result of the sum of two different contributions:

• the cross-phase modulation (XPM) effect48–50

• the growth of the ESA (508 nm) and SE (600 nm) bands.

The artefact introduced by cross-phase modulation is represented, in the frequency

domain, by spectral features having a dispersive shape. Lorenc et al.50 described and

analyzed the spectral features associated to the XPM. The spectra were obtained by

400 nm excitation with a ∼ 100 fs FWHM pulse of a 2.5 mm thick cell containing

pure acetonitrile. They reported the spectra recorded at increasing delay times

without any correction for the group velocity dispersion. The intensity of the spectral

features is greater in the absorption direction (negative values of −∆Abs) and for

high frequencies. If the correction for the group velocity dispersion is applied to the

signal, the result is a broad absorption band (because the intensity in the direction

of negative −∆Abs values is greater) whose intensity decreases in the direction of

long wavelengths. The presence of the XPM is a limiting factor in the analysis of

the temporal evolution of the transient spectra, that prevents us from extracting
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the real evolution of the excited state population during the first few hundreds of

femtoseconds after the photo-excitation.

In the first thirty picoseconds a different time evolution for A‖(λ, t) and A⊥(λ, t)

is evident from Figures 4.12 and 4.13. The transient signal A⊥(λ, t) is characterized

by a slower rise-time respect to A‖(λ, t). During this time interval the decay of

A‖(λ, t) is already appreciable, while the transient signal A⊥(λ, t) is still growing-

up. This effect can not be related only to the contribution of the rotational diffu-
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Figure 4.12: Transient spectra (the first thirty picoseconds) recorded after 400

nm pump excitation (∼ 0.5 µJ pulse), with ‖ polarization, of a solution of 2metO-

1HAQ (solvent=CH3CN, Abs400nm ' 1).

sion. In the introduction section we noticed that I⊥(λ, t) usually decays slower than

I‖(λ, t) because of the repopulation of the perpendicular orientation. The evolution
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of A⊥(λ, t) is, instead, characterized by a slow rise-time. This means that another

contribution is superimposed to the rotational diffusion dynamic. The left panel of

Figure 4.10 and Figure 4.11 shows a different shape of the ESA band between the

transient spectra recorded 1 ps and 20 ps after pump excitation. The ESA band
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Figure 4.13: Transient spectra (the first thirty picoseconds) recorded after 400

nm pump excitation (∼ 0.5 µJ pulse), with ⊥ polarization, of a solution of 2metO-

1HAQ (solvent=CH3CN, Abs400nm ' 1).

is broader and its structure is less pronounced in the spectra recorded at 1 ps re-

spect to the spectra recorded at 20 ps. This is the consequence of the vibrational

relaxation. The electronic population is localized on excited vibrational levels of

the S1 state after the excitation event (Franck-Condon principle). The excess of

vibrational energy is then redistributed on the various normal modes or dissipated
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trough collisions with the solvent molecules. The final result of vibrational relax-

ation is anyway the Boltzman distribution of vibrational population centered on the

lowest vibrational level of each normal mode.

The vibrational relaxation involves changing of the Franck-Condon factors asso-

ciated to the transitions from the excited state and, consequently, of the intensity

and the shape of the bands of the transient spectrum. Typical effects of the vibra-

tional relaxation are narrowing and intensity increase of the transient absorption and

stimulated emission bands; a blue shift of the band maximum is commonly observed

too. The spectra reported in the left panel of Figures 4.10 and 4.11 are charac-

terized by this behavior, even if the global evolution is affected by the rotational

contribution.

The spectra recorded at higher delay time are shown in Figures 4.14, 4.15 and

in the right panel of Figures 4.10 and 4.11. The decay of the transient signal in

this temporal region is mainly due to the electronic relaxation, and the difference

between the parallel and perpendicular evolution is not appreciable in a qualitative

analysis of the transient spectra.

In order to extrapolate the temporal components related to the rotational diffu-

sion, we evaluated the anisotropy evolution r(t) and the transient absorbance evo-

lution for the magic angle condition Ama(λ, t) by means of the following relations

(Appendix B.2.2.1)

r(λ, t) =
A‖(λ, t)− A⊥(λ, t)

A‖(λ, t) + 2A⊥(λ, t)
(4.1)

Ama(λ, t) =
1

3
(A‖(λ, t) + 2A⊥(λ, t)) (4.2)

4.4.1.2 Anisotropy Evolution

The first hundreds of femtoseconds after pump excitation are characterized by the

XPM effect and then we disregarded the evolution of anisotropy during this time

interval.
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Figure 4.14: Transient spectra (the first three-hundred picoseconds) recorded

after 400 nm pump excitation (∼ 0.5 µJ pulse), with ‖ polarization, of a solution

of 2metO-1HAQ (solvent=CH3CN, Abs400nm ' 1).
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Figure 4.15: Transient spectra (the first three-hundred picoseconds) recorded

after 400 nm pump excitation (∼ 0.5 µJ pulse), with ⊥ polarization, of a solution

of 2metO-1HAQ (solvent=CH3CN, Abs400nm ' 1).
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The evolution of anisotropy, shown in Figure 4.16, is reproduced by a single

exponential functio:

r(t) = r0 e−t/τ (4.3)

The fitting procedure gives a time constant τ = 18±2 ps and r0 = 0.34±0.01. As

described in Appendix B, the time dependence of fluorescence and transient absorp-

tion anisotropy is related to the rotational motions of molecules. Under condition

of "free rotation" (no constraints imposed by the surrounding medium) the time

dependence of the orientational autocorrelation function (Equations B.46 and B.47)

can be calculated with the Brownian rotational diffusion model. This model was

developed originally by Debye and later reconsidered in a hydrodynamic approach

by other authors.103–111 In section B.3.1.1 the equation for Brownian diffusion of a

spherical particle is solved. The result is that the rotational correlation time τ is

related to the diffusion coefficient D by the relation

τ = (6 D)−1 (4.4)

In the hydrodynamic framework, according to the Debye-Stokes-Einstein relation,

the diffusion coefficient for a spherical particle is inversely proportional to the shear
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Figure 4.16: 2met-1HAQ anisotropy decay.
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viscosity η and to the volume V of the particle:

D =
K T

6V η
(4.5)

where K is the Boltzmann constant and T is the absolute temperature. A general

rotating molecule is usually not symmetric about any axes. Such a totally unsym-

metric shape can only be described by the shape itself. In order to simplify the

treatment of such systems a usual assumption is to describe the molecules as a

general ellipsoid. The inertia of a general ellipsoid is described by the second-rank

tensor I. A suitable choice of the reference system (inertia reference system) re-

duces the tensor to diagonal form and the principal axes intersect in the center of

mass. The principal inertia moment, calculated along the three axes of the inertia

reference system, are the diagonal value of the reduced inertia tensor I: Ia,Ib and Ic.

For a generic ellipsoid we have Ia 6= Ib 6= Ic and, by convention, Ia ≤ Ib ≤ Ic. Hence

a general ellipsoid has three unequal axes a, b, c and the length of these axes is

proportional to the inverse square root of the inertia moment for the rotation about

that axes:

Iα =
∑

i

mir
2
αi ⇒ Lα ∝ 1√

Iα

(4.6)

Under the assumptions of this models the complete reorientation process can be

characterized by a diffusion tensor D. In the most general case it can be reduced

to a diagonal form, with three independent diagonal elements Da, Db, and Dc,

characterizing the orientational motion around the three principal axes. The solution

of the diffusional equation for a general ellipsoid (complete asymmetric rotor), within

the framework of hydrodynamic theory, leads to an autocorrelation function which

decays with five apparent correlation times. The correlation times are obtained from

appropriate combinations of the diagonal elements of the diffusion tensor D.

τ1,2,3 =
1

3D + 3Da,b,c

τ4 =
1

6D + 2∆
τ5 =

1

6D − 2∆
(4.7)

where

D = (Da +Db +Dc)/3 ∆ = (D2
a +D2

b +D2
c −DaDb−DaDc−DbDc)

1/2 (4.8)
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If the absorption and emission transition dipole moments are directed along one of

the principal axes, the number of correlation times reduces to three.

Often the molecules are not treated as completely generic ellipsoid but as axially

symmetric ellipsoid (or ellipsoid of revolution). The true symmetric top molecules

are characterized by two equal moment of inertia; this property is shared by all the

molecules having at least three-fold rotation symmetry or two-fold rotation axes.

There are two types of symmetric tops:

Prolate: The unique moment of inertia is the smallest: Ia < Ib ≡ Ic

Oblate: The unique moment of inertia is the largest: Ia ≡ Ib < Ic

The Prolate and Oblate ellipsoid are, usually, characterized by their axial ratio ρ

defined as the ratio between the length of the semi-axes of symmetry (unique axes)

and the length of the perpendicular semi-axes; hence ρ > 1 for a Prolate ellipsoid

and ρ < 1 for an Oblate ellipsoid.

Because the diagonal elements of the diffusion tensor along the axes perpendic-

ular to the unique axes are equal, the equations for the correlation times reduce to

three (regardless the orientation of the transition dipole moments):

τ1 =
1

D‖ + 5D⊥
τ2 =

1

4D‖ + 2D⊥
τ3 =

1

6D⊥
(4.9)

The evolution of anisotropy r(t) can be expressed as the sum of three exponential

decays:

r(t) = r1 exp(−t/τ1) + r2 exp(−t/τ2) + r3 exp(−t/τ3) (4.10)

The amplitudes of the exponential functions, ri(t), are given by:

r1 = 0.3 sin 2βA sin 2βE cos ξ (4.11)

r2 = 0.3 sin2 βA sin2 βE cos 2ξ (4.12)

r3 = 0.1 (3 cos2 βA − 1) (3 cos2 βE − 1) (4.13)

where βA and βE are, respectively, the angle formed by the absorption transition

dipole moment and the emission transition dipole moment in respect to the unique
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axes; ξ is the angle between the projections of the two former vectors in the plane

perpendicular to the symmetry axes.112

Several theories103–109 have been developed to link the orientational diffusion

coefficients D‖ and D⊥ to few solvent’s parameter. Starting from the Debye-Stokes-

Einstein relation for a spherical particle, the first step is the introduction of suitable

coefficients which take into account the non spherical shape of the molecule and the

interaction of the tagged molecule with the "solvent" (in neat liquids the "solvent"

consists of the non tagged molecules). The simplest way is to define an effective

Volume of the molecule:

Veff = (f · C)Vm (4.14)

where Vm is the real molecular volume, f is the friction coefficient (its value is

defined by the molecular shape), and C depends on the interaction of the probe

molecule with the solvent (boundary conditions). In this way we can rewrite the

Einstein relation as:

(Dα)−1 =
6 η Vm (fα C)

KT
(4.15)

When f · C=1, the hydrodynamic theory reduces to the Debye-Stokes-Einstein

model. The simplest approach to determine the values of f and C assumes the

solvent as a hydrodynamic continuum. The solute molecule moves in a uniform,

unstructured medium, characterized by the shear viscosity η. For molecules that

can be described as an ellipsoid of revolution, characterized by an axial ratio ρ,

Perrin103,113,114 proposed the "stick" boundary conditions C = 1 and fstick = f(ρ).

The model was adapted by Hu-Zwanzig105 to the "slip" boundary conditions, by the

simple relation (f ·C)slip = (f ·C)stick ·H(ρ). A detailed description of the two limit

boundary conditions is given in appendix B.3.2. According to the Perrin’s model,

the friction coefficients can be determined as:

f
‖
stick =

2

3

(ρ2 − 1)

ρ(ρ− S)
(4.16)

f⊥stick =
2

3

(ρ4 − 1)

ρ[(2ρ2 − 1)S − ρ]
(4.17)
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where the value of parameter S depends on the type of ellipsoid:

Prolate: ρ > 1

S = (ρ2 − 1)−1/2 ln[ρ + (ρ2 − 1)1/2] (4.18)

Oblate: ρ < 1

S = (1− ρ2)−1/2 tan−1[(1− ρ2)1/2/ρ] (4.19)

Dote and Kivelson109 introduced the following empirical relation for the friction

coefficient f⊥ of ellipsoids of revolution, under "slip" boundary conditions:

f⊥slip = f⊥stick [1− (f⊥stick)
−2/3] (4.20)

In this model the empiric formula is applied only for the diffusion around the perpen-

dicular axes, i.e for pure tumbling diffusion. They found that, for prolate ellipsoids,

the diffusion coefficients around the symmetry axes, i.e. pure spinning diffusion,

can be reasonably approximated by the Perrin’s formula (Equation 4.16) with stick

boundary conditions.

We performed our anisotropy measurement, we utilized η = 0.38×10−3 Kg m−1 s−1

as shear viscosity parameter for acetonitrile. We evaluated the molecular volume and

the axial ratio ρ by means of an ab initio DFT calculation at B3LYP/6-31+G(d,p)

level of theory. We obtained Vm ' 301Å3 and, approximating the molecule to

a Prolate ellipsoid of revolution, we obtained ρ ' 2. In figure 4.17 the "tube"

representation of 2metO-1HA, along with the cartesian axes used for the ab inito

calculation, is shown. The orientation of the calculated inertia reference system has

been obtained by the following diagonalization matrix:

(
a b c

)
=

(
X Y Z

)
·




0.99992 −0.01288 0.00000

0.01288 0.99992 0.00000

0.00000 0.00000 1.00000


 (4.21)

The symmetry axes a forms an angle of ∼ 1◦ in respect to the x axes represented

in figure 4.17. Absorption transition dipole moment was calculated by means of the

83



4. 1-Hydroxy-2-Methoxy-9,10-Anthraquinone

Figure 4.17: Reference axes.

Time Dependent Density Functional Theory method at the B3LYP 6-31+G(d,p)

level of theory. A detailed discussion about the results obtained by this calculation

are presented in section 4.3.3. The coordinates of the transition dipole moment, in

respect to the reference axes shown in figure 4.17, are

µAbs
if =




−1.4299

−0.2237

0.0000


 (4.22)

The absorption transition dipole moment lies in the xy plane, it is oriented in the

negative x direction with an angle in respect to the inertia axes a is of ∼ 8◦. We

were not able to perform the geometry optimization in the S1 excited state. Indeed

the TDFT algorithm implemented in the GAUSSIAN03 package42 did not include

analytic gradients and the numeric solution of the minimum search problem is con-

strained to a limited number of geometric parameters. Hence we could only calculate

the terms in respect to βA in equation 4.13, obtaining the following estimate for the
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parameters ri:

r1 ' (8.42× 10−2) sin 2βE cos ξ (4.23)

r2 ' (6.08× 10−3) sin2 βE cos 2ξ (4.24)

r3 ' (0.2) (3 cos2 βE − 1) (4.25)

Within the "slip" boundary conditions, we used Equation 4.15 for the calculation

of D‖ and D⊥. We evaluated the friction coefficient for the spinning motion by means

of equation 4.16, while the friction coefficient for the tumbling motion, obtained

from equation 4.17, was corrected for the slip-type boundary condition making use

of equation 4.20. The correlation times were calculated from equations 4.9:

τ1 =
1

D‖ + 5D⊥
' 16 ps

τ2 =
1

4D‖ + 2D⊥
' 20 ps

τ3 =
1

6D⊥
' 16 ps

We can reasonably assume that the calculated evolution of the anisotropy decay is

dominated by the third term of equation 4.25; this means that the loss of anisotropy

is mainly determined by an almost pure tumbling motion and that the calculated

correlation time (τ3 ' 16 ps) is in good agreement with the experimental one.

4.4.1.3 Magic-Angle Transient Spectra

In figure 4.18 we report the transient spectra obtained by means of Equation 4.2

and corrected for the group velocity dispersion. The left panel shows the spectral

evolution during the first twenty picoseconds. The spectrum associated to the "zero"

of the experiment is characterized by the same shape as the spectra acquired, at

the same delay, in parallel and perpendicular polarization. The first hundreds of

femtoseconds are indeed dominated by the XPM dynamics.

In the following twenty picoseconds the contribution due to the vibrational re-

laxation is clearly detected. The 20 ps spectrum (Fig. 4.18, left panel) shows the
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Figure 4.18: 2metO-1HAQ magic-angle transient spectra (delay in ps).

narrowing and the intensity increase of the ESA band in respect to the 1 ps spec-

trum. We observe a small blue shift of the ESA maximum and a more pronounced

vibronic structure. This spectral evolution is the evidence of the vibrational relax-

ation in the excited state potential well. , The complete elimination of the rotational

components is guaranteed by the absence of any pronounced intensity variation dur-

ing the first twenty picoseconds (Figure 4.19). The temporal evolution of Ama(λ, t)

at larger delays (Figure 4.20) is governed by the electronic population relaxation.

Once applied the GVD correction, we performed a decomposition of the family

of spectra taken at different delay times with the help of the singular value de-

composition (SVD) method (section A.0.4.1). The standard SVD algorithm, which

uses the LAPACK routines to compute matrix decomposition, was implemented in

a home-made program. SVD, combined with a subsequent target analysis (section

A), is a powerful procedure which allowed us to extrapolate the spectra and the

temporal evolution of the vibrational and electronic (decay of excited state popula-

tion) relaxation. We performed the SVD analysis on the matrix associated to the

spectra at the magic angle condition (Equation 4.2) according to the relation:

A(λ, t)ma = U · S · V T (4.26)

The decomposition procedure gave two main components characterized by singular

values S1 = 3.7 and S2 = 0.3. The normalized basis spectra (first two columns of
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Figure 4.19: 2metO-1HAQ magic-angle transient spectra: The first thirty pi-

coseconds.
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Figure 4.20: 2metO-1HAQ magic-angle transient spectra: The first three-

hundred picoseconds.
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matrix U) are shown below:
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Figure 4.21: Normalized basis spectra U1 (black) and U2 (red).

As stressed in section A.0.4.3, the columns of U are pure mathematical objects,

without any physical sense. The decay associated difference spectra (DADS ) are,

instead, obtained by a suitable linear combination of the two basis spectra. The

coefficients of the linear combination (matrix A, section A.0.4.3) can be obtained by

the target analysis of the temporal evolution profile of the two basis vectors. The

temporal evolution of the basis U1 and U2 is given by the first two columns of the

matrix V . Hence we performed the target analysis on the columns V1 and V2 scaled

by the their singular values S1 and S2. We assumed a bi-exponential kinetic model

for the molecular response function R(t):

Rl(t) = Al1 e−t/τ1 + Al2 e−t/τ2 l = 1, 2 (4.27)

Where the subscript l indicates the column of V . The evolution of V1 and V2, along

with their fitting curves, are shown in Figure 4.22. Because of the presence of a

strong XPM artefact during the first hundreds of femtoseconds, we did not discuss

the evolution within this time interval. The instrumental function was determined
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Figure 4.22: Vectors (amplitude versus time) V1 and V2 (•), and fitting curves

(red).

following the procedure described in section 2.4.3, obtaining a gaussian-shape func-

tion with ∼ 200 fs FWHM. We simulated the coherent effect (XPM ) by the convo-

lution of the instrumental function with a δ-type function. Instead, the evolution

of V1 and V2 was simulated by the convolution of the instrumental function with a

bi-exponential kinetic model. The parameters of the model function was simultane-

ously optimized on V1 and V2 kinetic traces by means of a home-developed global
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fitting program. The results of the fitting procedure are collected in table 4.3.

Table 4.3: Parameters for simultaneous fit of singular value decomposition com-

ponents to a biexponential model.

component An1 ∗10−2 τ1 (ps) An2 ∗10−2 τ2 (ps)

V1

-4.4 ± 0.4

7 ± 2

42 ± 4

238 ± 5
(10%) (90%)

V2

-5.9 ± 0.7 2.7 ± 0.3

(69%) (31%)

The DADS were obtained from the linear combination

(DADS)m =
2∑

n=1

(Anm · Un); (4.28)

the two DADS are shown in Figure 4.23. The SVD method is extremely useful

for the analysis of two-way matrix data (wavelength/time in transient absorption

experiments) in which the the acquired spectra are given by the sum of more than

one component (Equations A.7 and A.8). Matrix decomposition allows to identify

the principal components and to isolate their spectra (columns of matrix U) and

their temporal evolution (columns of matrix V ). These components can be related

to "true" molecular species, each characterized by its own spectrum and temporal

evolution, or to a single molecular species characterized by, at least, two different

spectra during the temporal evolution. This last condition can occur, for example,

when the ground state recovery of a photoexcited molecule involves an intermediate

electronic excited state. If the intermediate state is characterized by a transient

spectrum which is different from the one associated to the state directly populated

by the pump pulse, then SVD will identify two distinct components. This is the

typical two-compartment kinetic model of type II described in section A.0.3.2. This

is a rather simple example, SVD method is usually employed to analyze matrix data

associated to much more complex spectral and temporal evolutions. An important
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Figure 4.23: Spectral components of the biexponential kinetic model employed

for the simulation of (scaled) V1 and V2: DADS1 (red spectrum) and DADS2 (black

spectrum).

example is the use of SVD in the analysis of CO recombination kinetics and Soret

band shifts of proteins containing Heme group.115–119 These works showed that SVD

is extremely useful in extracting the main spectral and temporal components if the

photoexcited species are characterized by similar spectra.

The SVD allowed to discriminate also the effect of a spectral and temporal "per-

turbation" on the main component. In our case, we used the SVD to characterize

the vibrational contribution on the transient spectrum of the photoexcited 2metO-

1HAQ molecule.

The spectrum associated to this temporal component (DADS ) is shown in figure

4.23 (red spectrum). As the effect of the vibrational relaxation can be assimilated

to a "perturbation" of the spectrum associated to the main component (electronic

relaxation of 2metO-1HAQ), the decomposition does not result in a neat separa-

tion of the two components. Indeed the temporal evolution of each basis vector

is characterized by the vibrational relaxation (τ1) and by the electronic relaxation
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(τ2) components. However the results of the global fitting (table 4.3) show that the

evolution of V1 is dominated by the electronic relaxation (A12 = 90%), while the

evolution of V2 is mainly related to the vibrational relaxation (A21 = 71%).

4.4.1.4 Conclusions

We isolated the rotational contribution by means of equations 4.1 and 4.2 and we

fitted the anisotropy evolution by a single exponential. We approximated the molec-

ular shape as a prolate ellipsoid and we calculated the theoretical friction coefficients

by means of the hydrodynamic theory. The "slip" boundary conditions were then

applied to correct the perpendicular friction coefficient for the deviation from hy-

drodynamic rotational diffusion. According to the model of Dote and Kivelson109

we applied the correction only to the "tumbling" friction coefficient. The evaluated

correlation times are all similar: this is due to the low axial ratio of the ellipsoid (ρ ∼
2) and to the "slip" boundary condition for the pure "tumbling" rotational motion.

In addition, we estimated the theoretical pre-exponential factors by means of an

ab initio TDDFT calculation. The conclusion is that we can disregard the terms

related to mixed "spinnig"-"tumbling" correlation time. The main contribution to

the evolution of the anisotropy is due to a pure "tumbling" rotational motion, giving

rise to a mono-exponential decay. The calculated correlation time ∼ 16 ps is in good

agreement with the experimental data (∼ 18 ps) and also with a recently published

work on a similar molecular system.76

As we emphasized in section 4.2 and as reported by several authors,61–75 the

large Stokes shift of the fluorescence emission in respect to the absorption band is

the experimental evidence of the excited state intramolecular proton transfer re-

action. This means that the observed SE band is associated to a transition from

the state with the transferred proton: S ′1. Since the SE and ESA bands appear

simultaneously, also the ESA is associated to a transition from S ′1. In addition, we

do not observed any spectral or temporal dynamic related to the proton transfer

process. This is in agreement with previous works88,89,91–94 which reported an ultra-
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fast (sub-100 fs) dynamic for the excited state proton transfer. In this sense we are

limited by our instrumental function (∼ 200 fs with 400 nm excitation) and by the

marked coherent effect (XPM ) observed at the temporal coincidence between pump

and probe.

We conclude that the excitation of 2met-1HAQ at 400 nm results in the direct

population of the S ′1 state. This is confirmed by two experimental evidences:

• Contemporary presence of SRG, ESA and SE bands in the GVD-corrected

spectra (figure 4.18 left panel).

• The rise time of the transient signal is given by the convolution of the in-

strumental function with a step function, as confirmed by the fitting of the

components V1 and V2 reported in figure 4.22.

4.4.2 Excitation with 325 nm Wavelength

Transient spectra and single wavelength measurements of 2metO-1HAQ, following

325 nm pump excitation, were obtained by means of the experimental configurations

described in section 2.1 and 2.1.2. The excitation wavelength was obtained by FHG

of the output of a BBO-based OPA (section 2.1), setting the angle between the

polarization directions of pump and probe to 54.7◦.

The transient spectra are shown in figures 4.24 and 4.25, not corrected for the

group velocity dispersion. The spectra are characterized by the stimulated emission

(SE ) band, centered around 650 nm, and by an excited state absorption band (ESA),

centered around 508 nm. The shape of ESA band is affected, on the high frequency

side, by the presence of the ground state bleaching (GSB) spectrum. This modi-

fication is particularly evident in figure 4.24 where the profile of the ground state

absorption band (related to the S0 → S1 transition) is recognizable. The position

and the shape of the main spectral components are the same as those observed after

the excitation at 400 nm of 2metO-1HAQ. Also the spectral evolution during the

first 30 picoseconds strongly resembles the evolution observed when the transition
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Figure 4.24: Transient spectra (first ten picoseconds) recorded after 325 nm

pump excitation (∼ 0.8 µJ pulse) of a solution of 2metO-1HAQ (solvent=CH3CN,

Abs325nm ' 0.9).

S0 → S1 of 2metO-1HAQ is directly promoted. Indeed, in figure 4.24 the increase

of intensity of the maximum of the ESA band is particularly evident, while in figure

4.25 we can observe a small (∼ 2nm) blue shift of the ESA band maximum between

the 10 ps and the 30 ps spectra. This effect is due to the vibrational cooling process

that take place in the excited state potential well.

We measured the transient absorption spectra up to 1.5 ns delay (figure 4.25); in

this temporal interval we observed a monotonous decrease of the signal’s intensity,

which becomes negligible 1 ns after excitation. We inspected in detail the temporal

evolution of the ESA and SE bands obtained from the single wavelength measure-

ments (section 2.1.2) reported in Figures 4.26 and 4.27. We decided to record the

kinetics on the maximum (λ=508 nm) and on both the low (λ=530 nm) and high

(λ=482 nm) frequency side of the ESA band, in order to characterize the dynamics

related to the vibrational cooling process. The evolution of the SE was monitored

at 635 nm. The instrumental function at various wavelength was obtained by means
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Figure 4.25: Transient spectra (evolution during the first nanosecond) recorded

after 325 nm pump excitation (∼ 0.8 µJ pulse) of a solution of 2metO-1HAQ

(solvent=CH3CN, Abs325nm ' 0.9).

of an Optical Kerr Effect OHD-OKE experiment (section 2.4.1), and the data fitted

with gaussians, obtaining an average FWHM of ∼ 500 fs.

Table 4.4: Fitting results of single wavelength measurements.

λprobe (nm) A2 ∗10−3 τ2 (ps) A3 ∗10−3 τ3 (ps)

482
-4.3 ± 0.5

8 ± 2

58 ± 6

240 ± 5

(7%) (93%)

508
8.6 ± 0.7 84 ± 8

(9%) (91%)

530
-17 ± 2 47 ± 5

(27%) (73%)

635
7.7 ± 7 40 ± 4

(16%) (84%)
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Figure 4.26: Evolution during the first 50 picoseconds of the kinetics recorded

after 325 nm pump excitation (∼ 0.8 µJ pulse) of a solution of 2metO-1HAQ

(solvent=CH3CN, Abs325nm ' 0.9): (A) λprobe= 482 nm; (B) λprobe= 508 nm; (C)

λprobe= 530 nm; (D) λprobe= 635nm.

Then the kinetic traces weer simulated by convoluting the instrumental function

g(t) with a biexponential molecular response function R(t). The parameters of the

model function were optimized on the basis of the four kinetic traces by means of

a home-developed global fitting program. The results of the fitting are collected in
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Figure 4.27: Complete evolution of the kinetics recorded after 325 nm pump

excitation (∼ 0.8 µJ pulse) of a solution of 2metO-1HAQ (solvent=CH3CN,

Abs325nm ' 0.9): (A) λprobe= 482 nm; (B) λprobe= 508 nm; (C) λprobe= 530

nm; (D) λprobe= 635nm..

table 4.4.
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4.4.3 Conclusions

The qualitative similarity of the transient spectra measured for excitation at 400

and 325 nm, is confirmed by the fitting of the single wavelength time profile. The

biexponential kinetic model, with τ1= 8 ps associated to the vibrational cooling

process and τ2= 240 ps associated to the ground state recovery, reproduces very

well the experimental data.

Particular attention should be payed to the signal evolution during the first

picoseconds. Upon applying the correction for the group velocity dispersion, we

observed that the growth of SE and ESA bands is comparable with the evolution of

the SRG band. In addition, the growth of the signal of the kinetics measurements

is very well reproduced by the convolution of the instrumental function with a step

function whose amplitude is given, for each inspected wavelength, by the sum of the

pre-exponential factors of table 4.4. This means that, on our temporal resolution,

ESA and SE appear immediately after the pulse excitation and then that the state

S1 is directly populated also by excitation at 325 nm . The ground state absorption

spectrum (section 4.2) is characterized, in the region between 315 nm and 350 nm, by

a weak absorption band. The nature of this absorption is not completely clear at the

moment. The results obtained by a TDDFT calculation (at the B3LYP 6-31+G(d,p)

level of theory) on the 2met-1HAQ molecule (section 4.3) indicate that this band

could be related to a transition towards an excited electronic state located at higher

energy in respect to the S1 state. However, in the whole relaxation process, we do

not observe any spectral or temporal dynamic associated to transitions from this

excited state. This behavior can be interpreted with two fundamental hypothesis:

• The state is a silent state, i.e. it is not characterized by any transient absorp-

tion or the transient absorption features are located in an experimentally not

accessible spectral region.

• The electronic population evolves, from this state, towards the state S1 with an

ultra-fast process whose duration is inferior to the width of our instrumental
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function.

We conclude that the excitation of 2metO-1HAQ with 325 nm wavelength results

in a direct population of the S1 state. Any decrease of the rise time of the transient

signal associated to SE or ESA can not be related to internal conversion processes

of the isolated molecule.
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Chapter 5

Time Resolved Characterization of

Umbelliferone - 2metO-1HAQ

Bichromophoric Molecular System

In this section we present the results, obtained for the chacaterization of the In-

tramolecular Electronic Energy Transfer (IEET) process in Umbelliferone - 2metO-

1HAQ bichromophoric (Bi) molecular system.

5.1 Intramolecular Electronic Energy Transfer

The process of electronic energy transfer (EET) is ubiquitous in natural and artificial

photochemically active systems. It is present in the antenna systems of photosyn-

thetic organisms, in photodynamic therapy, in multichromophoric β-cyclodextrins,

in photomolecular devices an in photochemical synthesis. EET processes occur at

distances ranging from 1 Å to more than 50 Å, and on time scales from femtosec-

onds to milliseconds. When a donor and an acceptor are parts of the same com-

pound, the EET is intramolecular (intra-EET), otherwise the EET is intermolecular

(inter-EET). Inter-EET and Intra-EET are special cases of non-radiative processes

contributing to the decay of electronically excited molecular systems. Depending
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on the relative magnitude of the electronic coupling between donor and acceptor

(VDn−Ac) and on the donor vibronic bandwidth, two limiting cases of EET can be

distinguished which are referred to as strong and weak coupling mechanisms respec-

tively. In the strong coupling case, the excitation is delocalized on both the donor

and the acceptor. Within the weak coupling regime, the rate for energy transfer

KET between an excited donor and a ground state acceptor can be derived from the

time-dependent perturbation theory and the Fermi Golden Rule as

KET =
2π

η
|VDn−Ac|2 (FCWD) (5.1)

where the FCWD represents the Franck-Condon weighted density of states, corre-

sponding to the product of the density of vibrational states in the initial and final

states and their spectral overlap. In general, the effective electronic coupling matrix

element VDn−Ac can be expressed as a sum of electronic coupling terms

VDn−Ac = uCoulombic + ushort−range + ubridge (5.2)

where uCoulombic represents through-space acting Coulombic interaction between

dipoles and/or higher multipoles; ushort−range depends upon the interchromophore

orbital overlap and consists of a term accounting for the interpretation of the charge

density centered on one molecule with that of the other molecule and of an exchange

term defining the quantum mechanical two-electron exchange interaction; ubridge ac-

counts for the transfer of energy from the donor to the acceptor via intermediate

moieties or connecting bridges.

Understanding the mechanism of EET between two chromophores is the key for

the design and construction of efficient photonic devices, artificial energy harvesting

systems, and it is of interest in optical computing and molecular electronics.

Bichromophore molecules, containing two or more distinguishable molecular units

separated by bridges of controllable length, are ideal systems for investigating intra-

EET processes. The property of the bridge determines the degree of flexibility of

the whole structure and the basic electronic structure of the chromophore. On the
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5.2 Absorption Spectra

other hand, if the bridges induces reciprocal interaction of the two chromophores,

the optical properties of the bichromophoric species result "non-additive".

5.2 Absorption Spectra

The ground state absorption spectrum of bichromophore was measured in ace-

tonitrile solution and at room temperature. The molar extinction coefficients of

bichromophore Bi, of isolated donor Dn (Umbelliferone) and of isolated Acceptor

Ac (2metO-1HAQ) are reported in Figure 5.1.
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Figure 5.1: Ground state molar extinction coefficients of Umbelliferone (Dn),

2metO-1HAQ (Ac), bichromophore (Bi), and of the sum (Dn)+(Ac) .

In bichromophoric systems, the role of the molecular bridge between Dn and Ac

is of primary importance in relation to the efficiency of the energy transfer process.

Interchromophore bridge should act as an inert spacer, minimizing any coupling

between the ground electronic states of the two chromophores.

The molecular bridge of Umbelliferone-Alizarine bichromophore is characterized

by a triazole ring, linked to Dn and Ac with two single methylene groups ( figure
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Molecular System
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Figure 5.2: Umbelliferone-Alizarine bichromophoric molecular system.

5.2). A qualitative estimate of the coupling between the two chromophore units

through the molecular bridge can be obtained from the ground state absorption

spectra. As shown in Figure 5.1, the bichromophore absorption spectrum is close

to the sum of the spectra of the Dn and Ac units. This means that the energy

levels involved in the electronic transitions are weakly perturbed by the triazole

ring. Furthermore, particular attention has been payed to the choice of the two
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Figure 5.3: (black)Donor absorption band; (red)Donor emission

band;(green)Acceptor absorption band;(blue)Acceptor emission band;.
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5.3 Transient Absorption Spectra

chromophores. Indeed, the second fundamental requirement, for an efficient intra-

EET, is the largest spectral overlap between the emission band of the donor unit and

the absorption band of the acceptor chromophore. At the same time, the absorption

band of the donor chromophore should be in a spectral region where the acceptor

chromophore does not absorb or, at least, the ratio between the molar extinction

coefficients ε(Dn)/ε(Ac) should be as high as possible. This latter condition is

crucial in order to prevent the direct excitation of the acceptor unit, which would

give rise to two different mechanisms of population of the excite state of the acceptor

and would complicate the analysis of intra-EET dynamic. In practice, this two

conditions can be hardly satisfied at the same time; we choose to maximize the ratio

εDn/ε(Ac) to the expense of a better spectral overlap (Figure 5.3).

The peculiarity of the investigated system is, by the way, due to the large Stokes

shift between the absorption and the emission band of the acceptor. As we stated in

section 4.1, this characteristic of alizarine is related to the excited state intramolec-

ular proton transfer process. Hence, this system is a prototype for studying the

indirect activation of an excited state reaction.

5.3 Transient Absorption Spectra

Transient spectra and single wavelength measurements of the bichromophore, fol-

lowing 325 nm pump excitation, were obtained using the experimental configuration

described in section 2.1 and 2.1.2. The excitation wavelength was obtained by FHG

of the output of a BBO-based OPA (section 2.1), setting the angle between the

polarization directions of pump and probe to 54.7◦. Due to the low solubility of

the compounds, we were not able to fulfill the optimal condition of Abs ' 1 at the

excitation wavelength, and we performed transient spectra and single wavelength

measurements with Abs(λ=325 nm)' 0.5.

Transient spectra are shown in figure 5.4, 5.5 and figure 5.6, without any cor-

rection for the group velocity dispersion. They are characterized by an excited state
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Molecular System
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Figure 5.4: Transient spectra (delays in ps) recorded after 325 nm pump excita-

tion (∼ 0.8 µJ pulse) of: (a) (left) solution of Bichromophore (solvent=CH3CN,

Abs325nm ' 0.5), (b) (right) a solution of 2metO-1HAQ (solvent=CH3CN,

Abs325nm ' 0.9)

absorption band ESA centered around 508 nm, and a stimulated emission SE band

centered at 650 nm. The spectral features are virtually identical to those of the iso-

lated Ac. However, the shape of the ESA band, on the high frequency side, differs

with respect to the isolated acceptor. As we showed in section 3.5, the spectra of

Umbelliferone are characterized by the SE band and, on its high frequency side,

by an intense ESA band centered around 350 nm. Hence, in the spectral region

between 350 and 420 nm (hereafter we will call this spectral region the blue region),

the transient spectra of the bichromophore are given by the sum of more than one

contributions: the residual transient absorption and stimulated emission of Dn, plus

the broad ESA band of Ac. This effect is particularly evident in the spectra shown

in the left panel of Figure 5.4. The spectra are clearly not corrected for the GVD,

but, limiting our analysis to the blue region and for delays greater than 0.3 ps, we

can disregard this effect. Then, the difference between the spectra of the isolated Ac

and of the bichromophore is not fictitious, due to the uncorrected dispersion. The

isolated Ac is characterized only by the GSB superimposed onto the broad ESA

(centered at 508 nm), while in the bichromophore’s spectra the ESA peaked at 350

nm is evident.
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Figure 5.5: Transient spectra (delays in ps) recorded after 325 nm pump excita-

tion (∼ 0.8 µJ pulse) of: (a) (left) solution of Bichromophore (solvent=CH3CN,

Abs325nm ' 0.5), (b) (right) a solution of 2metO-1HAQ (solvent=CH3CN,

Abs325nm ' 0.9).

The effect of the donor’s ESA band is evident also in Figure 5.5, where we show

the evolution during the first ten picosecond of the bichromophore (left panel) and

of the isolated acceptor (right panel). These spectra show the decay of the transient

signal in the spectral region between 350 and 380 nm for the bichromophore, while

this signal’s decrease is not observed in the isolated acceptor.

The isolated donor is characterized by a decay time, from the state S1, of ' 30

ps, meaning that 10 picoseconds after pulse excitation the signal’s decay is already

appreciable. The decrease of bichromophore’s transient signal can then be related

to this effect.

Further evidence of the presence of at least two spectral contributions in the

blue region is given by the existence of an isosbestic point located at around 380

nm; approximatively at the same wavelength of the isosbestic point observed in the

isolated donor’s transient spectra.

This spectral region is clearly not suited for the characterization of the dynamic

related to the energy transfer process. Indeed, to have the best estimation for the

kinetic constant and, then, for the efficiency of the transfer, we have to monitor the

transient signal related to the acceptor unit only.
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5. Time Resolved Characterization of Umbelliferone - 2metO-1HAQ Bichromophoric
Molecular System

The bichromophore’s spectra reported in Figure 5.2 show also a different tem-

poral evolution in the region between 450 and 650 nm with respect to the isolated

acceptor. In particular, it is evident a slower rise-time of the whole ESA and SE

bichromophoric bands, while the spectra of the isolated acceptor show only an in-

crease and a slight blue shift of of the ESA band maximum. As we emphasized in

section 4.4.2, the latter effect is due to the vibrational cooling process, while on the

basis of the conclusions derived in section 4.4.3 the former effect can only be related

to the energy transfer process between donor and acceptor units.
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Figure 5.6: Transient spectra (delays in ps) recorded after 325 nm pump excita-

tion (∼ 0.8 µJ pulse) of a solution of Bichromophore (solvent=CH3CN, Abs325nm '
0.5).

The evolution on long time scale (till 1 ns) is shown in Figure 5.6 and is charac-

terized by the decay of the whole transient signal.
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5.4 Single Wavelength Measurements and Conclusions

5.4 Single Wavelength Measurements and Conclu-

sions

In order to have quantitative information about the dynamic of the energy transfer

process, we performed single wavelength measurements by means of the experimental

set-up described in section 2.1.2.

As we discussed in the former section, we have to monitor the transient signal

of the acceptor unit in a spectral region where the contributions of donor’s spectral

components are negligible. for that reason, we choose to perform single wavelength

measurements at 635 nm only, where the intensity of the SE band and the absorption

from the triplet state of the donor can be disregarded.
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Figure 5.7: single wavelength measurement (λprobe=635 nm) recorded after

325 nm pump excitation (∼ 0.8 µJ pulse) of a solution of Bichromophore (sol-

vent=CH3CN, Abs325nm ' 0.5).
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5. Time Resolved Characterization of Umbelliferone - 2metO-1HAQ Bichromophoric
Molecular System

The kinetic trace is reported in figure 5.7, along with the fitting curve. The first

part of the kinetic trace has been reproduced by the convolution of the instrumental

function (gaussian-type function with 500 fs FWHM) with the molecular response

function given by:

R(t) = A0 + AET

(
1− e−t/τET

)
(5.3)

where A0 accounts for the amount of direct excitation of the acceptor unit (at this

wavelength we have εD/εA ' 4), while AET is associated to the energy transfer

component. The fitting procedure gave us A0=0.021 ± 0.003 AET= 0.092 ± 0.003

and τET = 1.1 ± 0.3 ps. The decay part were fitted with a biexponential kinetic

model:

R(t) = A1 exp(−t/τ1) + A2 exp(−t/τ2) (5.4)

and from the fitting procedure we obtained A1 =-0.017 ± 0.003, τ1= 8 ± 2 ps,

A2 =0.067 ± 0.005 and τ2= 225 ± 15 ps. As described in section 4.4.3, the time

constant τ1 is related to the vibrational cooling, while the longer decay time τ2 is

due to the electronic relaxation. We can now calculate the efficiency of the energy

transfer Q, which is given by

Q =
KET

KET + (Kf + KIC + KISC)D

(5.5)

where KET = 1/τET is the kinetic constant for the energy transfer process and

1/(Kf + KIC + KISC)D = 1/τD) is the deactivation time of the S1 donor state

measured experimentally. From equation 5.5, and knowing that τD= 27 ± 3 ps we

obtain Q=0.961

The data discussed above highlight a very fast and efficient intramolecular elec-

tronic energy transfer process. It is important to model the mechanism responsible

of the intra-EET, in other words, how Dn and Ac interact. Since Dn and Ac are

linked each other by saturated σ bonds, we can assume that the energy transfer pro-

cess is due to the Coulomb interaction described in section 5.1. We can then assume

that the transfer process is of the Förster type; apparently the through-bond transfer

mechanism, plays a negligible role, as well as any possible Triplet-Singlet exchange
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5.4 Single Wavelength Measurements and Conclusions

interaction. According to the Förster theory, we can estimate the distance between

the two interacting dipole, that is, the distance between the center of mass of the

two chromophore. The transfer rate constant is related to the interchromophoric

distance by

KET =
9000 ln 10 k2 ΦDn

128 π5 n4 NA τDn R6
Jres (5.6)

Jres =

∫ ∞

0

FD(ν)ε(ν)

ν4
dν (5.7)

where k2 is the orientational factor, ΦDn and τDn are the fluorescence quantum

yield and the lifetime of the isolated donor Dn respectively, n is the refractive index

of the solvent, NA is the Avogadro’s number, R is the interchromophoric distance

and Jres is the spectral overlap integral. In equation 5.7, FD(ν) is the normalized

emission spectrum of Dn and ε(ν) is the molar extinction coefficient of isolated Ac

(It should be note that if the wavenumbers are expressed in cm−1, then the distance

R is expressed in cm). Making use of equation 5.7, and considering the orientational

factor equal to 2/3 (random orientation), we obtained for R '=7.5 Å. Considering

the flexible molecular bridge, this distance can be the real distance between the two

chromophore, only assuming a "cofacial" conformation.
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Chapter 6

Sub-picosecond Optically Induced

Valence Tautomeric Interconversion

of a Manganese-Dioxolene Adduct

Photoinduced electron transfer is the phenomenon characterising any potential ap-

plication of the conversion of photon energy into chemical potential energy.120,121

The modified charge distribution of the chromophore, consequent to the absorption

of a photon, can be exploited in turn as a memory bit of information or for creating

the primary reaction trigger and establishing an useful potential gradient. Examples

are transmembrane potential differences in biological systems122,123 or the electric

potential associated to electron-hole pairs when the chromophore is anchored to a

semiconductor material.124–126 The possible application of the photon absorption

event is however intrinsically dependent on the time scale of the processes determin-

ing the relaxation to the ground state of the excited chromophore. The relaxation

from the excited state to lower energy states involves several mechanisms usually

indicated as internal conversion, intersystem crossing, vibrational relaxation, and so

on. Quantum mechanics predict that in the intersystem crossing the electron trans-

fer process can be treated as an activated radiationless transition between different
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6. Sub-picosecond Optically Induced Valence Tautomeric Interconversion of a
Manganese-Dioxolene Adduct

electronic states ψi and ψj of the chromophore. The rate constant k of the process

is given by the relationship127

k =
2π

~
|V |2 G (6.1)

where V is the electronic coupling matrix element including spin-orbit coupling,

and G is the thermally averaged nuclear Franck-Condon vibrational overlap factor.

The value of V depends on the overlap of the ψi and ψj wave functions. As a general

expectation, it can be predicted that this value is large if the two wave functions

have the same multiplicity, while it is small when their character is different. For

this reason, in order to obtain optically induced long-lived charge separations to

be exploited in chemical applications, it is generally believed necessary to populate

low-lying excited states having different spin multiplicity from that of the electronic

ground state of the chromophore. The spin-forbidden character of the transition

slow down the relaxation of the excited state back to the ground state. However if

the electron transfer process involves states with the same spin multiplicities, the

recovery rate constant is presumed to be so large that any wished interaction with

the chemical environment is precluded.

6.1 Introduction

Few years ago it has been demonstrated that dioxolene adducts of a manganese-

tetraazamacrocycle acceptor can be isolated with two different charge distribu-

tions.128 It was found that the complexes of general formula Mn(CTH)(diox)Y

(CTH=dl -5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, diox=semiquinonato

(DBSQ) or catecholato (DBCat) forms of 3,5-di-tert-butyl-o- benzoquinone ) can be

isolated at room temperature as green MnII(CTH)(DBSQ)ClO4 and yellow-brown

MnIII(CTH)(DBCat)PF6 (or BPh4) redox isomers. In the solid state these com-

plexes undergo entropy driven valence tautomeric inter-conversion

MnIII(CTH)(DBCat)Y À MnII(CTH)(DBSQ)Y (6.2)
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6.1 Introduction

involving an intramolecular electron transfer between the dioxolene ligand and

the metal ion. Temperature dependent magnetic susceptibility studies showed that

the two complexes are characterised by quintet electronic ground states. For the

yellow-brown derivatives this is consistent with the MnIII-DBCat charge distribution

(the metal ion being hs− d4).

Figure 6.1: X-Ray Schematic structure of Mn(CTH)(diox).

X-ray structural data well support this suggestion. For the green derivative

the observed magnetic data (Figure 6.2) are strongly in favor of the existence of

a large anti-ferromagnetic coupling interactions between the hs-manganese(II) ion

(t2g3e2
g, S = 5/2) and one semiquinonato ligand ( π∗1, S = 1/2), as theoretically

predicted.

These adducts exist in the two different charge distributions in solution. Indeed

electronic spectra showed (Figure 6.3) that they exist as MnII-DBSQ in low-donor

solvents (acetone, 1,2-dichloroethane, toluene), whereas in high-donor solvents, like

DMSO and methanol, the MnIII-DBCat redox isomer dominates. In acetonitrile

the two redox isomers coexist, the MnIII-DBCat being predominant at room tem-

perature and the MnII-SQ one at higher temperature. Previous studies suggested

that this behavior should be due to the difference in solvation enthalpy of the two

species in the different solvents.129
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Figure 6.2: Change in χT as a function of temperature T for

MnIII(CTH)(DBCat) (•) and for MnII(CTH)(DBSQ) (¤).
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Figure 6.3: Electronic spectra of [Mn(cth)(dtbcat)]BPh4 in acetone (black curve)

and DMSO (red curve).

Several reports on manganese and cobalt dioxolene complexes undergoing valence

tautomerism,130–136 suggest that, also in this case, the observed inter-conversion is

associated to a substantial variation of the Mn-O coordination bond length (tenta-

tively from 1.9 in MnIII-DBCat species to 2.1 in the MnII-DBSQ one). This can

be mainly attributed to the change in the σ∗ orbital population, from e1
g in the

MnIII complex to e2
g in the MnII one. In the present work we performed a time
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resolved spectroscopic study of this Manganese complex, to the purpose of clari-

fying the details of the electron transfer and energy relaxation processes occurring

a typical valence tautomeric interconversion137–140. It is well known that the tau-

tomeric equilibrium is influenced by the solvent, in particular Dei et al.129 showed

that high-donor solvent were able to stabilize the Mn(III) while low-donor solvent

stabilize Mn(II); this indicates that the solvent plays a crucial role in determining

the entity of the free energy of conversion. For that reason we decided to performed

experiments in a solvent with intermediate donor characteristics, with the purpose

of modulate the conversion free energy to increase the transfer probability.

6.2 Results and Discussion

Transient spectra were obtained following the 400 nm excitation of the acetonitrile

solution containing MnIII(CTH)(DBCat)PF6. The 400 nm pump wavelength was

obtained by frequency doubling the amplified output (duration ∼ 100 fs at 800 nm,

repetition rate 1 kHz, energy 700 µ J/pulse) produced by a regenerative amplified

Ti:Sapphire laser system. The solution was prepared under nitrogen atmosphere

and the residual oxygen contained in the solution was eliminated by means of a

vacuum pump. The Absorbance of the sample around 1 OD, thus fulfilling the

condition of maximum excitation efficiency within the optical path. The irradiated

volume is refreshed by stirring the sample with a micro magnet inside the cell and

transient absorption spectra were recorded reducing the repetition rate from 1KHz

to 100 Hz to avoid photo-damage of the sample. Transient absorption spectra and

single wavelength measurements were done at room temperature, keeping the sample

under vacuum, to prevent oxidation due to air exposure.

The acquired transient spectra, for delay times greater than 10 ps and till 1.2

ns (the maximum delay on our experimental setup), are characterized by a spectral

feature which corresponds to the the difference between the static spectra of the two

tautomers (Figure 6.4).
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Figure 6.4: (black) Transient spectrum recorded 100 ps after 400 nm pump excita-

tion (∼ 0.8 µJ pulse) of a solution of MnIII(CTH)(DBCat)PF6 (solvent=CH3CN,

Abs400nm ' 1). (red) Ground state difference spectrum of the two tautomeric form.

This means that 10 ps after excitation we observe the presence of the MnII-

DBSQ form. The excited species is characterized by a very long lifetime, eceeding

the detectable time window of our set-up (1.8 ns).

In order to obtain detailed information on the temporal dynamics within the

first 10 picoseconds we performed single wavelength measurements. This technique

allowed us to increase the sampling frequency of the transient signal without increase

the global time of the experiment. In single wavelength measurements (Figure 6.5)

we used 400 nm pump pulses, and 575 nm probe wavelength. The analysis of these

data shows that three distinct components are needed to reproduce the experimental

data, by convolution of the instrumental function with a decay function model:

• A very fast temporal component. This is due to the cross-phase modulation

effect, and can be reproduced by the convolution of the instrumental function
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(250 fs FWHM) with a delta-type function.

• The second component is related to the vibrational rearrangement in the ex-

cited state an is characterized by a decay time ∼ 1 ps.

• The third component is associated to the decay of the ESA band centered at

∼600 nm; the time scale of this process is too long to be measured with our

apparatus (its contribution appears as a flat line).
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Figure 6.5: (•) Experimental single wavelength measure with λprobe = 525nm

obtained after 400 nm pump excitation (∼ 0.8 µJ pulse) of a solution of

MnIII(CTH)(DBCat)PF6 (solvent=CH3CN, Abs400nm ' 1). (red) Fitting curve.

Previous studies reported on cobalt-dioxolene derivatives suggested that the op-

tically induced valence tautomeric inter-conversion is virtually complete within 1

ps.137,138. The recovery time to the ground state occurs on the nanosecond time

scale (1-100 ns).139,140 The relatively large lifetime was explained by considering

the different spin multiplicity character existing between the low-lying excited state
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and the ground state. The results we report here confirm that the primary inter-

conversion following photon absorption occurs within less than 1 ps. We are here

arguing the existence of the orthogonality between the acceptor and donor orbitals

involved in the electron transfer. Equilibrium 6.2 involves a formal electron transfer

between the HOMO orbital of the catecholato moiety ( π∗ in character) and the

eg orbital of the metal ion ( σ∗ in character). The forbidden character of this pro-

cess does not seem to constitute a severe constraint. The electron transfer process

may involve firstly an orbital of the metal ion, with subsequent evolution on the

ligand field manifold. Although the detailed mechanism is not well understood, it

has been suggested that the evolution of the charge transfer state coupled to ligand

field states consist of a barrier less inter conversion between highly mixed states,

eventually leading to the population of the low-lying excited state. This result well

agrees with those obtained in investigations concerning the optical interconversions

of iron(II) spin crossover derivatives and ruthenium bipyridine complexes.141–145 The

most relevant result in our data is given by the unexpected large lifetime of the low-

lying excited state, which well compares with those observed for different iron(II)

spin crossover complexes and for cobalt-dioxolene undergoing valence tautomeric

inter-conversion. In contrast to the present case, in those compunds the back re-

laxation involves states of different multiplicity, and this has been proposed as the

explanation for the long lifetime of the low-lying excited state. The fact that a sim-

ilar behavior has been demonstrated for the Manganese complex discussed here, for

which no multiplicity difference can be invoked, leads us to conclude that the wave

function multiplicity cannot be the determining factor in the relaxation process. It

is probably very important to focus the attention on the role of the geometrical

changes as reflected by the G factor. In the present case in fact this displacement is

large; we can tentatively conclude that this point should be highly considered in the

time dependent evolution dynamics of the chromophores which follow the photon

absorption event.

120



Appendix A

Data analysis methods

A time resolved spectrum is the most well-known example of two-way data. These

data are a collection of measurements in two dimensions (ways). The first dimension

is the independent experimental spectral variable: wavelength λ or wave number ν.

The second dimension is an independent experimental variable to monitor spectral

change: time t after excitation, temperature T , polarization dependence or excita-

tion wavelength. To understand the processes underlying the observable spectro-

scopic changes a model-based analysis is mandatory. From an analysis perspective

two problems can be distinguished:

• when a parameterized model of the observations is available, the parameters

have to be estimated in a statistical way

• when only a class of models is known, in addition the "best" model needs to

be determined.

Several methodological reviews have been written on global and target analysis by

Beechem146–148 and coworkers, Ameloot149 et al. Holtzwarth150 and Dioumaev151.

These reviews demonstrate the importance of simultaneous (global) analysis of mul-

tiple decay traces. The combination of global analysis with testing of a photophysical

or photochemical model is often called target analysis. The word model can be used

in two different ways.
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A. Data analysis methods

One the one hand, a model for the observations is formulated in a mathematical-

statistical terms. Thereby the measurements are described stochastically, since tak-

ing into account the noise properties is essential for precise parameters estimation.

On the other hand, the experimentalist is studying a complex system, gener-

ating a huge amount of observations. The goal of the experiments is to arrive at

a simplified description of the system and estimate the essential physicochemical

parameters with the help of a parameterized model. Most often such a model con-

sist of a kinetic scheme containing transitions between states, which is also called

compartmental model.

A.0.1 Model for the Observations

A time-resolved spectrum is a collection of measurements done at different (distinct)

times and wavelengths. Two measurement sequences can be distinguished in a pump

and probe experiment:

a. Measurements can be done simultaneously at a great number of wavelengths

and at a certain time delay with respect to the exciting pulse. This is called a

time gated spectrum. A collection of such time gated spectra at different time

delays constitutes a time-resolved spectrum. With pump-probe spectroscopy,

a time gated spectrum is susceptible to baseline fluctuations.

b. Alternatively, at a particular wavelength, a decay trace is measured as a func-

tion of time in respect to the exciting pulse: a collection of such decay traces

measured at different wavelengths constitutes a time-resolved spectrum.

A.0.1.1 Instrumental Function

Usually the system is excited by a short laser pulse of a certain energy. The con-

volution of the shape of this exciting pulse and the detector response is called the

impulse response function IRF and it limits the fastest response observable in the
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experiment. In a sub-picosecond pump probe experiment, as described in the in-

troduction of section A, the detector response can be obviously neglected and the

IRF is given by the convolution of pump and probe pulses (Equation 2.12). Ideally

the IRF width should be shorter than the shortest time scale under study. This is

impossible when studying ultrafast phenomena and then on a (sub)picosecond time

scale, the shape of the IRF as well as its timing precision become important.

A.0.1.2 Stochastics

The stochastic properties of pump-probe types of measurements are not easy to han-

dle. The observations are assumed to contain additive normally distributed noise.

In general these observations are also assumed to be statistically independent, which

seems justified because the measurements are done sequentially. There is one ex-

ception: with time gated spectra a whole spectrum is observed simultaneously, and

in principle the responses measured at different wavelengths could be statistically

dependent with (unknown) covariance matrix Σ (independent of time).152 With in-

dependent measurements there are several possible cases for the usually unknown

variance σ2 which may in principle depend upon time t and wavelength λ: (a) con-

stant variance σ2(t, λ) = σ2 which is the most common assumption; (b) wavelength-

dependent variance σ2(t, λ) = σ2(λ) which is appropriate with difference absorption

measurements. In general, σ2(λ) needs to be estimated as well. This procedure is

called iteratively reweighted least squares.

A.0.2 Model Assumption

A.0.2.1 Homogeneity

A classical problem in describing reaction dynamics is (in)homogeneity. The com-

mon assumption is that the properties of the system under study are homogeneous,

which means that a discrete set of parameters describes the whole system. The ob-

served dynamics of the ensemble can be ascribed to the dynamics of each individual
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member of that ensemble.

A.0.2.2 Separability

The spectroscopic properties of a mixture of components are a superposition of the

spectroscopic properties of the components weighted by their concentration. In the

case of absorption this is known as the Beer-Lambert law. Thus, the noise-free,

time-resolved spectrum ψ(t, λ) is a superposition of the contributions of the ncomp

different components:

ψ(t, λ) =

ncomp∑

l=1

cl(t) εl(λ) (A.1)

where cl(t) and εl(λ) denote, respectively, the concentration and spectrum of com-

ponent l.

Note that according to Equation A.1, a separability of time and wavelength

properties is possible. However, with ultrafast measurements there is a caveat:

the properties of the detector system are in general wavelength-dependent on a

(sub)picosecond time scale, thus with wavelength-dependent parameters θ(λ) the

model for the concentration reads cl(t, θ(λ)). Regarding Equation A.1, we note

that the quantity which will be estimated is the product cl · εl which in itself is

insufficient for the determination of the absolute values of cl and εl. Thus, when we

have, e.g. a kinetic model for cl and no additional information, we can only identify

the parameters which determine the shapes of cl and εl.

A.0.3 Kinetics Models

In this section We will describe the schematic procedure to analyze a multi-traces

set of data and the models to interpret the molecular response function R(t) of

Equation 2.13. A first distinction to be made is the order of the kinetics. In case

the concentrations are described by linear differential equations, we are dealing

with first order kinetics. The solution of a system of linear differential equations is

given by a sum of exponential decays convolved with the IRF. When the differential
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equations contain product of concentrations terms we are dealing with second order

kinetics . In the following, we will restrict ourselves to first order kinetics, but many

aspects of these methods are also applicable to more complex kinetics.

A.0.3.1 Global Analysis

Without "a priori" knowledge about a detailed kinetic model, the first step is the

data fitting with a sufficient number of exponential decays and their amplitudes

which constitute the Decay Associated Spectra (DAS). Note that this number can be

larger than the number of spectrally different components present. Subsequently, the

DAS can be fitted with a spectral model. With difference absorption spectroscopy

(such as transient absorption technique) the amplitudes associated with exponential

decays are termed Decay Associated Difference Spectra (DADS).

A.0.3.2 Compartmental Models

When "a priori" knowledge about a detailed kinetic model is available, a linear

time-invariant compartmental model can be used. Because in contrast with global

analysis, a specific kinetic model is tested, this is often termed target analysis. The

target here is to describe the real concentrations of the components. Note that

the global analysis is equivalent to a number of noninteracting, parallelly decaying

compartments.

An important question is whether all unknown kinetic parameters can be esti-

mated from the data. To answer this, a first step is of course detection of structural

(un) identifiability, which is caused by incomplete information on the system. When

different compartmental schemes result in the same model output, the system is

structurally unidentifiable.

Transitions between compartments are described by microscopic rate constants

which constitute the off diagonal elements of the transfer matrix K. The diagonal el-

ements of K contain the total decay rates of each compartment. The concentrations

of each compartment are described by a vector c(t) = [c1(t) . . . cncomp(t)]
T . Thus, a
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linear compartmental model with ncomp compartments is described by a differential

equation for these concentrations:

d

dt
c(t) = K c(t) + j(t) (A.2)

where the input to the system is described by a vector j(t) = g(t) [1 x2 . . . xncomp ]
T ,

with g(t) the IRF and xl representing a possible extra input to compartment l.

Equation A.2 can be solved analytically, which is important for both insight into

the problem and for computational speed.

We assume that all eigenvalues of the transfer matrix K are different, and that

c(−∞) = 0. The solution of Equation A.2 is then given by c(t) = g(t)⊗ eKt where

⊗ indicates convolution. We can distinguish two different cases:

1. For a diagonal K-matrix (K = diag(−k1 , . . . , −kncomp)) with all inputs xl

equal to 1, the concentration matrix C consists of elements [CI ]pq = cI
q(tp, kq) =

g(t) ⊗ exp(−kqtp). The sub or superscript I indicates that this is Model I

comprising independently decaying compartments, also called parallel model.

2. For the evaluation of the exponential of a non-diagonal K matrix and with

all inputs xl different to 1, we use the eigenvector-eigenvalue decomposition

K = UΛU−1. With K = diag(−k1 , . . . , −kncomp) we have eKt = UeKtU−1

and

eKt =U diag
(
U−1[1 x2 . . . xncomp ]

T
)

× [
g(t)⊗ e−k1t . . . g(t)⊗ e−kncomp t

]T ≡ AT
II CT

I (A.3)

Thus, the solution of the general compartmental model is a linear combination of

the cI
l and thus a transformation of CI (derived from the eigenvalues of the transfer

matrix K) for which we can write

CII = CI AII (A.4)

126



with AT
II = U diag

(
U−1[1 x2 . . . xncomp ]

T
)
. Note that a compartmental model is

closely related to the state space representation in mathematical systems theory,

with the vector of concentrations of compartments being the state vector.

A.0.3.3 The Unbranched, Unidirectional Model

Apart from the global analysis with independent decays (1| 2| . . . |ncomp), the sim-

plest kinetic scheme is the unbranched, unidirectional model (1 → 2 → · · · → ncomp).

These models are also termed parallel and sequential, and correspond to the gener-

alization of the models I and II of the previous section.

In the sequential model back-reactions are ignored on the assumption that the

energy losses are large enough that the reverse reaction rates are negligible. Note

the assumption that there are no losses in the chain 1 → 2 → · · · → ncomp. The

compartmental model can be solved to yield

cl(t) =
l∑

j=1

bj,l exp(−kjt)⊗ g(t) (A.5)

where kj is the decay rate of compartment j and the amplitudes bjl of the (convolved)

exponential decays are defined by b11 = 1 and for j ≤ l:

bjl =
l−1∏
m=1

km/

l∏
n=1

(kn − kj)n 6=j (A.6)

In particular, for j < l, bj,l = bj,l−1 kl−1/(kl − kj). Of course, hybrids of the gener-

alized models I and II, containing a mixture of parallelly and sequentially decaying

compartments, can also easily be solved.

A.0.4 Model for the Observations in Matrix Notation

In many cases the data can be collected in a matrix Ψ of dimensions m×n, where m

and n are, respectively, wavelengths and the number of different time instants. The

matrix element ψij then contains the measurement at time instant tj and wavelength

λi. The use of matrix notation greatly simplifies the description of the model for the
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observations and allows the use of matrix reduction techniques. The basic model

which describes the time evolution of spectra is the following

ψ λitj =

ncomp∑

l=1

cltj{θ} εlλi
{γ} (A.7)

where cltj denotes the concentration of component l at time tj, εlλi
denotes the

contribution of component l at wavelength λi, {γ} and {θ} are the set of parameters

employed in the model for the representation of component’s spectra and for the

representation of the concentration’s evolution. The εlλi
and cltj are collated in the

matrices E and C, of dimension m×ncomp and n×ncomp , respectively. The columns

of E are the component spectra, whereas the columns of C are the concentration

profiles of the components. Hence we can write

Ψ = E{γ}C{θ}T (A.8)

In this framework of general matrix representation of the transient two-way data,

two problems come out: the estimation of the number of components and the fitting

of the data matrix with a suitable model (for example a kinetic model) which means,

in principle, the simultaneous adjustment of a huge number of {γ} and {θ} model

parameters.

Indeed, assuming time t as the experimental evolution variable, i.e. the two-

way data are collected in the matrix Ψ as expressed before and no temperature or

other parameters dependencies are considered, the general modeling problem can be

expressed as a least-square interpretation of Equation A.8.

Ψ ≈ E{γ}C{θ}T (A.9)

The optimization implied by Equation A.9 will most often be taken as the minimiza-

tion of a sum of un-weighted squared residuals, and the relation "≈" will imply such

simple least-squares optimization unless otherwise noted. Equation A.9 involves the

minimization of the residual expressed by Equation A.10, in respect to some cho-

sen set of adjustable spectral amplitudes Eλil(γ) and parameters (amplitude and/or
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time constants) {θ} of the kinetic model.

δ2 ≡
nλ∑

λi

nt∑
tj

[
ψλitj −

(
ncomp∑

l=1

Eλil C
T
ltj

)]2

(A.10)

One approach is to minimize this expression directly using some appropriate

multi-parameter minimization algorithm, while treating each of the unknown spec-

tral amplitudes and model parameters as nominally independent adjustable param-

eters. The resulting large number of adjustable parameters and its possible impact

on the performance (and even the choice) of the minimization algorithm is the prin-

cipal disadvantage of this approach. On the other hand, the direct minimization

of δ2 in Eq. A.10 also retains a complete flexibility in specifying the spectroscopic

features of the problem, which is often reduced or lost in more efficient or "elegant"

procedures. Of course, the complete flexibility of this direct analysis may not be es-

pecially helpful for many problems, but procedures that retain some of its flexibility

while eliminating the more serious of its inefficiencies are often desirable.

A.0.4.1 Singular Value Decomposition

The analysis of the modeling problem in Eq. A.10 may often be facilitated by

simplifying the data matrix Ψ in some way that does not compromise its essential

information content. Beyond the obvious simplifications designed merely to reduce

the size of the data matrix (e.g., truncation and/or re-sampling of the data on a

coarser grid of spectroscopic parameters λ) are more sophisticated rank-reduction

procedures that attempt to extract minimal descriptions of the "meaningful" content

of a data set. Methods based on singular value decomposition (SVD) have become

increasingly popular in recent years.153

The Singular Value Decomposition of an arbitrary m × n (m > n) matrix Ψ

allows the expression of this matrix as the product

Ψ = U S V T (A.11)
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where U is a m × n matrix and V is a n × n matrix. The columns of each matrix

comprise orthonormal sets of vectors (i.e., UT U = V T V = I, the n × n identity

matrix), and S is a n × n diagonal matrix with nonnegative diagonal elements si

called the singular values of Ψ. When Ψ is a nλ × np (where p is the evolution

variable of the experiment, i.e t in our case) matrix of spectroscopic data arranged

as matrix Ψ in Eqs. A.7 and A.8, the columns of U are themselves spectra of the

same type, the normalized basis spectra of Ψ. The contribution of a specified basis

spectrum to each of the measured spectra (columns of Ψ) is given by the elements

of the corresponding row of V T (column of V ), scaled by the corresponding singular

value. The si, along with the corresponding columns of U and V , may always be

ordered so that s1 ≥ s2 ≥ . . . ≥ sn ≥ 0. With this ordering, the rank r of Ψ is the

index of the last (and smallest) nonzero singular value. Moreover, for any q ≤ r,

the truncated matrices Uq and Vq (consisting, respectively, of the first q columns

of U and V ) and Sq (the diagonal matrix containing the q largest singular values)

provide the best possible least-squares approximation of rank q of the matrix Ψ,

Ψ ∼= Ψq = UqSqV
T
q . The residual of this approximation is given by

|Ψ−Ψq|2 =
r∑

i=q+1

s2
i (A.12)

This last property motivates an overall strategy for the use of SVD in reducing spec-

troscopic data sets: By considering the distribution of singular values, a "truncated

SVD" consisting of a (generally small) subset of the basis spectra and corresponding

amplitude vectors is selected that represents the original data matrix within some

acceptable tolerance. Additional processing of these retained vectors may be done,

including linear combination and further screening based on signal-to-noise consid-

erations. The final result is a pair of matrices U ′ and V ′ of basis spectra and vectors

of amplitude-versus-experimental parameter (into which singular values have been

absorbed), respectively, all of which are of acceptable quality for further analysis,

such that the product Ψ′ ≡ U ′ V ′T remains close to Ψ.

Of course, any procedure that satisfactorily produces such a minimal product
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representation would serve, but the SVD provides an especially convenient mathe-

matical framework for the analysis.

A.0.4.2 Estimation of the Number of Components

When there are no linear dependencies between the component spectra, and thus

no linear relationships between the columns of E, the matrix E is of full rank.

Analogously, when there are no linear dependencies between the concentrations of

the components, and thus no linear relationships between the columns of C, the

matrix C is also of full rank. This rank is equal to the number of components.

Consequently, when rank(C) = rank(E) = ncomp and with noise-free data , we have

rank(C) = rank(ECT ) = ncomp. Thus, with experimental data of which we do not

know the number of components, we can estimate this number by estimating the

rank of Ψ using the Singular Value Decomposition of Ψ

Ψ = U S V T (A.13)

With ncomp components and noise-free (Equation A.11) data we have exactly ncomp

significant singular values: s1 ≥ s2 ≥ . . . ≥ sncomp > sncomp + 1 = · · · = 0.

A.0.4.3 Projecting the Data upon Singular Vectors

Next to the use of SVD for rank estimation, an important application is data re-

duction and noise suppression. Assuming the noise is small, the Singular Value

Decomposition results can be used to project the data upon the first ncomp singular

vectors.

It must be emphasized that the matrices U ′ and V ′ described in section A.0.4.1

are still purely mathematical objects at this stage, but they provide a useful starting

point for the model-based synthesis of components spectra and populations. Within

this reduced representation (of rank q) of the data set, all measured spectra are linear

combinations of the columns of U ′. Moreover, a basic assumption of the modeling is

that all spectra are linear combinations of the components spectra in E (Equation
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A.8). Therefore, we can say that the components spectra are linear combinations of

the columns of U ′, i.e., E = U ′A for some matrix of coefficients A. We then have a

representation of the data matrix in the form

Ψ ' Ψ′ = U ′ V ′ T ≈ ECT = U ′ACT (A.14)

Therefore, within our chosen basis U ′ for all spectra, we can re-cast the least-squares

problem in Equations A.9 and A.10 as a search for a set of model parameters {θ ′}
(time constants) and a matrix of coefficients A (amplitudes) such that the relation

V ′ T ≈ ACT{θ ′} (A.15)

is optimally satisfied, thereby removing direct reference to the components spectra

from the problem. The obvious advantage of the SVD-based analysis is that the

matrices involved are generally much smaller: V ′ T is q × np and A is q × n′comp

(where n′comp is the number of effective components), whereas Ψ and E are nλ × np

and nλ×n′comp, respectively. In many modeling situations the consequent reduction

in computational effort required may be sufficient justification for choosing this

method. After the optimization of the least square problem of Equation A.15, the

Decay Associated Spectra DAS or the Decay Associated Difference Spectra DADS,

which in principle constitute the column of matrix E, can be obtained as DADS =

U ′A.
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Appendix B

Anisotropy in Time Resolved

Fluorescence and Transient

Absorption experiments

In this chapter we will derive the fundamental relations that allows to extrapo-

late the rotational contribution from the transient absorption signal. A great part

of the concepts that we’ll describe derives directly from static and time resolved

fluorescence theory, but can be applied also to transient absorption spectroscopy.

In fluorescence anisotropy measurements (static or time-resolved), the spontaneous

emission is the monitored photophysical process. In TAS experiments, the signal is

acquired after the interaction of the probe beam’s photons with the excited sample,

and it is defined by the changes introduced by this interaction on the probe beam

itself (see section......experimental....). The observed photophysical processes are

then ( excluding vibrational relaxation and multiphoton absorption) the stimulated

emission (SE )and the excited state absorption (ESA) and, from this point of view,

the two experiments are very different. Nevertheless, if we consider the evolution of

the excited state population we obtain the same results. The decay profile that is

obtained by monitoring the intensity of the SE band with a TAS experiment is the
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same as the one obtained by time resolved fluorescence experiment. This is because

the pump and probe experiments allow, during the delay between pump and probe

pulse, the unperturbed relaxation of the molecular system.

B.1 Introduction

Upon excitation with polarized light, the emission from many samples is also po-

larized. The extent of polarization of the emission is described in terms of the

anisotropy (r). Samples exhibiting nonzero anisotropies are said to display polar-

ized emission. The origin of these phenomena is based on the existence of transition

moments for absorption and emission which lie along specific directions within the

chromophore structure. In homogeneous solution the ground-state chromophores

are all randomly oriented. When exposed to polarized light, those chromophores

which have their absorption transition moments oriented along the electric vector

of the incident light are preferentially excited. Hence, the excited-state population

is not randomly oriented. Instead, there is a somewhat larger number of excited

molecules having their transition moments oriented along the electric vector of the

polarized exciting light (see section B.2.3).

Depolarization of the emission can be caused by a number of phenomena, the rel-

ative importance of which depends upon the sample under investigation. Rotational

diffusion of chromophores is one common cause of depolarization. The anisotropy

measurements reveal the average angular displacement of the chromophore that

occurs between absorption and subsequent emission of a photon. This angular dis-

placement is dependent upon the rate and extent of rotational diffusion during the

lifetime of the excited state. These diffusive motions, depend, in turn, upon the

viscosity of the solvent and the size and shape of the rotating molecule. For chro-

mophores in solution, the rotational rate of the chromophore is dependent upon the

viscous drag imposed by the solvent. As a result, a change in solvent viscosity will

result in a change in fluorescence anisotropy. For small chromophores in solutions
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Figure B.1: Schematic diagram for measurement of fluorescence anisotropies.

of low viscosity, the rate of rotational diffusion is typically faster than the rate of

emission. Under these conditions, the emission is depolarized and the anisotropy is

close to zero.

This is the point of view of static anisotropy measurements; in time-resolved

experiments, such as transient absorption or time resolved fluorescence with hundred

femtoseconds of time resolution , the approach is opposite: we are able to reveal

anisotropy changes only when the molecular rotations are faster than the excited

state lifetime. This is the key point which distinguish static and time resolved

measurements.

The measurement of fluorescence anisotropy is illustrated in Figure B.1. The

sample is excited with vertically polarized light. The electric vector of the excitation

light is oriented parallel to the vertical or z-axis. One then measures the intensity

of the emission through a polarizer. When the emission polarizer is oriented parallel

(‖) to the direction of the polarized excitation, the observed intensity is called I‖.

Likewise, when the polarizer is perpendicular (⊥) to the excitation, the intensity is

called I⊥. These values are used to calculate the anisotropy:

r =
I‖ − I⊥
I‖ + 2I⊥

(B.1)
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The anisotropy is a dimensionless quantity which is independent of the total

intensity of the sample. This is because the difference (I‖− I⊥) is normalized by the

total intensity, which is IT = I‖ + 2I⊥.

In earlier publications one frequently encounters the term polarization, which is

given by

P =
I‖ − I⊥
I‖ + I⊥

(B.2)

The polarization and anisotropy values can be interchanged using

P =
3r

2 + r
(B.3)

r =
2P

3− P
(B.4)

Although there is nothing incorrect about the notion of polarization, its use

should be discouraged. Anisotropy is preferred because most theoretical expressions

are considerably simpler when expressed in terms of this parameter, an observation

first made by Alexander Jablonski. As an example of this simplification, consider

a mixture of chromophores, each with polarization Pi and a fractional fluorescence

intensity fi. The polarization of this mixture (P ) is given by
(

1

P
− 1

3

)−1

=
∑

i

fi
−1

(
1

Pi

− 1

3

)
(B.5)

In contrast, the average anisotropy (r) is given by

r =
∑

i

firi (B.6)

where ri indicate the anisotropies of the individual species. The latter expression

is clearly preferable. Furthermore, following pulse excitation, the decay of fluores-

cence anisotropy [r(t)] of a sphere is given by

r(t) = r0e
−t/θ (B.7)

where r0 is the anisotropy at t = 0, and θ is the rotational correlation time of

the sphere. The decay of polarization is not a single exponential, even for a spher-

ical molecule. Suppose that the light observed through the emission polarizer is
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completely polarized. Then I⊥ = 0, and P = r = 1.0. This value can be observed

for scattered light from an optically dilute scatterer. Completely polarized emis-

sion is never observed for fluorescence from homogeneous unoriented samples. The

measured values of P or r are smaller due to the angular dependence of photose-

lection (Section B.2.2). Completely polarized emission can be observed for oriented

samples. Now suppose that the emission is completely depolarized. In this case,

I‖ = I⊥ and P = r = 0. However, it is important to note that P and r are not equal

for intermediate values. For the moment, we have assumed that these intensities

could be measured without artifacts due to the polarizing properties of the optical

components, especially the emission monochromator.

Transient Absorption Spectroscopy (TAS) is a pump and probe experiment in

which both pump and probe laser beams are linearly polarized. The mutual ori-

entation between pump and probe beams is achieved by the help of a broad-band

wavelength rotator. As stated before, transient signal is acquired after the inter-

action of the probe beam’s photons with the excited sample, and it is defined by

the changes introduced by this interaction on the probe beam itself. Therefore in

this kind of experiment the polarization of pump and probe beams acts as selection

element on the polarization of the acquired signal: they have the same function as

the above mentioned polarizers.

B.2 Theory of Anisotropy

B.2.1 Origin of the Definition of the Anisotropy

Consider partially polarized light traveling along the x-axis (Figure B.2), and assume

that one measures the intensities Iz and Iy with the detector and polarizer positioned

on the x-axis. The polarization of this light is defined as the fraction of the light

that is linearly polarized.
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Figure B.2: Polarization of a ray of light.

Specifically,

P =
p

p + n
(B.8)

where p is the intensity of the polarized component, and n is the intensity of the

natural component. The intensity of the natural component is given by n = 2Iy.

The remaining intensity is the polarized component, which is given by p = Iz − Iy.

For vertically polarized excitation, Iz = I‖ and Iy = I⊥.

The anisotropy (r) of a light source is defined as the ratio of the polarized

component to the total intensity (IT ),

r =
Iz − Iy

Ix + Iy + Iz

=
Iz − Iy

IT

(B.9)

When the excitation is polarized along the z-axis, dipolar radiation from the

chromophores is also symmetric around the z-axis. Hence, Ix = Iy. Recalling that

Iy = I⊥ and Iz = I‖, one obtains Eq. (B.1).

The polarization is an appropriate parameter for describing a light source when a

light ray is directed along a particular axis. In this case, p + n is the total intensity,

and P is the ratio of the excess intensity along the z-axis divided by the total

intensity. In contrast, the radiation emitted by a chromophore is symmetrically

distributed about the z-axis.

This distribution of radiated intensity is shown in Figure B.3 for a dipole oriented

along the z-axis. The intensity of the radiated light is proportional to cos2 ζ, where
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355

Figure B.3: Radiating dipole in a coordinate system. The dipole is oriented along

the z-axis, and the intensity I(ζ) of the emission in any direction is proportional

to cos2 ζ, where ζ is the angle from the x− y plane. The thin arrows on the lines

indicate the direction of the electric field E. The wide arrows indicate the direction

of energy migration, which is symmetrical around the z-axis.

ζ is the angle above or below the x−y plane. It is for this reason that, for excitation

polarized along the z-axis, the total intensity is not given by I‖ + I⊥, but rather by

IT = I‖ + 2I⊥. Hence, the anisotropy is the ratio of the excess intensity that is

parallel to the z-axis to the total intensity. It is interesting to notice that a dipole

oriented along the z-axis does not radiate along this axis and cannot be observed

with a detector on the z-axis.

B.2.1.1 Origin of IT = I‖ + 2I⊥

It is widely known that the total intensity is given by I‖+2I⊥, but the origin of this

result is less widely understood. This relationship is the result of the transmission

properties of polarizers, in particular, the dependence of the intensity on cos2 α,

where α is the angle between the transition moment and the transmitting direction

of the polarizer or the mutual angle between pump and probe beams in TAS exper-
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iments. Consider a collection of chromophores, each emitting an intensity Ii. The

total intensity is given by

IT =
n∑

i=1

Ii (B.10)

When the intensity is observed through a polarizer (Ip) oriented along an axis p,

the intensity is given by

IP =
n∑

i=1

Ii cos2 αpi (B.11)

where αpi is the angle between the direction of the ith emission dipole and the

axis of the polarizer. One can choose to measure the intensity along the three

Cartesian axes

Ix =
n∑

i=1

Ii cos2 αxi (B.12)

Iy =
n∑

i=1

Ii cos2 αyi (B.13)

Iz =
n∑

i=1

Ii cos2 αzi (B.14)

where the αpi are the angles between the ith dipole and the representative axis

(Figure B.4).

Figure B.4: Cromophore at an arbitrary orientation in the Cartesian coordinate

system.

It is easy to see that

Ix + Iy + Iz =
n∑

i=1

Ii = IT (B.15)
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B.2 Theory of Anisotropy

Equation B.15 is correct because

cos2 αxi + cos2 αyi + cos2 αzi = 1 (B.16)

is always true. Because Ix = Iy for vertically polarized excitation, IT = I‖+2I⊥.

It is interesting to note that this relationship would not be correct if the transmission

of polarizers depended on some other function of αpi.

B.2.2 Fundamental Equations

The theory for fluorescence anisotropy can be derived by consideration of a single

molecule.

B.2.2.1 Instantaneous Anisotropy

Following an infinitely short pulse of light, the total fluorescence intensity at time t

is I(t) = I‖(t) + 2I⊥(t), and the instantaneous emission anisotropy at that time is

r(t) =
I‖(t)− I⊥(t)

I‖(t) + 2I⊥(t)
=

I‖(t)− I⊥(t)

I(t)
(B.17)

Each polarized component evolves according to

I‖ =
1

3
I(t)[1 + 2r(t)] (B.18)

I⊥ =
1

3
I(t)[1− r(t)] (B.19)

After recording I‖(t) and I⊥(t), the emission anisotropy can be calculated by

means of Eq. (B.67), provided that the light pulse is very short with respect to the

fluorescence decay. Otherwise, we should take into account the fact that the mea-

sured polarized components are the convolution products of the δ-pulse responses

(B.64) by the instrument response.

B.2.2.2 Steady-state Anisotropy

On continuous illumination (i.e. when the incident light intensity is constant), the

measured anisotropy is called steady-state anisotropy r. Using the general definition
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of an averaged quantity, with the total normalized fluorescence intensity as the

probability law, we obtain

r =

∫∞
0

I(t)r(t) dt∫∞
0

I(t) dt
(B.20)

In the case of a single exponential decay with time constant τ (excited-state

lifetime), the steady-state anisotropy is given by

r =
1

τ

∫ ∞

0

r(t) exp(−t/τ) dt (B.21)

B.2.2.3 Anisotropy from emitting dipoles

Assume for the moment that the absorption and emission transition moments are

parallel. This is equivalent to say that that no rearrangement of the molecular ge-

ometry between the ground and the emitting excited state is considered: we assume

to work in a fixed nuclear configuration. Assume that a single molecule is oriented

with angles θ relative to the z-axis and φ relative to the y-axis (Figure B.5). Of

course, the ground-state DPH molecules will be randomly oriented in an isotropic

solvent.

Figure B.5: Emission intensities for a single chromophore (DPH)in a coordinate

system.
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B.2 Theory of Anisotropy

Our goal is to calculate the anisotropy that would be observed for this oriented

molecule in the absence of rotational diffusion. The conditions of parallel dipoles,

immobility, and random ground-state orientation simplify the derivation. It is known

that fluorescing chromophores behave like radiating dipoles. The intensity of light

radiated from a dipole is proportional to the square of its vector projected onto

the axis of observation. One can also reason that the emission is polarized along

the transition moment. The intensity observed through a polarizer is proportional

to the square of the projection of the electric field of the radiating dipole onto the

transmission axis of the polarizer. These projections are given by

I‖(θ, φ) = cos2 θ (B.22)

I⊥(θ, φ) = sin2 θ sin2 φ (B.23)

In an actual experiment the solution will contain many chromophores with a

random distribution. The anisotropy is calculated by performing the appropriate

ensemble average based on excitation photoselection (section B.2.3) and how the

selected molecules contribute to the measured intensity. First, consider excitation

polarized along the z-axis. Such excitation must excite all molecules having an

angle φ with respect to the y-axis with equal probability. That is, the population

of excited chromophores will be symmetrically distributed around the z-axis. Any

experimentally accessible population of molecules will be oriented with values of φ

from 0 to 2π with equal probability. Hence, we can eliminate the φ dependence in

Eq. (B.23). The average value of sin2 φ is given by

〈sin2 φ〉 =

∫ 2π

0
sin2 φ dφ∫ 2π

0
dφ

(B.24)

and therefore

I‖(θ) = cos2 θ (B.25)

I⊥(θ) =
1

2
sin2 θ (B.26)

Now assume that we are observing a collection of chromophores which are ori-

ented relative to the z-axis with a probability f(θ). In the following section we
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will consider the form f(θ) expected for excitation photoselection. The measured

fluorescence intensities for this collection of molecules are

I‖ =

∫ π

0

f(θ) cos2 θ dθ = k 〈cos2 θ〉 (B.27)

I⊥ =
1

2

∫ π

0

f(θ) sin2 θ dθ =
k

2
〈sin2 θ〉 (B.28)

where f(θ) dθ is the probability that a chromophore is oriented between θ and

θ + dθ, and k is an instrumental constant. Using Eq. (B.23) and the identity

sin2 θ = 1− cos2 θ, one finds that

r =
3 〈cos2 θ〉 − 1

2
(B.29)

Hence, the anisotropy is determined by the average value of cos2 θ, where θ is

the angle of the emission dipole relative to the z-axis. This is because the observed

intensities I‖ and I⊥ are proportional to the square of the projection of the individual

transition moments onto the x- and the z-axis (FigureB.5).

It is instructive to consider the relationship between r and θ. For a single chro-

mophore oriented along the z-axis, with collinear transitions, θ = 0 and r = 1.0.

However, it is not possible to obtain a perfectly oriented excited-state population

with optical excitation of homogeneous solutions. Hence, the anisotropies are al-

ways less than 1.0. Complete loss of anisotropy is equivalent to θ = 54.7◦. This

does not mean that each chromophore is oriented at 54.7◦ or has rotated through

54.7◦. Rather, it means that the average value of cos2 θ is 1
3
, where θ is the angu-

lar displacement between the excitation and emission moments. Recall that in the

derivation of Eq. (B.29) we assumed that these dipoles were collinear. A slightly

more complex expression is necessary for almost all chromophores because the tran-

sition moments are rarely collinear. In addition, we have not yet considered the

effects of photoselection on the anisotropy values.
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B.2 Theory of Anisotropy

B.2.3 Excitation Photoselection and transition dipole mo-

ments

Observation of fluorescence requires excitation of the chromophores. When a sample

is illuminated with polarized light, those molecules with their absorption transition

moments aligned parallel to the electric vector of the polarized excitation have the

highest probability of absorption. The electric dipole of a chromophore need not

be precisely aligned with the z-axis to absorb light polarized along this axis. The

probability of absorption is proportional to cos2 θ, where θ is the angle the absorption

dipole makes with the z-axis. Indeed, the transition dipole moment and so the

transition probability rate, are proportional to the square of the scalar product

between the molecular electric dipole moment and the electric filed associated to

the electromagnetic radiation:

Ṗ (t) = 2π~|Vfi|2ρ(Efi) (B.30)

where

|Vfi| = 〈Ψf |−→µ · −→E |Ψi〉 (B.31)

and where
−→µfi = 〈ψf | −→µ |ψi〉 (B.32)

is the transition dipole moment. Hence, excitation with polarized light results

in a population of excited chromophores that is symmetrically distributed around

the z-axis (Figure B.6). This phenomenon is called photoselection. Note that the

excited-state population is symmetrical around the z-axis. Most of the excited

chromophores are aligned close to the z-axis, and very few chromophores have their

transition moments oriented in the x− y plane.

B.2.3.1 Parallel Absorption and Emission transition Moments

For the random ground-state distribution, which must exist in a disordered solution,

the number of molecules at an angle between θ and θ + dθ and φ and φ + dφ
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Figure B.6: Excited-state distribution for immobile chromophores with r0=0.4.

is proportional to 2π sin θdθ dφ. This quantity is proportional to an elementary

surface area on a sphere of unitary radius within the angles θ and θ+dθ. This is the

directly consequence of the expression for an infinitesimal volume element in polar

coordinate:

dV = r2 sin θ dr dθ dφ (B.33)

Taking into account the excitation probability, i.e. cos2 θ, the number of excited

molecules whose transition moment is oriented within angles θ and θ + dθ, and φ

and φ+dφ, is proportional to cos2 θ sin θ dθ dφ. Hence, the distribution of molecules

excited by vertically polarized light is given by the fraction of molecules oriented in

this direction:

f(θ, φ) dθ dφ =
cos2 θ sin θ dθ dφ∫ 2π

0
dφ

∫ π

0
cos2 θ sin θ dθ dφ

(B.34)

obtaining

f(θ, φ) dθ dφ = cos2 θ sin θ dθ dφ (B.35)
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B.2 Theory of Anisotropy

The probability distribution given by Eq. (B.35) determines the maximum pho-

toselection that can be obtained using one-photon excitation of an isotropic solution.

More highly oriented populations can be obtained using mul-tiphoton excitation.

Recall that the anisotropy is a simple function of 〈cos2 θ〉 (an ensemble average over

all the possible values of cos2 θ) (Eq. B.29), so calculation of 〈cos2 θ〉 allows calcula-
tion of the anisotropy. For collinear absorption and emission dipoles, the maximum

value of 〈cos2 θ〉 is given by

〈cos2 θ〉 =

∫ 2π

0

dφ

∫ π

0

cos2 θf(θ, φ) dθ dφ (B.36)

Substitution of Eq. (B.35) into Eq. (B.36) yields 〈cos2 θ〉 = 3
5
. Recalling Eq.

(B.29), one finds a maximum anisotropy of 0.4.

r0 =
3 〈cos2 θ〉 − 1

2
= 0.4 (B.37)

This is the value which is observed when the absorption and emission dipoles

are collinear, and when there are no processes which result in depolarization. It

is called the fundamental anisotropy, i.e. the theoretical anisotropy in absence of

any motion. Under these conditions, the excited-state population is preferentially

oriented along the z-axis (Figure B.6), and the value of I⊥ is one-third the value of

I‖ (I‖ = 3I⊥). We note that this value (r = 0.4) is considerably smaller than that

possible for a single chromophore oriented along the z-axis (r = 1.0) (see section

B.2.2.3). In practice, rotational motions can be hindered in a rigid medium. The

experimental value, called the limiting anisotropy, turns out to be always slightly

smaller than the theoretical value. When the absorption and emission transition

moments are parallel, i.e. when the molecules are excited to the first singlet state,

the theoretical value of r0 is 0.4, but the experimental value usually ranges from

0.32 to 0.39.

It is important to remember that there are other possible origins for polarized

light. These include reflections and light scattered by the sample. For a dilute

scattering solution, the anisotropy is close to 1.0. Scattered light can interfere with
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anisotropy measurements. If the measured anisotropy for a randomly oriented sam-

ple is greater than 0.4, one can confidently infer the presence of scattered light in

addition to fluorescence. The maximum anisotropy of 0.4 for collinear absorption

and emission dipoles is a consequence of the cos2 θ probability of light absorption.

Anisotropy values can exceed 0.4 for multiphoton excitation.

B.2.3.2 Non-Parallel Absorption and Emission transition Moments

In the former discussion we assumed that the absorption and emission moments were

collinear (r0 = 0.4). Few chromophores display r0 = 0.4. For most chromophores,

the r0 values are less than 0.4, and, in general, the anisotropy values depend on the

excitation wavelength. This is explained in terms of the transition moments being

Figure B.7: Definition of angles α and ψ when the absorption and emission

transition moments are not parallel.

displaced by an angle α (Figure B.7) relative to each other. In the previous section

(Eqs. (B.22)-(B.29)), we demonstrated that displacement of the emission dipole by

an angle θ from the z-axis resulted in a decrease in the anisotropy by a factor of

(3 cos2 θ − 1)/2. Similarly, the displacement of the absorption and emission dipoles

by an angle α results in a further loss of anisotropy. Let α be the angle between the

absorption and emission transition moments. The aim is to calculate cos θE (where

the subscript E means emission) and then to deduce r by means of Eq. (B.29).
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B.2 Theory of Anisotropy

According to the classical formula of spherical trigonometry, cos θE can be written

as

cos θE = cos θA cos α + cos ψ sin θA sin α (B.38)

where ψ denotes the angle between the planes (OzMA) and (OzME) (Figure

B.7). By taking the square of the two sides of Eq. (B.38) and taking into account

the fact that all values of ψ are equiprobable (〈cos ψ〉 = 0; 〈cos2 ψ〉 = 1/2), we

obtain

〈cos2 θE〉 = cos2 α〈cos2 θA〉+
1

2
sin2 α〈sin2 θA〉 (B.39)

= cos2 α〈cos2 θA〉+
1

2
(1− cos2 α)(1− 〈cos2 θA〉) (B.40)

=
3

2
cos2 α〈cos2 θA〉 − 1

2
〈cos2 θA〉 − 1

2
cos2 α− 1

2
(B.41)

Hence

r0 =
3 〈cos2 θE〉 − 1

2
=

3 〈cos2 θA〉 − 1

2
× 3 〈cos2 α〉 − 1

2
(B.42)

Because 〈cos2 θA〉 = 3/5, the emission anisotropy is given by

r0 =
2

5

(
3〈cos2 θA〉 − 1

2

)
(B.43)

Consequently, the theoretical values of r0 range from 2/5 (= 0.4) for α = 0 (par-

allel transition moments) and −1/5 (= −0.2) for α = 90◦ (perpendicular transition

moments). The observed anisotropy in a vitrified dilute solution is then the prod-

uct of the loss of anisotropy due to photoselection (resulting in a reduction of the

anisotropy by a factor of 2
5
) and that due to the angular displacement of the dipoles.

B.2.4 Magic-Angle Polarizer Conditions

This section describe the procedure of fluorescence magic-angle measurements, some

of the concepts explained will be particularly useful when time resolved fluorescence

and transient absorption experiments will be discussed.

The goal of intensity measurements is usually to measure a signal proportional

to the total intensity (IT ), not one proportional to I‖ or I⊥. However, since the
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transmission efficiency of the emission monochromators depends on polarization,

the signal one observes is usually not proportional to I‖ + 2I⊥, but rather to some

other combination of I‖ and I⊥. With the use of polarizers, the measured inten-

sity can be made proportional to the total intensity IT = I‖ + 2I⊥, irrespective of

the degree of polarization of the sample. To accomplish this, the excitation polar-

izer is oriented in the vertical position and the emission polarizer is oriented 54.7◦

from the vertical. Since cos2(54.7◦) is 0.333 and sin2(54.7◦) is 0.667, these polar-

izer settings result in I⊥ being selected twofold over I‖, forming the correct sum for

IT = I‖ + 2I⊥. The use of these magic-angle conditions is especially important for

intensity decay measurements. The intensity decays of the vertically and horizon-

tally polarized components are usually distinct. Hence, if I‖(t) and I⊥(t) are not

properly weighted, then incorrect decay times are recovered. If the anisotropy is

zero, then the correct intensity and intensity decay times are recovered independent

of polarizer orientation.

B.3 Effects of Rotational Brownian motion

If excited molecules can rotate during the excited-state lifetime, the emitted fluo-

rescence is partially (or totally) depolarized (Figure B.9). The preferred orientation

of emitting molecules resulting from photoselection at time zero is indeed gradually

affected as a function of time by the rotational Brownian motions. From the extent

of fluorescence depolarization, we can obtain information on the molecular motions,

which depend on the size and the shape of molecules, and on the fluidity of their

microenvironment.

Quantitative information can be obtained only if the time-scale of rotational

motions is of the order of the excited-state lifetime τ . In fact, if the motions are

slow with respect to τ(r ≈ r0) or rapid (r ≈ 0), no information on motions can be

obtained from emission anisotropy measurements because these motions occur out

of the experimental time window.
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A distinction should be made between free rotation and hindered rotation. In

the case of free rotation, after a δ-pulse excitation the emission anisotropy decays

from r0 to 0 because the rotational motions of the molecules lead to a random

orientation at long times. In the case of hindered rotations, the molecules cannot

become randomly oriented at long times, and the emission anisotropy does not decay

to zero but to a steady value, r (Figure B.8).

Figure B.8: Decay of emission anisotropy in the case of free and hindered rota-

tions.

We can then anticipate that depending upon the size and shape of the chro-

mophore, and its local environment, a wide variety of anisotropy decays are possible.

A spherical molecule displays a single rotational correlation time. Anisotropy decays

can be more complex if the chromophore is nonspherical, or if a spherical molecule is

located in an anisotropic environment. Another origin of complex anisotropy decays
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is internal flexibility of a chromophore within a larger molecule.

B.3.1 Free Rotation

The Brownian rotation of the emission transition moment is characterized by the

angle ω(t) through which the molecule rotates between time zero (δ-pulse excitation)

and time t, as shown in Figure B.10. Using the same method that led to Eq. (B.42),

it is easy to establish the rule of multiplication of depolarization factors: when

several processes inducing successive rotations of the transition moments (each being

characterized by 〈cos2 ζi〉 are independent random relative azimuths, the emission

anisotropy is the product of the depolarization factors (3〈cos2 ζi〉 − 1)/2:

r(t) =
(3〈cos2 θE〉 − 1)

2
=

∏
i

(3〈cos2 ζi〉 − 1)

2
(B.44)

Figure B.9: Rotational motions inducing depolarization of fluorescence. The

absorption and emission transition moments are assumed to be parallel.

The effect of Brownian rotation is thus simply expressed by multiplying the

second member of Eq. (B.42) by (3〈cos2 ω(t)〉 − 1)/2:

r(t) =
(3〈cos2 θE〉 − 1)

2
=

(3〈cos2 θA〉 − 1)

2
× (3〈cos2 α〉 − 1)

2
× (3〈cos2 ω(t)〉 − 1)

2
(B.45)

152



B.3 Effects of Rotational Brownian motion

r(t) = r0
(3〈cos2 ω(t)〉 − 1)

2
(B.46)

The quantity (3〈cos2 ω(t)〉 − 1)/2 is the orientation autocorrelation function: it

represents the probability that a molecule having a certain orientation at time zero

is oriented at ω with respect to its initial orientation. The quantity (3x − 1)/2 is

the Legendre polynomial of order 2, P2(x), and Eq. (B.46) is sometimes written in

the following form

r(t) = r0〈P2[cos(ω(t)]〉 (B.47)

The angled brackets 〈〉 indicate an average over all excited molecules.

Figure B.10: Brownian rotation characterized by ω(t).

B.3.1.1 Isotropic Rotations

Let us consider first the case of spherical molecules. Their rotations are isotropic

and the average of cos2 ω(t) can be calculated by the integral:

〈cos2 ω(t)〉 =

∫ ∞

0

cos2 ω f(ω, t) sin ω dω (B.48)

where f(ω, t) represents the orientation distribution function expressing the prob-

ability that a molecule has an orientation ω at time t, taking into account that ω = 0

at time zero. This function must fulfill the following conditions and equations:
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• initial condition:f(0, 0) = 1

• normalization condition

2π

∫ π

0

f(ω, t) sin ω dω = 1 (B.49)

• Brownian diffusion equation for a spherical particle

∂f(ω, t)

∂t
= Dr∇2f(ω, t) (B.50)

where Dr is the rotation diffusion coefficient. In spherical coordinates, Eq. (B.50)

can be rewritten as
∂f

∂t
= Dr

1

sin ω

∂

∂ω

(
sin ω

∂f

∂ω

)
(B.51)

by setting 〈cos2 ω(t)〉 = u the above equations lead to

du

dt
= 2Dr − 6Dru (B.52)

Taking into account the initial condition cos2 ω(0) = 1, the solution of this equation

is

u =
1

3
[1 + 2 exp(−6Drt)] (B.53)

The autocorrelation function (3u− 1)/2 is then a single exponential

〈P2[cos(ω(t)]〉 = exp(−6Drt) (B.54)

Hence

r(t) = r0 exp(−6Drt) (B.55)

Dr can be determined by time-resolved fluorescence polarization measurements, ei-

ther by pulse fluorometry from the recorded decays of the polarized components I‖

and I⊥, or by phase fluorometry from the variations in the phase shift between I‖

and I⊥ as a function of frequency. If the excited-state lifetime is unique and deter-

mined separately, steady-state anisotropy measurements allow us to determine Dr

from the following equation, which results from Eqs (B.21) and (B.55):

1

r
=

1

r0

(1 + 6Dr τ) (B.56)
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This relationship is called Perrin equation, because it was established for the first

time by Francis Perrin; it was written at that time with polarization ratios
(

1

p
− 1

3

)
=

(
1

p0

− 1

3

)
(1 + 6Dr τ) (B.57)

Once Dr is determined by fluorescence polarization measurements, the Stokes-Einstein

relation can be used:

(6Dr)
−1 =

ηV

RT
(B.58)

where V is the hydrodynamic molecular volume of the chromophore, η is the viscosity

of the medium, T is the absolute temperature and R is the gas constant.

Equations (B.55) and (B.56) are often written with the rotational correlation

time:

τc = (6Dr)
−1 (B.59)

r(t) = r0 exp(−t/τc) (B.60)

1

r
=

1

r0

(
1 +

τ

τc

)
(B.61)

We have considered spherical molecules so far, but it should be noted that isotropic

rotations can also be observed in the case of molecules with cylindrical symmetry

and whose absorption and emission transition moments are parallel and oriented

along the symmetry axis. In fact, any rotation around this axis has no effect on the

fluorescence polarization. Only rotations perpendicular to this axis have an effect.

A typical example is diphenylhexatriene whose transition moment is very close to

the molecular axis

B.3.1.2 Anisotropic rotations

One origin of multiple correlation times is a nonspherical shape. If a molecule

is not spherical, one can imagine different rotational rates around each axis. For

instance, perylene is a disklike molecule, and the in-plane rotations are expected

to be more rapid than the out-of-plane rotations. The out-of-plane motion requires
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the displacement of solvent molecules. The in-plane rotations probably require less

displacement of solvent and are thus expected to be more rapid. Such a molecule

is referred to as an anisotropic rotor. Generally, macromolecules are nonsymmetric,

and one expects different rotational diffusion rates about each axis.

The theory for rotational diffusion of anisotropic rotors is complex. Consider-

able controversy has surrounded the predicted time-resolved decays for anisotropic

molecules. It is now agreed that the anisotropy is expected to decay as a sum of

exponentials:

r(t) =
5∑

j=1

r0j e−t/τcj (B.62)

There may be as many as five exponential terms for an asymmetric body, but

in practice only three correlation times are expected to be distinguishable. For

ellipsoids of revolution, which are elongated (prolate) or flattened (oblate) molecules

with two equal axes, the anisotropy decay can display only three correlation times.

The values of r0j and τcj are complex functions of the rates of rotation around the

molecular axes of the nonsymmetric body and the orientation of the absorption and

emission dipoles relative to these axes. In practice, one rarely resolves more than

two exponentials, but it is important to recognize that such anisotropic rotations

can result in multiexponential decays of anisotropy. For small molecules in solution,

the rotational rates around the different axes are rarely different by more than a

factor of 10.

B.3.2 "Stick" and "Slip" boundary Conditions

The theory described above for rotation of ellipsoids applies only to the "stick"

boundary condition. The term "stick" boundary condition refers to rotational diffu-

sion in which the first solvent layer moves with the rotating species, so that rotation

is governed by the viscosity of the solvent. Macromolecules and most chromophores

in polar solvents are well described by the stick diffusion. However, small molecules

in non-polar solvents can often display slip rotational diffusion. As an example,
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perylene in a solvent like hexane can rotate in-plane without significant displace-

ment of solvent. When this occurs, the molecule rotates as if it were in a vacuum,

and not affected by solvent viscosity. The theory of slip rotational diffusion is rather

complex, and the results are often presented numerically.105 The important point

is that the possibility of slip diffusion results in a failure of the theory described

above to predict the correlation times of molecules. Stated alternatively, one can re-

cover multiple correlation times for small molecules, but these values cannot always

be interpreted in terms of the correlation times predicted from the hydrodynamic

theory.

B.4 Analysis of Time-Domain Anisotropy Decays

Suppose that a chromophore is excited with a pulse of vertically polarized light and

that it rotates with a single correlation time. The anisotropy decay is determined by

measuring the decay of the vertically (‖) and horizontally (⊥) polarized components

of the emission. If the absorption and emission transition moments are collinear,

the time-zero anisotropy is 0.4. In this case the initial intensity of the parallel com-

ponent is threefold larger than that of the perpendicular component (Figure B.11,

left). Assuming that the fundamental anisotropy is greater than zero (r0 > 0), the

vertically polarized excitation pulse results in an initial population of chromophores

that is enriched in the parallel orientation. The decay of the difference between I‖(t)

and I⊥(t). when properly normalized by the total intensity, is the anisotropy decay

(Figure B.11, right).

Examination of the left panel in Figure B.11 reveals that the parallel component

initially decays more rapidly than the horizontal component. This occurs because

the vertically oriented chromophores are decaying by two processes, the intensity

decay with decay time τ and rotation out of the vertical orientation with a corre-

lation time τc. The horizontal component initially decays more slowly because it is

repopulated by rotation from the excess vertically oriented population.
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Figure B.11: Time-dependent polarized decays (left) and the calculated

anisotropy decay (right).

Interpretation of anisotropy decays is best understood in terms of the individual

components. The decays of the parallel (‖) and perpendicular (⊥) components of

the emission are given by

I‖ =
1

3
I(t)[1 + 2r(t)] (B.63)

I⊥ =
1

3
I(t)[1− r(t)] (B.64)

where r(t) is the time-resolved anisotropy. Generally, r(t) can be described as a

multiexponential decay.

r(t) = r0

∑
j

gj exp(−t/τcj) =
∑

j

r0j exp(−t/τcj) (B.65)

where r0 =
∑

j r0j is the limiting anisotropy in the absence of rotational dif-

fusion, the θj are the individual correlation times, and the gj, are the associated

fractional amplitudes in the anisotropy decay (
∑

gj = 1.0). Depending on the cir-

cumstances, r0 may be a known parameter, perhaps from a frozen solution measure-

ment. Alternatively, all the amplitudes (r0j) can be considered to be experimental
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variables. As shown in the previous chapter, the total intensity for a sample is given

by IT = I‖ + 2I⊥. Similarly, the total (rotation-free) intensity decay is given by

I(t) = I‖(t) + 2I⊥(t) (B.66)

In the time domain, one measures the time-dependent decays of the polarized

components of the emission (Eqs. B.64). The polarized intensity decays are used to

calculate the time-dependent anisotropy,

r(t) =
I‖(t)− I⊥(t)

I‖(t) + 2I⊥(t)
(B.67)

The time-dependent anisotropy decay is then analyzed to determine which model

is most consistent with the data.

B.4.1 Values of r0

In the anisotropy decay analysis, the value of r0 can be considered to be a known

or an unknown value. If the value of in is known, the anisotropy decay law can be

written as

r(t) = r0

∑
j

gj exp(−t/τcj) (B.68)

where the gj are the fractional amplitudes which decay wit the correlation times

θj. Since
∑

gj = 1.0, the use of a known r0 value reduces by one the number of

variable parameters. In this type of analysis, the time-zero anisotropy is forced to

be equal to r0.

Alternatively, the total anisotropy can be a variable parameter. In this case,

r(t) =
∑

j

r0j exp(−t/τcj) (B.69)

where the r0j are the fractional anisotropies which decay with the correlation

times θj. When using this type of analysis, we will refer to the time-zero anisotropy

as r(0). If the anisotropy decay contains fast components which are not resolved

by the instrument, one usually finds that
∑

r0j = r(0) is less than the fundamental

anisotropy r0.
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