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Introduction

The molecular mechanism of chemical reactions is captured by their transition states
and reaction coordinates. Reaction coordinates measure the progress of a reaction
from the reactant to the product states, and transition states are high-energy inter-
mediates on reactive paths. This simple description is made possible by the selection
of a small set of variables (the reaction coordinates) in such a way that they obey
approximately an autonomous set of deterministic equations, such as Ohm’s law
or the Langevin description of Brownian motion. The enormous number of elim-
inated microscopic variables are assumed to vary so much more rapidly than the
few macroscopic ones that they are able to reach almost instantaneously their equi-
librium distribution, the equilibrium that belongs to the instantaneous value of the
reaction coordinates as it these were fixed[1]. This property is known with the name
of Markov property. In principle, the dynamics of any closed isolated physical sys-
tem can be described as a Markov process by introducing all microscopic variables
in its description. As a matter of fact, the microscopic motion in phase space is
deterministic and therefore Markovian. However, understanding a chemical or a
physical problem means exactly to find its simplest description starting from its
elusive microscopic nature.

Rare events are processes that occur infrequently due to dynamical bottlenecks
that separate stable states. Once this threshold is crossed, however, a trajectory will
move quickly to the reaction products. Clearly, a rare event cannot be neglected
when attempting a coarse-grained description of a complex process and the correct
reaction coordinate and transition state must be found. For example, in liquid
carbon disulfide, a cyclohexane solute molecule will undergo isomerization roughly
once every 0.1s[2] while, in the same liquid, a molecule will diffuse at a distance of one
molecular diameter in roughly 10−11s. Isomerization of cyclohexane is therefore a
rare event, as it can be understood looking at the high free energy barriers separating
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Introduction

the chair and boat conformers, along a single collective variable[3] that is a function
of the torsional angles of the molecule.

Many interesting physical, chemical and biological processes occur on time scales
that exceed those accessible by molecular dynamics simulation by orders of magni-
tude. From this point of view, we can effectively define a rare event as a dynamical
process that occur so infrequently that it is impractical to obtain quantitative in-
formation about it through straightforward trajectory calculations. In general, a
rare event arises when a free energy barrier lies between two metastable states, and
therefore the study of the free energy profile along a reaction coordinate is the first
step in deriving a coarse-grained description of a reaction. The computation of free
energy differences by means of atomistic simulations is the central issue of this thesis.
Three different approaches are explored, to the purpose of accelerating the sampling
of a rare event and improving the computation of free energy differences.

The first chapter is dedicated to free energy calculations through far from equi-
librium measurements. A way to calculate the free energy difference between two
states is simply to steer the system from one state to the other by means of a
reversible transformation. The reversible work spent in the process is a state func-
tion and equals the free energy difference between these two states. However, a
reversible transformation is an ideal process and in practice one has always to deal
with non-equilibrium processes occurring in a finite time. Moreover, if a transition
between these states is a rare event in the time scale of the steering process, the
typical realization of the experiment will give a work value very different from the
reversible work, and its arithmetical average on an ensemble of realizations will give
only an upper bound to the free energy difference, as stated from the second law
of thermodynamics, 〈W 〉 ≥ ∆A. Jarzynski has shown that the second law can be
rewritten as an equality[4], 〈exp(−W/kBT )〉 = exp(−∆A/kBT ), if the arithmetical
average is changed in an exponential average. An even more primitive relation, the
work fluctuation theorem[5], was proven by Crooks, that relates the probability of
observing a certain work value performing a transformation or its time reversed. In
this thesis, the validity of both relations for non Hamiltonian dynamical systems is
discussed[6], along with the range of validity of the common “Gaussian approxima-
tion” and its relation to the Markovian character of the dynamics along a reaction
coordinate. As shown in the last part of the chapter, these relations still hold for
changes in the temperature of a thermostat or in the pressure of a barostat cou-
pled to the system[7], for a system evolved in the NPT ensemble according to the
Martyna-Tobias-Klein equations of motion[8].
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Introduction

In the second chapter, the so-called history dependent methods are discussed.
These methods represent a dynamical evolution of the standard Umbrella Sampling
technique[9]. In the latter, sampling is improved by lowering the free energy of the
transition state between two stable states, adding an external unphysical potential
term to the Hamiltonian of the system and thus “flattening” the free energy profile.
However, in order to obtain an uniform sampling one must know a priori the po-
sition and the height of the free energy barrier, that is, the quantity we are trying
to determine. History dependent methods, as the Wang-Landau algorithm[10] or
metadynamics[11], solve this problem trying to determine the optimal biasing po-
tential on the fly, and give dynamical rules to evolve it during a simulation. The
external potential becomes a non Markovian term added to the original Hamilto-
nian, being a functional of the whole trajectory of the system in the space of the
reaction coordinates. Given that all the relevant reaction coordinates are consid-
ered, and in the limit of slow evolution, the external potential converges to the free
energy inverted in sign. In real cases, the potential does not converge but oscil-
lates around the correct free energy[12]. An algorithm is presented, Self-Healing
Umbrella Sampling[13], that solves this convergence problem of the previous ap-
proaches. Moreover, it is shown how to control the evolution of a generic potential
so as to focus the computational effort on the physically relevant states in the space
of the reaction coordinates.

The Replica Exchange Method[14, 15, 16, 17] (REM) provides a simple solution
to the problem of sampling a rare event. In REM, several independent trajectories,
called replicas, are simultaneously generated in different thermodynamic conditions.
Usually, these conditions are chosen so as to span homogeneously the thermodynamic
space from the ensemble of interest to a different ensemble with enhanced transition
rates. During the simulation, neighboring replicas are allowed to exchange their
ensemble, subject to specific acceptance criteria. In this fashion, a trajectory is no
longer bound to an unique given equilibrium ensemble but can randomly walk in a
thermodynamic space of different equilibrium conditions, visiting ensembles where
an ergodic sampling is possible, and then going back to the quasiergodic ensemble
of interest. In the third chapter, a novel and more general formalism for REM is
presented, that permits replica exchanges in an arbitrary length of time and shows
the deep connections between the algorithm and the work fluctuation theorem.
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Equilibrium averages from non-equilibrium measurements

The behaviour of large, near-equilibrium systems is explained by classical thermo-
dynamics. Let us consider a gas enclosed in a vessel of volume V in contact with a
thermal bath at temperature T . The state of the gas can be modified by changing
isothermally the volume of the container of ∆V . If the transformation is slow enough
then the process goes through a sequence of equilibrium states and the process is
called reversible. However, in general the gas will be driven out of equilibrium. Part
of the total work W spent in the process will be lost as heat, resulting in entropy
production. This is the content of the second law of thermodynamics as stated by
Clausius

∆S ≥ Q/T = −∆SB (1.1)

where Q is the heat exchanged with the bath and ∆SB = −Q/T is the entropy
change of the bath during the process. The second law can be rewritten as a relation
between the work and free energy difference ∆A between the final and the initial
state of the gas. Since ∆A = ∆E − T∆S = W +Q− T∆S, using Eq.1.1 one finds
that

W ≥ ∆A (1.2)

that is, the work spent during a transformation is an upper bound to the free energy
difference ∆A.

The general procedure of statistical mechanics consists in studying the behaviour
of a collection or ensemble of systems identical to the system of actual interest,
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Equilibrium averages from non-equilibrium measurements

distributed over a range of different precise states. As we go to large numbers of
degrees of freedom, the average behaviour in the appropriate ensemble is found
to explain the macroscopic behaviour of the individual system, and the classical
thermodynamics point of view is recovered[18].

Therefore, we can introduce a non-equilibrium experiment as follows: imagine an
ensemble of systems whose evolution depends on an externally controlled parameter
λ. The value of this parameter is switched from A to B in a time t, starting from
equilibrium conditions. Work W is an ensemble property, and is given by

W =
∫ t

0
dτ

〈
∂H

∂λ

〉
λ̇ = 〈w〉 (1.3)

where the symbol 〈〉 indicate an average over the ensemble of systems and w is the
work exerted upon one of the systems, to which we will refer as microscopic work,
to be distinguished from the macroscopic work W . In a reversible transformation,
for each of the systems we will spent the same amount of work w = W = Wrev, the
reversible work necessary to bring the system from state A to state B. For finite-
time processes, however, the microscopic work is a fluctuating quantity that can be
characterized by its probability distribution P (w). Since the second law W ≥ ∆A
is an average property of the systems, for some realizations the microscopic work
can even be smaller than the free energy difference, w < ∆A. The work fluctuation
theorem[5] precisely quantifies the probability of these “transient” violations of the
second law, and, together with the Jarzynski equality[4] provide exact relations to
extract a free energy difference from an ensemble of non-equilibrium experiments.
After the experiment is concluded, we can imagine to wait a time sufficient for the
ensemble of systems to relax to equilibrium in state B and then to drive them back
to the initial state A, changing the parameter λ with a time-reversed protocol. The
work fluctuation theorem states that the probability P (w) of measuring a work value
w in the A→ B transformation is related to the probability P (−w) of observing a
value −w in the B → A transformation as

P (w)e−w/kBT = P (−w)e−∆A/kBT (1.4)

The Jarzynski equality states that the exponential average over the work values
measured in the initial non-equilibrium experiment satisfies

∫
dwP (w)e−w/kBT = e−∆A/kBT (1.5)

and is obtained from the work fluctuation theorem integrating on all the possible
work values.
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Equilibrium averages from non-equilibrium measurements

The range of validity of these equalities is still under debate[19, 20, 21], and the
central question is how to to model the environment and its coupling to the system
during the non-equilibrium process. In Sec.1.1, a proof of the work fluctuation the-
orem (or Crooks equation) is provided, in the context of constant volume, constant
temperature steered molecular dynamics[22] simulations of systems thermostated by
means of the Nosé-Hoover method (and its variant using a chain of thermostats).
As a numerical test the folding and unfolding processes of decaalanine in vacuo at
finite temperature is used. The distribution of the irreversible work for the fold-
ing process is shown to be markedly non-Gaussian thereby implying, according to
Crooks equation, that also the work distribution of the unfolding process must be
inherently non-Gaussian. The clearly asymmetric behavior of the forward and back-
ward irreversible work distributions is a signature of a non-Markovian regime for
the folding/unfolding of decaalanine. In Sec.1.2, the proof is extended to changes in
the temperature or the pressure of the environment.
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Equilibrium averages from non-equilibrium measurements

1.1 Crooks equation for steered molecular dynamics us-

ing a Nosé-Hoover thermostat

Among the methods devised for calculating free energy surfaces, the Jarzynski
equality[4, 23] (JE) and the correlated Crooks equation[5] (CE), are perhaps some
of the most intriguing because of their far reaching theoretical implications. In fact
they establish a strict correlation between two seemingly unrelated physical quan-
tities, i.e. the work done on a system during irreversible (or better, dissipative)
transformations and the free energy difference between the final and the initial state
of the transformations. According to Crooks[5], the JE appears to follow from a
more general equation (that will be referred as CE), that is Eq. 10 of Ref. [5] (see
also Eq. 1.7 of the present paper). The CE is in fact a point by point relation
involving statistical distributions of the work, while the JE regards average values.
If, on the one side, the JE appears to be less general than the CE, on the other
side it was derived using more general assumptions with respect to CE. The JE
is indeed essentially based on the canonical distribution (i.e. the basic statistical
postulate) and on the Liouville theorem[4, 24]. The CE, in its original formulation,
is instead based on the microscopic reversibility and on the Markov chain assump-
tion used, e.g., in Monte Carlo simulations[25]. Crooks himself made a step forward
generalizing the equation to dynamical Markovian systems[26] (e.g., those obeying
the over-damped Langevin equation). More recently, Evans[27], starting from the
transient fluctuation theorem[28], demonstrated the CE for general (not necessarily
Markovian) dynamical systems in the isokinetic thermodynamical ensemble.

From the experimental point of view, both the JE[29] and, more recently CE[30]
have been verified using atomic force microscopy. However, as pointed out by several
authors[31, 32, 30], these experiments have been all conducted in conditions in which
the system is close to equilibrium with Gaussian or nearly Gaussian fluctuations
around the mean dissipated work[31].

Recently Park and Schulten[22] have performed extensive computer experiments
using steered molecular dynamics (SMD) simulations on decaalanine aimed at nu-
merically verifying the JE and CE. In agreement with early studies[33, 34], Park
and Schulten showed the statistical difficulties of estimating the free energy along
the unfolding coordinate by using the JE. Nonetheless, in the forced unfolding of
the α-helix form of decaalanine, they obtained seemingly Gaussian work distribu-
tions. The Gaussian shape of the work distribution was put forward as an evi-
dence of the Markovian nature of the unfolding process. As remarked in several
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studies[33, 22, 31, 35], when the work distribution in the one direction, Pf (W ), is
Gaussian, then the CE sets strict constraints for the work distribution of the back-
ward transformation[33, 35], Pb(−W ). In particular if Pf (W ) is Gaussian, then i)
Pb(−W ) must also be Gaussian with identical width; ii) the intersection point of
Pb(−W ) and Pf (W ) falls at W = ∆F , ∆F being the free energy difference for the
forward transformation; iii) the average work in the forward transformation W , the
variance σ of the work distributions, and the free energy difference ∆F obey the
equation[33, 35]

W = ∆F − σ2

2kBT
. (1.6)

Applying Eq. 1.6, Park and Schulten[22] found quite contradictory results. On the
one hand, their SMD simulations provided almost perfect Gaussian work distribu-
tions for two very different steering velocities. On the other hand the free energy
curve calculated using the CE at the greatest steering velocity differs from the ex-
act curve by about 20 % (in the final state of the transformation). These results
put some doubt either on the validity of the CE in the context of SMD simulations
or on the Gaussian (and hence Markovian) nature of the unfolding transformation.
Park and Schulten did not calculate the work distribution in the backward direction
(refolding process) and hence they did not fully test the CE.

In the present work the CE will be derived for a general system for which the ir-
reversible transformation is performed by SMD simulations with stiff spring approx-
imation and the temperature is kept fixed with a Nosé-Hoover (NH) thermostat[36,
37] and with a chain of NH thermostats[38, 39]. In a recent article[40] Jarzynski
proved that the CE is valid in the context of a procedure where the initial mi-
crostates for the forward and backward transformations are taken from canonical
distributions, and the transformation is performed removing the heat reservoir. The
Jarzynski’s proof follows straightforwardly from this demonstration by simply setting
the mass of the thermostat to infinity during the transformation, that is removing
the heat exchange between system and thermal bath.

Recently, Cuendet published a statistical mechanical route to the JE based on
the equations of motions for the non-Hamiltonian NH dynamics[41]. The present
derivation of the CE uses the same strategy of Cuendet based on the equations of
motions. In this sense this study can be considered as an extension of Cuendet’s
work. The main difference between this derivation of the CE and the Cuendet’s
demonstration of the JE consists in the initial step of the proof. In the present case
the starting point is the fluctuation theorem[28] that holds for a single transformation
(and its time reversal), while in Ref. [41] the starting point is the ensemble average
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of the exponential of the work done during a transformation. From this second
point of view, since JE can be trivially derived from the CE but not viceversa, the
Cuendet’s derivation can be considered less general.

As exemplary system, the widely studied process of helix-coil folding of decaala-
nine in vacuo at finite temperature[22, 42] was considered. The two work distribu-
tions, Pf (W ) and Pb(−W ), indeed obey the CE, irrespective of the steering velocity.
In addition, contrary to what is generally assumed[22, 35], such work distributions
are inherently non-Gaussian. Since a Gaussian work distribution is generated when
the process is Markovian[22], the observed non-Gaussian shape for the refolding
transformation, far from disproving the CE, could provide additional information
on the dynamical regime of decaalanine, indicating a finite damping behavior along
the folding/unfolding reaction coordinate.
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Equilibrium averages from non-equilibrium measurements

1.1.1 Work fluctuation theorem for Hamiltonian equations of mo-

tion

The CE has been originally derived[5] for microscopically reversible Markovian sys-
tems in the context of Monte Carlo simulations[25]. If we define a generic reaction
coordinate as a function of the Cartesian coordinates of the particles of a system
(e.g., a distance between two atoms or a torsional angle), we can characterize ev-
ery point along the reaction coordinate path by a parameter λ, such that λ = 0
and λ = 1 correspond to two ensembles of microstates (from now on indicated as
macrostates A and B, respectively) for which the reaction coordinate is constrained
to different values. A dynamical process where λ is externally driven from zero to
one, according to an arbitrary time scheduling, will be referred as forward transfor-
mation, while the time reversal path will be indicated as backward transformation.
Given these definitions, the CE sets a relation between the following four quantities:

1. P (A → B), i.e. the joint probability of taking a microstate A from the
macrostate A (through a canonical sampling) and of performing the forward
transformation to the microstate B belonging to the macrostate B;

2. P (A ← B), i.e. the joint probability of taking the microstate B from the
macrostate B (through a canonical sampling) and performing the backward
transformation to the microstate A;

3. WAB, i.e. the work done on the system during the forward transformation
(from A to B);

4. ∆F = F (B) − F (A), i.e. the free energy difference between the macrostates
A and B.

The CE reads as follows:

P (A→ B)
P (A← B)

= exp[β(WAB −∆F )] (1.7)

where β = (kBT )−1, kB being the Boltzmann constant and T the temperature. In
the previous equation the difference WAB −∆F corresponds to the work dissipated
in the forward transformation. Using the relation WAB = −WBA (where WBA

is the work done on the system in the backward transformation), and grouping
together all the trajectories yielding the same work (in the forward and backward
transformation), the following relation can be recovered[43]

PA→B(W ) = PA←B(−W ) exp[β(W −∆F )], (1.8)

7



Equilibrium averages from non-equilibrium measurements

where PA→B(W ) and PA←B(−W ) are the work distribution functions obtained from
the forward and backward transformations, respectively. Here W is intended to be
the work done on the system in the forward transformation.

As stated in the Introduction, Eq. 1.7 sets strong limitations to the behavior
of the forward and backward work distributions (Eq. 1.8). In particular, since∫
PA→B(W ) dW = 1, PA←B(−W ) will vanish for W → ∞ at a faster rate than

exp(−βW ), so that the integrand function decays to zero. Correspondingly, since∫
PA←B(−W ) dW = 1, PA→B(W ) will decay to zero faster than exp(βW ) for W →
−∞. A Gaussian distribution indeed satisfies this condition. In this respect, Park
and Schulten showed[22] that, under the assumption that the system is Markovian,
SMD simulations with stiff springs result in Gaussian work distributions. However
not all Gaussian distributions are permissible. In fact Eq. 1.8 establishes a relation
between the moments of the normal distribution (in particular W and σ2 = W 2 −
W

2) and ∆F . Suppose that, for a given velocity of the forward transformations
A → B, the work distribution PA→B(W ) is a (normalized) Gaussian function[22].
Then, according to Eq. 1.8, we have that

PA←B(−W ) =
1

σ
√

2π
exp

[−(W −WAB)2
2 σ2

]
exp [β(∆F −W )] (1.9)

where WAB is the average work done on the system in the forward transformations
A → B. The above equation may be rearranged as follows

PA←B(−W ) =
1

σ
√

2π
exp

[
β

(
∆F −WAB +

βσ2

2

)]
exp

[−(−W +WAB − βσ2)2

2 σ2

]
.

(1.10)
From the previous equation we conclude that PA→B(W ) and PA←B(−W ) are Gaus-
sian functions with identical width. The center of PA←B(−W ) falls at WBA =
−WAB + βσ2. Moreover the intersection point of the two work distributions occurs
at W = ∆F . Considering that PA←B(−W ) must be normalized to one, the following
equations hold

∆F = WAB − βσ2

2
(1.11)

∆F = −WBA +
βσ2

2
. (1.12)

Summing term by term Eqs. 1.11 and 1.12, we get[35]

∆F =
1
2

(
WAB −WBA

)
. (1.13)

Eq. 1.11 (or Eq. 1.12) can in principle be used to recover the entire free energy of
the system along the λ coordinate. Interestingly, if one of the forward or backward
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work distributions is not Gaussian then the other one cannot be Gaussian either.
In such cases Eq. 1.13 could be used as an approximation. Alternatively, one could
use directly Eq. 1.8 and histogram methods to calculate ∆F .

In deriving the CE for the case of constant volume, constant temperature SMD
simulations using a NH thermostat[36, 37], we start from considering the ratio be-
tween the probability of observing a given phase space trajectory from a microstate
A to a microstate B, p[A(x(0)) → B(x(τ))], and the probability of observing the
time-reversal trajectory, p[A(x(0))← B(x(τ))]:

p[A(x(0))→ B(x(τ))]
p[A(x(0))← B(x(τ))]

=
p[A(x(0))]
p[B(x(τ))]

exp
(
−

∫ τ

0
∇x · ẋ dt

)
(1.14)

where τ is the duration of the irreversible process, x is a vector in the multi-
dimensional phase space, p[A(x(0))] and p[B(x(τ))] are the probabilities (not nec-
essarily at equilibrium) of the phase space points x(0) and x(τ), respectively. The
function ∇x · ẋ is the divergence of the phase space velocity, the so-called compress-
ibility of the system[44]. Eq. 1.14 was derived by Evans[45, 28] and is extraordinarily
general. In fact, it holds for both Hamiltonian and non Hamiltonian systems with
time-reversal invariant equation of motions. A proof of Eq. 1.14 in the case that
p[A(x(0))] and p[B(x(τ))] are equilibrium probabilities is given in appendix 1.A.

We now assume that in the time τ the system is driven from the microstate A,
characterized by the reaction coordinate ζA, to the microstate B, characterized by
the reaction coordinate ζB, using a time dependent harmonic potential

V (ζ(q), t) =
k

2

[
ζ(q)− ζA + (ζA − ζB) t

τ

]2

(1.15)

The functional form of this potential implies that the reaction coordinate evolves
with constant velocity. However, since an explicit expression of V (ζ(q), t) is not
required in the following proof, the use of a more complex time scheduling function
would not change the final result. We must consider that, when V (ζ(q), t) is added
to the Hamiltonian of the system, the thermal energy provided by the thermostat can
flow, not only from and to the physical system, but also from and to the additional
potential term. The total energy of this extended system (physical system plus
guiding potential) at time t is

H(t) = H0 + V (ζ, t) (1.16)

where H0 is the total energy of the physical system (kinetic energy plus internal
potential energy). In the previous equation (and in the following) the dependence

9
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on q of the reaction coordinate is omitted for simplicity of notation. The total
energy change in the A→ B transformation can thus be calculated as follows

QAB +WAB =
∫ τ

0
Ḣ(t) dt = H(τ)−H(0) (1.17)

where QAB and WAB are the heat entering the system and the work done on the
system during the transformation, respectively. The only allowed heat flow from
and to the system occurs through the thermostat. Moreover, since we are dealing
with a constant volume system, the work done on the system can only be performed
through the guiding potential V (ζ, t). Considering Eq. 1.16, the total time derivative
of H(t) is

Ḣ(t) =
∂V (ζ, t)
∂t

+∇xV (ζ, t) · ẋ +∇xH0 · ẋ. (1.18)

Substituting Eq. 1.18 into Eq. 1.17 and taking into account that the work performed
on the system in the A→ B transformation is

WAB =
∫ τ

0

∂V (ζ, t)
∂t

dt, (1.19)

one obtains
QAB =

∫ τ

0
∇xH0 · ẋ dt+

∫ τ

0
∇xV (ζ, t) · ẋ dt. (1.20)

In this equation the integral involving H0 corresponds to the heat provided by the
thermostat to the physical system, while the other integral is the heat related to the
guiding potential term. Eq. 1.20 can be written as follows

QAB =
∫ τ

0

3N∑

i=1

[(
∂H0

∂qi
+
∂V (ζ, t)
∂qi

)
q̇i +

∂H0

∂pi
ṗi

]
dt (1.21)

where we have considered that V (ζ, t) does not depend explicitly on the momenta.
Eq. 1.21 can be rearranged using the equations of motion that in the case of a
system with a NH thermostat and with the guiding potential V (ζ, t) are[36, 37]

q̇i =
∂H0

∂pi

ṗi = −∂H0

∂qi
− ∂V (ζ, t)

∂qi
− η̇pi

η̇ =
pη
Mη

ṗη =
3N∑

i=1

p2
i

mi
− 3N

β
(1.22)

10
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where η and pη are the thermostat variable and its conjugate momentum, respec-
tively, and Mη is the related inertia factor. Using the equations of motion into Eq.
1.21, we obtain

QAB = −3N
β

∫ τ

0
η̇ dt+

p2
η(0)− p2

η(τ)
2Mη

. (1.23)

For a system coupled to a NH thermostat the compressibility is[44]

∇x · ẋ = −3Nη̇. (1.24)

Substituting Eq. 1.24 into Eq. 1.23 we get
∫ τ

0
∇x · ẋ dt = βQAB + β

p2
η(τ)− p2

η(0)
2Mη

. (1.25)

The next ingredient needed in Eq. 1.14 is the ratio between the equilibrium prob-
abilities p[A(x(0))] and p[B(x(τ))]. For a system coupled to a NH thermostat, the
6N -dimensional phase space (3N particle coordinates and 3N conjugate momenta)
is augmented by the two degrees of freedom of the thermostat, i.e. x = (q,p, η,pη).
The ratio of the equilibrium probabilities of the microstates A and B is given by
[44, 36]

p[A(x(0))]
p[B(x(τ))]

= exp

[
β
p2
η(τ)− p2

η(0)
2Mη

]
exp[β(H(τ)−H(0)−∆F )] (1.26)

where H(0) is the energy of the physical system plus the guiding potential energy in
the microstate A (Eq. 1.16). H(τ) is the same quantity for the microstate B. It is
worthwhile to note that in Eq. 1.26 ∆F = F (ζ = ζB)− F (ζ = ζA) ≡ F (B)− F (A)
refers to equilibrium states whose Hamiltonian includes also the harmonic potential
at fixed reaction coordinates ζ(0) ≡ ζA and ζ(τ) ≡ ζB. Instead, our target would
be that of getting free energy differences along the reaction coordinate for a system
whose Hamiltonian includes only the kinetic energy of the particles and the real
interparticle potential energy. With this respect, Park and Schulten[22] have shown
that the free energy F (ζ) of a guided system becomes identical to the true free
energy of the system in the stiff spring approximation, that is for an infinite force
constant k (see Eq. 1.15).

Exploiting Eqs. 1.17, 1.25 and 1.26 into Eq. 1.14, on eobtains

p[A(x(0))→ B(x(τ))]
p[A(x(0))← B(x(τ))]

= exp[β(WAB −∆F )]. (1.27)

Eq. 1.27 is identical to Eq. 1.7 (originally derived for Markovian systems) and it
has been derived for all dynamical systems coupled to a NH thermostat. As can be
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seen in appendix 1.B, the demonstration reported above can be straightforwardly
extended to the context of SMD simulations where the temperature is kept fixed
with a NH chain algorithm[38, 39].

12
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1.1.2 Steered Molecular Dynamics simulations of the folding and

unfolding reactions of decaalanine

CE guarantees that, if the forward work distribution is Gaussian, then the backward
work distribution must also be Gaussian. From a computational standpoint this
fact is extremely important since it would give a practical way to compute the free
energy along a reaction coordinate with the simple Eq. 1.11 (or Eq. 1.12). Gaussian
work distributions were actually found in the context of SMD simulations[22], for
the limited but significant case[22, 46, 47] of the unfolding of decaalanine. It is
remarkable that in Ref. [22] almost Gaussian work distributions were observed
for two very different steering velocities, i.e. v = 10 Å ns−1 and v = 100 Å ns−1.
Nonetheless, application of Eq. 1.11 provided a very good estimate of the free energy
curve only for v = 10 Å ns−1, whereas for v = 100 Å ns−1 a significant divergence
from the exact result[22] was found (mainly for large end-to-end distances). This
observation raises some doubts about either the validity of the CE in the context
of SMD simulations, or about the Gaussian nature of the underlying distributions,
that indeed for the unfolding of decaalanine “look” Gaussian[22]. In order to shed
further light on this issue, the numerical experiment by Park and Schulten[22] has
been repeated. In particular we have carried out SMD simulations of decaalanine at
finite temperature, but focusing on both forward (unfolding) and backward (folding)
trajectories.

Figure 1.1: Representation of folded and unfolded conformations of the decaalanine
molecule.

13
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The N atom of the N-terminus residue has been constrained to a fixed position,
while the N atom of the C-terminus residue has been constrained to move along a
given fixed direction. The reaction coordinate ζ is hence taken to be the distance
between the N atoms of the two terminal amide groups. Therefore the guiding po-
tential for SMD has the form of Eq. 1.15, where ζA and ζB are the initial and final
values of the reaction coordinate and τ is the total (simulation) time of the trans-
formation. In the present study the stretching of decaalanine, that is, the evolution
from a α-helix (ζA = 15.5 Å) to an elongated configuration (ζB = 31.5 Å), has been
arbitrarily considered as the forward process. It should be noted that in general
the end-to-end distance does not uniquely determine the configurational state of
polypeptides. However, the equilibrium distribution at ζA = 15.5 Å corresponds to
an ensemble of microstates tightly peaked around the α-helix structure, as for this
end-to-end distance alternative structures are virtually impossible.[22, 46] The same
holds true for the final totally stretched state at ζB = 31.5 Å. So these two equilib-
rium ensembles are well determined and can be effectively sampled using relatively
few microstates.

The force constant used for guiding the processes (Eq. 1.15) is 800 kcal mol−1

Å−2, which is about 100 times larger than that used in Ref. [22]. This allows to
minimize the possible negative impact of the stiff spring approximation[22] on the
free energy calculation. The force field for decaalanine is taken from Ref. [48]. The
starting configurations of decaalanine for the forward and backward trajectories were
randomly picked from standard molecular dynamics simulations of the molecule us-
ing a harmonic potential (force constant k = 800 kcal mol−1 Å−2) on the end-to-end
distance. The equilibrium value of the end-to-end distance was fixed to 15.5 and
31.5 Å for generating the initial configurations of the forward and backward tra-
jectories, respectively. Constant temperature in both molecular dynamics and SMD
simulations was enforced using a NH thermostat[36, 37] at the temperature of 300
K. The considered steering velocities, expressed as the simulation time τ , are 10, 20,
30, 50, 100, and 200 ps. For each steering regime 104 forward trajectories and 104

backward trajectories were generated. Such a sampling allows the quantities consid-
ered in the present study to reach a good convergence. All calculations were done
with the program ORAC[49], properly modified for performing SMD simulations.

Fig. 1.2 shows the normalized work distributions Pf (W ) and Pb(−W ) for the
forward and backward transformation, respectively. In agreement with Ref. [22],
Pf (W ) indeed looks Gaussian for all steering velocities. On the contrary Pb(−W )
appears to deviate from the Gaussian trend for all steering regimes, the largest
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deviation occurring for the slower transformations (τ = 100 ps and τ = 200 ps). In
order to quantify this observation, in Table 1.1 we report the first four moments of
Pf (W ) and Pb(−W ). For a Gaussian function the expected value of s3 and s4 is
zero, while from the table we see significant deviations from zero for both s3 and s4
at all steering regimes. In particular, while for Pf (W ) there is a general increase of
the Gaussian character with the slowing down of the transformation, the Pb(−W )
distributions unexpectedly (see Eq. 1.10) show the opposite behavior. Moreover, the
width of Pf (W ) differs significantly from that of Pb(−W ) at all steering velocities.

Figure 1.2: Pf (W ) and Pb(−W ) work distribution functions (solid and dashed lines,
respectively) for various steering velocities (τ = 10, 20, 30, 50, 100, and 200 ps from
panel a to panel f).

Regarding the trends of the average values of the irreversible work (W f and −W b

in Table 1.1), we see that, as the process is slowed down, they tend to approach each
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other (see also Fig. 1.2) and will eventually become superimposed when the quasi-
reversible regime is attained.

Pf (W ) Pb(−W )
τ (ps) W f σ s3 s4 −W b σ s3 s4

10 204.1 20.1 7.9 12.3 -13.1 11.3 7.6 9.6
20 167.5 16.2 5.9 8.3 -1.1 8.7 8.8 13.4
30 151.8 14.6 6.3 2.7 4.1 10.8 13.9 18.4
50 136.6 12.8 4.6 6.0 12.9 16.8 20.1 22.4
100 121.2 10.5 3.3 5.1 33.6 23.6 18.5 22.3
200 110.8 8.6 3.2 5.2 58.5 20.6 16.3 15.1

Table 1.1: First four moments (in kJ mol−1) of the work distributions for the forward
[Pf (W )] and backward [Pb(−W )] transformations at various steering velocities.

The large and unexpected difference between the work distribution functions
in the forward and backward direction (see discussion above) could be related to
incomplete statistical sampling. In order to show the statistical quality of our nu-
merical tests, in Fig. 1.3 we report the Pf (W ) and Pb(−W ) work distributions
calculated for the steering velocity corresponding to τ = 200 ps using 104 and 2
103 trajectories. In spite of the large difference in terms of number of considered
trajectories, the two sets of distributions are very similar except for the expected
noise effects. The similarity of the work distributions calculated with different sam-
pling is also confirmed numerically by the nearly coincidence of the four moments
of the distributions (data not shown). This fact suggests that the non Gaussian
character of the backward work distributions has to be ascribed to the physics of
the transformations, which in turn must be related to the non Markovian character
of the transformations themselves.

Although the work distributions reported in Fig. 1.2 are in general not Gaussian,
we could tentatively use the equations for Gaussian distributions (Eqs. 1.11 and
1.12) as done in Ref. [22], for reconstructing the potential of mean force, Ff (ζ), in
the full interval spanned by the reaction coordinate. The free energy profile Ff (ζ)
for the forward (unfolding) process is reported in Fig. 1.4 for the steering velocities
corresponding to τ = 20 ps and τ = 200 ps. The exact free energy curve reported
in Fig. 1.4 is calculated using the thermodynamic integration method. In order to
show the amount of dissipated work along the reaction coordinate, the curve relative
to the mean irreversible work is also shown. Comparing the mean irreversible work
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Figure 1.3: Pf (W ) and Pb(−W ) work distribution functions (curves on the right
and left part of the graph, respectively) calculated for the slowest steering velocity
(τ = 200 ps) using 104 and 2 103 trajectories (dashed and solid lines, respectively).

at the two steering velocities (Figs. 1.4a and 1.4b), we csan appreciate the large
dependence of the dissipated work on the steering regime. For τ = 20 ps, the mean
irreversible work deviates from the exact free energy curve for all values of ζ. For
τ = 200 ps we see instead that in the first stages of the transformation, i.e. for
15.5 < ζ < 20 Å, the mean irreversible work almost coincides with the exact free
energy, implying a negligible dissipated work. The implications of this fact on Ff (ζ)
are evident. At the lowest steering velocity the agreement between Ff (ζ) and the
exact free energy is good, being less satisfactory for ζ > 25 Å. In general the faster
the process, the larger the deviation of the Gaussian approximant Ff (ζ) from the
exact free energy.
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Figure 1.4: Free energy and mean irreversible work as a function of the reaction
coordinate ζ for the forward and backward transformations and two steering veloc-
ities. The exact free energy and the mean irreversible work are reported with solid
and dot-dashed lines, respectively. The free energy Ff (ζ) for the forward direction
(dashed lines in panels a and b) is calculated using Eq. 1.11. The free energy Fb(ζ)
for the backward direction (dashed lines in panels c and d) is calculated using Eq.
1.12. Panel a: forward direction and τ = 20 ps; panel b: forward direction and
τ = 200 ps; panel c: backward direction and τ = 20 ps; panel d: backward direction
and τ = 200 ps.
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When the free energy is calculated using the data for the backward (folding)
transformation (Figs. 1.4c and 1.4d), the agreement between the Gaussian approx-
imant Fb(ζ) and the exact free energy profile becomes very unsatisfactory for both
steering velocities. In particular, for the slowest quasi-reversible pulling (τ = 200
ps, Fig. 1.4d), the free energy difference Fb(31.5) − Fb(15.5) surprisingly differs by
as much as 30 % from the exact value.

A summary of the performance of Eqs. 1.11 and 1.12 in the free energy estimate
as a function of the steering regime is given in Fig. 1.5, where the free energy dif-
ference between the unfolded and folded state (∆F = ∆Ff = Ff (31.5) − Ff (15.5)
for the forward transformation and ∆F = ∆Fb = Fb(31.5)− Fb(15.5) for the back-
ward transformation) is shown. ∆Ff is clearly convergent to the exact value with
decreasing the steering velocity, whereas no clear trend can be extrapolated for ∆Fb.

Figure 1.5: Free energy difference of the unfolded and folded states of decaalanine as
a function of the steering velocity (in terms of the simulation time τ). Open circles:
∆Ff calculated from the forward trajectories using Eq. 1.11. Full circles: ∆Fb
calculated from the backward trajectories using Eq. 1.12. The horizontal dashed
line indicates the exact ∆F calculated through thermodynamic integration. The
lines are drawn as a guide for eyes.
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These results reveal a striking asymmetry of the forward and backward trans-
formations. In fact, assuming the validity of Eq. 1.10 in the case of Gaussian (or
nearly Gaussian) work distributions, it remains completely unclear why Pf (W ) and
Pb(−W ) are so different (relatively narrow and apparently Gaussian Pf (W ), broad
and strongly asymmetric Pb(−W )) even for slow steering velocities. As a matter
of fact, as stated in the first paragraph of this section, the validity of the CE im-
plies that if one work distribution is Gaussian, then the work distribution relative
to the inverse transformation must be Gaussian too. It seems therefore reason-
able to assume that the same statement should hold true for nearly Gaussian work
distributions. On the contrary, our results clearly indicate that a nearly Gaussian
(Markovian) process in one direction can be markedly non Gaussian in the reverse
direction.

We may then try to calculate the free energy difference ∆F directly from Eq.
1.8, using exclusively Pf (W ) and Pb(−W ) making no assumption or approximation
about their shape. According to Eq. 1.8, we note that ∆F corresponds exactly
to the work, say Wx, at which the intersection of Pf (W ) and Pb(−W ) occurs. For
fast transformations this point falls on the tails of the work distributions (see Fig.
1.2), that are invariably the left tail of Pf (W ) and the right tail of Pb(−W ). From a
computational standpoint, the determination of ∆F becomes more and more difficult
with increasing the mean dissipated work. If the steering velocity is too large, the
two work distributions are far apart and Wx cannot be reliably determined (see Figs.
1.2a, 1.2b, 1.2c, and 1.2d). For low steering velocity, Wx can instead be determined
even quite precisely (Figs. 1.2e and 1.2f). This scenario can be better appreciated
in Fig. 1.6, where we report a zoomed view of Fig. 1.2. From the work distributions
obtained at the two lowest steering velocities (Figs. 1.6e and 1.6f), we recover the
almost exact ∆F . It is indeed remarkable that the estimate of ∆F using directly
Eq. 1.8 with no assumption on the work distributions is much better than those
reported in Fig. 1.5 where the Gaussian shape assumption was used.
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Figure 1.6: Zoomed view (from Fig. 1.2) of the Pf (W ) and Pb(−W ) work distri-
bution functions (solid and dashed lines, respectively) for various steering velocities
(τ = 10, 20, 30, 50, 100, and 200 ps from panel a to panel f). The vertical dashed
lines show the value of ∆F obtained from the thermodynamic integration method.
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Although Fig. 1.6 furnishes a clear and quite conclusive numerical demonstra-
tion of the validity of the CE for NH molecular dynamics, the test of the CE we
provide above is essentially based on a specific and very limited aspect of the equa-
tion, namely that Wx = ∆F . CE actually implies much more than this. In fact
Eq. 1.8 (and our specific application to SMD simulations), if physically true, must
hold for any W . We can thus in principle recover Pb(−W ) (or Pf (W )) from the
knowledge of the only quantities Pf (W ) (or Pb(−W )) and ∆F . We report this test
in Fig. 1.7 for the steering time τ = 200 ps. The agreement between the (forward
or backward) work distribution as observed in the simulations and the one derived
from its counterpart (backward or forward) via CE is very good, demonstrating
numerically the validity beyond any reasonable doubt of the CE in the context of
NH SMD simulations. The noise observed in the retrieved work distributions is
due to the unavoidable poor statistics in the tails of the original work distributions.
As previously noted, the distribution Pb(−W ) at τ = 200 ns has an unexpected
non Gaussian character compared to the seemingly Gaussian shape of the corre-
sponding Pf (W ) distribution. Nonetheless, as shown in Fig. 1.7, it is possible to
reconstruct an important part of the non Gaussian backward distribution using the
nearly Gaussian distribution of the forward process. This result points to the fol-
lowing conclusion: Pf (W ) is not Gaussian in its left tail, i.e. there where the body
of the backward work distribution Pb(−W ) is carved[40]. Correspondingly, Pb(−W )
is approximately Gaussian only in its right tail, i.e. for processes ending up, in
average, with a successful reforming of the α-helix. This remarkable intertwined
behavior of the forward and backward work distributions is compactly and elegantly
accounted for by the CE.

In the present study a theoretical proof and numerical tests of the Crooks equa-
tion (CE) have been provided, in the context of constant volume, constant temper-
ature steered molecular dynamics simulations where the Nosé-Hoover thermostat is
used. The generalization of the CE to Nosé-Hoover dynamical systems (not neces-
sarily Markovian), along with the previous generalization provided by Evans for the
isokinetic ensemble[27], strengthens the idea[27] that the Jarzynski equality and the
CE have general validity, both being a manifestation of the fluctuation theorem[45].

In order to numerically verify the CE, tests on an isolated decaalanine peptide
at finite temperature have been performed. Although the CE adapted to Gaussian
work distributions (Eqs. 1.11 and 1.12) does not yield satisfactory results for the
unfolding and (especially) folding of decaalanine, the use of the CE without any
assumption on the shape of the work distributions (Eq. 1.8) allows to recover very
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Figure 1.7: Pf (W ) and Pb(−W ) work distribution functions (solid and dashed line,
respectively) for the steering velocity corresponding to τ = 200 ps. The open circled
line is the backward work distribution obtained from the forward work distribution
via CE. The full circled line is the forward work distribution obtained from the
backward work distribution via CE.

precisely the exact folding/unfolding free energy. These results i) show that the
dynamics of decaalanine is far from being Markovian and ii) provide a convincing
numerical test of the validity of the CE for non-Markovian systems. The left tail of
the forward work distribution turns out to be a crucial feature, since it is in the left
tail that, according to the CE, the shape of the backward work distribution is carved.
For the same reasons, particular importance is also to be ascribed to the right tail of
the backward work distribution. The behavior of the tails of the work distributions
conveys a great deal of thermodynamical information, and valuable clues about the
dynamical regime at the equilibrium typical of the underlying reaction coordinate.

From a practical standpoint, the CE expressed in terms of work distribution
functions (Eq. 1.8), cannot be applied, as such, for reconstructing the whole free
energy profile along a given reaction path. As a matter of fact the CE allows
to recover only free energy differences between two well defined macrostates. A
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full reconstruction of the free energy profile would require to split the interval of
the reaction coordinate into several segments, where the CE machinery is applied
independently. The determination of the whole free energy profile using one set of
trajectories alone would be possible if the forward and backward transformation can
be described by a Markovian process. However, this is not true for decaalanine and
probably it is not true in general for biomolecules.
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1.2 Generalization of the work fluctuation

theorem in molecular dynamics simulations

In the field of molecular dynamics simulations, several routes to the free energy calcu-
lation along selected collective variables have been opened in the last decade. At vari-
ance with classical methods such as thermodynamic integration or free energy per-
turbation, which are based on equilibrium dynamics, most of these new approaches
rely on the production of non-equilibrium trajectories. Typical examples are the
recently developed adaptive bias potential methods, such as metadynamics[11] and
self-healing umbrella sampling[13]. Since these techniques must in principle bring to
a final equilibrium sampling in the subspace of the collective variables, they are[11]
or must eventually mutate[13] into quasi-equilibrium methodologies. A substantially
different scenario has been shown at the end of 90th by Jarzynski[4] and Crooks[5],
who introduced “truly” non-equilibrium strategies for determining free energy dif-
ferences. In particular they proposed a way to relate free energy differences between
two thermodynamic states, differing in at least one (mechanical) collective variable,
to the external work done on the system in an ensemble of non-equilibrium trajec-
tories switching between the two states.

Jarzynski Identity (JI). The JI relates an exponential average of the work W to
drive the system from the state A to the state B at constant temperature to the free
energy difference ∆F = F (B)− F (A) between the two states,

〈e−βW 〉 = e−β∆F (1.28)

where β = (kBT )−1, kB being the Boltzmann constant and T the temperature.
The average quantity 〈exp(−βW )〉 is calculated over different non-equilibrium phase
space trajectories whose initial points are canonically distributed. Note that, since
we are dealing with non-equilibrium (irreversible) trajectories, the final phase space
points are not canonically distributed. After the first demonstration[4], the JI
has been proved for a variety of cases from Hamiltonian and non-Hamiltonian
dynamics[23, 50, 41, 51], to Langevin[52] and Markov-chain[43] dynamics. The first
experimental test of the JI was published by Liphardt et al.[29], who applied Eq.
1.28 to measurements of the irreversible work done to mechanically stretch a single
molecule of RNA.

Crooks Equation (CE). The CE relates the probability of a non-equilibrium phase
space trajectory, Γ0 → Γτ , to the probability of its time reversal, Γ∗0 ← Γ∗τ . The
phase space points Γ0 and Γτ may refer to different Hamiltonians (where, e.g.,
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the distance between two molecules is constrained to different values). The CE
establishes that

p(Γ0 → Γτ )
p(Γ∗0 ← Γ∗τ )

= exp[β(WΓ0→Γτ −∆F )], (1.29)

where WΓ0→Γτ is the work done on the system during the trajectory Γ0 → Γτ . In
Eq. (1.29), p(Γ0 → Γτ ) is the joint probability of taking the microstate Γ0 from
a canonical distribution with initial Hamiltonian and of performing the forward
transformation to the microstate Γτ . p(Γ∗0 ← Γ∗τ ) is the analogous joint probability
for the time reversal path. ∆F is the free energy difference between the final and
initial thermodynamic states. In Monte Carlo or molecular dynamics simulations, a
more manageable but less general form of Eq. (1.29) is used[43]. This form is easily
obtained from Eq. (1.29) by summing the probabilities of all possible trajectories
during which the same amount of work W is done on the system. It reads as follows:

PF (W )
PR(−W )

= exp[β(W −∆F )], (1.30)

where PF (W ) is the probability distribution of the work done on the system during
all possible forward trajectories, while PR(−W ) is the analogous distribution for the
reverse paths. Note that the JI (Eq. 1.28) may be trivially recovered by rearranging
Eq. 1.30 and by integrating over W . The CE was originally derived[5] for micro-
scopically reversible Markovian systems in the context of Monte Carlo simulations.
Several other proofs followed[26, 27, 6, 50, 53]. In particular, in Ref. [27] Evans
pointed out the connection between the CE and the fluctuation theorem[45, 54, 55].
From the experimental point of view the CE has been verified using atomic force
microscopy for the process of unfolding and refolding of a small RNA hairpin and
an RNA three-helix junction[30].

The Jarzynski and Crooks theorems share the fact that the external work W

is of mechanical nature and the thermodynamic conditions of the initial and final
states are the same. These are indeed basic assumptions in the various proofs of the
theorems and in the available computational[6] and experimental[29, 30] tests. In
the present paper we propose a generalization of the JI and CE to realizations that
drive the system out of equilibrium, not only using a mechanical force acting on
the physical system, but also irreversibly changing the thermodynamic conditions
of the physical system. This provides the opportunity of determining the relevant
equilibrium quantities (the free energy difference or the ratio between the partition
functions) of the initial and final states, that may differ in the basic thermodynamic
quantities (P , T and V ). We will also derive Eqs. 1.28 and 1.30 as special cases of
such generalized equations.
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In the following, we specifically address the proof for the generalized CE and we
derive the corresponding generalized JI as stated above, that is by integration on
the overall work variable. We start by considering a dynamic system with a given
initial energy that evolves according to the Martyna-Tobias-Klein (MTK) equations
of motion[8] (NPT-based dynamics). It has been shown[44] that for stationary sys-
tems such equations yield the proper NPT partition function both with and without
momentum conservation. Here, we limit ourselves to the latter case, since it can be
easily proved that the result does not change when the momentum conservation is
applied. Suppose to drive such system out of equilibrium by an arbitrary combina-
tion of the following mechanisms: 1) introduction of some time-dependent external
potential U(t) that produces mechanical work on the system; 2) temperature vari-
ation through the thermostat; 3) external pressure variation through the barostat.
The time schedules for the mechanical work and the pressure and temperature vari-
ations are arbitrary and mutually independent. The effect of such a transformation
is to change the energy of the global system from

H(0) = H + U(0) + ψbar + V P (0) +

+ ψth +

[
(3N + 1)η1 +

M∑

k=2

ηk

]
β−1(0) (1.31)

to

H(τ) = H + U(τ) + ψbar + V P (τ) +

+ ψth +

[
(3N + 1)η1 +

M∑

k=2

ηk

]
β−1(τ), (1.32)

where H is the (potential plus kinetic) energy of the physical system, ψbar =
p2
ε/(2Mb) is the kinetic energy associated to the barostat with mass Mb and ψth =∑M
k=1 p

2
η

k
/(2Qk) is the kinetic energy associated to the thermostat (according to the

MTK algorithm we use a Nosé-Hoover chain[39] with M coupled thermostats). It
is important to note that, in Eqs. 1.31 and 1.32, the external potential U(t), the
external pressure P (t), and the temperature [kBβ(t)]−1, depend explicitly on time.
For convenience we separate the total energy of the global system at time t, H(t),
into two terms: the energy of the physical system + barostat (from now on called
extended system) and the energy of the thermostat:

H(t) = Hes(t) +Hth(t) (1.33)

where

Hes(t) = H + U(t) + ψbar + V P (t) (1.34)
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and

Hth(t) = ψth +

[
(3N + 1)η1 +

M∑

k=2

ηk

]
β−1(t). (1.35)

For simplicity of notation, in Eqs. 1.34 and 1.35 we have expressed the dependence
on t only for those quantities that depend explicitly on time. The work done on the
global system during the transformation is

W =
∫ τ

0

∂H(t)
∂t

dt. (1.36)

As stated above (see also Eqs. 1.34 and 1.35), three terms of the total energy H(t)
depend explicitly on time. Correspondingly, W is given by the sum of three terms,
namely

W = Wm +Wbar +Wth

=
∫ τ

0

∂U(t)
∂t

dt+
∫ τ

0
V
∂P (t)
∂t

dt+

+
∫ τ

0

[
(3N + 1)η1 +

M∑

k=2

ηk

]
∂β−1(t)
∂t

dt, (1.37)

where Wm, Wbar and Wth are the mechanical work on the physical system, the work
done to produce a pressure change and the work done to produce a temperature
change, respectively. The quantities Wm, Wbar and Wth can be directly calculated
from molecular dynamics simulations, since the time schedules of U(t), P (t) and
β(t) are given.

For a thermostated system with an incorporated barostat, the thermal energy
provided by the thermostat during the transformation can flow, not only from and
to the physical system, but also from and to the barostat. The total energy change
of the extended system can thus be expressed as

Hes(τ)−Hes(0) = Q+Wm +Wbar, (1.38)

where Q is the heat flowing in the extended system from the thermostat and Wm +
Wbar is the total work done on the extended system. Analogously, from Eq. 1.35
we can derive the energy change of the thermostat during the transformation:

Hth(τ)−Hth(0) = Wth +
∫ τ

0
ψ̇th dt+

+
∫ τ

0

[
(3N + 1)η̇1 +

M∑

k=2

η̇k

]
β−1(t) dt. (1.39)
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Since in Eq. 1.38 we have arbitrarily assumed that the heat entering into the ex-
tended system is positive, the sum of the last two terms of Eq. 1.39 corresponds to
−Q. Therefore:

Hth(τ)−Hth(0) = Wth −Q. (1.40)

The proof proceeds by considering the so-called transient fluctuation theorem by
Evans[45], that correlates the joint probabilities of Eq. 1.29 to the compressibility
∇Γ · Γ̇ of the system and to the probabilities p(Γ0) and p(Γτ ) of the initial and final
phase space points:

p(Γ0 → Γτ )
p(Γ∗0 ← Γ∗τ )

=
p(Γ0)
p(Γτ )

e−
R τ
0 ∇Γ·Γ̇ dt. (1.41)

In our case the probabilities p(Γ0) and p(Γτ ) are canonically distributed. There-
fore considering the expression of the canonical probability of a phase space point
Γ ≡ (p, r, pε, V, pη) provided by the MTK algorithm for a momentum conserving
system[44], we can write:

p(Γ0)
p(Γτ )

=
e−β(0)[ψbar(0)+ψth(0)+V (0)P (0)]

e−β(τ)[ψbar(τ)+ψth(τ)+V (τ)P (τ)]
×

× e−β(0)[H(0)+U(0)]

e−β(τ)[H(τ)+U(τ)]

ω
(τ)
P,T

ω
(0)
P,T

. (1.42)

where ω(τ)
P,T and ω

(0)
P,T are the partition functions of the final and initial thermody-

namic states in the Γ phase space, respectively. In order to obtain the partition
functions in the phase space of the coordinates and momenta of the physical system,
the integrals over pε and pη in ω(τ)

P,T and ω(0)
P,T must be calculated. Hence, using Eq.

1.34, we rewrite Eq. 1.42 as follows:

p(Γ0)
p(Γτ )

=
e−β(0)[Hes(0)+ψth(0)]

e−β(τ)[Hes(τ)+ψth(τ)]

[
β(0)
β(τ)

]m Ω(τ)
P,T

Ω(0)
P,T

. (1.43)

where Ω(τ)
P,T and Ω(0)

P,T are the partition functions in the phase space of the phys-
ical system and m = (M + 1)/2. To obtain the final expression for the ratio
p(Γ0 → Γτ )/p(Γ∗0 ← Γ∗τ ), we need to determine the exponential function in Eq.
1.41. The MTK equations of motion for a momentum conserving system give rise
to the following compressibility[44]:

∇Γ · Γ̇ = −(3N + 1) η̇1 −
M∑

k=2

η̇k. (1.44)
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Using Eq. 1.44, the exponential function in Eq. 1.41 can be written as

e−
R τ
0 ∇Γ·Γ̇ dt =

e−(3N+1) η1(0)−PM
k=2 ηk(0)

e−(3N+1) η1(τ)−PM
k=2 ηk(τ)

. (1.45)

Upon substitution of Eqs. 1.43 and 1.45 into Eq. 1.41 and using Eqs. 1.33 and 1.35,
we obtain

p(Γ0 → Γτ )
p(Γ∗0 ← Γ∗τ )

=
e−β(0)H(0)

e−β(τ)H(τ)

[
β(0)
β(τ)

]m Ω(τ)
P,T

Ω(0)
P,T

. (1.46)

By using Eqs. 1.33, 1.38 and 1.40, H(τ) can be expressed as a function of the
quantities H(0), Wm, Wbar, and Wth:

H(τ) = H(0) +Wm +Wbar +Wth. (1.47)

Upon substitution of Eq. 1.47 into Eq. 1.46 we finally get

p(Γ0 → Γτ )
p(Γ∗0 ← Γ∗τ )

=
Ω(τ)
P,T

Ω(0)
P,T

eβ(τ)W+[β(τ)−β(0)]H(0)+m ln
β(0)
β(τ) , (1.48)

where W = Wm +Wbar +Wth and must be calculated following Eq. 1.37. Eq. 1.48
relates the probability of a general non-equilibrium transformation (i.e., involving
mechanical work, and pressure and temperature changes) and its time reversal, to
the total work done on the global system in the forward process and to the partition
functions of the initial and final states. Eq. 1.46 (or equivalently Eq. 1.48) is the
generalized form of Eq. 1.29 and is the central result of the present paper.

The extension of the CE to systems where the volume (instead of the external
pressure) and the temperature change during the transformation due to external
work is straightforward. In such case the MTK equations of motion reduce to
the Nosé-Hoover chain equations[39] (NVT dynamics) and the energy of the global
system is

H(t) = H[V (t)] + U(t) + ψth +

+

[
(3N + 1)η1 +

M∑

k=2

ηk

]
β−1(t). (1.49)

In Eq. 1.49, the dependence of the energy of the physical system on the volume is ex-
plicitly given because the volume, and hence the energy, may be arbitrarily changed
during the transformation. Moreover, since the external pressure is constant, the
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relation Wbar = 0 holds. However, as previously stated, the physical system may
undergo additional work, say Wvol, during the transformation

Wvol =
∫ τ

0

∂H(V )
∂V

V̇ dt. (1.50)

By following the guideline that brought to Eq. 1.48, we may recover the generalized
CE for NVT dynamic systems:

p(Γ0 → Γτ )
p(Γ∗0 ← Γ∗τ )

=
Ω(τ)
V,T

Ω(0)
V,T

eβ(τ)W+[β(τ)−β(0)]H(0)+m ln
β(0)
β(τ) , (1.51)

where H(0) is given by Eq. 1.49 (with t = 0), m = M/2 (only the integrals over pη
are present in ω(τ)

V,T and ω(0)
V,T ) and W = Wm +Wvol +Wth.

In order to recover the generalized versions of Eqs. 1.28 and 1.30, we define
the following adimensional functional of a generic trajectory that brings the system
from the state A at time 0 to the state B at time τ :

W ≡WAB = βBW + (βB − βA)HA +m ln
βA
βB

, (1.52)

where (kBβA)−1 and (kBβB)−1 are the temperatures of the initial and final states,
respectively, and HA is the energy of the global system (Eq. 1.31) in the initial
state. Using the above definition, collecting all trajectories yielding the same W,
and exploiting the fact that WBA = −WAB ≡ −W, Eq. 1.48 transforms as follows

PF (W)
PR(−W)

= eW
ΩB

ΩA
, (1.53)

where PF (W) and PR(−W) are the normalized distribution functions ofW and −W
for the forward and backward transformations, respectively. Multiplying both sides
of Eq. 1.53 by e−WPR(−W) and integrating the resulting equation over W, the
generalized JI is obtained

〈e−W〉 =
ΩB

ΩA
. (1.54)

With analogous considerations, it can be shown that the functional relations of Eqs.
1.53 and 1.54 are also valid for NVT-based dynamics (Eq. 1.51). The difference
between NVT and NPT dynamic systems stems from the meaning of the quantities
W , HA, ΩA and ΩB as discussed above.

It is now straightforward to derive Eqs. 1.28 and 1.30 as special cases of the
non-equilibrium work theorems expressed by Eqs. 1.54 and 1.53. To this aim we
consider the particular case in which the temperature of the thermodynamic states
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A and B is the same. Such condition implies that βB = βA = β in Eq. 1.52 and
therefore W = βW . The same condition allows us to relate the ratio ΩB/ΩA to the
free energy difference between the states A and B. In particular: ΩB/ΩA = e−β∆G

for NPT dynamic systems and ΩB/ΩA = e−β∆F for NVT dynamic systems. The
CE and JI are easily recovered using the relations obtained for W and ΩB/ΩA into
Eqs. 1.53 and 1.54, respectively.

In conclusion the generalized non-equilibrium relations we present could be fruit-
fully exploited, not only for the direct determination of free energy differences, but
also used in thermodynamic cycles. Our results may open interesting perspectives
either into computational or into experimental field, providing a framework where
both intensive and extensive thermodynamic variables can be freely manipulated
during the non-equilibrium measurements.
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1.A Proof of Eq.1.14

The proof of Eq. 1.14 proceeds as follows. Since the dynamics is deterministic, the
probability ratio of the A → B and A ← B transformations is simply given by the
ratio between the number of initial points of the A→ B process and the number of
initial points of the time-reversal A← B process:

p[A(x(0))→ B(x(τ))]
p[A(x(0))← B(x(τ))]

=
p[A(x(0))] δx(0)

p[B(Mx(τ))]Mδx(τ)
(1.55)

whereM is the time-reversal operator such thatM(q,p) = (q,−p). In the previous
equation δx(0) and δx(τ) are the volume elements of the phase space at the points
x(0) and x(τ), respectively. p[A(x(0))] and p[B(Mx(τ))] are the equilibrium prob-
abilities of the states x(0) andMx(τ). Since the equilibrium probability of a phase
space state is independent on the sign of the momenta, the time-reversal operator
does not affect the probability at the denominator, i.e. p[B(Mx(τ))] = p[B(x(τ))].
For the time-reversal trajectory, the volume elementMδx(τ) is related to the volume
element Mδx(0) through the Jacobian J = exp

(− ∫ τ
0 ∇x · ẋ dt

)
of the transforma-

tionMδx(0)←Mδx(τ),

Mδx(0) = exp
(
−

∫ τ

0
∇x · ẋ dt

)
Mδx(τ). (1.56)

Substituting Eq. 1.56 into Eq. 1.55 and exploiting the invariance of the phase space
volume elements upon application of the time-reversal operator, i.e. Mδx = δx, we
recover Eq. 1.14.
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1.B Work fluctuation theorem using Nosé-Hoover chains

The demonstration of the CE for the case of a chain of M NH thermostats whose
inertial factors are Mη1

, Mη2
, ..., Mη

M
follows the guideline we have described in

Sec. 1.1.1. The substantial difference occurs in the equations of motion that in the
case of the NH chain algorithm[38, 39] coupled to a guiding potential are:

q̇i =
∂H0

∂pi

ṗi = −∂H0

∂qi
− ∂V (ζ, t)

∂qi
− η̇1pi

η̇k =
pη

k

Mη
k

, k = 1, ...,M

ṗη1 =
3N∑

i=1

p2
i

mi
− 3Nβ−1 − pη2

Mη2

pη1

ṗη
k

=
p2
η

k−1

Mη
k−1

− β−1 −
pη

k+1

Mη
k+1

pη
k
, k = 2, ...,M − 1

ṗη
M

=
p2
η

M−1

Mη
M−1

− β−1. (1.57)

Combining the equations of motion reported above with Eq. 1.21, we recover the
analog of Eq. 1.23:

QAB = −3Nβ−1

∫ τ

0
η̇1 dt− β−1

M∑

k=2

∫ τ

0
η̇k dt+

M∑

k=1

p2
η

k
(0)− p2

η
k
(τ)

2Mη
k

. (1.58)

It is easy to prove that the compressibility of the system (analog of Eq. 1.24) is

∇x · ẋ = −3Nη̇1 −
M∑

k=2

η̇k. (1.59)

Combining Eqs. 1.58 and 1.59, we get the analog of Eq. 1.25
∫ τ

0
∇x · ẋ dt = βQAB + β

M∑

k=1

p2
η

k
(τ)− p2

η
k
(0)

2Mη
k

. (1.60)

Finally, for a system coupled to a NH chain of thermostats, the ratio between the
equilibrium probabilities p[A(x(0))] and p[B(x(τ))] is (analog of Eq. 1.26):

p[A(x(0))]
p[B(x(τ))]

= exp

[
β

M∑

k=1

p2
η

k
(τ)− p2

η
k
(0)

2Mη
k

]
exp[β(H(τ)−H(0)−∆F )]. (1.61)

Upon substitution of Eqs. 1.61, 1.60 and 1.17 into Eq. 1.14, we recover the CE (Eq.
1.27).
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Improving history-dependent methods

In a simulation, a possible strategy to enhance the transition rates between two
metastable states and to focus attention on a rare event is simply to change the
original free energy landscape by adding an artificial biasing potential. This solution
is known as Non Boltzmann or Umbrella Sampling[56]. If the transition state can be
identified and located at some value of the reaction coordinate, the biasing potential
V (s) can be used to balance the activation barrier so as to flatten the free energy
landscape along the reaction coordinate s. However, the height and the position of
the transition state, as well as the free energy difference between the two metastable
states, are more the results of a simulation than known a priori parameters, and
therefore a great effort was devoted to develop adaptive biasing methods [57, 58, 10,
11, 59], that improve the biasing potential “on the fly” as the simulation proceeds,
using the previous part of the trajectory to build up an history-dependent potential.

An history-dependent potential V (s, t) is an artificial potential that changes in
time according to the trajectory followed by the system, disfavoring already visited
configurations. Let us consider an ensemble of replicas of the system, spread along
the reaction coordinate s with a probability distribution p(s, t). The evolution of
the biasing potential is then given by

∂V (s, t)
∂t

= ωp(s, t) (2.1)

where ω has the dimensions of an energy rate. If this rate is sufficiently slow, we can
suppose that p(s, t) is the equilibrium distribution for the biasing potential V (s, t)
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at time t. Then, when V (s, t) flattens the free energy, the systems in the ensemble
are distributed uniformly along the reaction coordinate and the biasing potential is
stationary within an addictive constant.

In this chapter, two aspects of this approach are addressed. In Sec.2.1, an alter-
native form of Eq.2.1 is proposed which contains the additional term p−

∂V (s, t)
∂t

= ω
[
p(s, t)− p−(s, t)

]
(2.2)

that determines the probability to lower the potential in state s at time t. Such
term is exploited to prevent the biasing potential to grow indefinitely. In Sec.2.2
an algorithm is introduced whose biasing potential depends logarithmically on an
estimate of the equilibrium distribution ρ(s) along s,

V (s, t) = log ρ(s, t) (2.3)

ρ is calculated from the previous history of the trajectory as

ρ(s, t) =
Ñ(s, t)
A(t)

(2.4)

where Ñ is a reweighted histogram, and A(t) a time dependent normalization con-
stant. At variance with previous approaches, the algorithm is shown to converge
quantitatively to the free energy surface of the system.
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2.1 Metadynamics under control

Metadynamics[11] is an example of algorithm that relies on an history-dependent
potential. A metadynamics simulation consists in two steps. In the first one, a set
of reaction coordinates is chosen whose dynamics describes the process under study.
Such a procedure requires an high degree of chemical and physical intuition for its
application to complex molecular system, since these variables cannot be obviously
determined from the molecular structure, and, as outlined in the Introduction, it
should be considered more the result of a simulation than its starting point. The
second step is the metadynamics simulation, during which an history-dependent po-
tential is constructed by summing up potential terms, commonly referred as “hills”,
at regular time intervals along the trajectory in the space of the reaction coordi-
nates. The shape of these hills can be different, and the optimal choice from the
computational point of view will be described in section 2.C. This non-Markovian
potential term pushes the system to visit new states at a faster rate with respect to a
standard dynamics, while at the same time reconstructing the free energy landscape
as the biasing potential inverted in sign.

In this section a simple argument is proposed to evolve the metadynamics poten-
tial, while keeping fixed the number of potential terms or “hills”. Roughly speaking,
looking at a metadynamics run as a “flooding” of a free energy surface with the
biasing potential as a fluid, this would corresponds to stop the flooding and look at
the fluid waving. Such a procedure permits to restrict the sampling to the accessible
states given such a fixed “volume” of the biasing potential. From the computa-
tional point of view, since it stops the number of hills to grow indefinitely during
a metadynamics run, this method permits to fix a priori the computational cost of
integrating the forces from the biasing potential.
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2.1.1 Metadynamics and the Gillespie algorithm

In a metadynamics simulation, the algorithm keeps on adding terms to the history-
dependent potential, until the simulations stops. However, it is often difficult to
decide when to terminate a metadynamics run. As a matter of fact, in a single
run, even if all the relevant slow modes of the system are accelerated by the bias-
ing potential, the free energy does not converge to a definite value but fluctuates
around the correct result, leading to an average error which is proportional to the
square root of the bias potential deposition rate [12, 60]. Therefore, averages on
an ensemble of independent realizations are needed. Furthermore, in practical ap-
plications, continuing a run carries the risk that the system is irreversibly pushed
in regions of configurational space which are not physically relevant. These issues
have already been recognized and different solutions have been proposed to alleviate
these problems [12, 13, 61, 62].

In a standard metadynamics simulation, the evolution of the biasing potential is
given on average by

∂V (s, t)
∂t

= ωp(s, t) (2.5)

where ω is the potential deposition rate, and p+(s) denotes the probability of de-
posing an hill in state s, and therefore coincides with the probability of finding the
system in the state s at time t. In the slow deposition limit, one can assume that
the system is in equilibrium with the external potential , and therefore rewrite the
previous equation as

∂V (s, t)
∂t

= ω
e−β(F (s)+V (s,t))ds

ZΩ(t)
(2.6)

where
ZΩ(t) =

∫

Ω
e−β(F (s)+V (s,t))ds (2.7)

is a time-dependent normalization. The subscript Ω denotes the subset of the state
space accessible to the system, given the biasing potential at time t is V (t), that is,
those states separated by free energy barriers not greater than a few β−1 from the
current state of the system.

Even if the set Ω is clearly defined by the topology of the free energy landscape,
and the latter is locally flattened by the added potential for all states included in Ω,
the potential V (s) keeps on growing with a rate independent of s:

∂V (s, t)
∂t

= ω
ds
Ω

(2.8)

since for V (s, t) = −F (s) on Ω one has ZΩ(t) = Ω. Since the potential grows
indefinitely, the system will be indefinitely pushed to visit new, less probable states,
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eventually sampling configurations outside of the collection of metastable states
and transition states we are interested in. Moreover, the potential will be updated
slower and slower with the increase of the number of accessible states, Ω, and its
computational burden will increase.

This “overfilling” problem can be circumvented by adding a new term to Eq.2.5

∂V (s, t)
∂t

= ω[p(s, t)− p−(s, t)] (2.9)

where p−(s, t) denotes the probability of deposing a negative hill (or “subtract”
an hill) at point s. The simplest choice is an uniform probability on the set Ω,
p−(s, t) = ds/Ω. Then, when V (s) = −F (s) on Ω, now we have

∂V (s, t)
∂t

= ω

(
ds
Ω
− ds

Ω

)
= 0 (2.10)

and the potential is stationary.
Such a procedure can be illustrated as moving a preexistent hill to a new position,

establishing a dynamics of the hills and conserving their total number. How to choose
an hill such that its position is randomly distributed on Ω? Random hills clearly
will not be distributed uniformly. However, the number of hills deposed in a state
s, n(s, t) is linearly related to the biasing potential in that point by the relation
V (s, t) ' n(s, t)h where h is the average height of an hill. Therefore, a correct
procedure is to choose an hill with a probability that is inversely proportional to the
biasing potential in s. This can be achieved by placing, for each hill, a segment on a
line, of length proportional to 1/V (s). Choosing a single random position along the
length of this stack of segments will select the segment corresponding to a specific
hill, as in the Gillespie algorithm[63] it selects a specific pathway for the system to
follow among a set of possible pathways with different rate constants.
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2.1.2 Metadynamics simulation of an isomerization model

In order to illustrate the efficiency of the algorithm, we have considered a one-
dimensional isomerization model where the molecular potential is a double-minimum
potential given by

Vmol(q) = a(q2 − 1)2 +
b

4
(q − 1)2 (2.11)

and shown in the top panel of Fig.2.1, and the interactions of the molecule with
the surroundings are modeled with Brownian dynamics. The parameters a = 12 kJ
mol−1 and b = 2 kJ mol−1 correspond approximately to the height of the barrier
separating the minima and to the energy difference between them, respectevely.

The system has been simulated at a temperature of 300 K. In a first reference sim-
ulation, the dynamics along the reaction coordinate q has been accelerated through
standard metadynamics. A hill of height h = 0.1 kJ mol−1 and width w = 0.05 has
been deposed along q every 100 time steps. The trajectory of the system is shown
in the middle panel of Fig.2.1. After a transient period during which the history
dependent potential fills the two minima, the system diffuses along the reaction co-
ordinate and starts exploring a greater and greater region (|q| > 1.5) outside of the
two basins.
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Figure 2.1: A trajectory from a standard metadynamics simulation on the model
potential (middle panel) is compared to a metadynamics simulation with a constant
number of hills (bottom panel); the model potential is shown in the top panel
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In the second simulation, after this first transient period of 4 · 105 time steps,
the number of hills has been fixed to 4000 by means of the algorithm presented
in the previous section. As we can see in the lower panel of Fig.2.1, the system
diffuses in a well-defined region that corresponds to the region of the two minima
and the transitions state. In Fig.2.2 the energy profile computed by inverting the
biasing potential at a random time during the simulation is compared with the exact
potential. The reconstructed potential presents typical “bumps” of a metadynamics
due to a finite deposition rate. If we average in time the biasing potential on a longer
simulation, this unpleasent feature disappears (Fig.2.2).

Figure 2.2: The model potential (straight line)is shown as a reference along with the
potential reconstructed inverting in sign the history-dependent potential at a random
time during the simulation (dashed line), and with the potential reconstructed by
averaging over all the simulation time(dotted line)
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It’s remarkable that results from metadynamics simulations are typically com-
puted over sets of different independent trajectories[12], and not as time averages
along a single longer trajectory, since in standard metadynamics a run longer than
the transient filling period will push the system in irrelevant regions of configura-
tional space. However, in this section we have seen how to control the accessible
configurational space during a metadynamics run, by using a Gillespie-like algorithm
to appropriately move the deposed hills and fixing their number.
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2.2 Self-Healing Umbrella Sampling

The ability of Molecular Dynamics (MD) simulations to study differences of entropy-
related thermodynamic potentials of complex systems is strongly limited by the time
needed to perform an ergodic sampling of the configurational space. In the origi-
nal Umbrella Sampling (US) approach[56], an enhanced sampling of slow degrees
of freedom is achieved by performing simulations in an artificial ensemble, obtained
by adding an external potential V to the real Hamiltonian H. This potential has
to be chosen so as to flatten the free energy surface (FES) along a selected multi-
dimensional reaction coordinate s(r) (r is the vector of the 3N coordinates of the
system), preventing the system from being trapped in a local minimum. The prob-
ability density for the unbiased system is recovered from the biased one through the
relation[64]

ρ(s) = 〈δ(s− s(r))〉 =
〈δ(s− s(r)) eβV (s(r))〉′

〈eβV (s(r))〉′ (2.12)

where δ(...) is the Dirac function, β = (kBT )−1 with kB being the Boltzmann
constant. In Eq. 2.12 the primed angular brackets stand for a canonical average in
the thermodynamic ensemble governed by the Hamiltonian

H ′ = H + V (s(r)) (2.13)

Ideally, in order to obtain an uniform sampling, one must choose a bias potential
equal to the free energy inverted in sign, i.e. the very quantity we are trying to
determine. A common solution to solve this circular problem is to perform a se-
ries of subsequent, quasi-equilibrium simulations as prescribed by the adaptive US
method[65, 66, 67]. The bias potential is updated at the beginning of each sim-
ulation by matching the statistics resulting from all the previous runs. Recently,
different approaches to reconstruct the FES self consistently have been proposed.
These methods are based on a history-dependent bias potential (metadynamics[11])
or force (adaptive biasing force method[68, 69]) that is continuously varied during a
single non equilibrium trajectory.

Inspired by the self-healing capabilities of the metadynamics of a non stationary
probability distribution, the “inexact” non equilibrium nature of the adaptive US
methodology is fully exploited, leading a parameter-free self consistent algorithm
where improved estimates of the probability are determined “on the fly” with no
need for a posteriori analysis for combining the statistics resulting from different
bias potentials.
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2.2.1 An history-dependent umbrella sampling algorithm

Consider a system in the canonical ensemble. Given a generic n-dimensional reaction
coordinate s depending on the atomic coordinates (e.g., a distance in a dissociation
reaction or a dihedral angle in an isomerization process), the free energy A(s) is
defined in terms of the probability density of s, as

A(s) = −β−1 ln ρ(s). (2.14)

If the ergodic hypothesis applies, ρ(s), and hence A(s), can be calculated by means
of a time average over an equilibrium trajectory. In order to overcome the slow
convergence of such average, we can generate a perturbed trajectory of the original
system under the action of an external potential, providing that a relation is given to
recover the correct statistics for the unperturbed system. In the case of an external
potential V (s) not explicitly dependent on time, as in the standard US method[56],
this relation is Eq. 2.12. The natural choice for a history-dependent biased dynamics
is to use a logarithmic relation between the time-dependent bias potential V (s, t)
and some estimate of the real probability density ρ(s) at time t, ρ(s, t)

V (s, t) = β−1 ln ρ(s, t) (2.15)

where ρ(s, t) is a normalized function at each t, such that 0 < ρ(s, t) < R for
any s and any arbitrary value of R. This definition of bias potential automatically
leads to a fast sampling of the reaction coordinate, exhorting the system to visit
configurational states for which ρ(s, t) is small. In this case the dynamics of the
system is governed by the time-dependent Hamiltonian

H ′ = H + β−1 ln ρ(s, t). (2.16)

However, we have not yet exactly defined the function ρ(s, t). If there can be found
a definition such that ρ(s, t), expressed as a time average, converges to the correct
ensemble average for the probability density ρ(s) in the long time limit, then ρ(s, t)
can be taken as a correct estimate of ρ(s). We can start by noticing that, in the
hypothesis that the biased system is ergodic, the ensemble averages in Eq. 2.12 can
be expressed as time integrals, such that

ρ(s) = lim
t→∞

∫ t
0 δ[s− s(τ)] eβV (s(τ))dτ∫ t

0 eβV (s(τ))dτ
. (2.17)

where the dynamics is driven by the Hamiltonian of Eq. 2.13. For the explicitly
time dependent bias potential of Eq. 2.15, we define ρ(s, t) in a similar fashion, i.e.,

ρ(s, t) =

∫ t
0 δ[s− s(τ)] eβV (s(τ),τ)dτ∫ t

0 eβV (s(τ),τ)dτ
(2.18)
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where the dynamics is generated by the time-dependent Hamiltonian of Eq. 2.16.
Substituting Eq. 2.15 into Eq. 2.18 we obtain a recursive relation for the probability
density

ρ(s, t) =

∫ t
0 δ[s− s(τ)] ρ(s, τ)dτ∫ t

0 ρ(s(τ), τ) dτ
. (2.19)

Eq. 2.19 can be easily implemented in standard MD simulation programs with
minor modifications. Starting from any initial arbitrary non zero density, it can be
shown (see appendix 2.A) that the resulting non equilibrium dynamics automatically
evolves to a stationary state where the bias potential nullifies the underlying free
energy and the probability density converges to the exact solution. As in metady-
namics, any kind of discrepancy between the biasing potential and the FES inverted
in sign will be corrected by the subsequent dynamics. In the algorithm summarized
by Eqs. 2.19 and 2.15, the evolution of the time dependent Hamiltonian stems exclu-
sively from the dynamics of the system and viceversa. Therefore, the method does
not involve system dependent parameters or corrections, reducing user intervention
to a minimum.
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2.2.2 SHUS simulations of alanine dipeptide isomerization reaction

In order to highlight the power and reliability of the algorithm, the FES using Eq.
2.19 of the solvated alanine dipeptide as a function of the dihedral angles Φ and Ψ
was investigated.

The simulation of one dipeptide molecule and 288 water molecules was performed
in the constant volume (cubic box of 21 Å side-length with standard periodic bound-
ary conditions), constant temperature (300 K) thermodynamic ensemble using the
program ORAC[70]. The temperature control was achieved using a Nosé-Hoover
thermostat[36]. The dipeptide is modeled using the Amber03 force field[71]. For
water we used the TIP3P potential[72]. Electrostatics has been accounted for by
the smooth particle mesh Ewald method[73] using a fourth order B-spline interpo-
lation polinomial for the charges, an Ewald α parameter of 0.43 Å−1, and a grid
spacing of ∼1 Å for the fast Fourier transform calculation of the charge weighted
structure factor. A cutoff distance of 10 Å has been used for the nonbonded inter-
actions. The reaction coordinate bin width is 5◦ for both the dihedral angles Φ and
Ψ. The bias potential has been updated every 0.5 ps.

Figure 2.3: Representation of the alanine dipeptide molecule.

The FES of the solvated alanine dipeptide depending on Φ and Ψ has already
been investigated in several computational studies (see Refs. [11, 71] and references
therein). The FES of isomerization of the alanine dipeptide obtained from our
methodology is reported in Figure 2.4 for two sampling simulation times, i.e. 1 and
10 ns. The reference FES obtained from standard US technique[56] is reported in
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Figure S1 of Appendix B. After only 1 ns, the system has scanned the entire domain
of the bi-dimensional reaction coordinate with a good accuracy. In particular the
transition path between the C7eq and αR free energy minima[11] can be clearly seen.
The three main free energy minima are located at Φ = −70◦, Ψ = −20◦ (αR),
Φ = −70◦, Ψ = 155◦ (C7eq) and Φ = −155◦,Ψ = 155◦ (C5). Setting the free
energy of the deeper minimum (C7eq) as the zero point, the relative depth of the αR
minimum is ∼ 0.5 kJ mol−1 and the transition state between C7eq and αR is located
at Φ ' −80◦, Ψ = 70◦ with activation energy of about 10 kJ mol−1. These results
agree with previous calculations obtained with the same force field[71], showing the
balance between the extended and the helical FES regions of alanine dipeptide.
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Figure 2.4: FES of the alanine dipeptide system as a function of Ψ and Φ torsional
angles, estimated after a simulation time of 1 ns (top panel) and 10 ns (bottom
panel). The free energy scale is in kJ mol−1. The zero free energy is set in the
absolute minimum of each surface. The reference FES (obtained by standard US)
is shown in Appendix B
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The convergence of the algorithm can be appreciated in Figure 2.5, where the
evolution of the root mean square deviation of the calculated FES with respect to
the reference one is reported. After 1 ns of simulation (see FES in the top panel
of Figure 2.4) the average error is less than 2 kJ mol−1. After 10 ns of simulation
(see FES in the bottom panel of Figure 2.4) the average error is as small as 0.5 kJ
mol−1.

Figure 2.5: Root mean square deviation of the estimated FES of the alanine dipep-
tide from the reference FES (see appendix 2.B.

In conclusion, this method utilizes, in the spirit of the adaptive US techniques,
a history-dependent bias potential that is progressively updated in order to flatten
the FES, eventually leading to an uniform sampling along the chosen reaction co-
ordinate. The novelty of such an approach with respect to standard US methods
is the introduction of a history-dependent bias potential that is continuously varied
during a single simulation on the basis of “on the fly” evaluations of the probability
density function. The non-equilibrium probability density of the biased sampling
is indeed used to obtain, virtually at every step of the simulation, a new estimate
of the FES thus allowing a self-healing updating of the bias potential as the sim-
ulation proceeds. Our non-equilibrium approach avoids altogether the problem of
connecting statistics collected in independent equilibrium simulations, resulting in
a parameter-free, general, and highly efficient self consistent algorithm.
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2.A Proof of convergence for the SHUS algorithm

In order to evaluate equation

ρ(s, t) =

∫ t
0 δ[s− s(τ)] ρ(s, τ)dτ∫ t

0 ρ(s(τ), τ)dτ
. (2.20)

in a numerical simulation, we have to discretize the n components of the reaction
coordinate s ≡ (s1, s2, ..., si, ..., sn) into a number of intervals or bins through the
relations si = bi∆si, where ∆si and bi are the step size and the bin index related
to the component si, respectively. The range spanned by si is limited, i.e. b(min)

i ≤
bi ≤ b(max)i . In this picture the running (simulation) time t is also a discrete quantity
that can be represented as t = j∆t, where ∆t is the simulation time step and j is
the simulation step index (j = 0, 1, 2, ..., Nstep). In the following treatment, the
dependence of ρ(s, t) on t is expressed by the step index j, while the dependence
on s is expressed by the vector b ≡ (b1, b2, ..., bn) whose components are the bin
indexes of the si’s. We then define the adimensional quantity ρ[b, j] as a discrete
approximation of ρ(s, t)∆s on the connected and bounded domain S

ρ[b, j] =

∑j
l=0 δb,b(l) ρ[b, l − 1]

∑
m

∑j
l=0 δm,m(l) ρ[m, l − 1]

(2.21)

where δb,b(j) is a Kronecker delta and b(j) identifies the vector b pointing to the
n-dimensional bin sampled at the jth time step. With this definition, the quantity
ρ[b, j] is supported on the bounded domain S and normalized at each time j. As
ρ[b, j] is defined by a recursive relation (Eq. 2.21), we need an initial (arbitrary)
distribution to start up the algorithm. To this end, we assume δb,b(0) = c and
ρ[b,−1] = 1 for all b vectors spanning the domain S with c being an arbitrary
constant. This choice amounts to start with a uniform distribution on S. Given the
above initial conditions and given that

∑
b ρ[b, j] = 1, it can be trivially shown that

the relation
0 < ρ[b, j] < 1 (2.22)

holds for all times j and all b vectors spanning the S domain. We now show that
the quantity ρ[b, j] defined above converges to a time independent solution for all
b, namely in the domain of definition of s. To this aim it is sufficient to show that

lim
j→∞

ρ[b, j + J ] = lim
j→∞

ρ[b, j] (2.23)

51



Improving history-dependent methods

for any arbitrarly large J . From Eq. 2.21 we get the following equation

ρ[b, j + J ] =
F [b, j]

(
1 +

Pj+J
l=j+1 δb,b(l) ρ[b,l−1]

F [b,j]

)

G[j]
(

1 +
P

m

Pj+J
l=j+1 δm,m(l)ρ[m,l−1]

G[j]

) (2.24)

where we have defined

F [b, j] =
j∑

l=1

δb,b(l) ρ[b, l − 1] (2.25)

and
G[j] =

∑

b

F [b, j]. (2.26)

Exploiting the condition of Eq. 2.22 and the definitions of Eqs. 2.25 and 2.26, it
can be shown that

lim
j→∞

∑j+J
l=j+1 δb,b(l) ρ[b, l − 1]

F [b, j]
= 0

lim
j→∞

∑
m

∑j+J
l=j+1 δm,m(l) ρ[m, l − 1]

G[j]
= 0. (2.27)

Taking the limit j →∞ of Eq. 2.24 and using Eqs. 2.25, 2.26 and 2.27, we recover
Eq. 2.23.

The next step is to show that the time independent solution of our problem,
i.e. limj→∞ ρ[b, j], gives exactly the probability density of the reaction coordinate
s. This can be proved by showing that, in the limit of large simulation times (large
j), the biased distribution function f [b, j, J ] calculated in the time interval from j

to j + J for arbitrary large J is uniform on the S domain. f [b, j, J ] is defined as
follows

f [b, j, J ] =

∑j+J
l=j δb,b(l)∑

m

∑j+J
l=j δm,m(l)

. (2.28)

From the definition of ρ[b, j] (Eq. 2.21) and the definition of G[j] (Eq. 2.26), one
obtains the following relation for δb,b(j):

δb,b(j) =
ρ[b, j]

ρ[b, j − 1]
G[j]−G[j − 1]. (2.29)

Substituting the previous equation into Eq. 2.28, we get

f [b, j, J ] =

∑j+J
l=j

(
ρ[b,l]
ρ[b,l−1]G[l]−G[l − 1]

)

∑
m

∑j+J
l=j

(
ρ[m,l]
ρ[m,l−1]G[l]−G[l − 1]

) (2.30)
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Using the relation demontrated above (Eq. 2.23) and provided that limj→∞ ρ[b, j] 6=
0, for all b in S, we obtain

lim
j→∞

f [b, j, J ] =

∑j+J
l=j (G[l]−G[l − 1])

∑
m

∑j+J
l=j (G[l]−G[l − 1])

=
1
N

(2.31)

where N is the number of bins. Therefore, provided that limj→∞ ρ[b, j] 6= 0 for all b
in S, the limiting sampling of the reaction coordinate is uniform. This means that,
in the long time limit, the external potential V (s, t) generated by the function ρ(s, t)
nullifies the underlying free energy A(s), i.e. limt→∞ V (s, t) = −A(s).
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2.B Reference free energy surface for the alanine dipep-

tide isomerization reaction
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Figure 2.6: Reference free energy surface for the alanine dipeptide, obtained from
standard US technique
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2.C The optimal shape of the hills

In its standard implementation, the history-depnendent potential of metadynamics
is given by a sum of Gaussian functions. Some variants have been introduced, with
the intent of improving the accuracy or the efficiency of the method[74, 61]. In this
section we present Lucy’s function[75, 76] (LF) as a very efficient alternative to the
use of Gaussians.

The LF is the simplest function satisfying the following four conditions:
(i) it is normalizable
(ii) it has a finite range w
(iii) it has a maximum at the origin
(iv) it has n− 1 continuous derivative everywhere
It is defined for a generic order n as

f(x) =




h

(
1 + 2 |x|w

)(
1− |x|w

)n
if − w ≤ x ≤ w

0 if x < w, x > w
(2.32)

whith the origin at x = 0. The symbols h and w denote the height and the width,
respectevely. Since this function will play the role of a potential, we need one
continuous derivative only. The explicit form of the LF and its derivative for n = 2
is given by:

f(−w ≤ x ≤ w) = h

(
1 + 2

|x|
w

)(
1− |x|

w

)2

(2.33)

∂f(x)
∂x

=
6h
w3
x(|x| − w). (2.34)

Such a simple derivative is particularly fit for the computation of the history depen-
dent forces during a metadynamics run. Moreover, since LF has a finite range by
definition, it does not need to be smoothly truncated[61], and the contribution to
the forces from hills farther than the width w can be correctly neglected. A LF with
h = w = 1 and a Gaussian function with the same height and standard deviation
σ = 1/3 are compared in Fig.2.7.

For N -dimensional spaces, one can use the product of monodimensional LFs as
a N -dimensional hill of height h:

fN (x) = (1/h)N−1
N∏

i=1

fi(xi) (2.35)

∂fN (x)
∂xi

= (1/h)N−1∂f(xi)
∂xi

N∏

j 6=i
fj(xj) (2.36)

55



Improving history-dependent methods

Figure 2.7: Lucy’s weight function f with h = w = 1, along with its first derivative
f ′ and a Gaussian function g with the same height and σ = 1/3.

In more than one dimension, the contribution to the forces from a given hill vanishes
if at least one component of the vector going from the origin of the hill to the actual
position of the system is greater in absolute value than the width of the LF along
that CV.
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From instantaneous to reversible replica exchanges

One of the most important problems of scientific computing is large-scale paral-
lelization of algorithms. Traditional parallelization schemes require extremely fast
communication between multiple processors and frequently do not scale to large
numbers of processors. As an alternative, it is possible to statistically couple many
simulations run in parallel to obtain a result that is equivalent to a longer simula-
tion. For example, the Replica Exchange Method[14, 15, 16, 17] (REM) consists in
performing a series of indipendent simulations of the same system, each in differ-
ent equilibrium conditions. In its most common implementation, simulations differ
in temperature: at variance with Non-Boltzmann Sampling and history-dependent
methods, where an energy barrier between two metastable states is flattened, the
transition rate is enhanced using an higher temperature. Then, to transfer the
barrier-crossing efficiency from runs at high temperature to the target temperature,
temperature exchanges are attempted periodically, moving through a series of ex-
changes high-temperature configurations to the lowest temperature simulation.

The temperature exchanges, or replica exchanges, are the crux of the algorithm.
If two simulations at temperatures Tj and Ti have energies Ej and Ei, they exchange
their temperatures with the Metropolis probability

p(acc) = min
{

1, e∆β∆E
}

(3.1)

where ∆β = βj − βi = (kBTj)−1 − (kBTi)−1 is their inverse temperature difference
and ∆E = Ej − Ei is their energy difference. This simple recipe guarantees a
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correct equilibrium sampling for each simulation at each temperature. If we rewrite
the acceptance probability as

p(acc) = min
{

1, e∆βEj−∆βEi

}
(3.2)

and interpret ∆β as a displacement in the space of temperature, and the energy of
a replica as a conjugated force, then the argument of the exponential function have
the physical meaning of a sum two “works”: the work spent in moving a replica with
energy Ei from a temperature βi to a temperature βj and a replica with energy Ej
from a temperature βj to a temperature βi

p(acc) = min
{

1, e−(Wi→j+Wj→i)
}
. (3.3)

This argument shows that the REM acceptance probability favours low-dissipative
exchanges, and suggests a strong connection between this algorithm and the work
fluctuation theorem[5]. In this chapter, starting from this connection the REM al-
gorithm is extended from instantaneous exchanges to general non-equilibrium trans-
formations, in which the temperatures (or more generally the thermodynamical con-
ditions) of two replicas are exchanged with an arbitrary protocol.
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3.1 The Replica Exchange Method and the work fluc-

tuation theorem

In a computer simulation, a quasi-ergodic behavior occurs when the simulated sys-
tem gets trapped into one or several basins of the energy surface, giving rise to
biased statistics. In general, such a problem arises from the difference in time scale
between the affordable observation time and the long characteristic time of transition
among different important low-energy regions. “Broken ergodicity” is characteristic
of complex systems with rugged potential energy landscapes, like spin glasses, atomic
clusters and biomolecules. The Replica Exchange Method (REM) [14, 15, 16, 17]
provides an elegant and simple solution to quasi-ergodic sampling. In REM, several
independent trajectories, called replicas, are simultaneously generated in different
thermodynamic conditions. Usually, these conditions are chosen so as to span ho-
mogeneously the thermodynamic space from the ensemble of interest to a different
ensemble with enhanced transition rates, where the sampling is ergodic. During the
simulation, neighboring replicas are allowed to exchange their ensemble, subject to
specific acceptance criteria. In this fashion, a trajectory is no longer bound to an
unique given equilibrium ensemble but can randomly walk in a thermodynamic space
of different equilibrium conditions, visiting ensembles where an ergodic sampling is
possible, and then going back to the quasi-ergodic ensemble of interest. Therefore,
REM is an algorithm which employs an extended ensemble formalism in order to
overcome slow relaxation. The gain in sampling efficiency with respect to a series of
uncoupled parallel trajectories comes from the exchange of information between tra-
jectories, and the replica exchange process is the tool by which “information” (e.g. a
particular configuration) is carried, for example, from an high to a low temperature.

With the aim of developing a novel and more general formalism for REM, in this
letter we highlight the non equilibrium character of a replica exchange process. In
recent years, some key relations concerning the statistical mechanics of non equilib-
rium processes have been derived [45, 77, 54, 55, 4, 5, 78]. Anticipating our results,
we show that a work fluctuation theorem is valid in the context of a replica exchange.
More precisely, interpreting an exchange as an externally driven process, the work
spent in performing an exchange will be shown to obey exactly to a fluctuation
symmetry relation,

P (Wxc = w)
P (Wxc = −w)

= exp(βw). (3.4)

The above equation quantifies the probability ratio of dissipating a work w and −w
while exchanging the thermodynamic states of two replicas both starting from equi-
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librium conditions. While the above equation can be straightforwardly derived for
a standard REM simulation, where replica exchanges are instantaneous, we demon-
strate its validity for exchanges performed in an arbitrary duration time τ . We
also show that relation 3.4 implies that, in a REM simulation, an attempted replica
exchanges must be accepted with probability

min{1, exp(−βWxc)} (3.5)

in order to satisfy detailed balance and preserve the equilibrium distribution of the
extended system of replicas. The above rule is shown to coincide with the ordinary
REM acceptance probability for instantaneous exchanges.

This result expands the physical meaning of the “replica exchange” from the
instantaneous switches entailing maximum dissipation of the standard algorithm up
to ideal non dissipative reversible exchange having unitary acceptance probability.

Consider two replicas evolving in the canonical ensemble. The dynamics of the
replicas are supposed to be stochastic and Markovian. For simplicity and with no
loss of generality, we will consider the Hamiltonian REM algorithm[79], in which
the two replicas have the same temperature β but differ in the energy function. We
define an energy function E(x, λ) where x is a microstate of the system and λ is an
externally driven parameter. Each of the two replicas refers to a different value of the
λ parameter, λ = a for one replica and λ = b for the other replica. Here, λ is a state
parameter, since to each λ value corresponds a unique equilibrium distribution in the
space of the microstates, P (x, λ) = Z(λ)−1exp(−βE(x, λ)), where the normalization
constant Z(λ) is the system partition function for a given λ. The free energy ∆A
between states a and b is then given by ∆A = −β−1ln[Z(b)/Z(a)]. An extended
microstate of the collection of replicas is indicated by the vector x = {x1, x2} where
x1 is the microstate for the replica in state a and x2 is the microstate in state b. In
this notation, the probability of a configuration x of the extended system of replicas
is given by the joint probability P (x) = P (x1, a)P (x2, b). In a Markov chain in the
ensemble of microstates of the extended system, there are two transition process
that leaves the distribution P (x) invariant: i) a conventional transition scheme
applied independently on each replica and obeying the detailed balance condition for
corresponding equilibrium distribution, and ii) the replica exchange process. In this
latter scheme, the values of the λ parameter for the two replicas are instantaneously
switched. In Hamiltonian REM, this corresponds to instantaneously switch the two
energy functions of the replicas. An exchange is then accepted with probability

min{1, exp (−β(∆Ea→b + ∆Eb→a))} (3.6)
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where ∆Ea→b = E(x1, b)−E(x1, a) and ∆Eb→a = E(x2, a)−E(x2, b) are the energy
changes for the two replicas following from the exchange process.

From a physical point of view, an exchange should be seen as an externally driven
process, in which we externally switch the energy functions of two replicas. Since
the latter are non interacting, the two processes are independent and the total work
done in exchanging replicas is simply given by the sum of the works

Wxc = Wa→b +Wb→a (3.7)

where Wxc is the work spent on the ensemble of two replicas and Wa→b and Wb→a
are the work spent to change the state of one replica from λ = a to λ = b and the
state of the other replica from λ = b to state λ = a, respectively. Moreover, since
an exchange process leaves the extended ensemble distribution invariant, the total
work Wxc coincides with the work dissipated during the exchange process. In the
standard REM, the exchange process is instantaneous, i.e., adiabatic, and the work
spent for each replicas equals the energy change

Wa→b = ∆Ea→b Wb→a = ∆Eb→a. (3.8)

Using Eqs. 3.7 and 3.8 into Eq. 3.6, the acceptance probability for an Hamiltonian
REM move can therefore be rewritten as a function of the dissipated work Wxc, i.e.

min {1, exp (−βWxc)} . (3.9)

We have seen how the REM algorithm, in its standard scheme, exploits instan-
taneous driven transformations to generate configurations in a space of different
thermodynamic conditions. It is now natural to ask whether one can devise a REM
algorithm in which the states of two replicas are exchanged in an arbitrary dura-
tion time τ , rather than instantaneously. Such an exchange can be performed by
switching with a given protocol λa→b,t the state of one replica from λa→b(0) = a to
λa→b(τ) = b, and changing similarly the state of the other replica with a protocol
λb→a,t from b at time 0 to a at time τ . Given the energy function E(x, λ), the works
performed on each replica are given by the integrals

Wa→b =
∫ τ

0
λ̇a→b∂λEdt Wa→b =

∫ τ

0
λ̇b→a∂λEdt. (3.10)

Again, the total work spent for an exchange process is given byWxc = Wa→b+Wb→a.
However, at variance with the instantaneous exchange case, Eq. 3.7, the work is now
a functional of the paths sampled from the initial states x1 and x2 in the space of
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the microstates x during the process. If we denote the path for the a → b process
with xα,t and for the b→ a process with xβ,t, this can be expressed by writing

Wxc[xα,t, xβ,t] = Wa→b[xα,t] +Wb→a[xβ,t]. (3.11)

The Crooks work theorem[5] is of special interest in this context. Given two
states of a system whose evolution is Markovian, this theorem relates the probability
of observing a path in state space in a driven process to the probability of observing
the reversed path when the system is driven according to a reverse time schedule,
both processes being started from equilibrium conditions:

Pλt [xt]
Pλ̄t

[x̄t]
= exp (β(W [xt]−∆A)) . (3.12)

Here, ∆A is the canonical free energy difference between the initial and final states
at λ(0) = a and at λ(τ) = b, λt and λ̄t are the forward and reversed time schedules
of the externally driven state parameter and xt and x̄t are the resulting forward and
reversed paths of the system.

As seen, a replica exchange is composed of two independent, opposite transfor-
mations of the states of two replicas. We introduce a more compact notation for
handling pairs of paths of a two-replica system, by looking to the ensemble of repli-
cas as an extended system, and using a vectorial notation. Supposing to start from
an extended microstate x = {x1, x2}, we denote with the symbol xt = {xα,t, xβ,t} an
extended path. xα,t is the path associated with the a → b transformation, starting
from xα(0) = x1 and ending in xα(τ) = x′1, obtained with a switching protocol
λa→b,t, and xβ,t is the path associated with the b→ a transformation, starting from
xβ(0) = x2 and ending in xβ(τ) = x′2 and obtained with the protocol λb→a,t. The
final extended microstate is therefore given by x′ = {x′2, x′1}, where replicas are re-
ordered accordingly to their λ value. We assume that replicas are exchanged with
time reversed protocols, such that λb→a,t = λ̄a→b,t, and drop the subscripts such that
λt ≡ λa→b,t and λ̄t ≡ λb→a,t. The reversed exchange can be constructed by inverting
both the processes: one obtains the extended path x̄t = {x̄β,t, x̄α,t}, starting from
x′ and ending in x, where the replica path x̄α,t ≡ x̄α(t) = xα(τ − t) is sampled
while changing the state of the system from b to a with a protocol λ̄t and the path
x̄β,t ≡ x̄β(t) = xβ(τ − t) is sampled during a a → b transformation with a protocol
λt.

The Crooks theorem, Eq. 3.12 can now be exploited to quantify the ratio between
the probability of observing an extended path xt, P [xt], and the probability of
observing the time reversal extended path x̄t, P [x̄t], while exchanging the states of
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the replicas. Such probabilities are defined as

P [xt] = Pλt [xα,t]Pλ̄t
[xβ,t] (3.13)

P [x̄t] = Pλt [x̄β,t]Pλ̄t
[x̄α,t]. (3.14)

It is worthwhile to note that the forward and reversed exchanges share the same
overall exchange protocol, that is, the same pair of protocols λt and λ̄t.

Using relation 3.12 we can write the pair of equations

Pλt [xα,t]
Pλ̄t

[x̄α,t]
= exp (β(W [xα,t]−∆A)) (3.15)

Pλ̄t
[xβ,t]

Pλt [x̄β,t]
= exp (β(W [xβ,t] + ∆A)) (3.16)

since ∆A = ∆Aab = −∆Aba. Therefore, multiplying Eq. 3.15 and Eq. 3.16,
and using Eqs. 3.13 and Eq. 3.14, we can write an equation that correlates the
probability of observing an extended path while performing a replica exchange to
the probability of observing its reversed extended path

P [xt]
P [x̄t]

= exp (βWxc[xt]) (3.17)

where again Wxc[xt] = Wa→b[xα,t] +Wb→a[xβ,t]. Summing over all extended paths
xt that yield the the work Wxc = w, we recover equation 3.4, that quantifies the
probability of a second law violation in a replica exchange process, that is, the
probability of observing a work value w < 0, as in this case, Wrev = ∆Aa → b +
∆Ab → a = 0.

We now finally show that a replica exchange performed with an arbitrary switch-
ing time satisfies the detailed balance condition if the acceptance probability is given
by equation 3.5. The algorithm, given an initial extended state x, will propose a
new extended state x′ switching the state of replicas in a time τ . The protocol λt
for a a → b transformation is established at the beginning of the simulation, and,
again, we assume that the protocol for the b→ a transformation is reversed in time,
λ̄t. Detailed balance in the extended system of replicas is expressed by

P (x)T (x′|x) = P (x′)T (x|x′) (3.18)

where T (x|x′) and T (x′|x) are the transition rates between the states x, x′ and x′,
x, respectively. Here, the extended microstates x = {x1, x2} and x′ = {x′2, x′1} are
connected by two sets of extended paths. We define the set X whose members are all
the possible extended paths xt going from x to x′, and the set X ′ of all the extended
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paths x′t going from x′ to x. The transition rate T (x′|x) can be rewritten as a sum
of separated transition rates over all possible paths

T (x′|x) =
∑

xt∈X
T [xt|x] (3.19)

where T [xt|x] is the probability that, starting from x, the replicas will exchange
their states following the particular path xt. The detailed balance condition, Eq.
3.18, can therefore be rewritten as

P (x)
∑

xt∈X
T [xt|x] = P (x′)

∑

x′t∈X ′
T [x′t|x′]. (3.20)

Given an extended path xt, the conjugated time reversed path x̄t can be found
by time reversing independently each replica path: if xt = {x1,t, x2,t}, then x̄t =
{x̄2t, x̄1t}. Is is easy to see that the members of the set X ′ can be found by reversing
the members of the set X , and viceversa, that is, there is a one to one correspon-
dence between the terms of the sums of equation 3.20. Therefore, the detailed
balance condition expressed by equation 3.18 is satisfied by exploiting this one to
one correspondence, and imposing the following detailed balance over each pair of
conjugated extended paths

P (x)T [xt|x] = P (x′)T [x̄t|x′]. (3.21)

As is commonly done in Monte Carlo schemes[80, 81], it is useful to express the
transition rate as

T [xt|x] = P [xt|x]acc[xt|x] (3.22)

where the proposal function P [xt|x] corresponds to the conditional probability, given
x, that the algorithm will generate the extended path xt, and acc[xt|x] is the prob-
ability of accepting such an exchange. Using the definition Eq. 3.22, the detailed
balance condition, Eq. 3.21, can be expressed as

acc[xt|x]
acc[x̄t|x′] =

P [x̄t|x′]
P [xt|x]

P (x′)
P (x)

. (3.23)

Using the fact that P [xt] = P (x)P [xt|x] and P [x̄t] = P (x′)P [x̄t|x′] and exploiting
Eq. 3.17, we finally find that

acc[xt|x]
acc[x̄t|x′] = exp (−βWxc[xt]) . (3.24)

such that a replica exchange process performed in an arbitrary time duration τ is
accepted with probability given by Eq. 3.5. Clearly, for τ = ∞, i.e. for infinitely
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slow (reversible) exchange processes Wa→b[xα,t] = ∆A = −Wb→a[xβ,t] such that
Wxc[xt] = 0 and the exchanges are always accepted.

Although we restricted the analysis to replicas in the canonical ensemble that
refer to different energy functions, these results can be straightforwardly generalized.
The Crooks relation can easily be rewritten for a generic driven process[78], in
which, given a parameter dependent equilibrium distribution P (x, λ), starting from
equilibrium conditions, the thermodynamic state of a system is changed irreversibly
from λ = a to λ = b, and viceversa. We introduce a generic “weight” ω(x, λ), such
that P (x, λ) = Z−1(λ)exp(ω(x, λ)). Then, the general form of the work fluctuation
theorem of equation 3.12 is given by

Pλt [xt]
Pλ̄t

[x̄t]
=
Z(b)
Z(a)

exp (Ω[xt])) (3.25)

where we have defined the “action” Ω[xt] as

Ω[xt] = −
∫ τ

0
λ̇∂λω(x, λ)dt (3.26)

evaluated over the path xt with schedule λt. As a quick consistency check, we
observe that in the case where the initial and final canonical states differ in the
energy functions, ω(x, λ) = −βE(x, λ), the path functional Ω[xt] is given by Ω[xt] =
β

∫ τ
0 λ̇∂λE(x, λ)dt = βW [xt], thereby recovering Eq. 3.12.
Following the same line of the previous demonstration and using Eq. 3.25 in

place of Eq. 3.12, the following general acceptance probability for an exchange of
states between replicas performed in an arbitrary duration time τ is derived

min{1, exp(−Ω[xt])} (3.27)

where, as before, Ω[xt] = Ωa→b[xα,t] + Ωb→a[xβ,t]
For a process in which the bath temperature changes in time, and the initial

and final states are described by the distributions P (x, βa) = Z(βa)−1exp(−βaE(x))
and P (x, βb) = Z(βb)−1exp(−βbE(x)), we define a weight ω(x, β) = −βE(x) where
λ ≡ β. Then, Ω[xt] =

∫ τ
0 β̇E(x)dt [82]. In such case, one finds that limτ→0 Ω[xt] =

−∆β∆E, where ∆β = βb − βa, and ∆E = E(x2) − E(x1), thereby recovering the
standard parallel tempering acceptance ratio, min{1, exp(∆β∆E)}.

The work fluctuation theorem has been extensively used as a method for cal-
culating free energy differences from non equilibrium trajectories. In this contribu-
tion, we exploit this theorem in order to obtain an equilibrium sampling of different
states, connecting them through non equilibrium transformations. The standard
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REM scheme turns out to be the limiting case of a more general algorithm, in which
the states of two replicas are exchanged in a given time τ . While for τ → ∞ such
an exchange process is an equilibrium process, and the acceptance probability is
unitary, for a generic duration time τ the acceptance probability is a function of the
work Wxc dissipated during the process. Clearly, with respect to an algorithm em-
ploying slow, quasi-reversible replica exchanges, a lower acceptance ratio is expected
for faster, out-of-equilibrium exchanges. For instantaneous, strongly dissipative pro-
cesses (τ = 0), the original algorithm is recovered. In the standard approach the
poor scaling of REM sampling efficiency with system size is solved, for example,
reducing the temperature difference between replicas and therefore increasing the
number of parallel trajectories to be simulated. Here, we show that another solu-
tion is possible by introducing the “switching time” τ as an effective parameter of a
REM simulation, in order to minimize the dissipative character of replica exchange
processes and obtain an efficient walk in the space of the different thermodynamic
conditions of the replicas.
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