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Abstract

We investigate the rich dynamics of two complex systems, water and

proteins, and the effects of their coupling. The importance of this

study is implicit in the fundamental biological role of proteins: their

function depends on their ability to sample the energy landscape,

and if their dynamics is inhibited they are not able to work. Under-

standing their relaxations is therefore necessary to relate structure to

function. Moreover, the strong coupling proteins have with the envi-

ronment makes the biomolecules extremely sensitive to the dynamics

of their biological solvent, water.

We approach this problem studying first the slow dynamics of super-

cooled water. While this task is easy with computer simulations, from

an experimental point of view it requires the confinement of water, to

prevent crystallization. Our results show the presence of a dynamic

transition at TL = 225 ± 5K in all the systems studied (bulk water

and 1D, 2D, 3D confined water).

We then examine the dynamics of hydrated proteins in the temper-

ature range of their biological activity, i.e. below their denaturation

temperature, Td, and above their glass transition temperature, Tl.

They show an exotic fast logarithmic relaxation, followed by a more

common slow exponential relaxation. The former agrees with the pre-

dictions of the most popular liquid theory, the mode-coupling theory,

for particular glass transitions.

Finally, we studied the coupled dynamics of water and proteins. It

turns out that both the low temperature limit (glass transition) and



the high temperature limit (denaturation) of protein functionality co-

incide with dynamic transitions in the hydration water. On the low

temperature side, Tl coincides with the above mentioned TL in hy-

dration water, while at high temperature the protein denaturation

at Td coincides with an analogous transition in hydration water at

TD = 340± 5K.
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Glossary

1. Acronyms

MD Molecular Dynamics

Experimental/Simulation Techniques
QENS Quasi-Elastic Neutron Scattering
DSC Differential Scanning Calorimetry
NIR Near Infra-Red
IXS Inelastic X-ray Scattering

iMCT ideal Mode-Coupling Theory

Theoretical Models
eMCT extended Mode-Coupling Theory
DHO Damped-Harmonic Oscillator
JCM Jennings Colloidal Model
RCM Relaxing-Cage Model

LYZ Lysozyme
ProteinsBSA Bovine Serum Albumin

RNAse RiboNucleAse
CS Conformational Substates

APS Argonne Photon Source

Facilities
SNS Spallation Neutron Source
DCS Disc Chopper Spectrometer
BASIS BAck Scattering Spectrometer

LLCP Liquid-Liquid Critical Point
TransitionsFSC Fragile-to-Strong Crossover

SFC Strong-to-Fragile Crossover

CM Center of Mass
Physical QuantitiesDH Dynamic Heterogeneity

ISF Intermediate Scattering Function



2. Symbols

〈τ〉 Structural Relaxation Time
Transport Propertiesη Viscosity

D Self-Diffusion Constant

q Scattering Vector Modulus (Å−1)

Scales
E Energy (meV)
ω Frequency (Hz)
T Temperature (K)
t Time (ps)

φq(t) Density Correlation Function

Dynamics of Liquids

Sq(E) Dynamic Structure Factor
Sq Static Structure Factor
ρ Numerical Density
〈x2〉 Mean Square Displacement
χT (t) Dynamic Response Function
χ4(t) Four-point Correlation Function

Tl Dynamic Transition of Proteins

Relevant Temperatures

Td Reversible Denaturation of Proteins
TL Dynamic Crossover of Water (low-T)
TD Dynamic Crossover of Water (high-T)
Tg Glass Transition Temperature
TH Homogeneous Nucleation
Tc Mode-Coupling Critical Temperature

fq Debye-Waller Factor

Physical Quantities
Cp Specific Heat
kB Boltzmann Constant
EA Activation Energy
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1

Introduction to the Dynamics

of Liquids

Time is the measure of movement

Aristotle

1.1 The concept of relaxation

The term dynamics refers to phenomena that produce time-changing proper-

ties X(t), with values at one time being correlated with those at other times

(corr(X(t), X(t + ∆t) > 0). It refers to the unfolding of events in a continuing

evolutionary process. Nearly all observed phenomena in our daily lives or in sci-

entific investigation have important dynamic aspects, such as in (a) a physical

system, like a fluid; (b) a social system, like the movement within hierarchy; or

(c) a life system, like a population growth. Many dynamic systems can be un-

derstood and analyzed intuitively, but in order to approach unfamiliar situations

efficiently, it is necessary to proceed systematically. From now on we will focus

our attention on the dynamics of a particular complex system: the liquid state

of matter.

The H theorem, first proved by the unfortunate Professor Boltzmann, guar-

antees that
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“an isolated many particle system will eventually reach equilibrium,

irrespective of its initial state.”

The typical time-scale for this process is called the relaxation time, τ , and it

depends in detail on the interaction between particles1.

When an external perturbation is applied to a system, the disturbance is

damped by the relaxation processes in the system (20). The simplest rate of

disappearance of a small perturbation δX(t) = X(t) −X0 from the equilibrium

value X0 of the relaxing property X(t) is approximately proportional to the

magnitude of the displacement. This relationship is given by the differential

equation

− d

dt
(δX) =

δX

τ
(1.1)

Solution of this equation is the exponential relaxation (δX(t) ∼ e−t/τ or Debye

law), characteristic of gases and simple liquids (10). The word relaxation was

originally applied to a molecular process by the Scottish physicist James Clerk

Maxwell (97). He referred to the relaxation time of a force as the time required

for it to decay to 1/e times its initial value. In fact when t = τ , δX(t) = 1/e.

In the absence of external perturbations, δX(t) can be considered a spon-

taneous microscopic fluctuation, that always occurs in a system at finite tem-

perature. These are dissipated in the medium in the same way as the external

disturbances2, so by observing them one can study transport properties in a sys-

tem at thermodynamic equilibrium and obtain the basic information concerning

the dynamics of a fluid.

1The Milky Way is an isolated dynamical system that can be thought of as a self-gravitating

gas of stars, which interact via occasional near miss events in which they exchange energy and

momentum. The best estimate for the relaxation time of our galaxy is about 1013 years, while

its age is about 1010 years. So the Milky Way has not been around long enough to reach an

equilibrium state.
2Onsager’s regression hypothesis states that spontaneous fluctuations in equilibrium regress

back to equilibrium according to the same relaxation equation that describes the macroscopic

relaxation due to a weak external perturbation
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1.2 Density correlation functions, φq(t)

In order to study the dynamics of a system, we need to introduce the concept

of time correlation function (66). This is the thermodynamic average of the

product of two dynamical variables, each of which expresses the instantaneous

deviation δX(t) (fluctuations) of a fluid property X(t) from its equilibrium value

at particular points in space and time. A time correlation function is therefore

a function of space and time, and it describes the thermal fluctuations which

occur spontaneously in the equilibrium system. It basically tells how long a

given property persists until it is averaged out by microscopic motions of system,

i.e. how and when a statistical relationship has vanished (151). The dynamical

variable of greatest interest in this thesis is the number density of molecules, ρ.

The correlation function formed from the average of two density variables will be

called the density correlation function or intermediate scattering function, φq(t)1.

Consider N particles that have coordinates {rN} = {r1, r2, ..., rN}. The local

density is defined as

ρr =
N∑
j=1

δ(r− rj) (1.2)

and gives the number density n = 〈ρ(r)〉. Its spatial Fourier transform with

wavevector q is

ρq =
∫
V
eiq·rρ(r) dr =

N∑
j=1

eiq·r (1.3)

The normalized time-dependent density correlators of the Fourier components

of the density ρq(t) is

φq(t) =
〈ρq(t)ρ−q(0)〉
〈|ρq|2〉

(1.4)

1These functions are called intermediate since one of their variables is in the direct

space (t) and one in the Fourier-transformed space (q). They are therefore intermediate be-

tween the dynamic structure factor, Sq(ω), and the van Hove correlation function, Gr(t), i.e.

Sq(ω)
TimeFT←−−−−−− φq(t)

SpaceFT←−−−−−− Gr(t)
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φq(t) is the most important function in any study of nonequilibrium properties

of fluids because it essentially contains all the relevant information on the dynam-

ics of the system (20). When the appropriate theory is available, a knowledge of

the density correlation function will enable one to extract thermodynamic, struc-

tural, and transport properties of the fluid. For instance, all transport coefficients

can be expressed in terms of time correlation functions so that the set of these

functions plays the same fundamental role in transport phenomena as the parti-

tion function in thermodynamics, as a link between microscopic and macroscopic

descriptions. Unlike the partition function though, the density correlation func-

tion can be measured directly, or calculated from a simulation trajectory with the

formula φq(t) = 〈exp[iq · (ri(t)− rj(0)]〉, where i and j are particle indexes. This

set of functions is sufficient to examine all the essential aspects of the dynamics

of fluids. Its single-particle counterpart is the single-particle density correlation

function or self-intermediate scattering function, i.e. the auto-correlation func-

tion of density fluctuations, φSq (t) = 〈exp[iq · (ri(t) − ri(0)]〉. Since it is directly

comparable with neutron scattering experiments of hydrogen atom based systems

(like water and proteins), we are going to focus on this latter function throughout

the thesis and, even though they are basically different quantities, for the sake of

simplicity we will refer to it with the same symbol used for the density correlation

function, φq(t).

Time correlation functions also allow a more rigorous and general definition

of τ , the relaxation time, as the area under the curve:

τ =
∫ ∞

0
dtφq(t) (1.5)

This definition includes Maxwell’s one: if φq(t) = e−t/τexp , τ = τexp.

The theoretical problem of studying time correlation functions has been an-

alyzed using different formalisms, that differ in the manner of calculating the

memory function, a time-dependent phase-space function. Let us consider a typ-

ical equation that relates a time correlation function φq(t) to its memory function

mq(t)



1.3 Relaxations in liquids 5

∂

∂t
φq(t) = −

∫ t

0
mq(t′)φq(t− t′) dt′ (1.6)

Given mq(t), this equation can be used to calculate φq(t). The reason why

mq(t) is called the memory function can be seen from Equation 1.6. Since

time correlation functions describe the decay of spontaneous thermal fluctua-

tions, φq(t) is a function with its maximum value at t = 0 which decreases with

time. Equation 1.6 shows that the decay rate of φq(t) at time t depends on its

values at earlier times, and how much it remembers its past history is expressed

by the memory mq(t). Suppose mq(t) is a sharply peaked function about t = 0,

the right-hand side of Equation 1.6 then gives a decay rate that is proportional

to φq(t). In this case the decay depends only on the instantaneous value of φq(t)

so one can say that there is no memory. On the other hand, if mq(t) is itself a

slowly decaying function in time, then the values of φq(t) at different times will

be closely correlated, a behavior which one can describe as memory effects, i.e.

corr(φq(t), φq(t+ ∆t)) > 0.

Besides modeling mq(t) by postulating a time-dependent function, one can

also determine the memory function by expressing its decay in terms of coupling

to higher-order (quadratic) time correlation functions which involve more than

two dynamical variables. This approach is the most successful in liquid theory

and is called mode coupling (A.1). It derives equations for φq(t) starting only from

the number density n and the static structure factor Sq = 〈|δρq|2〉/N = φq(0)1.

1.3 Relaxations in liquids

1.3.1 Transport Properties

The physics of systems without translational invariance, such as liquids, dense

fluids and glasses, has been fascinating scientists for many years with the liquid-

to-glass transition, thermal anomalies and divergence of transport properties (3;

1From their definition, it is obvious that φq(0) 6= 1 and φSq (0) = 1. This means that initially

the atoms are precisely localized. As time evolves, the atoms move away from their initial

position and the correlators decrease.



6 1. INTRODUCTION TO THE DYNAMICS OF LIQUIDS

6). In contrast to the crystalline case, in disordered systems the comprehension

of dynamics is complicated both by the absence of translational invariance and

by the presence of other degrees of freedom, such as the following relaxation

processes.

When an external perturbation is applied to a fluid, the disturbance is damped

by dissipation phenomena as diffusion (D), viscous flows (η) and thermal con-

duction (κ). These are the processes that determine the transport properties of

a fluid. Fluctuations δX in a fluid are characterized by a length scale (their

wavelength, λ) and a time scale (their period, T ), more commonly expressed in

their Fourier transformed space (wave vector q ∼ 1/λ and frequency ω ∼ 1/T ).

For long-wavelength (q → 0) and long-period (ω → 0) fluctuations, the fluid

behaves like a continuum: the response can be described by the equations of

hydrodynamics. But at wavelengths comparable to the intermolecular distances,

the local structure of the fluid becomes important: the continuum picture is no

longer valid and one must describe the system as an assembly of interacting par-

ticles. This is the domain of molecular dynamics. Molecular dynamics provides

the framework for extending hydrodynamic calculations to the region of finite (q,

ω) where spatial and time variations are comparable to the collision mean free

path and mean time between collisions. Our study will be limited in this latter

space-time range.

Therefore, a large amount of information can be experimentally deduced by

determining φq(t). Equivalently, one can determine its time Fourier transform,

the dynamic structure factor or power spectrum,

Sq(ω) =
1

2π

∫ +∞

−∞
e−iωtφq(t) dt. (1.7)

Sq(ω) can be measured by means of scattering experiments (neutrons or x-

ray) or calculated by molecular dynamics simulations. The physical processes

which give rise to nuclear scattering of neutrons are in fact density fluctuations,

so scattering experiments directly measure density correlation functions and their
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q (t)

Relaxation Time 

Sq ( )
FT

Fitting in the
time domain

Fitting in the
frequency domain

Density Correlation 
Function

Dynamic Structure
Factor

QENS MD

Figure 1.1: How to extract
the relaxation time of a sys-
tem - Scheme employed in this
thesis to extract the relaxation
time of a liquid system, either
from experiments (quasi-elastic
neutron scattering, in the fre-
quency domain) or from simu-
lations (molecular dynamics, in
the time domain). The two are
related by the Fourier transform.

Fourier transforms1. The decay rate of φq(t) increases with q, an indication that

the shorter wavelength fluctuations die out more rapidly, or equivalently, the

atom can move out of a smaller spatial region faster. It follows that the Sq(ω)

central peak will become broader with increasing q.

In this thesis, we will employ both techniques to study the (q, ω)-dependence

of the dynamics of complex systems, according to the scheme sketched in Figure

1.1. In particular, we are going to focus on the dynamics of water and protein,

two of the most interesting and relevant complex liquid systems, whose coupling

and interaction allowed life (as we know it) to develop.

1.3.2 Relaxations in supercooled liquids

The presence of these relaxations in a liquid automatically introduces different

time-scales when the system is supercooled (i.e. cooled below its crystallization

temperature): the slowest dynamics is called α relaxation (τα), collective and

coupled to η, while the fastest dynamics is called β relaxation (τβ), characterizing

the vibrational dynamics of particles around their quasi-equilibrium positions2.

1For isotropic fluids, φq(t) depends on the magnitude of q and not its direction. When

treated classically, these functions are real and even in t. Their Fourier transforms, Sq(ω) are

therefore even functions of ω.
2This process is allowed by the formation of a cage around the tagged particle by its nearest

neighbors, as we shall see later in more details.
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(β-correlator)

 Slow inter-cage dynamics
(α-correlator)

 fq = Debye-Waller factor 

Figure 1.2: Typical φq(t) for
a Supercooled Liquid - Sketch
of the typical shape of a den-
sity correlation function of a su-
percooled liquid. The initial mi-
croscopic intra-cage relaxation is
followed by the caging dynamics
(β dynamics), and then by the
cage-restructuring decay (α dy-
namics).

This is of the order of the inverse Debye frequency, i.e. that of a crystal with

similar density and sound velocity (96). Moreover, one has to consider that the

topological disorder introduces a second length scale, ξ, beside the interparticle

distance, γ, that is typical for crystals. The rich phenomenology observed in

the dynamics of disordered systems can be ascribed to the interplay between

these different structural (ξ, γ) and dynamical (τα, τβ) scales. An exhaustive

understanding of dynamics in disordered systems in the so-called mesoscopic

region (defined by length and time scales comparable to ξ and τα) is still not

available and it represents a real challenge to modern physics. A typical density

correlator, φq(t) for a supercooled liquid is sketched in Figure 1.2. The two

different time-scales (τα, τβ) are evident as two steps in the decay of the correlator

to zero. The two steps are separated by a plateau, often referred to as the Debye-

Waller factor or nonergodic parameter, for reasons that will be clear later on.

Liquids are dense systems, which do not contain channels or holes. Long-

range diffusion thus requires a collective rearrangement of many particles. The

relevant spatial scale is set by the intermolecular distance γ, since each particle

is constrained by a cage of nearest neighbors and the α relaxation requires the

escape out of this cage as an essential initial step. This inter-cage transfer is a

plausible picture of the α-process, which restores the ergodicity on the respective

α-time scale. As the liquid is further cooled down, the cage becomes a trap and

macroscopic structural arrest results.
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Naturally, in order to study the appropriate dynamics, special attention should

be paid to the portion of the (q, ω)-plane corresponding to the characteristic

length-scales (ξ, γ) and time-scales (τα, τβ) of the system. In most liquids ξ

and γ are ∼ 10 and 0.1 nm, respectively, while τβ is usually < 1 ps. On the

other hand, τα can assume rather disparate values, since it strongly depends

both on the specific nature of the relaxation process under consideration and on

the thermodynamic conditions1. For studying the physics of disordered systems,

the most important (q, ω)-range is therefore 0.2 - 5 Å−1 and 0.001 - 10 meV.

When a liquid is supercooled, instead of the exponential relaxation described

above, the α-relaxation becomes stretched (see Figure 1.3), according to the fol-

lowing equation:

φq(t) = e−(t/ταq )β (1.8)

where 0 < β < 12. The symbol β of the stretched exponent is not to be

confused with the β relaxation seen before. The origin of the stretching of the

relaxation can be understood as a linear superposition of simple exponential

decays,

e−(t/τq)β =
∫ ∞

0
duρ(u)e−t/u (1.9)

where ρ(u) is a nontrivial distribution of relaxation times. This is evident in

the frequency domain, where peaks appear corresponding approximately to the

main relaxation times. In order to define an average relaxation time, we consider

the area under the curve (see Equation 1.5):

〈τ〉 =
∫ ∞

0
dte−(t/τ)β =

τ

β
Γ
(

1
β

)
(1.10)

1The α-relaxation time is connected with the shear viscosity of the liquid, η, by the Maxwell

equation: τ = Gη, where G denotes the shear modulus of the liquid.
2It was first introduced by Kohlrausch in 1854 to describe the discharge of a capacitor (81),

and in 1970 Williams and Watts used the Fourier transform of the stretched exponential to

describe dielectric spectra of polymers (142): in this context, the stretched exponential is also

called the Kohlrausch-Williams-Watts (KWW) function. Outside condensed matter physics, it

is used, for example, to describe the removal rates of small bodies in the solar system.
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1.0

0.8

0.6

0.4

0.2

0.0

φ q
 (t

)

10-3 10-2 10-1 100 101 102 103 104 105

t (ps)

 β = 1
 β = 0.5
 β = 0.25

Figure 1.3: Stretching of the
relaxation - Sketch of the typ-
ical shape of the density corre-
lators in a liquid as a function
of the stretch exponent β. The
three curves intersect at the α-
relaxation time, that does not
depend on the value of β.

where Γ is the gamma function1. For the exponential decay, β = 1 and

〈τ〉 = τ .

A supercooled liquid is not in thermodynamic equilibrium, which would be

the crystalline state, but is still in dynamic equilibrium since density fluctuations

can relax (i.e. φq(t) decays to zero, η is finite and the material can flow). But at

low enough temperature, the correlation functions decay to a non-zero plateau

value and the system falls out of dynamic equilibrium (crossover from ergodic to

nonergodic behavior)2. When a fluid is supercooled so deeply that an amorphous

solid form of matter results, it becomes a glass. By convention, the glass transition

temperature Tg is where the viscosity η reaches a value of 1012 Pa s or the

structural relaxation time τ reaches an order of 100 s. This definition on a scale of

seconds is technologically relevant to the glassblower, but it has no deep physical

meaning and it is actually non-consistent with the calorimetric definition of Tg
(98). The microscopic structure, expressed by the structure factor Sq, changes

smoothly across Tg.

1These degrees of freedom contribute independently to φq(t) with its own relaxation time,

thus parallel relaxation. A different point of view was proposed by Palmer et al. (111), who

suggested that the path to equilibrium is governed by many sequential correlated steps, thus a

series interpretation in which there are strong correlations between different degrees of freedom.

This model (hierarchically constrained dynamics) also leads to the Kohlrausch law.
2This is strictly true only considering the finite time window of the experiment: if one could

wait long enough, ergodicity will be eventually restored. See the discussion on the Deborah

number in the next page
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heat of a supercooled liquid un-
dergoing a glass transition. A,
B and C are different options for
the definition of the glass transi-
tion temperature. Redrawn from
Statistical Calculation of Glass
Properties.

A glass (dynamic) transition is different from a structural (thermodynamic)

transition (e.g. crystallization). The latter exhibits a sharp transition tempera-

ture, which is a thermodynamic time-independent property. The glass transition,

in contrast, has a finite width and the effective glass temperature varies with the

cooling rate and more generally with the experimental time scale, according to

the Deborah number. This is a dimensionless number to characterize how fluid a

material is, and it is defined as De = τ/t0 where τ is the relaxation time and t0 is

the characteristic time scale of an experiment. The smaller the Deborah number,

the more fluid the material appears1. The time scale of the experiment is thus

an essential ingredient of the transition and cannot be ignored.

Experimentally, a small peak followed by a step-like decrease in the specific

heat is observed around Tg. In Figure 1.4 we show a typical profile of the Cp of a

substance undergoing a glass transition. There is no agreement in literature on

the definition of Tg: out of 300 papers published during the period 2005-2006 on

this subject, 16% of them chose point A, 5% B and 2% C, while 77% of them

did not even bother to specify it (98). This step in the specific heat ∆Cp is

proportional to the plateau value of φq(t), ∆Cp ∼ fq, expressing the degree of

nonergodicity of the system (see Figure 1.2). The glass transition is always linked

to the increasing α-relaxation time of the system, and this explains why the Tg

1The origin of the name is the line “The mountains flowed before the Lord” in a song by

prophetess Deborah recorded in the Bible (Judges 5:5)

http://glassproperties.com/tg/
http://glassproperties.com/tg/
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Figure 1.5: Temperature de-
pendence of φq(t) - Typical
temperature dependence of φq(t)
for a supercooled liquid. Assum-
ing an exponential relaxation,
the 1/e value of φq(t) is the re-
laxation time of the system. As
temperature is decreased, τ in-
creases dramatically.

depends on the experimental time scale.

So Tg has a conventional definition both from a dynamic (η, τ) and a thermo-

dynamic (Cp) point of view. A more meaningful parameter to characterize the

slow dynamics of a supercooled liquid is the dynamic transition temperature.

1.3.3 Dynamic transitions

Glasses are, in the estimate of a Nobel laureate (4),

“the deepest and most interesting unsolved problem in condensed matter

physics”

In this respect, one of the most confusing aspects is the slowing down of the

dynamics on decreasing the temperature of the liquid, as shown in Figure 1.5.

The rate at which transport properties change by lowering temperature is called

their fragility (5). The approach to large values of η (or τ) upon supercooling

differs from one liquid to another. When displayed in an Arrhenius plot of log η (or

log τ) versus inverse temperature 1/T , some liquids (such as silica) show a steady,

linear increase, while others display a much steeper dependence on 1/T (such as

o-terphenyl). The former are called strong liquids, and the latter fragile liquids.

Thus, the glassy liquid is called fragile when its viscosity (or relaxation time)

varies according to super-Arrhenius law, such as the Vogel-Fulcher-Tammann

(VFT) law:
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iors are common: Arrhenius be-
havior (straight line) and Super-
Arrhenius behavior (divergent
curve at T0, see Equation 1.11).

τ = τ0 exp
(

BT0

T − T0

)
(1.11)

where T0 is the temperature of apparent divergence of the relaxation time (or

sometime called Kauzmann temperature1); the magnitude of B gives the degree

of fragility; τ0 is a prefactor related to microscopic vibrational relaxation time

inside the cage forming by neighbors in the liquid state. The liquid is called

strong when the viscosity or relaxation time obeys Arrhenius law:

τ = τ0 exp
(
EA
kBT

)
(1.12)

where EA is the energy barrier for the relaxation process. These terms derive

from their ability to reorganize through fluctuations: if thermal excitation do not

offer much resistance to the reorganization, the liquid is said to be fragile. It is

said to be strong if it resists structural changes

When the transport properties of a liquid change qualitatively their dynamic

behavior as a function of temperature (from super-Arrhenius to Arrhenius or vice

versa), the liquid is said to undergo a dynamic transition. This kind of transition

is particularly evident in the Arrhenius plot, since an Arrhenius behavior appears

1This refers to the Kauzmann paradox, the decrease of entropy of a supercooled liquid that,

if extrapolated, would cross the entropy of the crystal at T0, the ideal glass transition.
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as a straight line, while a Super-Arrhenius behavior as a diverging curve (see

Figure 1.6).

During the past years, we realized that there are at least 4 ways to define and

extract the dynamic transition temperature (148):

1. Fitting the low-temperature and the high-temperature part of the mean

square displacement 〈x2〉 vs T plot separately with a straight line, and

taking the intersection of the two (onset of the non-harmonicity).

2. Fitting the Arrhenius plot with two curves (VFT law in the diverging part

and Arrhenius law in the linear part) and taking the intersection. This way

is probably the most popular, even though it may lead to the conclusion

that the dynamic transition is cusp-like, when it could actually be smoother.

3. Plotting the derivative of the Arrhenius plot, i.e. d log(X)/d(1/T ) vs 1/T ,

and taking the temperature at which the plot has a maximum (or a mini-

mum).

4. Calculating the derivative of the density correlators as a function of T ,

χT (t) = dφq(t)/dT , and taking the temperature at which χT (t) is maximum

(or minimum).

These four criteria agree (within the experimental error bars) in the defini-

tion of the dynamic transition temperature. We exemplified them in Figure 1.7.

Throughout this thesis, we will use either the Method 3 or 4: they are preferable

over the others since they are fitting-independent, and they do not require any

assumption (see next section for an explanation of Method 4).

In the following chapters, we are going to explore these kind of transitions in

bulk water, proteins and protein hydration water. This demonstrates how rich the

dynamics of these two complex systems is, and how their coupling produces non-

trivial dynamic phenomena, possibly responsible for protein biological function.
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Figure 1.7: Different methods to extract the dynamic transition tem-
perature - The orange dots indicate the transition temperature. Method 1 : Mean
square displacement, 〈x2〉; Method 2 : Arrhenius plot of the translational relaxation
time, 〈τ〉; Method 3 : Derivative of the Arrhenius plot, d log〈τ〉/d(1/T ); Method 4 :
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1.3.4 Dynamic heterogeneity

A clear explanation of the dramatical increase of the viscosity of glass-forming

liquids approaching the glass transition is not yet available (17). The conun-

drum is that the static structure of a glass is indistinguishable from that of the

corresponding liquid, with no sign of increasing static correlation length scales

accompanying the glass transition. Numerical simulations reveal instead the exis-

tence of a growing dynamic length scale associated with dynamic heterogeneities

(48), while experiments have suggested a characteristic length scale of about 5 to

20 molecular diameters at Tg (41). We have therefore to introduce multi-point

dynamic susceptibilities that quantify the correlated nature of the dynamics in
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Figure 1.8: Dynamic Het-
erogeneities - Two possible sce-
narios are proposed to describe
diffusion in cold liquids. In
the spatially homogeneous dy-
namics scenario molecules relax
in the same way, while in the
spatially heterogeneous dynam-
ics scenario, sets of more mobile
molecules (in comparison to the
average motion of the molecules
in the system) form patches or
clusters. The size of these clus-
ters increases upon cooling.

glass formers (18).

In the spatially heterogeneous dynamics scenario (58), correlation functions

for different molecules decay exponentially, but with a very broad distribution of

relaxation times (see Equation 1.9). The superposition of these individual expo-

nential contributions produces a nonexponential decay of the ensemble-averaged

time correlation function, and the exponent β is a measure of the width of the

distribution of relaxation times. In the heterogeneous scenario, the locally aver-

aged molecular displacements are different depending on the part of the system

we are looking at and when we look at it1. One finds groups of molecules that

are more mobile and groups that are less mobile than the average molecule in

the system. As the temperature is lowered, patches formed by mobile molecules

increase in size, as shown in Figure 1.8. These patches have a short lifetime;

they appear and disappear constantly in different parts of the system. In Section

2.3, we will show that the heterogeneous scenario can describe the dynamics of

supercooled water.

1The idea that dynamic heterogeneity might play an important role near the glass transition

can be traced back to Adam and Gibbs (2). They provided a theoretical argument of the

existence of cooperatively rearranging regions in glassy liquids (see section A.4)
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This heterogeneity implies the existence of significant fluctuations of the dy-

namics, because the number of independently relaxing regions is reduced. Nu-

merical simulations have focused on a four-point dynamic susceptibility χ4(t),

which quantifies the amplitude of spontaneous fluctuations around the average

dynamics. The latter is usually measured through ensemble-averaged correlators,

φq(t). Dynamic correlation leads to large fluctuations measured by

χ4(t) = N〈(δφq(t))2〉 (1.13)

where N is the total number of particles and δX(t) stands for the fluctuation

δX(t) = X(t)−〈X〉. By definition, χ4(t) quantifies the expectation of the square

of the fluctuations of the density correlator. If we do not take the square in

Equation 1.13, its ensemble average would go to zero in the long-time limit.

χ4(t) typically presents a non-monotonic time dependence with a peak centered

at the liquid’s relaxation time τα: the height of this peak is proportional to

the volume within which correlated motion takes place (139). Unfortunately,

numerical findings are limited to short time scales (∼ 100 ns) and T � Tg.

We now introduce another quantity, χT (t). As we saw in Section 1.3.3, this

is the derivative of the self-density correlation function φq(t) with respect to the

temperature T , namely

χT (t) = −
(
∂φq(t)
∂T

)
P

(1.14)

It is defined in analogy with the thermodynamic response functions (such as

the specific heat, Cp) which are temperature derivative of the thermodynamic

state functions (such as enthalpy) and describe the response of a system to an

external perturbation field (in this case, temperature). This function shows a

peak, located at the relaxation time of the system τq, the height of which (χ∗T ) is

related to some sort of dynamic correlation length. χ∗T grows as T is lowered and

reaches a maximum, but this growth is interrupted when the dynamic crossover

sets in. The reason for this behavior is clear if one considers that, combining

Equations 1.14 and 1.8,
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χT (t) = φq(t)β
(

t

τq(T )

)β ∂ ln τq(T )
∂(1/T )

T−2 (1.15)

The only parameter of φq(t) that has to be differentiated with respect to T

is, in our case, τq(T ) since β remains almost constant and close to 0.5 ± 0.1 as

T of confined water is lowered (31). χ∗T is therefore directly proportional to the

change in slope of the Arrhenius plot of 〈τ〉, hence Method 4 in Section 1.3.3.

Experimentally, detecting spontaneous fluctuations of dynamic correlators

(χ4) remains an open challenge, because dynamic measurements have to be re-

solved in both space and time. Induced fluctuations (χT ) are more easily acces-

sible experimentally than spontaneous ones and can be related to one another

by fluctuation-dissipation theorems. Thus, χT (t) is an experimentally accessible

multipoint dynamic susceptibility that directly quantifies dynamic heterogeneity

in glass formers.

In our experiments, the total number of particles N , pressure P and temper-

ature T are constant, so we can apply the fluctuation-dissipation theorem in the

NPT ensemble to relate the induced fluctuations to the spontaneous fluctuations,

χT (t) =
N

kBT 2
〈δφq(t)δH(0)〉 (1.16)

where H(t) is the fluctuating enthalpy per particle. Therefore, χT (t) directly

probes the correlations between the fluctuations of the single-particle density and

the enthalpy ones. Transforming from the NPT to the NPH ensemble we have

χ4(t) = χNPH4 (t) +
kBT

2

Cp
χ2
T (t) ≥ kBT

2

Cp
χ2
T (t) (1.17)

This inequality can be considered an equality at low temperatures.
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Water Dynamics

Nothing is more flexible and fragile than water.
Yet when it attacks the adamant and the strong, none can withstand it.

So the flexible overcomes the adamant, the fragile overcomes the strong.

Lao Tzu

2.1 Overview of water dynamics

Water has always occupied a unique role in the physics of liquids. Its numerous

peculiar properties depict an intriguing scenario1, and one of its most peculiar dy-

namic characteristics is an anomalous increase in thermodynamic response func-

tions (such as the specific heat (150) and the thermal expansion coefficient (90),

see Figure 2.1) and an apparent divergent behavior of transport properties (such

as viscosity), on approaching an apparent singular temperature TL = 225± 5 K

(135). Different models have been proposed to explain this anomalous behavior:

i) the existence of two liquid phases that originate a liquid-liquid critical point in

the no man’s land temperature region (113); ii) the retracting spinodal hypothe-

sis, where thermodynamic anomalies are ascribed to the vicinity of the spinodal

line (131); iii) a singularity-free scenario where thermodynamic anomalies can be

1As of December 2009, around 67 anomalies of water are listed at Martin Chaplin’s Water

Website

http://www1.lsbu.ac.uk/water/anmlies.html
http://www1.lsbu.ac.uk/water/anmlies.html
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Figure 2.1: Specific heat of su-
percooled confined water - The to-
tal heat capacity of nanoconfined wa-
ter, according to the measurements of
Maruyama et al. [as plotted in (6)].
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ascribed to structural heterogeneities (114), and iv) the mode-coupling theory

(MCT, A.1) which describes water features without resorting to an underlying

thermodynamic singularity (59). Let us revise the fast and slow relaxations of

liquid water, in order to provide a suitable theoretical framework to study its

dynamics by experiments and simulations.

What makes a water molecule so special is, as everybody knows, its capacity

of forming strong hydrogen bonds with other water molecules. A time line of the

short-time diffusion of water, and a comparison with a simple liquid like argon,

is shown in Figure 2.2. For a water molecule, between the initial free particle

relaxation and the final free diffusion, there is a lengthy period of cage effect

during which the molecule moves very little, rattling inside the cage. In contrast,

for an argon atom, the initial free flight and the final free diffusion are interrupted

by only a brief period: its cage relaxes more easily, since it is not held together

by hydrogen bonds.

For water, which is a fragile liquid at room temperature and at moderately

supercooled temperatures, Angell and co-workers (74) proposed that a fragile-to-

strong transition would occur at around 228 K at ambient pressure, based on a

thermodynamic argument. This dynamic transition would avoid the structural

arrest at TL. But supercooled water nucleates into hexagonal ice at and below

the homogeneous nucleation temperature TH = 235 K, so this transition lies in an

inaccessible region (no man’s land) of temperatures and it cannot been observed

directly. This limitation has been overcome over the years using different kinds
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of confinement that prevent crystallization into hexagonal ice1. The interest of

the scientific community in the properties of confined water is also that, in many

real life systems, water is not in its bulk form but is located near surfaces or

contained in small cavities. This is the case, for example, for water in rocks, in

polymer gels, and in biological systems.

Due to the facts mentioned above, both the structure and dynamics of super-

cooled and confined water have been widely studied using molecular dynamics

(MD) simulations (123; 124). The interaction between the hydrophilic surface

and the water molecules has noticeable effects on the structure of the first and

second layer of water near the pore surface (86). As far as the dynamics is con-

cerned, when confined near hydrophilic surfaces, water molecules are in a sort of

supercooled state even at room temperature. Generally speaking, confined water

shows the dynamics similar to that of supercooled water at a lower equivalent

temperature of around 30 degrees (147). Experimentally, the structural proper-

ties of water at supercooled temperatures and in confinement have been studied

extensively using x-ray and neutron diffraction (15; 21), dielectric spectroscopy

(16) and nuclear magnetic resonance (42). But is quasi-elastic neutron scattering

(QENS) that offers the best advantage for the study of the single particle dynam-

ics of water, since the neutron scattering of hydrogen atoms is mostly incoherent

and with a huge cross-section. Using this technique, Chen et al. were able to

study the self-dynamics of water in a wide range of time scales (1 ps < t < 104

ps) and length scales (0.2 Å−1 < q < 2.0 Å−1) in the past few years. The experi-

mentally determined dynamic structure factor, Sq(ω), is the Fourier transform of

the self-intermediate scattering function, φq(t), of the hydrogen atom in a water

1Nucleation occurs with more difficulty in the interior of a uniform substance, by a process

called homogeneous nucleation. The creation of a nucleus implies the formation of an interface:

if its radius is smaller than a critical radius, the energy that would be released by forming

its volume is not enough to create its surface, and nucleation does not proceed. The greater

the supercooling, the smaller the critical radius and the less energy needed to form it. The

spontaneous nucleation rate in water changes very rapidly with temperature, so TH can be quite

well defined. The Gibbs-Thompson equation states that the melting temperature of crystals of

radius r decreases as r decreases, according to Tm(r)/Tm(∞) = 1−C/r, where C is a constant.
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Figure 2.2: Comparison between water and argon dynamics - Comparison
of the short-time diffusion between water (a hydrogen bonded liquid) and argon
(a simple liquid). The particular feature to be noted is that for a water molecule,
between the initial free flight and the final free diffusion there is a lengthy period
of cage effect during which the molecule moves very little. In contrast, for an argon
atom, the initial free flight and the final free diffusion are interrupted by only a brief
period (27).

molecule. This connection facilitates the interpretation of the scattering data and

allows a direct comparison with theory and with the data from MD simulations.

In order to fit the experimental Sq(ω) of water, Chen and collaborators have

developed the relaxing-cage model (RCM) for the description of translational and

rotational dynamics of water at supercooled temperatures (91; 147), deriving an

analytical form for φq(t). These models have been tested with MD simulations

of SPC/E water, and have been used to analyze QENS data (31; 50; 150). Given

the fact that in the process of QENS data analysis, we only focus our attention on

the φq(t) with q < 1.1 Å−1 , we can safely neglect the contribution of rotational

motion to the total dynamics, which means that φq(t) ∼ φtranslq (t).

On lowering the temperature below the freezing point, around a given water

molecule there is a tendency to form a hydrogen-bonded, tetrahedrally coordi-

nated first and second neighbor shell (the so-called cage, see Figure 2.3). At

short times, less than 0.05 ps, the center of mass of a water molecule performs

vibrations inside the cage. At long times, longer than 1.0 ps, the cage eventu-

ally relaxes and the trapped particle can migrate through the rearrangement of
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Figure 2.3: Water molecule inside its cage -
A water molecule (light blue) is trapped inside the
cage formed by its neighbors (dark blue) in the su-
percooled liquid. The rattling of the molecule in the
cage produces the first step in the decay of φq(t),
the β relaxation. But in order to escape the cage
and diffuse, a collective motion (hopping) must take
place and open the cage (last step of the decay, α
relaxation).

a large number of particles surrounding it. Therefore, there is a strong coupling

between the single particle motion and the density fluctuations of the fluid. With

water, the cage involves not only van der Waals interactions but also hydrogen

bonds. Intra-cage fluctuations are thus associated with opening and closing hy-

drogen bonds. The fluctuations between open and closed can be modeled with

two states of different energy. The down-barrier to closing the bond is quite small

and thus rate-limiting, implying a large and nearly temperature-independent β-

relaxation rate. The population of open bonds, however, increases exponentially

with the temperature.

The RCM assumes that the translational short-time dynamics of the trapped

water molecule can be treated approximately as the motion of the center of

mass in an isotropic harmonic potential well, provided by the mean field of its

neighbors. We can, then, write the short-time part of the translational φq(t) in a

Gaussian approximation, connecting it to the velocity auto-correlation function

〈vCM (t) · vCM (0)〉 , in the following way:

φshortq (t) = exp
{
−q2
〈r2
CM (t)〉

2

}
= exp

{
−q2

[∫ t

0
(t− τ)〈vCM (τ) · vCM (0)〉 dτ

]}
(2.1)

Since the translational density of states, ZT (ω), is the Fourier transform of

the normalized center of mass velocity auto-correlation function, one can express

the mean squared deviation, 〈r2
CM (t)〉, as follows:



24 2. WATER DYNAMICS

〈r2
CM (t)〉 =

2
3
〈v2
CM 〉

∫ ∞
0

ZT (ω)
ω2

(1− cosωt) dω (2.2)

where 〈v2
CM 〉 = 〈v2

x〉 + 〈v2
y〉 + 〈v2

z〉 = 3v2
0 = 3kBT/M is the average center

of mass square velocity, and M is the mass of a water molecule. Experiments

and MD results show that the translational harmonic motion of a water molecule

in the cage gives rise to two peaks in ZT (ω) at about 10 and 30 meV, respec-

tively (14). Thus, the following Gaussian functional form is used to represent

approximately the translational part of the density of states:

ZT (ω) = (1− C)
ω2

ω2
1

√
2πω2

1

exp
[
− ω2

2ω2
1

]
+ C

ω2

ω2
2

√
2πω2

2

exp
[
− ω2

2ω2
2

]
(2.3)

Moreover, the fit of MD results using Equation 2.3 gives C = 0.44, ω1 = 10.8

THz, and ω2 = 42.0 THz (30). Using the above equations, we finally get an

explicit expression for φq(t)short:

φshortq (t) = exp
{
−q2v2

0

[
1− C
ω2

1

(1− e−ω2
1t

2/2) +
C

ω2
2

(1− e−ω2
2t

2/2)
]}

(2.4)

Equation 2.4 is the short-time behavior of the translational φq(t). It starts

from unity at t = 0 and decays rapidly to a flat plateau determined by an inco-

herent Debye-Waller factor fq, given by

fq = exp
{
−q2v2

0

[
1− C
ω2

1

+
C

ω2
2

]}
= exp

[
−q

2a2

3

]
(2.5)

where a is the root mean square vibrational amplitude of the water molecules

in the cage, in which the particle is constrained during its short-time movements

(Figure 2.3).

According to MD simulations, a ∼ 0.5 Å is fairly temperature independent

(56). On the other hand, the cage relaxation at long times can be described with

a stretched exponential. Therefore φq(t), valid for the entire time range, can be

written as a product of the short-time part and a long-time part:

φq(t) = φshortq (t) exp[−(t/τq)β] (2.6)
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Figure 2.4: MCM-41 structure - 3-dimensional
representation of MCM-41. When this mesoporous
silica material is fully hydrated (h = 0.5 grams of wa-
ter per gram of dry MCM), water fills the nanopores
of its hexagonal lattice. The cylindrical pores have
a diameter ranging from 10 to 20 Å. Colors: water
molecules are displayed with O = red and H = white,
while silica material has Si = blue and O = gray.

The fit of the MD generated φq(t) using Equation 2.6 shows that τq obeys the

power law τq = τ0(aq)−γ , where γ ≤ 2 and β ≤ 1. In the q → 0 limit, one should

approach the diffusion limit, where γ → 2 and β → 1. Thus, φq(t) = exp[−Dq2t],

D being the self-diffusion coefficient. In QENS experiments, this low-q limit is

not reached, and both β and γ can be considered q-independent in the range

0 < q < 1 Å (50). The average translational relaxation time can finally be

obtained as 〈τ〉 = (τ0/β)Γ(1/β), where Γ is the gamma function (see Equation

1.10).

2.2 Supercooled and confined water dynamics

2.2.1 1-D Confined water dynamics: Silica nanopores

By containing water in the small cylindrical pores (pore size ∼ 18 Å) of MCM-

41 (Figure 2.4), Faraone et al. (50) were able to circumvent the homogenous

nucleation process and supercool water down to 160 K. High-resolution QENS

experiments were used to measure the average translational relaxation time, 〈τ〉,

of water molecules in the temperature range from 325 K down to deeply su-

percooled temperature. Two QENS spectrometers in NIST Center for Neutron

Research (NIST-NCNR) were used: a disc-chopper time-of-flight spectrometer

(DCS) and a high-flux backscattering spectrometer (HFBS). Combination of re-

sults from the above two spectrometers enabled them to cover the relaxation time

range from 1 ps at high temperatures to 10 ns at the lowest temperature.
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Figure 2.5: 1D-confined water dynamic transition - Left : Arrhenius plot of
the relaxation time τT of water confined in MCM-41 at ambient pressure. Right :
Derivative of the Arrhenius plot, the peak corresponds to the transition.

Figure 2.5 shows the temperature dependence of 〈τ〉 and the derivative of

its Arrhenius plot. The critical law predicted by mode-coupling theory, which

is usually used for bulk supercooled water, would fit the data above 240 K, but

deviates from the data below 240 K (50). At T ∼ 225 K, there is a sudden

change in the slope of the 1/T -dependence of log(〈τ〉), as displayed in the left

panel of Figure 2.5. The rate of dynamic slowing down changes abruptly at a

temperature around 225 K, signalling the onset of an avoided structural arrest

transition. This was the first experimental evidence of a dynamic transition

(or crossover) in supercooled water. These findings were in agreement with the

known properties of water below the melting point and in the supercooled region.

In fact, a fragile-to-strong crossover (FSC) in water was proposed (74) on the basis

of the determination of the fragility of water near the melting and glass transition

temperatures: near Tg water is a very strong liquid, whereas in the supercooled

region it is the most fragile one.

Another equivalent method to extract the dynamic transition temperature is

shown in Figure 2.6, where we plot the analytical self-density correlators φq(t)

extracted from the fitting with the RCM of the experimental structure factor

Sq(E), and the dynamic response functions χT calculated with finite differences

of the φq(t). The big gap between the φq(t) at 240 and 230 K (left panel) is the



2.2 Supercooled and confined water dynamics 27

4

3

2

1

χ T
 (1

0-2
 K

-1
)

10-4 10-3 10-2 10-1 100 101 102

t (ns)

 T = 230 K
1.0

0.8

0.6

0.4

0.2

0.0

φ q
 (t

)

10-4 10-3 10-2 10-1 100 101 102

t (ns)

 T = 210 K
 T = 220 K
 T = 230 K
 T = 240 K
 T = 250 K
 T = 260 K
 T = 270 K
 T = 280 K

Figure 2.6: 1D-confined water χT - Left : Correlators φq(t) of confined water in
MCM-41, as a function of temperature, extracted from the fitting of the dynamic
structure factor Sq(E), measured by QENS. Notice the big gap at the dynamic
transition temperature TL. Right : χT (t), calculated with finite differences of φq(t).
The highest peak corresponds to TL.

characteristic signature of the dynamic transition, and it will be seen other times

throughout this work. It is also reflected in the highest peak of χT at TL = 235±5

K (right panel).

2.2.2 2-D Confined water dynamics: Biomacromolecules

Water molecules in a protein solution may be classified into three categories: (i)

bound internal water; (ii) surface water, i.e., the water molecules that strongly

interact with the protein surface; and (iii) bulk water. The bound internal water

molecules, which occupy internal cavities and deep clefts, are extensively involved

in the protein-solvent H-bonding and play a structural role in the folded protein

itself. The surface water, which is usually called the hydration water, is approx-

imately the first layer of water molecules that interacts with the solvent-exposed

protein atoms of different chemical character, feels the topology and roughness

of the protein surface, and exhibits slow dynamics. Finally, water that is not

in direct contact with the protein surface but continuously exchanges with the

surface water has properties approaching that of bulk water.

Starting from 2006, Chen and collaborators collected quasi-elastic neutron

scattering data of hydrated biopolymer powders, namely lysozyme, DNA and
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RNA. The main contribution to the QENS spectra of these systems is the hy-

dration water, which represents the water in category (ii) mentioned above. In

all these cases, they found an analogous dynamic transition in water as the one

reported in Section 2.2.1. The dynamic crossover temperatures where also in the

same range, in spite of the differences in the chemical and topological structures

of the biopolymers: TL = 225 K for lysozyme, TL = 222 K for DNA and TL =

220 K for RNA hydration water.

The relation of TL with the biomolecules functionality (especially for pro-

teins), and its relation with the dynamic transition at Tl in the biomolecules

themselves, will be extensively treated in Section 4.2

2.2.3 3-D Confined water dynamics: Cement paste

Cement is a ubiquitous construction material used in buildings, bridges and high-

ways. At a price of roughly $1 per 20 kg, concrete is one of the lowest cost

materials for construction. The annual consumption is approximately 500 mil-

lion metric tons of concrete. The National Research Council has estimated that

improving the durability of roads and bridges by a single percentage point over

a 20-year period would yield a saving of ∼ $20 billion. Therefore, the study of

cement properties is one of the most cost effective scientific investigations.

Ordinary cement powder (Portland cement) consists of calcium silicates, alu-

minates and alumino-ferrites. When it is combined with water, it forms a plastic

paste that sets and eventually hardens to a rock-like consistency. During this

curing process a series of chemical hydration reactions take place to form the

corresponding hydrated phases, mainly calcium silicate hydrate (CSH), and to

develop a 3D interconnected solid random network1. Thus, water plays the cen-

tral role during the overall hydration process, when cement gains the desired

hardness and strength. Understanding the dynamic behavior of water confined

in the cement paste is therefore crucial for achieving complete control over its

mechanical properties. In this section, we study the dynamics of water confined

1Cement chemistry notation: C = CaO, H=H2O, S = SiO2, A=Al2O3. So CSH is calcium

silicate hydrate.
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Figure 2.7: Chemistry and physics of cement - Left : Chemical composition
and reactions that lead to the formation of the CSH colloidal particle. Right : Aggre-
gation of CSH basic units to create globules and then two gel phases, a low density
(within 24 hours) and a high density one (long-time limit).

in cement (h = 0.4), and cured for 8 days, with measurements made for 4 days

subsequently using quasi-elastic neutron scattering (QENS) (150).

An example of the 3D confinement of water in cement paste can be pictured

through the Jennings colloidal model (76). The calcium silicate hydrate gel (CSH,

small spheres in Figure 2.7) is the amorphous gel responsible for the setting and

hardening process of cement. It grows between calcium hydroxide particles (CH

in the Figure). CSH is composed of colloidal particles with radius ∼ 1.5 nm that

aggregate to form globules. These globules cluster to form low density (LD) CSH

regions within 24 h. The size of these pores inside the LD CSH is estimated to

be around 1 nm (77), which corresponds to the interplanar space between the

growing CSH lamellae.

Because of the hydration process the LD CSH domains assemble to give a

structure with larger pores connected by narrow channels called inter-LD regions.

The sizes of these pores are reported to vary over a large range (approximately

between 1 and 10 nm (77)). The LD CSH aggregates grow with time, and after

one month all the water in the inter-LD CSH is consumed by the hydration re-
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Figure 2.8: Cement hydration water does not crystallize - Left : DSC ther-
mogram (cooling scan) of cement paste cured for 11 days. According to the JCM,
the peak at 247 K is due to inter-LD pore water and the peak at 231 K to LD pore
water. Right : NIR spectra acquired at 123 K on cement paste cured for 3 hours and
8 days. The peak at 6070 cm−1 is due to hexagonal ice, and disappears after 8 days
of curing.

action. The JCM is consistent with the differential scanning calorimetry (DSC)

thermogram recorded 11 days after the preparation (Figure 2.8). Two main fea-

tures (peaks) are present, at 247 and 231 K, of which the second peak represents

the main contribution. No peak is detected above 253 K, in the temperature

range typical for the freezing of bulk water. Thus, at this hydration time all

the unreacted water in the sample is strictly a kind of confined water in the

solid matrix. According to the JCM, the two peaks visible in the cooling part

of the thermograms are due to water reservoirs, i.e. relatively large pores inter-

connected through small channels, with nanometric diameter. In particular, the

peak in the region between 253 and 238 K is due to water that is only accessible

via the inter-LD pores (129). The time evolution of this kind of water is strongly

connected to the w/c ratio and in our conditions is totally consumed after 28

days. On the other hand, the peak at 231 K corresponds to pores inside the LD

CSH domains. Near infrared (NIR) experiments confirm that after eight days of

setting the water in the cement paste is confined. Figure 2.8 reports the NIR

spectrum registered at 123 K on a sample cured for 3 h. The absorption at 6070

cm−1 is considered as a fingerprint of hexagonal ice (64). The absence of this
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Figure 2.9: QENS spectra of cement hydration water - Illustration of the
analysis of QENS spectra at two typical temperatures T = 240 K, 220 K and two
typical wavevector transfers q = 0.6 and 0.8 Å−1, respectively. The circles are the
measured neutron intensity as a function of the energy transfer E. The solid line is
the fitted curve using the model. The dashed line is the elastic scattering compo-
nent, whose asymmetric shape derives from the asymmetric q-dependent resolution
function.

peak after eight days indicates that, at this hydration time, water is totally 3D

confined in the LD CSH domains and cannot crystallize any longer. This is the

kind of water that we observed in the neutron scattering experiment. In this

experiment, measurements were made on both an eight-day-old H2O hydrated

sample and a dry sample. The scattering from the dry sample was rather small

due to the lack of hydrogen atoms, and thus was subtracted out as a background

from the wet sample case.

The QENS spectra for each temperature were analyzed for four q values (0.2,

0.4, 0.6 and 0.8 Å−1) simultaneously to extract τ0 and β, and consequently to
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evaluate the average translational relaxation time, according to RCM (see Section

2.1). Examples of data analysis using the model discussed above are shown in

Figure 2.9. Two temperatures, one above TL at 240 K and one below TL at 220

K, are shown for two typical wavevector transfers q = 0.6 and 0.8 Å−1. The

figures are plotted on a log scale to show the good agreement between the model

and measured spectra over the whole intensity range. The elastic scattering

component (shaded area), mainly from scattering of immobile water molecules,

ranges from 58% at 300 K to 86% at 180 K, leaving enough scattering coming

from the relaxation process of the hydrogen atoms in water molecules. Unlike

for the dynamics at room temperature, the line shape of the quasi-elastic peak

is non-Lorentzian (β ∼ 0.5)1, indicating the glassy nature of the confined water.

The experimentally extracted φq(t) are shown in Figure 2.11 for a representative

q = 0.6 Å−1. The big gap between 240 and 220 K is clearly visible, and is a

consequence of the dynamic crossover in the translational relaxation time. Unlike

ideal glass forming liquids, the φq(t) of this real physical system does not show

an infinitely long plateau below Tc as predicted by the idealized mode coupling

theory (MCT, Appendix A.1); instead, after struggling in the nanosecond time

range, it eventually decays to zero through an α-relaxation process that restores

ergodicity. The real structural arrest transition is avoided, as one can also see in

the Arrhenius plot of the experimentally extracted 〈τ〉 versus 1/T (Figure 2.10).

It shows clear evidence of a super-Arrhenius (non-linear behavior) to Arrhenius

(linear behavior) dynamic crossover as the temperature is cooled down through

TL = 225± 5 K.

We calculated the dynamic susceptibility χT (t) using finite differencing. χT (t),

defined in Section 1.3.3, is a measure of the temperature induced fluctuations.

Experimentally, it is a much easier quantity to measure than the four-point dy-

namic susceptibility χ4(t), which quantifies the amplitude of the spontaneous fluc-

tuations; however, they are related to each other by the fluctuation-dissipation

theorem (18). Despite the fact that the temperature difference is 20 K (or 10

K), we can clearly see that χT (t) has a peak located at around TL = 227 K

1We remind here that the Fourier transform of an exponential function is a Lorentzian

function. So if φq(t) is not a simple exponential (β < 1), Sq(E) will not be a simple Lorentzian.
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Figure 2.10: 3D-confined water dynamic transition - Left : Arrhenius plot
of experimentally extracted translational relaxation time versus 1/T . An evidence
of a super-Arrhenius (non-linear behavior) to Arrhenius (linear behavior) dynamic
crossover is observed as the temperature is cooled through TL = 225 ± 5 K. Right :
Location of the transition temperature through the derivative of the Arrhenius plot.

in Figure 2.11 right panel. The peak height is a measure of the volume within

which the correlated motions take place. It grows on approaching TL and reaches

a maximum at TL, but this growth is interrupted when the dynamic crossover

sets in at TL. This fact indicates that the dynamic fluctuations are enhanced

and lead to the maximum of the size of the dynamic heterogeneity in confined

water near TL. Therefore, the three quantities 〈τ〉, χT (t), and DSC heat flow

all agree in evaluating the crossover temperature as TL = 225 ± 5 K. The coin-

cidence of the DSC peak and the dynamic crossover temperature at TL can also

be understood with the Adam-Gibbs theory (see Section 4.3.1), where the slope

of the Arrhenius plot of the mean α-relaxation time is directly related to the

configurational entropy change (see Section 4.1 for details). These experimental

findings demonstrate that there are well-defined thermodynamic and dynamic

signatures in the response functions of the existence of the crossover temperature

TL. We may predict that below TL, the structural properties of cement paste

become drastically different from those above. Establishing to what extent this

would affect the mechanical properties of the concrete at temperatures below TL

awaits future experiments.
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Figure 2.11: 3D-confined water χT - Left Panel : Self-intermediate scattering
function φq(t). Three temperatures each are plotted above and below TL. Right
Panel : Dynamic susceptibility χT (t). All the figures are plotted for q = 0.6 Å−1

2.3 Bulk water dynamics: computer simulations

To make sure that the dynamic phenomena described in this chapter are inherent

properties of water and not due to the confinement, we ran a simulation of a

model bulk water, four-point transferable intermolecular potential modified for

the Ewald sums (TIP4P-Ew, (72)). The dynamic crossover in the Arrhenius plot

of the self-diffusion constant has been previously observed with simulations of

bulk water using other water models (144). We calculated long MD trajectories

for a box of 512 water molecules of up to 1 µs in the NV T ensemble (148). The

systems were considered equilibrated when the mean-square displacement of the

water molecules was larger than 0.1 nm2 (Fig. 2.12). We then calculated the

correlators φq(t) for the oxygen atoms for five q values (0.4 , 0.5 , 0.6 , 0.7 , 0.8

Å−1) and fit the data according to the RCM described in Section 2.1(Fig. 2.12).

Figures 2.13 show the Arrhenius plots of the transport properties obtained from

the trajectories: the translational relaxation time 〈τ〉 and the inverse of the self-

diffusion constant 1/D, respectively. Both the plots show a dynamic crossover at

TL = 215± 5 K, analogous to the one in Figure 2.10.

As a side note, 〈τ(TL)〉 is between 1 and 10 ns range for both experiments

in any kind of confinement and simulations, confirming the general behavior of

many glass formers (magic relaxation time of the dynamic transition) (107). The
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Figure 2.12: Bulk water dynamics - Left : Oxygen SISF at q = 0.8 Å−1 for
several temperatures. Continuous lines are the best fittings with RCM. Right : Long-
time mean-square displacement. 〈x2〉 ∼ 0.1 is considered to be the equilibration time
for a water box at that temperature.

left panel of Figure 2.14 shows the dynamic response function χT (t) extracted

from the trajectories. Error bars on χT (t) are on the order of 10−2 K−1. As also

observed experimentally, χT (t) decreases after the dynamic crossover temperature

TL = 215 K. The same phenomenon is not observed for χ4(t) calculated from the

trajectory (Figure 2.14, right panel). The self-part of this quantity is defined as

χ4(t) = 〈[φlq(t)− 〈φlq(t)〉]2〉 (2.7)

where the superscript l indicates the function is a sum over all particles.

Since χ4(t) is related to spontaneous fluctuations, its direct measurement is very

difficult. Much easier way is the numerical computation. The general features

of χ4(t) for bulk water resemble the ones for Lennard-Jones systems (139). The

power-law dependences of the short-time regime and the growth of the peak

height of χ4(t) as one approaches TL are evident.

Comparing the two panels of Figure 2.14, one notices that while the maximum

of χT (t), χ∗T , has a maximum at T = TL, χ∗4 keeps increasing even below TL.

This phenomenon may be understood by considering that these two quantities

are related by the inequality χ4(t) ≥ (kB/cp)T 2χ2
T (t). This implies that since the

specific heat of confined water has a peak at the dynamic crossover temperature
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Figure 2.13: Bulk water dynamic transition - Left : Arrhenius plot of the
translational relaxation time. Right : Arrhenius plot of the self-diffusion constant.
Both plots show the same sigmoidal behavior, typical of a dynamic transition. The
two quantities are in fact both transport properties of the liquid, and are related by
the Stokes-Einstein relation.

(150), the dynamic response function χT (t) may decrease after TL to keep χ4(t)

growing (only occasionally it is verified that the dynamic heterogeneities drops

approaching Tg, (11)). In conclusion, we showed that bulk water simulations are

able to reproduce our experimental findings of the three-dimensional confined

water. The maximum of χ∗T (t) happens at the dynamic crossover temperature

TL and it is not originated from the confinement. On the other hand, the peak

height of χ4(t), which is a measure of the dynamic heterogeneity, continues to

increase below TL.

2.4 Summary

In this chapter, we observed a dynamic transition in deeply supercooled water,

at TL = 225 ± 5 K. In order to reach this temperature avoiding crystallization,

we confined water in a wide variety of systems (1-D confinement in cylindrical

nanopores of MCM, 2-D confinement around biomolecules and 3-D confinement

in interconnected networks of cured cement pastes). We summarize the results

obtained experimentally in the last few years in Figure 2.15. This phenomenon

seems to be fairly independent on the dimensionality of the confinement, and is
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present in simulations of supercooled bulk water as well1. In order to extract

the dynamic transition temperature we i) took the derivative of the Arrhenius

plot of the translational relaxation time of water molecules, ii) constructed ex-

perimentally the dynamic susceptibility χT (t). Both methods agree in evaluating

TL ∼ 225 K.

The dynamic crossover temperature TL could be interpreted as a variant of the

kinetic glass transition temperature Tc predicted by the idealized MCT (iMCT,

Appendix A.1). The structural arrest transition is avoided by activated hopping

processes below TL. iMCT breaks down below TL. Indeed, by treating hopping

as arising from the vibrational fluctuations in a quasi-arrested state, an extended

version of the MCT (eMCT, Section A.3) shows that the ergodic to nonergodic

transition is replaced by a smooth crossover. Furthermore, the dynamic theory

eMCT also demonstrates the growing of the dynamic length scales when ap-

proaching Tc. These two predictions were experimentally verified in this chapter.

1While the dynamic transition of supercooled water seems to be independent on the con-

finement, the dimensionality of the confinement turns out to play an important role in the

characteristics of the slow dynamics, such as the power law exponent for the fractional Stokes-

Einstein relation (33)
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Figure 2.15: Relaxation time of confined water: a timeline - Summary of the
temperature dependence of confined water dynamics, in different dimensionalities,
as they appeared in literature. See Figures 2.5, 4.5 and 2.10.

Below Tc ∼ TL, any structural relaxation requires a cooperative rearrangement

of a large cluster of water molecules connected through hydrogen bonds.

In conclusion, while Tg has just a conventional definition (Section 1.3.2) and

Tc corresponds to an event that does not happen (Appendix A.1), TL seems to

be a better candidate to describe the slow dynamics of supercooled liquids.



3

Protein Dynamics

Of this many know much,

everybody something, no man enough.

Latin proverb

3.1 Overview of protein dynamics

Crystallographic structures are known for many proteins, but these are not suf-

ficient to predict their behavior. Their biological function is in fact eventually

governed by their dynamics, i.e. any time-dependent change in their atomic co-

ordinates (67; 68). Protein dynamics, triggered by thermal energy, allows the

biomolecule to sample many conformations around the average structure, the

so-called conformational substates (CS)1. A complete description of proteins re-

quires therefore a multidimensional energy landscape (EL, Figure 3.1), a concept

proposed for proteins by Frauenfelder and co-workers in the 1970s, that defines

the relative probabilities of the CS (minima, thermodynamics) and the energy

barriers between them (maxima, dynamics) (8). In particular, the EL of a com-

plex system that contains N atoms is described by the potential energy surface

in a space of 3N dimensions, where each axis gives one coordinate of a specific

atom.
1Proteins are never at rest: even at ambient temperature, they fold and unfold all the time



40 3. PROTEIN DYNAMICS

!"relaxation 

Transition:  A - B 
Activation:  EA >> kBT 
Dynamics:  slow 
Motion:   collective  
 t  range:   μs - ms 

#"relaxation 

Transition:  C - D 
Activation:  EA ~ kBT 
Dynamics:  fast 
Motion:   local  
 t  range:   ps - ns 

Figure 3.1: Protein Energy
Landscape - 3-D cross section
of a multidimensional energy
landscape. While states A and
B are separated by a high energy
barrier (α-dynamics), states C
and D are separated by a low en-
ergy barrier (β-dynamics).

Protein dynamics can be divided into two main groups according to the

timescale or, equivalently, to the region of the EL sampled (68): 1) Slow timescale

dynamics (µs-ms, or α relaxation) define fluctuations between states separated

by energy barriers of EA � kBT , i.e. large-amplitude collective motions. Biolog-

ical processes like enzyme catalysis and protein-protein interactions occur on this

timescale. 2) Fast timescale dynamics (ps-ns, or β relaxation) define fluctuations

between structurally similar states that are separated by EA ≤ kBT . They are

more local, small-amplitude fluctuations at physiological temperature like loop

motions and side-chain rotations.

Slow and fast dynamics are somehow linked to each other. It may be useful

at this point to picture the “traffic model for the conformational space” (54).

Consider a one-way street with n equally-spaced traffic lights as sketched in Figure

3.2. At any instant of time, some lights will be red, some green. In order to

describe an instantaneous conformation, we label the first traffic light 1, the

second 2, and so on to n. We observe, for instance, that 1 is red (r), 2 is green

(g), and so on to n being red. The entire snapshot then can be characterized by

the string ’rg....r’. Every snapshot at different times is described by a different

string. Biomolecules are dynamic systems that change conformations rapidly. We

describe the dynamics by imagining a car that drives down the one-way street.

The car starts at the first traffic light and the time to move from one traffic light

to the next is τβ. Assume further that the traffic lights fluctuate between r and

g and spend on average the time τα in either state. Two limiting cases are now

easy to understand: (i) the car is very fast and the traffic lights change slowly so
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Figure 3.2: Traffic model for the conformational space - A traffic analog
to protein dynamics, redrawn from (54). A car drives through a series of equally
spaced traffic lights. The traffic lights switch randomly between red and green. The
average time in each state is given by τα. The average time for the car to go from
one traffic light to the next is τβ .

that τα � τβ. On average, the car has to wait the long time τα at every second

traffic light, the trip is controlled by the rate at which the traffic lights change,

and the time τf to reach the goal is approximately given by τf ∼ nτα. (ii) in the

other limit, τα � τβ, the car is slow and the traffic lights change rapidly. The

wait at the traffic lights is short and the transit is determined by the speed of

the car and hence τf ∼ nτβ.

We now apply the traffic model to proteins. Assume for simplicity that in

a hypothetical protein of 50 atoms can be in one of two positions, r and g.

Assume in addition that each of 100 water molecules in the hydration shell can

alternate between the two positions. The hypoprotein then has 2150 or about

1045 substates. This number may appear to be excessive, but a real protein

is even more complex including, for example, bulk solvent substates. We now

return to the traffic analogy and ask if case (i) or case (ii) dominates. In case

(i), the actual jump is fast but can only occur if the solvent moves. In case (ii),

the solvent fluctuates rapidly compared to the time the protein needs to go from

one substate to another. It seems that case (i) applies and that the external

gating dominates (54). The question what happens during the time τα has no

experimental answer as yet. Because the β fluctuations can be faster than the α
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fluctuations it is conceivable that the protein makes a random walk in the energy

landscape during the time τα.

The correlation between dynamics and biological activity has been demon-

strated on the µs-ms timescale, but fluctuations at atomic level are much faster

than this, leading to the idea of a hierarchy of substates. The EL is organized in a

fractal-like hierarchy of a number of tiers; there are valleys within valleys within

valleys. Some aspects of protein dynamics are also slaved to solvent fluctuations,

with the protein component dictating the relative rates (54).

The complete time-dependence of a typical φq(t) for hydrated protein powder

is shown in Figure 3.3. In this chapter we are going to study the whole curve,

dividing protein dynamics into 3 sections: short-time dynamics (i.e. phonons

in proteins), mid-time dynamics (i.e. the logarithmic dependence of the β re-

laxation) and the long-time dynamics (i.e. the exponential dependence of the α

relaxation). Special attention will be devoted on how lowering the temperature

affects protein dynamics.
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Figure 3.4: Typical phonons - Up left : Equilibrium position of a 1D system with
one atom per unit cell; Up middle: Transverse mode, atoms move perpendicular
to the propagation of the wave; Up right : Longitudinal, atoms move in the same
direction of the propagation of the wave; Down left : Equilibrium position of a 1D
system with two atoms per unit cell; Down middle: Optical branch of the transverse
mode, the two atoms are out of phase; Down right : Acoustic branch of the transverse
mode, the two atoms are in phase

3.2 Short-time dynamics: Phonons

3.2.1 An introduction to collective motions

While lattice statics deals with the average positions of atoms in a crystal, lattice

dynamics extends the concept of crystal lattice to an array of atoms with finite

masses that are capable of motion. This motion is not random but is a superpo-

sition of vibrations of atoms around their equilibrium sites due to the interaction

with neighbor atoms. A collective vibration of atoms in the crystal forms a wave

of allowed wavelength and amplitude.

Just as light is a wave motion that is considered as composed of particles

called photons, we can think of the normal modes of vibration in a solid as being

particle-like. A quantum of lattice vibration is called phonon. The problem of

lattice dynamics is to find the normal modes of vibration of a crystal. In other

words, it seeks to calculate the energies (or frequencies ω) of the phonons as a

function of their wave vector q. The relationship between ω and q is called phonon

dispersion.

There are two possible normal modes of vibrations of atoms in the crystal:

longitudinal (when the displacement of atoms coincides with the propagation

direction of the wave) and transverse (when atoms move perpendicular to the
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Figure 3.5: Structure
of BSA and LYZ - Left :
Serum albumin (pdb file
1E7I); Right : Lysozyme
(pdb file 1AKI)

propagation of the wave). The dynamics of the two modes are exemplified in

Figure 3.4.

For one atom per unit cell the phonon dispersion curves are represented only

by acoustic branches. However, if we have more than one atom in the unit cell

optical branches will appear additionally. The difference between acoustic and

optical branches arises because of the more options of vibrations for atoms in the

unit cell: it can be found that for optical branch (in the long wavelength limit)

the two atoms in the unit cell move opposite to each other and the light mass

amplitude is greater. For the acoustic branch (in the long wavelength limit) the

displacement of both atoms has the same amplitude, direction and phase. For

example, atoms A and B of diatomic cell can move together in phase (acoustic

branch) or out of phase (optical branch). Generally, for N atoms per unit cell

there will be 3 acoustic branches (1 longitudinal and 2 transverse) and 3N − 3

optical branches (N − 1 longitudinal and 2N − 2 transverse). The dynamics of

the two branches are exemplified in Figure 3.4.

3.2.2 Phonon detection

Recently, some researchers studied the inter-protein phonons in protein crystals

by MD simulations (83). However, it is also relevant to study the intra-protein

collective atomic motions since it is intimately connected to the biological activi-

ties of the macromolecule. IXS is an effective tool to study the collective motions

of atoms, such as the phonon dispersion relation. We used two structurally differ-

ent proteins (89), lysozyme (LYZ) and bovine serum albumin (BSA), see Figure

3.5.
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LYZ is an enzyme consisting of 129 amino acid residues which folds into a

compact globular structure having an ellipsoidal shape with dimensions a x b

x b = 2.25 x 1.5 x 1.5 nm3 and a molecular weight of 14.4 kDa. LYZ has five

helical regions and five β-sheet regions consisting of a large amount of random

coil and β-turns. BSA is instead a transport protein and the principal carrier

of fatty acids that are otherwise insoluble in circulating plasma. It is a prolate

ellipsoid with a x b x b = 7 x 2 x 2 nm3 and a molecular weight of about 66.7

kDa. It consists of 607 amino acid residues that create an all-helix structure.

The respective protein powders were hydrated at h = 0.3. This hydration level

was chosen to have almost a monolayer of water covering the protein surface.

The experiments were performed at the inelastic x-ray scattering beam line,

IXS, and the high energy resolution inelastic x-ray scattering (HERIX) beam

line, at the Advanced Photon Source (APS), Argonne National Laboratory. Both

instruments can measure the dynamic structure factor Sq(E) of the sample, which

contains information on collective motions of atoms with an energy resolution of

about 2 meV (for IXS) and 1.5 meV (for HERIX). The measured q-range is

from 0 to 35 nm−1 and an energy window from -20 to 40 meV. A measured

IXS spectrum Iq(E) can be expressed as Iq(E) = Sq(E) ⊗ Rq(E), where Rq(E)

is the resolution function, and ⊗ means numerical convolution. In the present

analysis we shall use the damped harmonic-oscillator (DHO) model to analyze

the normalized dynamic structure factor given by (88):

Sq(E)
Sq

=
1
π

ΓqΩ2
q

(E2 − Ω2
q)2 + (ΓqE)2

(3.1)

where the static structure factor Sq =
∫ +∞
−∞ Sq(E) dE, Ωq is the phonon energy

at wave vector transfer q, and Γq is the phonon damping. In principle, the DHO

model has no central Rayleigh (elastic) peak, only the two Brillouin side peaks.

But experimentally we observe the presence of a large resolution limited central

peak. Therefore, we phenomenologically added a delta function central peak of

a weight fraction gq. In addition, we also take into account the detailed balance

factor, so that the extended DHO model is given as (101)
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Sq(E) = A
E

kBT
[n(E) + 1]

[
gqδ(E) + (1− gq)

1
π

ΓqΩ2
q

(E2 − Ω2
q)2 + (ΓqE)2

]
(3.2)

where n(E)+1 is the detailed balance factor, n(E) = (eE/kBT −1)−1 the Bose

factor and A a normalization constant. We calculated Sq for lysozyme powder

from an MD trajectory at T = 250 K according to Sq = 1
N |
∑N

j=1 e
iq·rj |2, where

N is the number of heavy atoms in the protein and rj their coordinates. Sq is

shown in Figure 3.6: it shows the 4 expected peaks, centered at q = 7, 14, 30 and

55 nm−1 (49). Peak B, which should be the major peak of the structure factor,

arises from the order of the secondary structure (β-sheets average distance and

α-helix repeat and width). Peak C is ascribed to the intermediate-range order

between amino acidic residues, while peak D is attributed to the covalent bonds

between heavy atoms (like C-C, C-N, etc.). Finally, the sharp increase at low-q

indicates that, on average, a protein can be regarded as a fluctuating continuum.

We show in Figure 3.7 the analysis of measured IXS spectra Sq(E) of BSA

by the DHO model at three different temperatures T = 170, 220, and 250 K. For

q = 2.4, 2.8 and 3.1 Å−1, a clear q dependence of the phonon excitation energy

is observed. At a given q value, when the temperature exceeds Tl, we see a

substantial decrease in the phonon energy. The softening of the phonons in this q

range suggests that the slowing down of motions involving the intermediate-range

order in a protein may be the origin of the restoration of its biological activities.
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Figure 3.7: DHO model fitting of the measured IXS spectra of BSA -
The blue circles, red solid line and orange dashed line represent, respectively, the
measured data, DHO model fitted curve and Brillouin component of the DHO model.
The arrow signs show the Stokes and the anti-Stokes components of the phonon-like
excitation energy at each q. The Figure shows the fitted results at q = 2.4, 2.8 and
3.1 Å−1 (from left to right) at T = 220 K.

3.2.3 Temperature dependence of the phonon dispersion

From the results of the DHO analyses of the measured spectra, such as the ones

that are illustrated in Figure 3.7, we plotted the phonon dispersion relations in

the full q range for BSA and LYZ, respectively, in Figure 3.8. In the high-q range

2 to 3 Å−1, excitation energies have similar dispersion curves to the ones observed

in other biosystems (92). This q-range corresponds to the length scale of about

2-3 Å, close to the one of the typical distance of the secondary structure of the

proteins (∼ 4− 5 Å) and reflect the intra-protein collective atomic motions. We

can clearly observe the quantitative degree of the softening of phonons for both

proteins as temperature exceeds Tl in Figure 3.8. This fact strongly suggests

that these temperature dependent intra-protein motions are intimately related

to the biological activities of proteins, which are also temperature dependent

and strongly decrease below Tl. The presence of the structure factor peak at

q ∼ 15 Å−1 leads to a large damping of the phonons, as we can see in the

upper panel of Figure 3.8, so we cannot detect the phonons in this region. The

phonon damping (Γq, middle panel) does not show a temperature dependence

and is nearly constant. This fact shows that the temperature dependence of Ωq

is reliable. We calculated the factor (1− gq) and fit it by a power law. Since the

factor gq is the fraction of the elastic component, which should be proportional to
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Figure 3.8: Phonon-like excitation in BSA and LYZ - Upper Panel : Disper-
sion of the intraprotein phonon-like energy excitations as a function of q, above peak
B of the structure factor (see Figure 3.6). Middle Panel : The phonon damping as
a function of temperature.Lower Panel : Fractional area of the Brillouin peak vs q.
The factor (1− gq) is found to increase proportionally to q2

the Debye-Waller factor fq = exp(−q2〈x2〉), the low-q expansion of gq should be

proportional to q2. Our data show this q2 dependence in Figure 3.8, lower panel.

The factor (1− gq) represents the fractional spectral intensity of the phonon-like

excitation in the total intensity. At temperature higher than Tl, (1−gq) is larger,

which indicates that the phonon population increases as temperature decreases,

due to the onset of the conformational flexibility at Tl.
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Figure 3.9: Examples of logarithmic dynamics - While this particular re-
laxation is not very common, we can find it in a wide variety of systems, usually
governed by strong interactions.

3.3 Mid-time dynamics: Log decay

3.3.1 An introduction to the logarithmic decay

Among all the relaxations characteristic of complex systems such as exponential,

stretched exponential, power law (see Chapter 1), the logarithmic decay is the

slowest one and also the least common. In past years, it has been experimentally

found in the time evolution of a wide variety of complex strong interacting systems

such as spin glasses (106), granular materials (75), simple glass-formers (24; 25),

colloidal solutions (28), polymers (9), and protein kinetics (1; 46). To this large

number of experimental systems, we can add many numerical simulations on

short-ranged attractive colloids (115; 126), polymer blends (102), and kinetically

constrained models (22; 103). In Figure 3.9 we show an overview of the systems

where the logarithmic decay appears. Nevertheless, no general scenario for its

appearance is known.

Starting in 1989, Götze and collaborators have shown that this particular

feature is predicted by the idealized mode coupling theory (iMCT) for systems
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close to a higher-order glass-transition singularity (see Appendix A.2). In this

section, we shall show by means of molecular dynamics (MD) simulations that

the protein self-intermediate scattering functions (SISF) display a logarithmic

decay in the picosecond to nanosecond time range, that can be fitted according

to Equation A.14 (84),

φq(t) ∼ fq −H ′q ln(t/τβ) +H ′′q ln2(t/τβ) (3.3)

In a longer time range, instead, the complete time dependence of the function

can be fitted with an analytical model as follows:

φq(t) ∼ [fq −H ′q ln(t/τβ) +H ′′q ln2(t/τβ)] exp(t/ταq ) (3.4)

where τβ and ταq are the characteristic β- and α-relaxation time, respectively.

Molecular dynamics (MD) simulations have the advantage that they can de-

scribe protein dynamics completely: the position of each atom can be followed

any instant in time, so they are the ideal tool to study ps-ns (fast) protein dy-

namics. We are also going to show that the presence of this logarithmic decay

does not depend on the state of aggregation of the protein (powder, crystal or

solution), nor on the globular protein under consideration (lysozyme or ribonu-

clease). This peculiar relaxation of protein is not shared by its hydration water,

as showed in Figure 3.10: while proteins resemble the MCT A3 scenario, protein

hydration water is more similar to a MCT A2 scenario.

3.3.2 β relaxation: logarithmic decay

We shall start our discussion on protein dynamics proving that globular proteins

share, qualitatively, the same exotic relaxation behavior regardless of their envi-

ronment (a hydrated powder, a hydrated crystal or a solution): an uncommon

logarithmic behavior (84). Figure 3.11 compares the dynamics of these 3 forms of

protein aggregates for lysozyme: the left panel shows the intermediate scattering

functions for several q-values for the center-of-mass of the amino acid residues of

lysozyme in its hydrated powder form, while the middle panel shows the same

quantity for orthorhombic lysozyme crystal and the right panel for lysozyme in
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Figure 3.10: Protein φq(t): a comparison with hydration water - Left :
Single-particle density correlator for protein hydration water showing a plateau fol-
lowed by a stretched exponential (A2 scenario of the mode-coupling theory), calcu-
lated at T = 250 K and q = 3 Å−1. Right : Single-particle density correlator for
protein showing a logarithmic decay followed by a simple exponential (A3 scenario
of the mode-coupling theory), calculated at T = 310 K and q = 4 Å−1.

solution. In the first two cases, φq(t) shows a logarithmic decay in the interme-

diate time range 1 ps - 10 ns, followed by the beginning of the slow α-relaxation.

In the solution case, the log decay starts around 100 ps: the initial in-cage

gaussian-like ballistic relaxation extends for a larger time range compared to the

powder/crystal systems, since the protein has fewer constraints in solution than

in a solid form (no protein-protein contacts).

A question arises now: is this peculiar decay localized somewhere in the pro-

tein, maybe just in the side chains or only the backbone? As it is clear from

Figure 3.12, no qualitative difference can be noticed between the two panels: the

logarithmic decay is a general feature of the protein, delocalized over the whole

structure. Logarithmic decay was also observed in preliminary spin-echo neutron

scattering experiments on deuterated C-phycocyanin (71).

Figure 3.13, instead, compares the dynamics at 300 K of the hydrated powder
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Figure 3.11: Protein φq(t): different protein states - Comparison between
φq(t) of amino acid residues of hydrated protein models. Left : powder. Middle:
crystal. Right : solution. Seven curves are displayed at different q-values, from 1.6
to 6.4 Å−1 (from top to bottom), with a 0.8 Å−1 interval.

forms of two different proteins: lysozyme (LYZ) and ribonuclease A (RNAse).

Again, the logarithmic behavior is conserved in a similar time range, suggesting

that it might be a general feature of globular proteins, a characteristic inherent to

their energy landscape profile. Logarithmic decay is in fact often associated with

subdiffusion in the mean square displacement, and subdiffusion of protein atoms

was recently related to the fractal-like structure of the protein energy landscape

(105).

3.3.3 Temperature dependence of β relaxation

We analyze now how temperature affects the logarithmic decay in hydrated pro-

tein powder, in the temperature range of its biological activity, roughly from

220 K to 340 K. The lower limit is imposed by the so-called dynamic transition

of the protein ((43) and Section 4.2.1), while the higher limit by the reversible

denaturation of lysozyme (149).

In Figure 3.14 we plot the intermediate scattering functions φq(t) of the center-

of-mass of lysozyme amino acids in the hydrated protein powder model, for 4
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Figure 3.12: Protein φq(t): a comparison between backbone and side
chains - Left : Density correlators calculated for the atoms belonging to the backbone
only, as usual considering only the centers of mass of the backbone atoms of the
amino acid residues. Right : Same quantity for the side chains. As it appears, no
qualitative difference can be noticed between the two plots: the logarithmic decay
is a general feature of the protein, delocalized over the whole structure.

different temperatures and a representative set of 7 wave vectors q, in the time

range 1 ps to 10 ns. It is evident that the relaxation is far from being the classic

two-step decay of a liquid-glass transition, and it is not possible to fit the curves

with the stretched exponential form we used for protein hydration water ((85)

and Section 4.2). Instead, fitting the correlators with Equation 3.3 produces a

very good agreement. We would like to point out here that the logarithmic decay

is a feature displayed by the φq(t) of any kind of atom belonging to the protein

(H, C, O, etc.), but considering only the c.m. of each amino acid residue is

the most convenient choice if one wants to exclude the effect of rotations on the

correlators. We show instead in Figure 3.15 the q and temperature dependence

of the fitting parameters of Equation 3.3: the intermediate scattering functions

were fitted approximately in the same time range, from 2 ps to 6 ns.
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Figure 3.13: Protein φq(t): different proteins - Comparison between ISF of
hydrated protein powders for two different protein molecules. Left : lysozyme. Right :
ribonuclease. Seven curves are displayed at different q-values, from 1.6 to 6.4 Å−1

(from top to bottom), with a 0.8 Å−1 interval.

Several predictions of mode-coupling theory (MCT) for higher order singulari-

ties (Appendix A.2) are verified in the temperature interval 280 - 340 K (102; 126):

• the Debye-Waller factor fq (Figure 3.15, upper panel) does not depend

on the state point, as expected if the system is close to the singularity

(correction of the order
√
ε cannot be detected).

• H ′q can be factorized as H ′q(x) = hqB
′(x) where hq only depends on q and

B′(x) only depends on the control parameter x. In fact, the q-dependence

of H ′q is the same for all the temperatures.

• H ′′q does not display the same behavior as H ′q, since B is also a function

of q. Moreover, |H ′q| < |H ′′q | since the first is of order ε and the second of

order
√
ε.
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Figure 3.14: Protein φq(t): different temperatures - Protein intermediate
scattering functions at 4 different temperatures (T = 280, 300, 320, 340 K) and
7 q-values: from 1.6 to 6.4 Å−1 (from top to bottom), with a 0.8 Å−1 interval.
Continuous lines are the best fits according to Equation 3.3

• the q-values where H ′′q = 0 border a convex-to-concave crossover, as pre-

dicted by the theory. This is one of the main signatures of the higher-order

MCT scenario. These q-values depend on the state point: as a general

behavior, these values increase as temperature is decreased.

Below 280 K, instead, the q-value of the peak position of H ′q depends on the

temperature, and the predictions of MCT break down. The predictions we listed

are, in fact, valid only in the vicinity of the higher order singularity. It seems

therefore that lowering the temperature at 280 K and below brings us further

away from the hypothetical higher-order transition.

It is impressive that the asymptotic expansion of Equation 3.3, that should
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hold only very close to the transition, is valid over such a wide range of tem-

peratures. MCT scaling laws are valid close to the critical MCT temperature

Tc, which must be distinguished from the actual glass transition temperature Tg.

The validity of the MCT scaling laws holds in a relative range ε = (T − Tc)/Tc
between typically 0.01 and 0.1. For smaller values of ε hopping events restore

ergodicity and the real glass transition arises at a lower temperature Tg. The dif-

ference between Tc and Tg is typically about a factor 1.2 for fragile liquids, which

exhibit a Vogel-Fulcher-Tamann temperature dependence of the relaxation time

below Tc or the power law behavior (135). So the MCT critical temperature is

probably not far from the physiological temperature (see next section). In Figure

3.16 we show the Arrhenius plot of the β-relaxation time τβ in Equation 3.3. We

extracted this parameter from the fitting of φq(t) shown in Figure 3.16, fixing it

so that fq was independent on temperature. It turns out that this is possible for

each temperature (in the range of validity of MCT), and this gives us a unique
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Figure 3.16: MCT parame-
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value for τβ(T ). The Arrhenius behavior is evident in the whole temperature

range, 220−340 K, with a relatively high activation energy EA = 13.7 Kcal/mol.

3.4 Long-time dynamics: Diffusion

3.4.1 An introduction to the protein-glass analogy

The long-time dynamics of native globular proteins has much in common with

the ones of glass-forming liquids (5; 8). The reason for such a similarity has to

be searched among the essential characteristics of these two types of material.

They both consist of noncrystalline packing in which their constituents (either

molecules in the case of glassy liquids or amino acid residues in the case of pro-

teins) assemble (63). They also have a complex energy landscape (54), composed

of a large number of alternative conformations at similar energies.

The analogy between a protein and a glass former can be seen from the fol-

lowing similarities: (1) at low temperatures proteins undergo the so-called glass

transition (see Section 4.2.1), a sudden change of slope in their mean square dis-

placement as a function of temperature, interpreted as the onset of anharmonic

processes; (2) the low-energy inelastic spectra of proteins and their hydration wa-

ter display a feature known as boson peak, typical of strong glass formers (87); (3)

the protein denaturation can be seen as a sort of strong-to-fragile liquid transi-

tion (63), where the folding heavily decreases the number of liquid-like degrees of
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freedom; (4) proteins have two types of equilibrium fluctuations, the cooperative

α (involving large domains of the biomolecule) and the local β (involving side

chains), typical of glass formers ((51; 53) and Section 1.3.2); (5) proteins exhibit

both short- and intermediate-range orders, and the construction of a random

elastic network using these structures leads naturally to the physics of a glassy

material (49).

Proteins and glasses are complex systems, and one of the distinctive features

of complex systems is a slow non-exponential relaxation of the density correlation

functions φq(t) and of the single-particle correlation functions φSq (t) observed in a

wide range of time scales. The time dependence of the relaxation scenario usually

follows these three steps: it begins with (a) a short-time Gaussian-like ballistic

region, followed by (b) the β-relaxation region which is governed by either two

power-law decays φq(t) ∼ (t/τβ)−a and φq(t) ∼ (t/τβ)b or a logarithmic decay

φq(t) ∼ Aq−Bq ln(t/τβ), which then evolves into (c) an α-relaxation region that is

governed by a stretched exponential decay (or Kohlrausch-Williams-Watts law),

φq(t) ∼ e−(t/ταq )β , as we saw at the beginning of this chapter, Figure 3.3.

Figure 3.17 shows the protein-glass analogy in a graphic way: while the left

panel displays an all-atom representation of a lysozyme molecule, the right panel

displays only the center of mass (CM) of the 129 amino acid residues of the

protein. From this representation, it is possible to see how a single-molecule

system like a globular native protein could resemble a many-body system like

a dense short-ranged attractive colloidal solution. This is quantitatively taken

into account with the liquid-like static structure factor Sq of the CM’s. Since

the partial specific volume of lysozyme is 0.757 cm3/g (100) and the sum of the

van der Waals volume of its atoms is 11.8 nm3 (26), we can roughly estimate

a volume fraction of φ = 0.66 (close to the value φ = 0.61 used in (126) to

simulate a dense colloidal solution close to a higher order singularity). Besides

all these similarities, proteins and glasses have also important differences: even

though both systems are aperiodic, the organization of protein EL is far more

sophisticated than the glass one.
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Figure 3.17: The protein-glass analogy - Left : All-atom representation of
lysozyme, and its static structure factor Sq; Right : 129 amino acid centers of mass
for lysozyme, and its Sq from MD simulations. Sq were calculated at T = 300 K,
averaged over 103 configurations and 104 q-directions.

3.4.2 α relaxation: exponential decay

Enzymatic activity is known to require a precise balance between flexibility (to

allow sufficient substrate binding) and stability (to retain their native structure).

So one could ask: what is the long time behavior of the protein correlators? Do

they decay to zero or reach a plateau? We were able to run very long simulations

(up to 1 µs) and investigate the α-relaxation behavior of the protein intermediate

scattering functions. This allowed us to extract a diffusion constant for protein

powder at finite q-values in the temperature range 270 - 350 K. Quasi-Elastic

Neutron Scattering allowed Bellissent-Funel and coworkers to extract the diffusion

constant of the interior of C-phycocyanin (40). We fit the intermediate scattering

functions with Equation 3.4, the results are plotted in Figure 3.18.

The complete decay of φq(t) to zero at the physiological temperature is further

proof that the functioning proteins behave like a glassy liquid (7; 46) and not like
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Figure 3.18: Long-time behavior of protein φq(t) - MD results for 4 different
temperatures. q-values are, from top to bottom of each panel: 1.6, 2.4, 3.2, 4.0, 4.8,
5.6, 6.4 Å−1. Continuous lines are best fits according to Equation 3.4

a solid, an idea developed back in the 1970s. The possibility of extracting a

diffusion constant for protein powder is to be presented below.

3.4.3 Temperature dependence of α relaxation

The q and T -dependence of the protein α-relaxation time extracted from Equation

3.4 is shown in Figure 3.19.

The linear dependence allows us to extract the diffusion constant with the

relation 1/ταq = Dq2. It should be noted at this point that according to the

theory of Volino and Dianoux (141), the diffusion in a finite system such as

protein does not exist at q = 0. In this limit, the q-dependent α-relaxation time

becomes independent of q instead of following the Dq2 law. But this is true only
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Figure 3.19: q-dependence
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for q < π/R, which is ∼ 0.2 Å−1, where R is the diameter of the protein, and our

lowest calculated φq(t) is for q = 0.4 Å−1.

In Figure 3.20 we show the Arrhenius plot of the inverse of the diffusion

constant at finite q: a fragile behavior is evident in this temperature range, 270 -

350 K. The results of this time-domain analysis agree with the frequency domain

analysis extracted from dielectric relaxation spectra by Frauenfelder et al on

myoglobin (53), where they found an Arrhenius behavior of the β-relaxation and

a fragile one for the α-relaxation.

If we fit the curve to a VFT law (Figure 3.20) we get T0 = 248 ± 5 K.

We can also extract an estimate of MCT Tc by fitting the Arrhenius plot of

1/D vs 1/T with the power law 1/D ∼ |T − Tc|−γ . This gives us an estimated

Tc = 263±5K. Comparing this plot to the one of a simple glass former, one realizes

that the values of the protein amino acid CM diffusion constant are similar to the

ones of a simple glass former near the critical temperature Tc. O-terphenyl, for

example, is reported in literature to have a critical temperature Tc = 285 K and

logD(Tc) ∼ 13.0 (when D is measured in s/m2) (119), while salol has Tc = 266K

and logD(Tc) ∼ 12.5 (145).
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Figure 3.20: Arrhenius plot
of the inverse diffusion con-
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dence follows a Super-Arrhenius
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3.5 Summary

In this chapter, we analyzed the dynamics of hydrated protein over the whole

time range, from the fast phonons (t < 1 ps), to the exotic logarithmic decay (1

ps < t < 1 ns), to the slow α relaxation (t > 1 ns).

First of all, we used IXS to observe a well-defined dispersion relation of

intra-protein phonon-like excitations. We identify a significant temperature-

dependence of the slowing-down and an increase in population of phonon-like

collective motions in an intermediate q-range above the dynamic transition tem-

perature Tl. We believe that these phonon-like modes are the result of the collec-

tive vibrational motions of the atoms in the α-helices and β-sheets. Below Tl the

vibrational frequency is too high and the population of the modes is too low to

be able to facilitate the biological function. That is the reason why proteins are

not good enzymes below the dynamic transition temperature. A protein molecule

is a 3D finite size system, which does not allow the long wavelength phonons to

propagate, and this could be the reason why in our experiment the low-q phonons

were not observed.

Second, we demonstrated that the β relaxation of globular protein single-

particle dynamics follows a logarithmic decay, regardless of the proteins envi-

ronment (powder, crystal or solution) or the particular biomacromolecule under

consideration (lysozyme or ribonuclease). In particular, the intermediate scatter-
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ing functions of the center-of-mass of the amino acid residues can be fitted from

1 ps to their complete decay with a function that consists of the product of two

terms: a logarithmic expansion derived from the mode coupling theory (β relax-

ation) and a simple exponential function (α relaxation). The q-dependence of

the parameters involved in the β relaxation agrees with the predictions of MCT

scaling form in the temperature range 280 - 340 K, for the case of a proximity

to a higher-order singularity. The temperature dependence of the β-relaxation

time extracted from fitting the logarithmic decay appears to be Arrhenius over

the whole temperature range investigated, 220 - 340 K.

Finally, we were able to extract the diffusion constant for the protein amino-

acid residues: in the temperature range 270 - 350 K, the Arrhenius plot of

lysozyme 1/D can be fitted either with a VFT law or with a power law (fragile

behavior). We conjecture that T0 ∼ 248 K and Tc ∼ 263 K for the hydrated

lysozyme powder.

We would like to stress here that the agreement between the protein dynam-

ics and the predictions of the idealized MCT does not provide evidence of the

existence of a higher-order singularity in proteins. Only solving the MCT equa-

tions for this heteropolymeric system could provide an appropriate answer, and

at present the MCT equations have only been solved for homopolymers (37).

Nevertheless, mapping the protein dynamics onto the dynamics of a short-ranged

attractive colloidal system reinforces the analogy between globular proteins and

glass-forming liquids, and adds a piece to the puzzle of the interplay between

the dynamics and the biological function of biomolecules. The next important

question to be addressed is in fact why nature has chosen such a relaxational

behavior for proteins. A possible answer could be that the logarithmic decay is

the slowest possible time dependence of motion, and this could endow proteins

with the appropriate resilience in response to the fluctuations of the external

environment.
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4

Water-Protein coupling

In wine there is wisdom,
in beer there is strength,

in water there is bacteria.

David Auerbach

4.1 Overview of protein hydration water dynamics

A characterization of protein hydration is essential for understanding (i) protein

structure, (ii) protein folding and (iii) protein function. This requires elucidating

the effects of both the solvent on the protein and the protein on the solvent. The

importance of the role played by hydration water in protein science was realized

after introduction in the literature of hydrophobicity, a concept related to protein

stability for the first time by Kauzmann (79). From that moment on, a protein

should have been defined as the system peptide + water (52) since the simple

biomolecule is not able to perform its biological activity without at least one layer

of water surrounding it. In particular the conformational flexibility of a protein

(and therefore its functionality) is extremely sensitive to the characteristics of

its hydrogen bonds with hydration water. This latter experimental fact is un-

derstandable considering that proteins evolved from their very beginning in an

aqueous environment. While water has been considered as “life’s solvent” (in a



66 4. WATER-PROTEIN COUPLING

passive sense) for a long time, only in the past 20 years has it become an active

constituent of cell biochemistry and not just a uniform background. A represen-

tation of hydrated protein powder, a model that will be used in the simulations

to be presented in Section 4.2.3, is sketched in Figure 4.1.

Hydration can be considered as a process, that of adding water incrementally

to dry protein, until a level of hydration is reached beyond which further addition

of water produces no change of the essential properties of the protein and only

dilutes the biopolymer (121). The hydration shell can be defined as the water

associated with the protein at the hydration end point, and it represents mono-

layer coverage of the protein surface. Water outside the monolayer is perturbed

to a significantly smaller extent, typically not detected by measurements of prop-

erties such as heat capacity, volume or heat content. The threshold hydration

level for protein functionality is h = 0.2, where h is the ratio between grams of

water and grams of dry protein1. They showed that enzymatic activity closely

parallels the development of surface motion, which is thus responsible for the

functionality of the protein. While supercooling water is quite difficult in the

bulk, it is relatively easy to achieve with adsorbed water on protein surface. Up

to about h = 0.4, water is non-freezable: roughly two layers of water molecules

adsorbed to the protein surface are not incorporated into ice crystals, when the

aqueous protein solution freezes. The protein-water hydrogen bonds are gener-

ally stronger than water-water bonds, and they distort the network in such a way

that crystallization is avoided.

Water molecules in protein solutions may be broadly classified into three cate-

gories: strongly bound, internal water molecules that occupy internal cavities and

deep clefts; water molecules that interact with the protein surface; and bulk water.

Internal waters, which can be identified crystallographically and are conserved

in homologous proteins (121), are extensively hydrogen bonded and comprise an

integral part of the protein structure. They have residence times ranging from

∼ 10 ns to ms, and their exchange with the bulk solvent requires local unfolding

to occur. Surface water molecules are much less well defined structurally than
1This consideration is to some extent questionable, since in the absence of the solvent, the

exchange and diffusion of substrate molecules are limited.
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Figure 4.1: Perspective view
of the simulation box - Snapshot
from a MD simulation at T = 250
K and P = 1 atm of the hydrated
lysozyme powder model, containing
two protein molecules and 484 wa-
ter molecules around them (hydra-
tion level h = 0.3). The box size is
shown for each edge.

internal water molecules (in the sense that surface binding sites identified crystal-

lographically are not highly conserved among different crystal forms of the same

protein), and are much more mobile, with residence times on the order of tens

of picoseconds. In addition to being important for protein stability, and in the

energetics and specificity of ligand binding, surface waters also have a profound

influence on the dynamics of a protein molecule as a whole.

Although the details of the connection between protein hydration and func-

tion have not yet been worked out, it is clear that surface water is required for

the activation of fast conformational fluctuations (47; 60) that appear to be im-

portant in protein folding and function (12; 118). The observation of enzyme

activity in partially hydrated powders (albeit lower activity than in solution)

(121), where the amount of water present is far less than sufficient to completely

cover the protein surface, suggests a crucial role for the water molecules in the

first hydration shell. Consequently, it is of interest to characterize the dynamical

properties of this so-called protein hydration water in detail, and to investigate

their potential connection to functionally relevant protein motions. Numerous

experimental and theoretical studies have demonstrated that the properties of

protein hydration water are different from those of bulk water. X-ray and neutron

diffraction experiments clearly indicate that the solvent structure in the vicinity

of biomolecules differs from that of the bulk solvent (35; 138). Information about
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the translational motion of water, derived from the rate of intermolecular spin

relaxation (112; 133) indicated a slower motion on the surface of proteins, in

agreement with long residence times in the first hydration shell (108). Chen et

al. suggested that the water dynamics could also be described in terms of an

α-relaxation model such as that applied to kinetic glass transitions in dense su-

percooled liquids, in analogy with their findings for water adsorbed in vycor glass

(146). Settles and Doster (47) reached similar conclusions in their study of hy-

drated myoglobin, in which they determined the intermediate scattering function

and the mean squared displacement of hydration water by inverting incoherent

neutron-scattering data. Their results clearly demonstrated the anomalous char-

acter of the diffusion of water at the protein surface. More recently, molecular

dynamics simulation studies of hydration water have been analyzed along these

lines (19; 120), and have provided a detailed description of the spatial and tem-

poral inhomogeneities that are at the roots of the anomalous behavior observed

experimentally. Moreover, based on a MD simulation, Paciaroni et al. (109) pre-

dicted the presence of a low-frequency vibrational anomaly, the so-called boson

peak, typical of glassy materials, which was subsequently confirmed by neutron

scattering (110).

4.2 The low temperature dynamic crossover

4.2.1 An introduction to protein dynamic transition

Around Tl = 220 K, the protein has a transition that could be described as

a dynamic transition (Section 1.3.3) or a so-called glass transition. The pro-

tein dynamic transition was introduced 20 years ago based on neutron scattering

experiments with dry and hydrated myoglobin and lysozyme (46), and it was con-

firmed by mechanical relaxation experiments with hydrated protein films (104).

This term comprises the two types of dynamic crossover, the glass transition,

which is quite abrupt and the percolation transition, which is continuous. Both

types lead to structural arrest on a macroscopic scale. The question, which con-

cept applies to hydration water, is not yet resolved.



4.2 The low temperature dynamic crossover 69

What is known is that below Tl, protein is in a glassy state and loses its

conformational flexibility, showing hardly any biological functions (118). At and

above Tl, this flexibility is restored and the protein is able to sample more con-

formational substates, thus becomes biologically active. This dynamic crossover

in protein is traditionally detected by observing the changing of the slope of the

mean square displacement 〈x2〉 of hydrogen atoms vs. T plot (39), and believed

to be triggered by their strong coupling with their hydration water (23). IR data

collected by Doster et al. (45) suggested that the transition in the hydration

water could be described as the melting of amorphous ice and that this solvent

network is composed of water clusters with relatively strong internal bonding.

They used this information to address the problem of dynamic coupling of sol-

vent motions with internal protein motions, suggesting that the cooperativity of

the solvent network provides the coupling mechanism.

Since protein motions are plasticized by water molecules, one could suggest

an analogy to polymer rubbers or elastomers (44). Stretching of rubbers induces

structural relaxation processes, reducing their conformational entropy. The rub-

ber elasticity vanishes, when the structural relaxation time crosses the experimen-

tal time window, which defines the rubber-glass transition. The protein elasticity

in the native structure can be interpreted as the rubber plateau, which turns into

a solid elastic state below the rubber-glass temperature. The plateau terminates

at the protein-denaturation temperature, where the structure becomes liquid-like

with reduced constraints of protein residues to translational diffusion. Experi-

mental evidence suggests, that the liquid-glass transition of the solvation shell

occurs simultaneously with the rubber-glass transition of the protein.

The plausible microscopic origin for the dynamic transition of a hydrated pro-

tein is thought to be due to the strong coupling of the dynamics of the hydration

water and those of the side chains of the protein through their hydrogen bonds.

In particular, it was shown by MD simulations that the slow structural relax-

ation of the protein, which is essential for the enzymatic function, is driven by

the relaxation of the hydrogen bond network via solvent translational displace-

ment (137; 140). In fact, this transition is also common to many biopolymers
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and believed to be triggered by their strong coupling with mobility of their hy-

dration water. We show experimentally and numerically that this feature can be

described as a dynamic crossover phenomenon, i.e. a sudden switch in dynamical

behavior of hydration water around biomolecules.

4.2.2 Theoretical framework

Incoherent neutron scattering offers many advantages for the study of hydrogen

atom dynamics in a protein and its hydration water1. The main reason is that

the scattering cross section of hydrogen is about 80 barns, and is much larger

(at least 20 times) than that of other atoms in the system, composed also of

oxygen, carbon, nitrogen and sulfur atoms. Furthermore, neutron scattering

cross section of a hydrogen atom is mostly incoherent so that incoherent neutron

spectra reflect, essentially, the self-dynamics of the hydrogen atoms in the protein

or water. Combining this dominant cross section of hydrogen atoms with the use

of spectrometers having different energy resolutions, we can study the molecular

dynamics of water in a wide range of time-scale, encompassing ps to tens of ns.

Incoherent Elastic Scattering (E = 0). The density correlation function, φq(t),

for an atom harmonically bound to a molecule can be written as

φq(t) = 〈exp[iq · (x(t)− x(0))]〉 (4.1)

where x(t) is the position of the atom at time t. It can be shown that in the

Gaussian approximation, which is exact for the harmonically bound particle, one

can write (29):

φq(t) = fq exp(q2〈x(0)x(t)〉) (4.2)

where the first factor is called the Debye-Waller factor fq = Sq(E = 0) =

exp(−q2〈x2〉/3) which gives rise to the elastic scattering, and the second factor,

1The term incoherent refers to the scattering from the same nucleus at two successive times.

One can therefore obtain information on the self-part of the density correlation function φq(t).

There are no interference effects between the amplitudes scattered by different nuclei, which is

instead coherent scattering
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which involves the displacement-displacement time correlation function, gives rise

to the inelastic scattering such as phonons.

We can therefore calculate 〈x2〉 from the Debye-Waller factor, by a linear

fitting of the logarithm of Sq(E = 0) vs. q2 plot. To obtain the mean squared

displacement, we performed fixed window scan (an elastic scattering measurement

with a fixed resolution window of FWHM of ±0.8µeV) (13) in the temperature

range 40 - 290 K, covering completely the supposed crossover temperature TL.

Incoherent Quasi-Elastic Scattering (E ∼ 0). Quasielastic scattering is mainly

interested in the low-frequency region ±1 meV. The scattering originates from

interactions of neutrons with particles diffusing or reorienting over the ps-ns time

scale: such phenomena do not give rise to separate peaks in the spectrum, but

they produce a broadening of the elastic line (that is associated with neutrons

scattered without energy transfer).

In actual QENS experiment, we have to take into account only the signal

coming from the hydrogen atoms in the hydration water, by taking the difference

of the spectra of H2O and D2O hydrated samples. Denoting the fraction of the

elastic scattering by p (coming both from the bound hydrogen atom in protein

and too slow water molecules) we can analyze the experimental data according

to the following model:

Sq(ω) = pRq(ω) + (1− p)FT{φq(t)Rq(t)} (4.3)

where φq(t) is the self-intermediate scattering function of hydrogen atoms

which defines the quasielastic scattering, Rq(ω) is the experimental resolution

function, and the symbol FT denotes the Fourier transform from time t to fre-

quency ω.

4.2.3 The crossover from experiments and simulations

In this section, we shall review our neutron scattering experiments and molecular

dynamics simulations as a function of temperature on protein hydration water

(31; 32).
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Figure 4.2: Protein and water
〈x2〉 - Hydration water 〈x2〉 is plot-
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side and protein 〈x2〉 using the scale
on the right hand side (the scale
factor is 4.2). Lysozyme 〈x2〉 is
taken from the elastic scan of D2O
hydrated sample. Note the coinci-
dence of hydration water TL with
protein Tl.

Figure 4.2 shows the temperature dependence of the experimental 〈x2〉, both

for lysozyme and its hydration water. In order to show the synchronization

of the two MSDs, lysozyme 〈x2〉 is multiplied by a factor 4.2: the two curves

superpose onto each other. So the crossover temperatures for both protein (Tl)

and its hydration water (TL), defined by a sudden change of slope of MSD from

a low temperature behavior to a high temperature behavior, coincides within the

experimental error bars (38).

Since
∫ +∞
−∞ Sq(E) dE = 1 at each q value, the peak height and the peak width

of the incoherent quasi-elastic spectrum are related to each other. The peak

height increases as temperature decreases, implying the narrowing of the peak

width, which is a qualitative measure of the relaxation time (Figure 4.3). From

this property we can already show the presence of a dynamic transition, without

detailed analysis of the spectrum. In Figure 4.3 we present four examples taken

from lysozyme hydration water case (for q = 0.56 and 1.11 Å−1) of a quantitative

RCM analysis (Section 2.1) by which we can extract the translational relaxation

time 〈τ〉 as a function of temperature.

From the fitting, we obtain three parameters: τ0, β and γ and we are able

to calculate the theoretical φq(t), which are plotted in Figure 4.4 for protein

hydration water. It is important to note that using these three parameters, we

can construct φq(t) over a broad range of time scale which was not covered in

the original measurement within the resolution limit. The α-relaxation time of
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Figure 4.3: Protein hydration water QENS - An example of the RCM analysis
for lysozyme hydration water at T = 210 K (below TL) and 240 K (above TL)
respectively. Note for the higher temperature case, the quasi-elastic components are
much broader and the peak height is much lower than the lower temperature case.

hydration water can now be extracted in two different ways. The first one is

to use RCM model to calculate the φq(t) that fit the QENS spectra, and then

graphically calculate ταq . The second method is to use the fitted parameters of

RCM to calculate the average translational relaxation time.

We shall stick to the second method, since it is more rigorous, and finally

present the Arrhenius plot of 〈τ〉 in Figure 4.5. As it is clear from the left

panel, 〈τ〉 switches from a Super-Arrhenius behavior at high temperature to an

Arrhenius behavior at low temperature (see Section 1.3.3). In order to extract

rigorously the dynamic transition temperature, we calculate the derivative of the

Arrhenius plot (right panel). This shows a broad peak, with a maximum at

TL ∼ 225 K, revealing a change in the dynamics of supercooled hydration water,
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in correspondence of an analogous transition in protein at Tl.

So far, we have shown experimentally that this low-temperature dynamic

transition of protein (or more generally for many other biopolymers, as discussed

in Section 2.2.2) at Tl is likely to be triggered by a dynamic crossover in the

hydration water of these biopolymers at TL. This is graphically demonstrated in

Figure 4.6, where we plot both hydration water 〈τ〉 and protein 〈x2〉: they show

a synchronized change at TL ∼ Tl.
Recently, an MD simulation (82) has been run for a model of hydration water

in protein lysozyme and Dickerson dodecamer DNA. However, in this simula-

tion the model used was not realistic enough for hydrated powder samples used

in experiments to directly compare the temperature dependences of simulated

quantities with the neutron scattering results. To better mimic the experimental

system, we decided to perform MD simulations (85) on the random powder model

developed and tested by Tarek and Tobias (136): this model has been shown to

improve the agreement with experiments compared to the so-called protein/water

cluster model used in (82), which is composed of just one protein surrounded by

its hydration water (for more details, see Section B.3).

A perspective view of the simulation box is shown in Figure 4.1, where the two

proteins and the hydration water surrounding them are displayed, together with

the box dimensions. It should be noted that there are only a few water molecules

sandwiched between the two proteins while there are more water molecules around

other parts of protein surface. But on the average, h = 0.3 is supposed to be
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only one monolayer of water covering each protein. The resulting density of the

modeled hydrated powder protein is between 1.2 and 1.3 g/cm3, depending on

the temperature, in agreement with experimental data for lysozyme crystals (1.23

g/cm3, (57)).

The RCM fits of the φq(t), both the time dependence and the q-dependence,

are excellent allowing us to extract 〈τ〉 as a function of temperature as shown in

Figure 4.7. As in Figure 4.5, we report both the Arrhenius plot of the transport

property (left panel) and its derivative (right panel). The peak is centered around

TL ∼ 230 K, a value close to the experimental one. In summary, we demonstrated

by MD simulations that the low temperature crossover phenomenon is due to the

average translational motion of all the water molecules in the hydration layer, not

to the long-range proton diffusion coupled to the motion of the so-called Bjerrum-

type defects (134). Furthermore, by a simulation using a realistic powder model,

one can quantitatively account for the temperature dependence of the neutron

scattering data.

In Figure 4.8 we show the theoretical φq(t) for protein hydration water, ob-

tained from the fitting with RCM of the calculated ones. Then, the dynamic

response function, χT (t), is calculated with finite differences of the φq(t). The

maximum of χT (t), χ∗T (t), increases as temperature decreases, until it reaches
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a maximum at T = 225 K, in agreement with the temperature extracted from

experiments. Moreover, The crossover feature is clearly visible looking at the

decay of φq(t) below and above TL (see the arrow in Figure 4.8).

The success of the model described in the previous section stimulated us to run

new simulations and extract new information from the trajectories. In particular,

we were interested in the hydration level dependence of the dynamic crossover

phenomenon: how does the relative amount of water that hydrates the protein

powder affect its dynamics? To answer this question we increased the hydration

level to h = 0.45 (726 water molecules) and h = 0.6 (968 water molecules).

In both cases, we started from a random distribution of the water molecules in

a box with the two proteins. We equilibrated the systems in the NPT (T = 280

K, P = 1 bar) ensemble for several nanoseconds, until the edges of the box

reached a constant length. Then we ran a 60 ns annealing simulation with a slow

linear temperature ramp from 280 K to 190 K. Simulations at each temperature

were then started from the equilibrated configuration of the annealing simulation.

Each run lasted 50 more ns, and all the other details of the calculation are the

same as in the h = 0.3 case.

Hydration h = 0.3 corresponds to the average coverage of the protein surface:

when this parameter is increased, water is forced to keep its distance from the

macromolecule. Merzel and Smith (99) showed that the first hydration layer (∼ 2

Åfrom the protein surface) is about 15% more dense respect to bulk water, but
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Figure 4.7: Protein hydration water 〈τ〉: simulations - Left : Arrhenius plot
of the average translational relaxation time 〈τ〉 for water, extracted from MD tra-
jectories of lysozyme hydrated powder model. Right : Derivative of the Arrhenius
plot, showing a broad peak at TL ∼ 230 K.

that the normal density is recovered in the second hydration layer (∼ 4.5 Å).

Therefore, we expect that going from the h = 0.3 to the h = 0.6 case would shift

water properties toward the bulk case.

Figure 4.9, where the Arrhenius plot of the average tau is plotted as a function

of the hydration level, confirms the hypothesis that water-water interactions are

less strong than protein-water interactions, so that the bulk water limit corre-

sponds to minimum relaxation times. Three results are evident from this picture:

as h increases,

• the average α-relaxation time 〈τ〉 decreases

• the crossover temperature TL remains almost constant

• the activation energy EA of the Arrhenius part decreases

The first point confirms the hypothesis that the bulk water case is a limit

case. In fact, our results show that a box of 512 TIP4P-Ew water molecules has

a much faster average relaxation time, that switched from Super-Arrhenius to

Arrhenius dynamic behavior at TL = 215 K (see Section 2.2.3 and (148)). We can

conclude that the protein-water interactions shift the temperature dependence of
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water dynamics to higher T , and still the essential characteristics and phenomena

present in hydration water are qualitatively preserved.

4.3 The high temperature dynamic crossover

4.3.1 An introduction to protein denaturation

Denaturation is the process in which proteins lose their tertiary and secondary

structure by application of some external stress or chemical or heat (e.g. when

food is cooked, some of its proteins denature)1. Denatured proteins can exhibit a

wide range of characteristics, from loss of solubility to aggregation (hydrophobic

proteins come into contact to reduce the total area exposed to water). Since the

structure of proteins determines their function, they can no longer work once they

are denatured. This is in contrast to intrinsically unstructured proteins, which

are unfolded in their native state, but still functionally active. Enzymes lose their
1A classic example of denaturing in proteins comes from egg whites, which are largely egg

albumins in water. Cooking the thermally unstable whites (or adding acetone) turns them

opaque, forming an interconnected solid mass. The skin which forms on curdled milk is another

common example of denatured protein.
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activity, because the substrates can no longer bind to the denatured active site:

the amino acid residues involved in stabilizing the transition states are no longer

positioned to be able to do so.

Denaturation involves three of the four protein structures (the primary struc-

ture is held together by covalent peptide bonds and is not affected): in qua-

ternary structure denaturation, protein subunits are dissociated and the spatial

arrangement of protein subunits is disrupted; in tertiary structure denaturation

i) covalent interactions between amino acid side chains (such as disulfide bridges

between cysteine groups), ii) noncovalent dipole-dipole interactions between po-

lar amino acid side chains (and the surrounding solvent), iii) Van der Waals

(induced dipole) interactions between nonpolar amino acid side chains, are dis-

rupted; in secondary structure denaturation, proteins lose all regular repeating

patterns such as alpha-helices and beta-pleated sheets, and adopt a random coil

configuration.

In many proteins denaturation is reversible (the proteins can regain their

native state when the denaturing influence is removed)1 and involves interme-

1This was important historically, as it led to the notion that all the information needed for

proteins to assume their native state was encoded in the primary structure of the protein, and

hence in the DNA that codes for the protein.
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diate structures. In particular, lysozyme exhibits intermediate structures under

chemical denaturation (65), pressure-induced denaturation (128), and thermal

denaturation (122). Its unfolding process can therefore be considered as a three-

state model N 
 I → U . The first step is usually called reversible denaturation

and can be seen as a kind of dynamic transition associated with the configura-

tional entropy change (63), while the second step is the irreversible denaturation

and it is due to an association of unfolded lysozyme units (128).

We suggest that this reversible denaturation is related to the dynamic crossover

that protein hydration water undergoes at TD = 345±5 K, showed by our neutron

scattering experiments and molecular dynamics simulations. At this temperature,

a sudden change in hydration water dynamics takes place, the inverse diffusion

constant switches from a super-Arrhenius behavior at low temperatures to an Ar-

rhenius behavior at high temperatures. We also extracted the migration distance

d of the hydration water molecules from QENS and observed that d showed a

pronounced increase above TD. An NMR investigation of the long-time diffusion

of the hydration water in lysozyme has confirmed the existence of both high and

low temperature dynamic crossover phenomena (94).

The existence of this phenomenon can also be shown theoretically. In fact

whenever the specific heat has a peak, the Arrhenius plot of the inverse of the

diffusion constant has a slope change (see A.4). If we assume that the Adam-

Gibbs equation is valid also at high temperatures for hydration water, the specific

heat peak recently observed by calorimetry during lysozyme thermal denaturation

by Salvetti et al. (122) suggests the existence of a high-temperature crossover

phenomenon for the inverse of the diffusion constant. It was recently found that

the contribution of the configurational disorder to entropy is dominant (95), then

Sconf ∼ S and

Sconf (T ) ∼ Sconf (T0) +
∫ T

T0

Cp
T
dT (4.4)

As a numerical example, the Arrhenius plot of the resulting D0/D as obtained

by substitution in Equation A.17 of Cp reported in (122) is shown in Figure
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Figure 4.10: Adam-Gibbs theory for protein hydration water - Left : Spe-
cific heat measurement of lysozyme solution from (122). Right : Arrhenius plot of
D0/D calculated according to the Adam-Gibbs Equation A.17. D0 is the prefactor
in the Adam-Gibbs equation, Sconf (T0) is S(T = 290 K). As a numerical example,
we choose Sconf (T0) = 1 J/(gK) and A = 700 J/g. This equation predicts a change
in the slope for the inverse of the diffusion constant at 340± 5 K.

4.10. The Arrhenius plot of D0/D has a kink at T = 340 ± 5 K, corresponding

approximately to the maximum in the specific heat.

4.3.2 Theoretical framework

In this section, we build a model to extract the inverse diffusion constant 1/D and

the migration distance d of the hydration water molecules from QENS spectra.

QENS experiments essentially provide us with the incoherent dynamic structure

factor Sq(E) of the hydrogen atoms of the water molecules in the protein hydra-

tion layer. The measured neutron intensity Iq(E) at each q is analyzed with the

following model:

Iq(E) = A[pqδ(E) + (1− pq)Sq(E)]⊗Rq(E) +B (4.5)

where A is the normalization factor, pq is the elastic scattering component,

taking into account the scattering from particles that do not move a length com-

parable to 2π/q on the time scale corresponding to the spectrometer s elastic
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energy resolution function. Rq(E) is the q-dependent energy resolution func-

tion, and B is the nonlinear background. Sq(E) is a convolution of the trans-

lational dynamic structure factor STq (E) and the rotational one SRq (E), i.e.,

Sq(E) = STq (E) ⊗ SRq (E). By using only the small q spectra (q < 1 Å−1), the

rotational contribution can be made negligibly small. Our computer simulation

calculates the self-intermediate scattering function φq(t), which is the Fourier

transform of the incoherent dynamic structure factor Sq(E). It shows that the

long time decay of φq(t) is a stretched exponential φq(t) ∼ e−(t/τq)β . When the

temperature is above the room temperature, the stretched exponent β is only

slightly less than unity. So we can approximately use φq(t) ∼ e−(t/τq), or equiva-

lently in frequency domain Sq(E) is approximated as a Lorentzian shape function

(34; 127)

Sq(E) ∼ STq (E) =
1
π

Γq
E2 + Γ2

q

(4.6)

where Γq = 1/ταq is the half width at half maximum (HWHM). Its validity

can also be confirmed by the good agreement between the experimental data and

the fitted curve with the model for all temperatures and wave vector transfers.

In the q → 0 limit, it is well known that Γq = Dq2. Thus for the finite but small

q, we may take into account the next order correction to the q2 dependence as

follows:

Γq = Dq2(1− ξ2q2 + ...) =
Dq2

1 + ξ2q2
(4.7)

where D is the translational self-diffusion constant of water molecules. Equa-

tion 4.7 is indeed independent of any model in the low-q limit. With the objective

to extract D from low-q spectra, Equation 4.7 is a very good approximation. In

fact, the often used jump diffusion model is equivalent to putting ξ2 = Dτ0, where

τ0 is the average time duration that a water molecule spends oscillating in a cage

formed by its nearest neighbors (34). On the other hand, in the so-called Singwi-

Sjölander model of water, a motion of a typical water molecule is described as

first trapping in a cage oscillating for a period τ0 followed by a diffusion of a
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duration τ1. This pattern of motion repeats itself (127). The HWHM in this

model is given by (in the short diffusion time τ1 limit)

Γq =
1
τ0

[
1− fq

1 +Dq2τ0

]
(4.8)

where the Debye-Waller factor is fq = exp(−q2〈x2〉/3). 〈x2〉 is the mean

square vibrational amplitude along the direction of q. It is (0.5)2 Å2 as determined

previously by our computer simulation (30). Thus the Debye-Waller factor is

approximately equal to unity for q < 1 Å−1. Therefore, Equation 4.8 is also

reduced to Equation 4.7 with ξ2 = Dτ0. One should notice that even though the

physical pictures of these models are quite different, in the small q limit, they all

give the same form of q dependence of the Lorentzian linewidth.

In the case of protein hydration water, the realistic picture of the motions of

the water molecules is describable neither by the jump diffusion model nor by the

Singwi-Sjölander model. In the dense liquid state near the room temperature,

a water molecule is first trapped in a site for a time interval τ0 on the order of

0.1 ps, oscillating in a cage formed by adjacent water molecules connected by

hydrogen bonds. The hydrogen bonds are continuously breaking and reforming.

After the time τ0, the cage gradually relaxes and then the water molecule starts

to move away from the trapped site for a time interval τ1 until it gets trapped

again in a new site. However, the cage relaxation time τ1 is not necessarily much

less than τ0. It depends on the temperature of water and can be on the order

of picosecond to nanosecond at low temperatures. In order to extract D, we can

write Equation 4.7 as

1
Γq

=
1
D

(
1
q2

+ ξ2
)

(4.9)

and plot 1/Γq versus 1/q2. The result is a linear equation with a slope 1/D.

On the other hand, after extracting D this way, we can then plot D/Γ versus

1/q2. The result is a set of parallel straight lines with a zero intercept ξ2. In this

way, ξ2 is extracted with tolerable accuracy. One can thus calculate the charac-

teristic migration distance between successive traps of water molecules using ξ2

as d =
√
〈l2〉 =

√
6ξ2. It is the measure of the average distance that a water
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molecule travels between two successive traps. While the self-diffusion constant

D represents how fast a molecule diffuses, the migration distance d represents

how far the center of mass of a typical molecule translates in the cage relaxation

process before it gets trapped again.

4.3.3 The crossover from experiments and simulations

The model discussed above is used to analyze the measured QENS spectra of the

protein hydration water for temperatures ranging from 290 to 380 K covering

the denaturation process, occurring at Td = 345 K (149). Using this model, the

spectra measured at all temperatures and wave vector transfers can be fitted

well in the whole energy transfer range of −200µeV< E < +200µeV. Figure

4.11 shows an example of the analysis of the spectrum at q = 0.37 Å−1, T =

340 K. The analysis result indicates that the factor pq takes a value of 0.54 (see

Equation 4.5). This means that 46% of the spectral area is contributed from the

hydration water that is free to diffuse in the time window of the spectrometer.

The asymmetry of the spectra can be accounted for very well by allowing for an

asymmetric shaped energy resolution function. The good agreement between the

fitted curve and the measured intensity shows the validity of the model.

Figure 4.12 (right panel) shows the plot of 1/Γq versus 1/q2 extracted from

spectra taken at all the temperatures. It displays clearly a series of straight lines.

The slopes of these lines are the inverse diffusion constants, 1/D. However, the
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Figure 4.12: Fitting parameters - Left panel : D/Γ vs 1/q2 for measured tem-
peratures from 290 to 380 K every 10 K at low q = 0.37 , 0.73 , 1.07 Å−1. The zero
intercepts give ξ2. Right panel : plot of 1/Γ vs 1/q2, the slopes of the straight lines
give the inverse diffusion constant 1/D.

uncertainties of the intercepts are too large to show any useful information. After

extracting D this way, we can then instead plot D/Γq versus 1/q2 (Figure 4.12).

They also exhibit a series of parallel straight lines, the zero intercepts of which

give ξ2. In this way, we bypassed the fitting of the original intercepts and got the

new intercepts ξ2 within tolerable uncertainties.

Figure 4.13 shows the Arrhenius plot of the extracted log(1/D) versus 1/T

and d versus T from this model. Figure 4.13 (a) shows an evidence of an Ar-

rhenius to super-Arrhenius dynamic crossover as the temperature is raised across

TD = 345± 5 K. Below TD, the inverse diffusion constant can be fitted with the

VogelFucherTamman law as 1/D = 1/D0 exp(CT0/(T −T0) with T0 = 204±36 K

and C = 0.94. While above TD, the inverse diffusion constant can be fitted with

the Arrhenius law 1/D = 1/D0 exp(EA/RT ) with EA = 5.97 ± 0.55 kcal/mol.

The exact value of TD is then evaluated as the crossing point of the two laws.

Figure 4.14 shows the extracted d that represents the migration distance of the

water molecules between two successive trap sites. One can see that it is increas-

ing slowly below TD from 4.2 to 5.6 Å but rises sharply above TD to 9.6 Å at 380

K.

The result is consistent with the previous results of 6 − 9 Å at room tem-
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Figure 4.13: Transport property of hydration water - Left panel : Arrhenius
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behavior) dynamic crossover as the temperature is raised through TD = 345± 5 K.
Right panel : derivative of the Arrhenius plot, with a minimum coincident with Td,
protein denaturation

perature (13). The sharp changes in both the self-diffusion constant D and

the migration distance d indicate a large scale enhanced movement of the wa-

ter molecules above TD when the lifetime of the hydrogen bonded network of

the water molecules becomes shorter, and thus it is not able to maintain the

shape of the protein. The following MD simulation results confirm this dynamic

crossover and further show that the dynamic crossover in protein hydration water

is probably connected to the first stage of the unfolding process of the protein.

The protein backbone RMSD calculated from the trajectories shows a sudden

increase between 330 and 340 K (Figure 4.15), signaling the beginning of the

denaturation process.

While protein unfolding occurs on time scales of the order of milliseconds, a

few nanoseconds are enough to capture at least its dynamic beginning. At the

same temperature, the Arrhenius plot of 1/D (Figure 4.16) obtained from the

MD simulation shows a change in its behavior at T = 340±5 K, reproducing well

the neutron scattering data and qualitatively the Adam-Gibbs equation. In par-

ticular, the extracted activation energy EA = 5.25±0.5 kcal/mol is in agreement

with the experimental value, EA = 5.97±0.55 kcal/mol. The underlying physical
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mechanism for lysozyme reversible denaturation can be seen from examination

of the following three physical quantities calculated from the MD simulations.

Figure 4.17 (upper panel) displays the onset temperature of the reversible denat-

uration Td: the protein hydrogen atoms MSD has a sharp increase as a function

of temperature between 330 and 340 K in agreement with the onset temperature

for reversible denaturation determined by calorimetry (122). Figure 4.17 (middle

panel) shows that at the same temperature Td, the inverse of the water-protein

hydrogen bond relaxation time (relaxation rate) deviates from linearity, signal-

ing the beginning of the breakdown of the hydrogen bond network around the

protein.

The increase in the hydrogen bond relaxation rate is therefore the cause of

the enhanced protein flexibility, as already pointed out for the low temperature

protein dynamical transition (143). In that case, there is a correlation between

the decrease in protein H-bond network relaxation time (due to the onset of

water translational diffusion) and the sudden increase in the protein hydrogen

atoms MSD at TL = 220 K. The situation is qualitatively analogous for the

high temperature case but with a quantitative difference: the solvent cage is not

able to constrain the folded protein structure anymore and the macromolecule

increases its ability of sampling the configurational space.

Due to the decrease in the hydrogen bond lifetime, its flexibility becomes

large enough to start the unfolding process. Figure 4.17 (lower panel) shows that
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as T further increases, the number of hydrogen bonds between water and the

protein has a sharp change in its rate of decrease at TD = 340 K from 0.3 to 1.2

H-bonds/K. That is to say, the dynamics of interfacial water and its interactions

with the protein surface are critical for the stability of protein structure. As soon

as the strength of H bonds at the interface between water and protein reaches

a threshold value, the two-dimensional network around the protein that kept

it folded collapses, allowing the macromolecule to increase its flexibility and to

begin the denaturation process.

We believe that the crossover phenomenon is a characteristic of the whole

water-protein system: the decreased interaction at the water-protein interface is

the cause of both the crossover and the denaturation. On the one hand, water

becomes more mobile (increased diffusion constant); on the other, protein is not

constrained by the hydrogen bond network and can unfold.

4.4 Summary

In this chapter we examined the dynamics of the system composed of protein and

its hydration water. We found that protein dynamics and stability are strongly

dependent on their hydration shell, which implies a tight connection between

water and the biological function of the biopolymers.

In particular, protein hydration water seems to have two important dynamic

transitions in its translational dynamics temperature dependence (Section 1.3.3)
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Figure 4.16: Arrhenius plot of the inverse diffusion constant at high T -
Left panel : Arrhenius plot of the inverse diffusion constant for lysozyme hydration
water, 1/D vs 1000/T , calculated from MD simulations. The curve shows an Ar-
rhenius (high T ) to super-Arrhenius (low T ) dynamic crossover similar to the one
observed by quasielastic neutron scattering (see Figure 4.13). The diffusion constant
has been calculated from the trajectories according to the Einstein relation with a
linear fit of water MSD from 300 to 600 ps. Right panel : derivative of the Arrhenius
plot, it shows a minimum at TD = 340 K in agreement with experiments.

that border the ability of the protein to carry on its function. Starting from

physiological temperature, one is encountered upon cooling in correspondence

to the so-called protein glass transition (at TL = 225 K, Section 4.2) and the

other one upon heating in coincidence with the protein reversible denaturation

(at TD = 340 K, Section 4.3).

Protein is known to need a precise balance between stability and flexibility

in order to work. While this is provided in the pretty wide temperature range

225 K < T < 340 K, stability is too enhanced below 225 K, when the extended

hydrogen bond network of hydration water becomes extremely structured, and

flexibility is too enhanced above 340 K, when the network breaks down.
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Conclusion

Please, be good enough to put your conclusions on one sheet of paper,

in the very beginning of your report

Winston Churchill

We investigate the rich dynamics of two complex liquid systems (Chapter 1):

water and proteins. The importance of this study is implicit in the fundamental

biological role of proteins: their function depends on their ability to sample the

energy landscape, and if their dynamics is inhibited they are not able to work.

Understanding their relaxations is therefore necessary to relate structure to func-

tion. Moreover, the strong coupling proteins have with the environment makes

the biomolecules extremely sensitive to the dynamics of their biological solvent,

water. We used the ideal tools for this investigations: molecular dynamics simu-

lations and neutron scattering. The best experimental reference for the former is

the latter, since both methods cover the same time and space domains (approxi-

mately 0.1 fs -100 ns, and 1 - 100 Å), and neutrons see the atomic nuclei (which

are the basic objects in MD simulations). Once agreement between simulated

and experimental spectra is found, the simulated trajectories can be analyzed in

detail and information not accessible to experiments can be extracted from sim-

ulations. This approach is particularly useful for the study of complex molecular

systems, such as biological macromolecules (80).
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We approach this problem studying first the dynamics of pure water (Chapter

2). We observed a dynamic transition in deeply supercooled water, at TL = 225±5

K. In order to reach this temperature avoiding crystallization, we confined water

in a wide variety of systems (1-D confinement in cylindrical nanopores of MCM,

2-D confinement around biomolecules and 3-D confinement in interconnected net-

works of cured cement pastes). This phenomenon seems to be fairly independent

on the dimensionality of the confinement, and is present in simulations of super-

cooled bulk water as well. In order to extract the dynamic transition tempera-

ture we i) took the derivative of the Arrhenius plot of the translational relaxation

time of water molecules, ii) constructed experimentally the dynamic susceptibil-

ity χT (t). Both methods agree in evaluating TL ∼ 225 K. The dynamic crossover

temperature TL could be interpreted as a variant of the kinetic glass transition

temperature Tc predicted by the idealized MCT (iMCT, Appendix A.1). iMCT

breaks down below TL, since the structural arrest transition is avoided by acti-

vated hopping processes below TL. Indeed, by treating hopping as arising from

the vibrational fluctuations in a quasi-arrested state, an extended version of the

MCT (eMCT) shows that the ergodic to nonergodic transition is replaced by

a smooth crossover (Appendix A.3). Furthermore, eMCT also demonstrates the

growing of the dynamic length scales when approaching Tc. These two predictions

were experimentally verified in this thesis. Below Tc ∼ TL, any structural relax-

ation requires a cooperative rearrangement of a large cluster of water molecules

connected through hydrogen bonds. In conclusion, while Tg has just a conven-

tional definition and Tc corresponds to an event that does not happen, TL seems

to be a better candidate to describe the slow dynamics of supercooled liquids.

Then we analyzed the dynamics of hydrated protein over the whole time range

(Chapter 3), from the (i) fast phonons (t < 1 ps), to the (ii) exotic logarithmic

decay (1 ps < t < 1 ns), to the (iii) slow α relaxation (t > 1 ns). (i) we observe

(Section 3.2) a well-defined dispersion relation of intra-protein phonon-like excita-

tions. We identify a significant temperature dependence of the slowing-down and

an increase in population of phonon-like collective motions, in an intermediate

q-range above the dynamic transition temperature Tl of the protein. We believe

that these phonon-like modes are the result of the collective vibrational motions
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of the atoms in the α-helices and β-sheets. Below Tl the vibrational frequency

is too high and the population of the modes is too low to be able to facilitate

the biological function. That is the reason why proteins are not good enzymes

below the dynamic transition temperature. (ii) we demonstrated (Section 3.3)

that the β relaxation of globular protein single-particle dynamics follows a loga-

rithmic decay. Protein φq(t) can be fitted from 1 ps to their complete decay with

a function consisted of the product of two terms: a logarithmic expansion derived

from the mode-coupling theory (β relaxation) and a simple exponential function

(α relaxation). The q-dependence of the parameters involved in the β relaxation

agrees with the predictions of MCT scaling form in the temperature range 280 -

340 K, for the case of a proximity to a higher-order singularity (Appendix A.2).

The temperature dependence of the β-relaxation time extracted from fitting the

logarithmic decay appears to be Arrhenius over the whole temperature range in-

vestigated, 220 - 340 K. (iii) we were able to extract (Section 3.4) the diffusion

constant for the protein amino-acid residues: in the temperature range 270 - 350

K, the Arrhenius plot of lysozyme powder diffusion constant can be fitted either

with a VFT law or with a power law (fragile behavior). Mapping the protein

dynamics onto the dynamics of a short-ranged attractive colloidal system rein-

forces the analogy between globular proteins and glass-forming liquids, and adds

a piece to the puzzle of the interplay between the dynamics and the biological

function of biomolecules.

Finally (Chapter 4) we examined the dynamics of the coupled system com-

posed of protein and its hydration water. We found that protein dynamics and

stability are strongly dependent on their hydration shell, which implies a tight

connection between water and the biological function of the biopolymers. In par-

ticular, protein hydration water seems to have two important dynamic transitions

in the temperature dependence of its translational dynamics (Section 1.3.3) that

border the ability of the protein to carry on its function. Starting from physi-

ological temperature, one is encountered upon cooling in correspondence to the

so-called protein glass transition (at TL = 225K, Section 4.2) and the other one

upon heating in coincidence with the protein reversible denaturation (at TD = 340

K, Section 4.3). Protein is known to need a precise balance between stability and
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flexibility in order to work. While this is provided in the pretty wide temperature

range 225 K < T < 340 K, stability is too enhanced below 225 K, when the ex-

tended hydrogen bond network of hydration water becomes extremely structured,

and flexibility is too enhanced above 340 K, when the network breaks down.



Appendix A

Liquid Theories

A.1 The ideal mode-coupling approach

The most successful approach to the glass transition is the mode-coupling theory

(MCT), which dates back to the mid-1980s and has been developed since then

mainly by Götze and coworkers (61; 125). MCT has been shown to be capable to

interpret in a quantitative way, to a 0.2 level of accuracy, experimental data close

to a supercooled liquid-glass transition. In the MCT the input static quantity is

the wave vector q-dependent static structure factor Sq, which reflects the average

structure on the scale of the intermolecular distance. But contrary to critical

phenomena, close to the glass transition there is no static singularity leading to a

diverging correlation length and to the Ornstein-Zernike anomaly of the structure

factor. MCT predicts only a kinetic singularity in the evolution equations, which

leads to an ergodic to non-ergodic transition characterized by the non-vanishing

of the long time limit of the density correlation functions.

MCT assumes that coupled density fluctuations control the dynamics of the

liquid, which leads to a dramatic slowing down of the relevant relaxation times in

the supercooled regime. This mechanism of increasing the viscosity by nonlinear

coupling of density fluctuations induces structural arrest, when a critical temper-

ature Tc is reached. Tc specifies a true singularity, involving critical fluctuations

in contrast to the calorimetric glass temperature or T0 in the VFT law (Equa-

tion 1.11). Across the critical temperature Tc, the structure factor Sq changes
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smoothly, while a discontinuous change results for the long-time value of the

density correlation function from zero. The diffusion process in supercooled liq-

uids can be visualized as a damped harmonic oscillator (DHO) equation for the

density correlation function φq(t), with oscillator frequency ω2
q . For Newtonian

dynamics, the evolution equations read

∂2

∂2t
φq(t) = −ω2

qφq(t)−
∫ t

0
mq(t− t′)

∂

∂t′
φq(t′) dt′ (A.1)

with initial conditions φq(0) = 1 and ∂φq(0)/∂t = 0. Here ω2
q ≡ q2/(mβSq)

are characteristic frequencies, with β = 1/kBT , where T is the temperature

and kB the Boltzmann constant. The kernels mq(t) are expressed in terms of

correlators of the fluctuating forces.

The glass transition predicted by MCT is obtained solving the t → ∞ limit

of the equations for the normalized correlators φq(t), the so-called non-ergodicity

factor fq

fq = lim
t→+∞

φq(t) (A.2)

The equations have the form

lim
t→+∞

mq(t) =
fq

1− fq
(A.3)

The solution to these equations admits not only the usual trivial solution

fq = 0 but also solutions with fq 6= 0. The value of fq at the transition point

is denoted f cq . In MCT language, the transition is called a type B transition

when fq grows discontinuously on entering in the non-ergodic phase, and type A

transition when fq grows continuously from zero. A non-zero fq implies that a

complete relaxation of density fluctuations cannot not occur, which is equivalent

to saying that the system cannot reach dynamic equilibrium.

The theory accounts also for so-called higher-order singularities related to bi-

furcation theory (named A3 and A4, see next section), whose realization requires

a fine tuning of the interparticle potential parameters. The A3 bifurcation is the

end point of a type B transition. The existence of a singularity of purely kinetic



A.1 The ideal mode-coupling approach 97

origin (i.e. not related to any thermodynamic singularity) is the most important

prediction of the theory. The physical interpretation of the non-ergodicity tran-

sition is related to the well-known cage effect, the difficulty of a particle to move

due to the crowd of the surrounding ones. Motion of the particle can only take

place if a collective rearrangement of the particles forming the cage opens up a

passage for the arrested particles.

One of the merits of MCT is to identify the universal features of the temporal

decay of density correlators in terms of asymptotic power laws of approach to

the ideal glass transition. In order to properly define the asymptotic laws, it is

preliminarily necessary to define a parameter ε which quantifies, in terms of a

control parameter x, the distance from the kinetic transition at xc

ε =
x− xc
xc

(A.4)

It is usually related to the fractional distance from the transition expressed in

terms of volume fraction (x = φ) or temperature (x = 1/T ). A convenient way

of describing the universal characteristics of the decay is to introduce its relevant

time scales and the behavior of the time correlators in the various time ranges,

namely:

(i) The β-relaxation region corresponding to the decay toward a plateau f cq

and the further decay below the plateau when ε < 0, while there is ergodicity

breaking for ε > 0. In the vicinity of the plateau MCT proposes a general

expression for the density correlators of the form

φq(t) = f cq + hq
√
εg±

(
t

τ(ε)

)
(A.5)

where the subscript in g± corresponds to the sign of ε, which goes under the

name of factorization property, since the space and time dependencies separate,

and scales with the characteristic time τ(ε)

τ(ε) = τ0|ε|−1/(2a) (A.6)
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which in turn scales with an exponent related to the quantity a. The noner-

godicity factor f cq , the critical amplitude hq and the β-correlator g±, are indepen-

dent from ε. Given a particular system, g± is a function which can be determined

knowing n and the interparticle potential, which determines the structure factor

Sq. The leading behavior of the function g± above or below the non-ergodicity

plateau is given by the power-law in time valid for t/τ(ε)� 1

g+(t/τ) ∼ (t/τ)−a (A.7)

with 0 < a ≤ 1/2, while for t/τ � 1 the well-known von Schweidler law is

valid, with

g−(t/τ) ∼ −(t/τ)b (A.8)

and 0 < b ≤ 1. It is possible to relate both exponents a and b through the

following relation involving the Euler Γ function1

λ =
(Γ(1− a))2

Γ(1− 2a)
=

(Γ(1 + b))2

Γ(1 + 2b)
(A.9)

(ii) The α-decay regime is the last stage of the decay, the cage break-up, and

is characterized by a time scale τα which diverges on approaching the transition

as a power law

τα ∼ |ε|−γ (A.10)

where the exponent γ is given by

γ =
1
2a

+
1
2b

(A.11)

The time scale τα enters the so-called time-temperature superposition relation

φq(t) = Fq

(
t

τα

)
(A.12)

1In mathematics, the Gamma function (represented by the capital Greek letter Γ) is an

extension of the factorial function to real and complex numbers. For a complex number z with

positive real part, the Gamma function is defined by Γ(z) =
R∞
0
tz−1e−t dt
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where Fq is a master function of the scaled time t/τα which allows to draw a

master plot of the density correlators. A good approximation of this function is

very often given by the stretched exponential function

φq(t) = Aqe
−(t/τq)

βq (A.13)

A sketch of the typical shape of the density correlators, highlighting the dif-

ferent time regions described by MCT, is shown in Figure A.1.

Many aspects of the predictions of the ideal MCT have been tested in detail

in various systems, both experimentally and using computer simulation, with

good results. Many attempts have also been made to improve the ideal MCT

and to account for activated hopping processes (Section A.3). Indeed, neglecting

activated processes is probably a safe approximation only in the hard sphere case

and when excluded volume is the driving force for caging. Activated processes

may not be neglected when the attractive part of the interparticle potential plays

a significant role in the caging process: ideal MCT predictions for the α-relaxation

properly describe only the first three to four orders of magnitude in the slowing

down of the dynamics. Depending on the material, the location of the MCT glass

line can be very different from the location of the line at which arrest is observed

on an experimental time scale (the calorimetric glass transition temperature). A

well-recognized limitation of the idealized MCT is the predicted divergence of the

α-relaxation time at the critical temperature Tc (also referred to as the nonergodic

transition) which is not observed in experiments and computer simulations.

A.2 MCT higher-order singularities

In its ideal version (i.e., not including activated hopping events) MCT predicts a

sharp transition from an ergodic liquid to a nonergodic arrested state (or glass)

at a given value xc of the relevant control parameter x (in practice the volume

fraction φ or T ). When crossing the transition point from the ergodic to the

arrested state, the long-time limit of the density-density correlator for wave vector

q jumps discontinuously from zero to a finite value f cq . In the MCT formalism,

the standard liquid-glass transition is of the fold type (also denoted as A2). The



100 A. LIQUID THEORIES

1.0

0.8

0.6

0.4

0.2

0.0

φ q
 (t

)

10-2  100  102  104  106  
t (ps)

 T < Tc

 T ~ Tc T > Tc

Figure A.1: Ergodic to Non-
ergodic transition - Three typ-
ical density correlators calcu-
lated according to the predic-
tions of MCT above, at and be-
low Tc. φq(t) does not decay to
0 below Tc, but to the Debye-
Waller factor fq: the system falls
off of equilibrium and it becomes
nonergodic

initial part of the α process (von Schweidler regime) is approximated by a power

law expansion. But MCT also predicts higher-order transitions, denoted as An+1

and characterized by λ = 1, which can emerge as the result from the interplay

between n ≥ 2 control parameters {x1, x2, ..., xn}. Higher-order MCT transitions

were initially derived for schematic models and later for short-ranged attractive

colloids as a first realization in real systems. Close to a higher-order transition, or

more generally to a fold transition with λ ∼ 1, an anomalous relaxation scenario

emerges. The mean squared displacement exhibits an intermediate sublinear

regime with a decreasing exponent as the transition is approached. In the higher-

order MCT scenario, φq(t) does not exhibit a defined plateau. Instead, in an

intermediate time interval of several decades, it is approximated by a logarithmic

expansion (62),

φq(t) ∼ fq −H ′qln(t/τ) +H ′′q ln
2(t/τ) (A.14)

where the prefactors H ′q and H ′′q depend on q and on the distance of the state

point xn to the transition point xcn. It is worthy of remark that a convex-to-

concave crossover is present in the higher-order MCT scenario. It is indeed one

of its main signatures and differentiates it from other theoretical frameworks for

the logarithmic decay. The pure logarithmic decay is also present in the higher-

order MCT scenario, which predicts lines in the control parameter space with

H ′′q = 0.
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Figure A.2: Comparison between A2 and A3 correlators close to the
transition - While the density correlators near Tc of a order-2 singularity display a
well-defined plateau, the correlators close to a order-3 singularity show a logarithmic
decay over several orders of magnitude in time, before decaying exponentially.

The coefficient H ′q factorizes as H ′q = hqB(ε), where hq only depends on q,

and the q-independent term B(ε) depends on the state point. Hence, the values

of H ′q obtained for different state points close to the transition point must be

proportional.

Also MCT predictions for the higher-order scenario, the coefficient H ′′q is

smaller than H ′q, and does not obey scaling. The value of q for which H ′′q = 0 is

dependent on the state point.

A.3 Extended mode-coupling theory

An extended version of MCT aims at incorporating activated hopping processes

which smear out the sharp nonergodic transition and restore ergodicity for T <

Tc, but its applicability has been restricted to schematic models. This is be-

cause of the presence of the subtraction term in the expression for the hopping

kernel, which violates the positiveness of any correlation spectrum. Instead, the

dynamical-theory approach (36) treats hopping as arising from vibrational fluc-

tuations in the quasiarrested state where particles are trapped inside their cages,

and the hopping rate is formulated in terms of the Debye-Waller factors char-

acterizing the structure of the quasiarrested state. The resulting expression for
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Figure A.3: Comparison be-
tween iMCT and eMCT:
φq(t) - While the density correla-
tors of ideal MCT (dashed lines)
display a well-defined nonergodic
transition, the correlators calcu-
lated with the extended version
of MCT (circles) decay to 0 even
for T < Tc. Hopping mecha-
nisms restore ergodicity.

the hopping rate takes an activated form, and the barrier height for the hopping

is self-generated in the sense that it is present only in those states where the

dynamics exhibits a well defined plateau.

It is the factorization approximation that leads to the nonergodic transition

at Tc. Therefore, one has to consider corrections, mq = mid
q +∆mq, to go beyond

the idealized MCT, which shall be quantified via the hopping kernel defined by

δq = −1/mq + 1/mid
q . The correction term reads ∆mq = mid

q mqδq, and the

memory kernel mq can be expressed as

mq =
mid
q

1− δqmid
q

(A.15)

Dropping δq, this equation reduces to the one of the idealized MCT: ap-

proaching Tc from above, mid
q becomes larger, and so does φq(t), leading to the

nonergodic transition at T = Tc. In the presence of δq, on the other hand, the

transition is cutoff. The long-time dynamics of φq(t) in this case is thus deter-

mined by δq. Thanks to the dynamical theory originally developed to describe

diffusion-jump processes in crystals, one can adapt it to glass-forming liquids and

treat hopping as arising from vibrational fluctuations (phonons) in the quasi-

arrested state where particles are trapped inside their cages. The essential fea-

ture of the hopping process is that a jumping atom passes over a barrier formed

by neighbors which block a direct passage to the new site. The criterion that
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Figure A.4: Comparison be-
tween iMCT and eMCT: τ
- While the relaxation time of
ideal MCT (continuous line) dis-
plays a well-defined divergence
at Tc, τ calculated with the ex-
tended version of MCT (circles)
has a smooth crossover at Tc.

determines whether or not a given fluctuation is sufficient to cause a jump is

therefore concerned with the relative displacements of the atom and the saddle

point.

One arrives at the following expression for the hopping kernel:

δq = iωhopNc[1− sin(qa)/(qa)]/fq (A.16)

where whop is the hopping rate, Nc is the coordination number and a is the

average interparticle distance.

The density correlators calculated with the extended MCT are shown in Fig-

ure A.3, while the correspondent α-relaxation time (calculated graphically, taking

the values at which the correlators φq(t) = 0.1) is shown in Figure A.4 for a rep-

resentative q-value. Hopping mechanisms therefore restore ergodicity, avoiding

the criticality of iMCT. Figure A.4 is very similar to the relaxation times we

extracted in this work (see for example Figures 2.10 and 2.13), so we can con-

clude that the extended version of the theory is able to reproduce correctly the

experimental and numerical results.

A.4 The Adam-Gibbs theory

Adam-Gibbs theory (2) is one of the most widely accepted theories of glass-

transition (130). As a matter of fact, the macroscopic equation of this theory
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relating the temperature dependence of relaxation time with the configuration

entropy is subject of great experimental and theoretical interest. It has been

used to describe the relaxation of liquids approaching their glass transitions,

and provides an explanation for the variation of diffusion constant D (even in

anomalous cases, like SiO2) and, by implication, the viscosity η. We use the

prediction

η = η0 exp
(

A

TSconf

)
(A.17)

where A is a constant1. The configurational entropy of the liquid, Sconf =

Sliquid − Svib is the entropy arising from the degeneracy of the basins the liquid

can sample in the energy landscape picture (132). The vibrational component

Svib of the entropy is attributable to the thermal excitation the liquid experiences

in the basin sampled.

Unfortunately, it is not possible to obtain Sconf without full knowledge of

the vibrational entropy of the liquid, which is not experimentally accessible. For

experimental tests of the Adam-Gibbs equation, the approximation Svib = Scrystal

has been frequently employed; the approximation assumes that the shapes of the

liquid and crystalline basins are identical, which one generally does not expect.

Nonetheless, transport data, such as viscosity and dielectric relaxation time, have

been linearized over many orders of magnitude using Sex = Sliquid − Scrystal in

Equation A.17.

The excess entropy Sex is related to the excess specific heat by the thermo-

dynamic relation

Sex(T ) ∼ Sex(0) +
∫ T

0

Cexp
T

dT (A.18)

This relation requires the temperature dependence of any relaxation process

to change sharply when the heat capacity peaks, as demonstrated for water in

1The Vogel-Fulcher-Tammann form η = η0 exp(B/(T−T0)) for the temperature dependence

of viscosity and characteristic times of liquids at low temperature can be obtained from Equation

A.17 by assuming that Cexp ∼ T−1. Note that T0 < Tg is typically associated with an underlying

ideal glass transition.
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Figure A.5: Adam-Gibbs
theory and water dynamic
crossover - Fit of water viscos-
ity η using Equation A.17, re-
drawn from (132). It shows be-
havior expected for a strong liq-
uid for T < 220 K, i.e. Arrhe-
nius behavior with an activation
energy EA ∼ Tg/3 (in units of
kJ/mol).

Figure A.5 (for the specific heat of water, see Figure 2.1). The slope of the

Arrhenius plot is in fact predicted to be

d ln(η/η0)
d(1/T )

=
ACexp
Sex(T )3

(A.19)

Therefore, a dynamic transition in the Arrhenius plot of the translational

relaxation time can be explained either with the extended version of MCT or

with the Adam-Gibbs equation.
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Appendix B

Computer Experiments

B.1 Simulations in physics and chemistry

Simulations are best seen as computer experiments that serve as adjuncts to

theory and experiments and provide otherwise inaccessible or, not easily acces-

sible microscopic or macroscopic information that theorists and experimentalists

can use (116). Experience has shown that even short simulations provide useful

guidelines: a review of length and time scales for the most popular simulations

are displayed in Figure B.1.

Simulations and experiments. Simulations can be useful in situations in which

experiments are impractical (high T or P ). Experimental practice rests on a long

(occasionally blemished) tradition; computer simulation, because of its novelty, is

still somewhat more haphazard, but methodologies are gradually evolving. The

output of any simulation should be treated by the same statistical methods used

in the analysis of experiments. In addition to estimating the reliability of the

results (on the assumption that the measurements have been made correctly)

there is also the issue of adequate sampling 1.
1In this context, it is of use quoting an episode of Star Trek: The Next Generation. The

starship Enterprise is damaged and trapped in a debris field. Commander LaForge develops

a plan to extricate the ship, but if it fails it would deplete all of the ship’s energy resources.

Captain Jean Luc Picard instructs Commander La Forge to run a simulation of his proposed

plan. The simulation run indicates that his plan would be successful. However Captain Picard

orders him: “Run it again”. The result of the second run is the opposite, they would not escape
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Figure B.1: Simulation tech-
niques in physical chemistry
- Systems at different time and
length scales are modeled us-
ing different simulation tech-
niques, derived from the appro-
priate governing equations. QM
= Quantum Mechanics, DFT
= Density Functional Theory,
ReaxFF = Reactive Force Field,
MD = Molecular Dynamics

Simulations and theory. The question arises as to how simulation is related

to physical theory. In the real world, exact solutions are the notable exception.

The N -body problem turns out to be insoluble for three or more bodies (117).

Statistical mechanics provides a formal description, based on the partition func-

tion, of a system in equilibrium; however, with a few notable exceptions, there are

no quantitative answers unless severe approximations are introduced, and even

then it is necessary to assume large systems. Once out of equilibrium, theory has

very little to say: only by means of simulation that progress is possible. The-

ory therefore relies heavily on approximation, both analytical and numerical, but

this is often uncontrolled and so reliability may be difficult to establish. Thus it

might be said that simulation rests on the basic theoretical foundations, but tries

to avoid much of the approximation normally associated with theory, replacing

it by a more elaborate numerical effort. They allow one to go beyond the in-

evitable simplifications characteristic of theoretical formulations e.g. mean-field

approximations, so that the accuracy or acceptability of such approximations can

be scrutinized systematically. Where theory and simulation differ is in regard to

cost. Theory requires few resources beyond the cerebral and is therefore cheap;

the field. These conflicting results convinced the Captain to seek an alternate plan. The innate

variability of the system results in corresponding variability in any system output.
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simulation needs the hardware and, despite plummeting prices, a computer sys-

tem for tackling problems at the forefront of any field can still prove costly.

Simulations and computer science. What distinguishes computer simulation

in general from other forms of computation, is the manner in which the computer

is used: instead of merely performing a calculation, the computer becomes the

virtual laboratory in which a system is studied, a numerical experiment. The

analogy can be carried even further; the results emerging from a simulation may

be entirely unexpected, in that they may not be at all apparent from the original

formulation of the model. A wide variety of modeling techniques have been

developed over the years, and those relevant for work at the molecular level

include, in addition to Molecular Dynamics, classical Monte Carlo, quantum

based techniques involving path-integral and Monte Carlo methods, and MD

combined with electron density-function theory, as well as discrete approaches

such as cellular automata and the lattice-Boltzmann method.

B.2 Molecular dynamics simulations

The theoretical basis for MD embodies many of the important results produced

by the great names of analytical mechanics - Euler, Hamilton, Lagrange, Newton.

The simplest form of MD, that of structureless particles, involves little more than

Newton’s second law. Rigid molecules require the use of the Euler equations,

perhaps expressed in terms of Hamiltons quaternions. Molecules with internal

degrees of freedom, but that are also subject to structural constraints, might

involve the Lagrange method for incorporating geometric constraints into the

dynamical equations.

MD simulations solve Newtons equations of motion for a system of N inter-

acting atoms (55):

mi
∂2ri
∂2t

= Fi i = 1, ..., N (B.1)

The forces are the negative derivatives of a potential function V (r1, r2, ..., rN ):
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Fi = −∂V
∂ri

(B.2)

The equations are solved simultaneously in small time steps. The system is

followed for some time, taking care that the temperature and pressure remain

at the required values, and the coordinates are written to an output file at reg-

ular intervals. The coordinates as a function of time represent a trajectory of

the system. After initial changes, the system will usually reach an equilibrium

state. By averaging over an equilibrium trajectory many macroscopic properties

can be extracted from the output file. Given the modeling capability of MD and

the variety of techniques that have emerged, what kinds of problem can be stud-

ied? Certain applications can be eliminated, owing to the classical nature of MD

and to the hardware imposed limitations. Liquids represent the state of matter

most frequently studied by MD methods. This is due to historical reasons, since

both solids and gases have well-developed theoretical foundations, but there is no

general theory of liquids. For solids, theory begins by assuming that the atomic

constituents undergo small oscillations about fixed lattice positions; for gases,

independent atoms are assumed and interactions are introduced as weak pertur-

bations. In the case of liquids, however, the interactions are as important as in

the solid state, but there is no underlying ordered structure to begin with. The

following list includes an assortment of ways in which MD simulation is used:

• Fundamental studies: equilibration, tests of molecular chaos, kinetic the-

ory, diffusion, transport properties, size dependence, tests of models and

potential functions.

• Phase transitions: first- and second-order, phase coexistence, order param-

eters, critical phenomena.

• Collective behavior: decay of space and time correlation functions, coupling

of translational and rotational motion, vibration, spectroscopic measure-

ments, orientational order, dielectric properties.
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• Complex fluids: structure and dynamics of glasses, molecular liquids, pure

water and aqueous solutions, liquid crystals, ionic liquids, fluid interfaces,

films and monolayers.

• Polymers: chains, rings and branched molecules, equilibrium conformation,

relaxation and transport processes.

• Solids: defect formation and migration, fracture, grain boundaries, struc-

tural transformations, radiation damage, elastic and plastic mechanical

properties, friction, shock waves, molecular crystals, epitaxial growth.

• Biomolecules: structure and dynamics of proteins, protein folding, micelles,

membranes, docking of molecules.

• Fluid dynamics: laminar flow, boundary layers, rheology of non-Newtonian

fluids, unstable flow.

B.3 Details of the computer experiments

This thesis is based on approximately 100 trajectories, run on 5 different model

systems: bulk water, hydrated protein powder (lysozyme and ribonuclease), hy-

drated protein crystal and single protein in solution. In the bulk water case,

the box was composed of 512 TIP4P-Ew water molecules (72). Both lysozyme

(protein data bank file 1AKI.pdb, 129 amino acid residues and 1960 atoms) and

ribonuclease (7RSA.pdb, 124 residues and 1856 atoms) are globular proteins. All

simulations were done at pH = 7, so the amino acids Glu and Asp were taken

to be deprotonated while Lys, Arg and His residues were protonated. Lysozyme

and RNAse carry therefore a positive charge (+8e and +4e respectively). To

achieve electroneutrality, we added an appropriate number of chloride ions. Sim-

ulations were performed with a parallel-compiled version of GROMACS 4.0 (70):

Lennard-Jones interactions were truncated beyond 14 Å, while electrostatic in-

teractions, calculated with the Particle Mesh Ewald method were truncated at

9 Å. All bonds were constrained at their equilibrium values using the LINear
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Constraint Solver algorithm (LINCS, (69)). We now briefly describe the three

systems.

Protein Powder. Tarek and Tobias (136) pointed out the poor agreement with

experiments of the so-called cluster model, composed of a single protein covered

by a shell (thin or thick) of water, which lacks the characteristic feature of the

powder protein. They found that it produces serious errors and artifacts for any

calculated properties. Therefore, we put in a box 2 OPLS-AA (78) lysozyme

(or RNAse) molecules randomly oriented and 484 TIP4P-Ew water molecules

(456 for RNAse, so that h ∼ 0.3 for each protein). The final configuration is

composed of 5872 atoms in the lysozyme case, and 5544 in the RNAse case.

After an energy minimization of 5000 steps with the Steepest Descent algorithm,

we equilibrated the system in a NPT ensemble (isobaric-isothermal) for 50 ns at

several temperatures. We then performed 12 simulations in the NV T ensemble at

different temperatures (from 220 K to 340 K, with 10 K of interval). Simulations

were performed using a triclinic cell with periodic boundary conditions and each

MD simulation length was 50 ns after the equilibration time. We also ran long

trajectories of 1 µs for a few selected temperatures (from 250 to 350 K, with 20

K of interval).

Protein Crystal. We performed simulations on fully hydrated orthorhombic

lysozyme crystals. In an orthorhombic crystal, four protein molecules related by

the crystallographic symmetry P212121 are placed in the unit cell with a = 59

Å, b = 68 Å and c = 30 Å (73; 93). We repeated the unit cell once along the

c direction, for a total of 8 proteins (1 x 1 x 2 lattice). We filled the empty

spaces with water, removing the molecules at distance less than 1 Å from the

protein surface. The final configuration was composed of 25512 atoms: 8 lysozyme

molecules, 2442 water molecules (h ∼ 0.38) and 64 Cl− ions (see Figure B.2).

After an energy minimization of 5000 steps with the Steepest Descent algorithm,

we equilibrated the system in a NPT ensemble for 50 ns at 300 K. We then

performed an MD simulations in the NV T ensemble at the same temperature for

50 ns.
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Figure B.2: Simulation boxes - Snapshots from MD simulations at T =
300 K for three different models for lysozyme. Left Panel : hydrated powder
(2 lysozyme molecules, 484 water molecules); Middle Panel : hydrated crystal
(8 lysozyme molecules, 2442 water molecules); Right Panel : protein solution (1
lysozyme molecule, 6448 water molecules)

Protein Solution. A single lysozyme molecule was placed in the center of a

cubic box of side 59.3 Å. The box was filled with water, removing the molecules

at distance less than 1 Å from the protein surface. The final configuration is

composed of 27760 atoms: 1 lysozyme molecule, 6448 water molecules (h ∼ 8.0)

and 8 Cl− ions (see Figure 2c). After an energy minimization of 5000 steps with

the Steepest Descent algorithm, we equilibrated the system in a NPT ensemble

(isobaric-isothermal) for 50 ns at 300 K. We then performed an MD simulation

in the NV T ensemble at the same temperature for 50 ns.

For each run, we calculated the self-intermediate scattering functions (φq(t),

or density autocorrelation functions, Section 1.2). These are defined as:

φq(t) = 〈exp[iq · (ri(t)− ri(0)]〉 (B.3)

where q is the wave vector, ri is the position vector of particle i and the angle

brackets denote an average over time origins and particles. Our choice for the

particles was the center-of-mass (CM) of each amino acid residue: the results do

not change qualitatively if one chooses all the atoms of the protein or just one

type (hydrogens, carbons, oxygens), but the CM have the advantage of excluding

rotations from the analysis. Moreover, we were only interested in the motions

of the protein interior, not whole-molecule translations and rotations. While the
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latter kinds of motion are small in the powder and the crystal model due to the

close packing, they become more relevant for the solution case. To remove it, we

subtracted the 6 whole-molecule degrees of freedom during the analysis of the

trajectory for the protein solution case.



Appendix C

Published Papers

I herewith declare that I have produced this thesis without the prohibited assis-

tance of third parties and without making use of aids other than those specified;

notions taken over directly or indirectly from other sources have been identified

as such. The main document has been compiled with LATEX. All the figures

reported here are original and produced with the following software: Igor, Pow-

erPoint, Visual Molecular Dynamics, Cheetah3D, Adobe Illustrator, GraphClick.

This thesis has not previously been presented in identical or similar form to any

other Italian or foreign examination board.

The thesis work was conducted from January 1st, 2007 to December 31st,

2009 under the supervision of Prof. Piero Baglioni at the University of Florence,

Department of Chemistry and CSGI. Within this period, the thesis work was

conducted from July 1st, 2007 to December 31st, 2008 under the supervision of

Prof. Sow-Hsin Chen at the Massachusetts Institute of Technology, Department

of Nuclear Science and Engineering.

This thesis is loosely based on the following 14 co-published papers by the

author.



C.1 Specific Anion Effects on the Optical Rotation of

α-Amino Acids

Authors: Simona Rossi and Pierandrea Lo Nostro and Marco Lagi and Barry

W Ninham and Piero Baglioni

Journal: Journal of Physical Chemistry B

Abstract: Changes in optical rotation of some alpha-amino acids are induced

by electrolytes. Such effects on L- and D-enantiomers of a range of amino acids

are explored for sodium salts with varying anion. The amino acids studied were

alanine, aspartic acid, glutamic acid, glutamine, proline, threonine, and trypto-

phan. The anion’s polarizability in solution accounts for the change in α only for

the halides. Self-association of amino acids in solution and pH changes due to the

presence of the electrolytes do not account for the observed variations in optical

activity. Specific interactions of anions with the chiral amino acids (Hofmeister

effects) and salt-induced perturbations of the amino acid hydration shell appear

to be responsible for the effects, and conformational changes in the chiral solutes

due to the presence of ionic species are discussed.

Pages: 10510–10519

Volume: 111

Year: 2007

Reference: Rossi, S.; Lo Nostro, P.; Lagi, M.; Ninham, B.W. and Baglioni,

P. (2007) Specific Anion Effects on the Optical Rotation of α-Amino Acids J.

Phys. Chem. B 111, 10510–10519.



C.2 Organogels from a Vitamin C-based Surfactant

Authors: Pierandrea Lo Nostro and Roland Ramsch and Emiliano Fratini

and Marco Lagi and Francesca Ridi and Emiliano Carretti and Moira Ambrosi

and Barry W Ninham and Piero Baglioni

Journal: Journal of Physical Chemistry B

Abstract: A new double chained surfactant, 2-octyl-dodecanoyl-6-O-ascorbic.

acid (8ASC10), with a L-ascorbic acid unit as the polar headgroup was synthe-

sized for the first time. The behavior of the compound in the dry solid state has

been characterized through DSC, XRD, and SAXS measurements. The surfac-

tant forms stable viscous organogels in the presence of suitable organic solvents

and also water-induced organogels upon addition of water to the organogel. These

mixtures show shear-thinning properties and are birefringent. The behavior and

properties of the organogels have been studied through rheology, DSC, and SAXS

experiments. The organogels possess the same antioxidant properties of the origi-

nal L-ascorbic acid ring and can be used to solubilize and protect valuable organic

molecules.
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C.3 The Low-Temperature Dynamic Crossover Phe-

nomenon in Protein Hydration Water: Simula-

tions vs Experiments

Authors: Marco Lagi and Xiangqiang Chu and Chansoo Kim and Francesco

Mallamace and Piero Baglioni and Sow-Hsin Chen

Journal: Journal of Physical Chemistry B

Abstract: A Super-Arrhenius to Arrhenius dynamic crossover phenomenon

has been observed in the translational α-relaxation time and in the inverse of

the self-diffusion constant both experimentally and by simulations for lysozyme

hydration water in the temperature range of TL = 223 ± 2 K. MD simulations

are based on a realistic hydrated powder model, which uses the TIP4P-Ew rigid

molecular model for the hydration water. The convergence of neutron scattering,

nuclear magnetic resonance and molecular dynamics simulations supports the in-

terpretation that this crossover is a result of the gradual evolution of the structure

of hydration water from a high-density liquid to a low-density liquid form upon

crossing of the Widom line above the possible liquid-liquid critical point of water.
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C.4 Collective headgroup conformational transition

in twisted micellar superstructures

Authors: Francesca Baldelli Bombelli and Debora Berti and Silvia Milani

and Marco Lagi and Pierluigi Barbaro and Goran Karlsson and Astrid Brandt

and Piero Baglioni

Journal: Soft Matter

Abstract: We report on a comprehensive structural spectroscopic charac-

terization of 1,2-dilauroyl-phosphatidyl-adenosine (DLPA) micelles in phosphate

buffer. The experimental data, supplemented with MD simulations, indicate the

presence of two possible states at room T , two different structures that depend

on the thermal history of the sample. The twisted superstructures, produced by

aging DLPA micelles through intermicellar assembly of locally cylindrical aggre-

gates, collapse upon warming at 35◦C, yielding aligned filaments and/or wormlike

structures. The initial superstructures cannot be recovered by thermal inversion.

The reason for this behaviour is that the thermal activation causes a redistribution

of syn-anti conformations of adenosine headgroups, as indicated by spectroscopic

results (NMR, CD, FTIR), which is then collectively frozen thanks to molecular

constraints.
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C.5 DNA Closed Nanostructures: a Structural and

Monte Carlo Simulation Study

Authors: Francesca Baldelli Bombelli and Filippo Gambinossi and Marco

Lagi and Debora Berti and Gabriella Caminati and Tom Brown and Francesco

Sciortino and Bengt Norden and Piero Baglioni

Journal: Journal of Physical Chemistry B

Abstract: DNA nanoconstructs are obtained in solution by using 6 unique

42-mer DNA oligonucleotides, whose sequences have been designed to form a

pseudohexagonal structure. We show that hexagonally shaped nanostructures

and their corresponding linear open constructs are formed by self-assembly of the

specifically designed linear oligonucleotides. The dynamical characterization of

the nanostructure is obtained by dynamic light scattering (DLS). A validation

of the LS results is obtained through Monte Carlo (MC) simulations and atomic

force microscopy (AFM). In particular, a mesoscale molecular model for DNA is

exploited to perform MC simulations and to obtain information about the confor-

mations as well as the conformational flexibility. The structural features obtained

by MC and AFM are in good agreement with DLS.
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C.6 Interconnected Networks: Structural and Dynamic

Characterization of Aqueous Dispersions of diC8PC

Authors: Pierandrea Lo Nostro and Sergio Murgia and Marco Lagi and

Emiliano Fratini and Goran Karlsson and Matt Almgren and Maura Monduzzi

and Barry W Ninham and Piero Baglioni

Journal: Journal of Physical Chemistry B

Abstract: Aqueous dispersions of the phospholipid dioctanoylphosphatidyl-

choline (diC8PC) phase-separate below a cloud-point temperature, depending on

lipid concentration. The lower phase is viscous and rich in lipid. The struc-

ture and dynamics of this system were explored via cryo-transmission electron

microscopy (cryo-TEM), small-angle X-ray scattering (SAXS), and NMR. The

lower phase comprises a highly interconnected tridimensional network of worm-

like micelles. A molecular mechanism for the phase separation is suggested.
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C.7 Studies of phononlike low energy excitations of

protein molecules by inelastic x-ray scattering

Authors: Dazhi Liu and Xiangqiang Chu and Marco Lagi and Yang Zhang

and Emiliano Fratini and Piero Baglioni and Ahmed Alatas and Ayman Said and

Ercan Alp and Sow-Hsin Chen

Journal: Physical Review Letters

Abstract: Molecular dynamics simulations and neutron scattering exper-

iments have shown that many hydrated globular proteins exhibit a universal

dynamic transition at TD = 220 K, below which the biological activity of a pro-

tein sharply diminishes. We studied the phononlike low-energy excitations of two

structurally very different proteins, lysozyme and bovine serum albumin, using

inelastic x-ray scattering above and below TD. We found that the excitation en-

ergies of the high-q phonons show a marked softening above TD. This suggests

that the large amplitude motions of wavelengths corresponding to this specific

q range are intimately correlated with the increase of biological activities of the

proteins.
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C.8 Observation of dynamic crossover and dynamic

heterogeneity in hydration water confined in aged

cement paste

Authors: Yang Zhang and Marco Lagi and Francesca Ridi and Emiliano

Fratini and Piero Baglioni and Sow-Hsin Chen

Journal: Journal of Physics: Condensed Matter

Abstract: High resolution quasi-elastic neutron scattering is used to inves-

tigate the slow dynamics of hydration water confined in calcium silicate hydrate

gel in an aged cement paste at supercooled temperatures. A super-Arrhenius

to Arrhenius dynamic crossover of the average translational relaxation time as a

function of the inverse temperature is observed at TL = 231 ± 5 K, which coin-

cides with a prominent peak in the differential scanning calorimetry cooling scan.

The dynamic susceptibility χT (t) calculated using the experimentally determined

temperature dependence of the self-intermediate scattering function shows direct

evidence of the enhanced dynamic fluctuations and the associated growth in size

of the dynamic heterogeneity in the confined water on approaching TL.
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C.9 Observation of high-temperature dynamic crossover

in protein hydration water and its relation to re-

versible denaturation of lysozyme

Authors: Yang Zhang and Marco Lagi and Dazhi Liu and Francesco Malla-

mace and Emiliano Fratini and Piero Baglioni and Eugene Mamontov and Sow-

Hsin Chen

Journal: Journal of Chemical Physics

Abstract: The diffusive dynamics of hydration water in lysozyme is studied

by high-resolution incoherent QENS and MD simulations in a temperature range

of 290 - 380 K. Two lysozyme samples, the H2O hydrated and the D2O hydrated,

are measured and the difference of the spectra are used to extract the dynamics

of the hydration water. The Arrhenius plot of 1/D shows a dynamic crossover

from a super-Arrhenius behavior at low temperatures to an Arrhenius behavior

at high temperatures bordered at TD = 345 ± 5 K. We also observe a pronounced

increase in the migration distance d of the hydration water molecules above TD.

This dynamic crossover temperature coincides with that of the reversible denat-

uration of lysozyme determined by specific heat measurements.
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C.10 Dynamic Susceptibility of Supercooled Water

and its relation to the Dynamic Crossover Phe-

nomenon

Authors: Yang Zhang and Marco Lagi and Emiliano Fratini and Piero

Baglioni and Eugene Mamontov and Sow-Hsin Chen

Journal: Physical Review E

Abstract: We study the dynamic susceptibility χT (q, t) of deeply supercooled

water by means of quasielastic neutron scattering and molecular dynamics sim-

ulations. Both techniques show an increase in the peak height of χT (q, t) as the

temperature is lowered toward the dynamic crossover temperature TL. Below TL,

the peak height decreases steadily. We attribute this phenomenon to the change

in slope of the Arrhenius plot of the translational relaxation time at TL. In con-

trast, the peak height of the calculated four-point correlation function χ4(q, t)

directly related to the size of dynamic heterogeneity, increases toward and below

TL.
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C.11 Absence of the Density Minimum of Supercooled

Water in Hydrophobic Confinement

Authors: Yang Zhang and Kao-Hsian Liu and Marco Lagi and Dazhi Liu

and Ken Littrell and Chung-Yuan Mou and Sow-Hsin Chen

Journal: Journal of Physical Chemistry B

Abstract: The surface effect on the peculiar dynamic and thermodynamic

properties of supercooled water, such as the density, has been puzzling the sci-

entic community for years. Recently, using the small angle neutron scattering

method, we were able to measure the density of H2O conned in the hydrophobic

mesoporous material CMK-1-14 from room temperature down to the deeply su-

percooled temperature 130 K at ambient pressure. We found that the well-known

density maximum of water is shifted 17 K lower and, more interestingly, that the

previously observed density minimum in hydrophilic connement disappears. Fur-

thermore, the deduced thermal expansion coefficient shows a much broader peak

spanning from 240 to 180 K in comparison with the sharp peak at 230 K in hy-

drophilic confinement. These present results may help in the understanding of

the effect of hydrophobic/hydrophilic interfaces on the properties of supercooled

confined water.
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C.12 Neutron Scattering Studies of Dynamic Crossover

Phenomena in a Coupled System of Biopolymer

and Its Hydration Water

Authors: Sow-Hsin Chen and Francesco Mallamace and Xiangqiang Chu

and Chansoo Kim and Marco Lagi and Antonio Faraone and Emiliano Fratini

and Piero Baglioni

Journal: Journal of Physics: Conference Series

Abstract: We observed a Fragile-to-Strong Dynamic Crossover (FSC) phe-

nomenon of the α-relaxation time and self-diffusion constant in hydration water of

three biopolymers: lysozyme, B-DNA and RNA. The mean squared displacement

of hydrogen atoms is measured by Elastic Neutron Scattering (ENS) experiments.

The α-relaxation time is measured by QENS experiments and the self-diffusion

constant by NMR experiments. We discuss the active role of the FSC of the

hydration water in initiating the dynamic transition in the biopolymers. Finally,

we show an MD simulation of a realistic hydrated powder model of lysozyme and

demonstrate the agreement of the MD simulation with the experimental data.
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C.13 Logarithmic decay in single-particle relaxation

of hydrated lysozyme powder

Authors: Marco Lagi and Piero Baglioni and Sow-Hsin Chen

Journal: Physical Review Letters

Abstract: We present the self-dynamics of protein amino acids of hydrated

lysozyme powder around the physiological temperature by means of molecular

dynamics simulations. The self-intermediate scattering functions of the amino

acid residue center of mass display a logarithmic decay over 3 decades of time,

from 2 ps to 2 ns, followed by an exponential α relaxation. This kind of slow

dynamics resembles the relaxation scenario within the β-relaxation time range

predicted by mode coupling theory in the vicinity of higher-order singularities.

These results suggest a strong analogy between the single-particle dynamics of

the protein and the dynamics of colloidal, polymeric, and molecular glass-forming

liquids.
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C.14 Evidence of dynamic crossover phenomena in

water and other glass-forming liquids: experi-

ments, MD simulations and theory

Authors: Sow-Hsin Chen and Yang Zhang and Marco Lagi and Song-Ho

Chong and Piero Baglioni and Francesco Mallamace

Journal: Journal of Physics: Condensed Matter

Abstract: In a recent QENS experiment on water confined in cement paste,

we find a dynamic crossover phenomenon at TL = 227 ± 5 K. Its DSC scan

shows a peak at the same temperature. We also demonstrate with MD simu-

lations that the dynamic crossover phenomenon is an intrinsic property of bulk

water, and not due to the confinement. The extended version of the mode cou-

pling theory (eMCT) shows that, instead of a structural arrest transition at Tc,

a fragile-to-strong dynamic crossover phenomenon takes place, confirming both

the experimental and the numerical results. We thus demonstrated with exper-

iments, simulations and theory that a genuine change of dynamical behavior of

both water and many glassy liquids happens at the crossover temperature TL ,

which is 10-30% higher than the calorimetric glass transition temperature Tg.

Pages: 504102

Volume: 21

Year: 2009

Reference: Chen, S.-H.; Zhang, Y.; Lagi, M.; Chong, S.-H. and Mallamace,

F. (2009) Evidence of Dynamic Crossover Phenomena in Water and Other Glass-

Forming Liquids: Experiments, MD Simulations and Theory J. Phys.: Cond.

Matt. 21, 504102.





References

[1] E Abrahams. Nonexponential relaxation and hierarchically constrained

dynamics in a protein. Phys Rev E, 71(5):051901, 2005. 49

[2] G Adam and J H Gibbs. On the temperature dependence of cooperative

relaxation properties in glass-forming liquids. J Chem Phys, 43(1):139,

1965. 16, 103

[3] HC Andersen. Molecular dynamics studies of heterogeneous dynamics and

dynamic crossover in supercooled atomic liquids. P Natl Acad Sci Usa,

102(19):6686–6691, 2005. 5

[4] PW Anderson. Through the glass lightly. Science, 267:1616, 1995. 12

[5] CA Angell. Formation of glasses from liquids and biopolymers. Science,

267(5206):1924–1935, 1995. 12, 57

[6] CA Angell. Insights into phases of liquid water from study of its unusual

glass-forming properties. Science, 319(5863):582–587, 2008. 6, 20

[7] A Ansari. Langevin modes analysis of myoglobin. J Chem Phys,

110(3):1774–1780, 1999. 59

[8] A Ansari, J Berendzen, SF Bowne, H Frauenfelder, IET Iben, TB Sauke,

E Shyamsunder, and RD Young. Protein states and protein quakes. P Natl

Acad Sci Usa, 82(15):5000–5004, 1985. 39, 57



[9] A Arbe, AC Genix, J Colmenero, D Richter, and P Fouquet. Anomalous

relaxation of self-assembled alkyl nanodomains in high-order poly(n-alkyl

methacrylates). Soft Matter, 4(9):1792–1795, 2008. 49

[10] VA Avetisov, AK Bikulov, and VA Osipov. p-adic description of character-

istic relaxation in complex systems. J Phys A-Math Gen, 36(15):4239–4246,

2003. 2

[11] P Ballesta, A Duri, and L Cipelletti. Unexpected drop of dynamical het-

erogeneities in colloidal suspensions approaching the jamming transition.

Nat Phys, 4(7):550–554, 2008. 36

[12] LD Barron, L Hecht, and G Wilson. The lubricant of life: A proposal

that solvent water promotes extremely fast conformational fluctuations in

mobile heteropolypeptide structure. Biochemistry, 36:13143–13147, 1997.

67

[13] M Bee. Quasielastic neutron scattering. Adam Hilger, Philadelphia, PA,,

1988. 71, 86

[14] MC Bellissent-Funel, SH Chen, and JM Zanotti. Single-particle dynamics

of water molecules in confined space. Phys. Rev. E, 51:4558, 1995. 24

[15] MJ Benham, JC Cook, JC Li, DK Ross, PL Hall, and B Sarkissian. Small-

angle neutron scattering study of adsorbed water in porous vycor glass: Su-

percooling phase transition and interfacial structure. Phys. Rev. B, 39:633,

1989. 21

[16] R Bergman and J Swenson. Dynamics of supercooled water in confined

geometry. Nature, 403:283, 2000. 21

[17] L Berthier, G Biroli, JP Bouchaud, L Cipelletti, DE Masri, D L’Hote,

F Ladieu, and M Pierno. Direct experimental evidence of a growing length

scale accompanying the glass transition. Science, 310(5755):1797–1800,

2005. 15



[18] L Berthier, G Biroli, JP Bouchaud, W Kob, K Miyazaki, and DR Reich-

man. Spontaneous and induced dynamic fluctuations in glass formers. i.

general results and dependence on ensemble and dynamics. J Chem Phys,

126(18):184503, 2007. 16, 32

[19] AR Bizzarri and S Cannistraro. Anomalous and anisotropic diffusion of

plastocyanin hydration water. Europhys. Lett., 37:201–206, 1997. 68

[20] JP Boon and S Yip. Molecular hydrodynamics. ed. McGraw Hill, New

York, page 417, 1980. 2, 4

[21] A Botti, F Bruni, A Isopo, MA Ricc, and AK Soper. Experimental determi-

nation of the site-site radial distribution functions of supercooled ultrapure

bulk water. J. Chem. Phys., 117:6196, 2002. 21

[22] JJ Brey and A Prados. Slow logarithmic relaxation in models with hierar-

chically constrained dynamics. Phys Rev E, 63(2):021108, 2001. 49

[23] G Caliskan, A Kisliuk, and AP Sokolov. Dynamic transition in lysozyme:

role of a solvent. Journal of Non-Crystalline Solids, 307:868–873, 2002. 69

[24] H Cang, VN Novikov, and MD Fayer. Experimental observation of a

nearly logarithmic decay of the orientational correlation function in su-

percooled liquids on the picosecond-to-nanosecond time scales. Phys Rev

Lett, 90(19):197401, 2003. 49

[25] H Cang, VN Novikov, and MD Fayer. Logarithmic decay of the orienta-

tional correlation function in supercooled liquids on the ps to ns time scale.

J Chem Phys, 118(6):2800–2807, 2003. 49

[26] TV Chalikian, M Totrov, R Abagyan, and KJ Breslauer. The hydration

of globular proteins as derived from volume and compressibility measure-

ments: Cross correlating thermodynamic and structural data. J. Mol. Biol.,

260:588, 1996. 58



[27] SH Chen. Quasi-elastic and inelastic neutron-scattering and molecular-

dynamics of water at supercooled temperature. NATO Adv. St. Inst. Hydr.-

Bonded Liq., 329:289–332, 1991. 22

[28] SH Chen, WR Chen, and F Mallamace. The glass-to-glass transition and

its end point in a copolymer micellar system. Science, 300(5619):619–622,

2003. 49

[29] SH Chen and M Kotlarchyk. Interactions of photons and neutrons with

matter. World Scientific Publishing Co., 2007. 70

[30] SH Chen, C Liao, F Sciortino, P Gallo, and P Tartaglia. Molecular-

dynamics study of incoherent quasielastic neutron-scattering spectra of su-

percooled water. Phys. Rev. E, 24:6708, 1999. 24, 83

[31] SH Chen, L Liu, E Fratini, P Baglioni, A Faraone, and E Mamontov. Ob-

servation of fragile-to-strong dynamic crossover in protein hydration water.

P Natl Acad Sci Usa, 103(24):9012–9016, 2006. 18, 22, 71

[32] SH Chen, F Mallamace, XQ Chu, C Kim, and M Lagi. Neutron scattering

studies of dynamic crossover phenomena in a coupled system of biopolymer

and its hydration water. Journal of Physics: Conference Series, 177:012006,

2009. 71

[33] SH Chen, F Mallamace, CY Mou, M Broccio, C Corsaro, A Faraone, and

L Liu. The violation of the stokes-einstein relation in supercooled water. P

Natl Acad Sci Usa, 103(35):12974–12978, 2006. 37

[34] SH Chen, J Teixeira, and R Nicklow. Incoherent quasi-elastic neutron-

scattering from water in supercooled regime. Phys. Rev. A, 26:3477, 1982.

82

[35] X Cheng and BP Schoenborn. Hydration in protein crystals. a neutron

diffraction analysis of carbonmonoxymyoglobin. Acta Cryst., B46:195–208,

1990. 67



[36] SH Chong. Connections of activated hopping processes with the break-

down of the stokes-einstein relation and with aspects of dynamical hetero-

geneities. Phys Rev E, 78(4):041501, 2008. 101

[37] SH Chong and M Fuchs. Mode-coupling theory for structural and confor-

mational dynamics of polymer melts. Phys Rev Lett, 88(18):185702, 2002.

63

[38] XQ Chu, A Faraone, C Kim, E Fratini, P Baglioni, JB Leao, and SH Chen.

Proteins remain soft at lower temperatures under pressure. J. Phys. Chem

B, 113:5001, 2009. 72

[39] RM Daniel, JC Smith, M Ferrand, S Hery, R Dunn, and JL Finney. Enzyme

activity below the dynamical transition at 220 k. Biophys. J., 75:2504–2507,

1998. 69

[40] S Dellerue, AJ Petrescu, JC Smith, and MC Bellissent-Funel. Radially

softening diffusive motions in a globular protein. Biophys J, 81(3):1666–

1676, 2001. 59

[41] LA Deschenes and DA Vanden Bout. Single-molecule studies of heteroge-

neous dynamics in polymer melts near the glass transition. Science, 292:255,

2001. 15

[42] F D’Orazio, S Bhattacharja, WP Halperin, K Eguchi, and T Mizusaki.

Molecular diffusion and nuclear-magnetic-resonance relaxation of water in

unsaturated porous silica glass. Phys. Rev. B, 42:9810, 1990. 21

[43] W Doster. The dynamical transition of proteins, concepts and misconcep-

tions. Eur Biophys J Biophy, 37(5):591–602, 2008. 52

[44] W Doster. The protein-solvent glass transition. BBA-Proteins and Pro-

teomics, 2009. 69

[45] W Doster, A Bachleitner, R Dunau, M Hiebl, and E Luscher. Thermal-

properties of water in myoglobin crystals and solutions at subzero temper-

atures. Biophys J., 50:213, 1986. 69



[46] W Doster, S Cusack, and W Petry. Dynamic instability of liquid-like mo-

tions in a globular protein observed by inelastic neutron-scattering. Phys

Rev Lett, 65(8):1080–1083, 1990. 49, 59, 68

[47] W Doster and M Settles. The dynamical transition in proteins: The role

of hydrogen bonds. in hydration processes in biology: Experimental and

theoretical approaches. ed. IOS Press, Amsterdam., pages 177–191, 1999.

67, 68

[48] MD Ediger. Spatially heterogeneous dynamics in supercooled liquids. Annu

Rev Phys Chem, 51:99–128, 2000. 15

[49] P Etchegoin. Glassylike low-frequency dynamics of globular proteins. Phys

Rev E, 58(1):845–848, 1998. 46, 58

[50] A Faraone, L Liu, CY Mou, CW Yen, and SH Chen. Fragile-to-strong

liquid transition in deeply supercooled confined water. J Chem Phys,

121(22):10843–10846, 2004. 22, 25, 26

[51] PW Fenimore, H Frauenfelder, BH McMahon, and RD Young. Proteins

are paradigms of stochastic complexity. Physica A, 351(1):1–13, 2005. 58

[52] F Franks. Protein stability: the value of ’old literature’. Biophys Chem,

96(2-3):117–127, 2002. 65

[53] H Frauenfelder, G Chen, J Berendzen, PW Fenimore, H Jansson,

BH McMahon, IR Stroe, J Swenson, and RD Young. A unified model

of protein dynamics. P Natl Acad Sci Usa, 106(13):5129–5134, 2009. 58,

61

[54] H Frauenfelder, P W Fenimore, and RD Young. Protein dynamics and

function: Insights from the energy landscape and solvent slaving. Iubmb

Life, 59(8-9):506–512, 2007. 40, 41, 42, 57

[55] D Frenkel and B Smit. Understanding molecular simulation: from algo-

rithms to applications. ed. Elsevier Science Technology Books, page 638,

2002. 109



[56] P Gallo, F Sciortino, P Tartaglia, and SH Chen. Slow dynamics of water

molecules in supercooled states. Phys Rev Lett, 76(15):2730–2733, 1996. 24

[57] JM Garciaruiz, A Moreno, A Parraga, and M Coll. Shaped protein single-

crystals. Acta Crystallogr. Sect. D-Biol. Crystallogr., 51:278–281, 1995. 75

[58] N Giovambattista, MG Mazza, S. V Buldyrev, FW Starr, and H. E Stan-

ley. Dynamic heterogeneities in supercooled water. J Phys Chem B,

108(21):6655–6662, 2004. 16

[59] W Goetze and L Sjogren. Relaxation processes in supercooled liquids.

Reports on Progress in Physics, 55:241, 1992. 20

[60] VI Goldanskii and YF Krupyanskii. Protein and protein-bound water dy-

namics studied by raleigh scattering of mossbauer radiation (rsmr). Quart.

Rev. Biophys., 22:39–92, 1989. 67

[61] W Götze. Complex dynamics of glass-forming liquids: A mode-coupling

theory. ed. Oxford University Press, 2009. 95

[62] W Götze and M Sperl. Logarithmic relaxation in glass-forming systems.

Phys Rev E, 66(1):011405, 2002. 100

[63] JL Green, J Fan, and CA Angell. The protein-class analogy - some insights

from homopeptide comparisons. J Phys Chem-Us, 98(51):13780–13790,

1994. 57, 80

[64] WM Grundy and B Schmitt. The temperature-dependent near-infrared

absorption spectrum of hexagonal h2o ice. J Geophys Res, 103:25809, 1998.

30

[65] M Hameed, B Ahmad, KM Fazili, K Andrabi, and RH Khan. Different

molten globule-like folding intermediates of hen egg white lysozyme induced

by high ph and tertiary butanol. J. Biochem. (Tokyo), 573:141, 2007. 80

[66] JP Hansen and IR McDonald. Theory of simple liquids. ed. Elsevier, page

416, 2006. 3



[67] KA Henzler-Wildman and D Kern. Dynamic personalities of proteins. Na-

ture, 450(7172):964–972, 2007. 39

[68] KA Henzler-Wildman, M Lei, V Thai, SJ Kerns, M Karplus, and D Kern.

A hierarchy of timescales in protein dynamics is linked to enzyme catalysis.

Nature, 450(7171):913–U27, 2007. 39, 40

[69] B Hess, H Bekker, HJC Berendsen, and JGEM Fraaije. Lincs: A linear

constraint solver for molecular simulations. J Comput Chem, 18(12):1463–

1472, 1997. 112

[70] B Hess, C Kutzner, D Van der Spoel, and E Lindahl. Gromacs 4: Algo-

rithms for highly efficient, load-balanced, and scalable molecular simulation.

J Chem Theory Comput, 4(3):435–447, 2008. 111

[71] K Hinsen, AJ Petrescu, S Dellerue, MC Bellissent-Funel, and GR Kneller.

Liquid-like and solid-like motions in proteins. J Mol Liq, 98-9:381–398,

2002. 51

[72] HW Horn, WC Swope, JW Pitera, JD Madura, TJ Dick, GL Hura, and

T Head-Gordon. Development of an improved four-site water model for

biomolecular simulations: Tip4p-ew. J Chem Phys, 120(20):9665–9678,

2004. TIP4P-Ew water model. 34, 111

[73] Z Hu, J Jiang, and SI Sandler. Water in hydrated orthorhombic lysozyme

crystal: Insight from atomistic simulations. J Chem Phys, 129(7):075105,

2008. 112

[74] K Ito, CT Moynihan, and CA Angell. Thermodynamic determination of

fragility in liquids and a fragile-to-strong liquid transition in water. Nature,

398(6727):492–495, 1999. 20, 26

[75] HM Jaeger, CH Liu, and SR Nagel. Relaxation at the angle of repose. Phys

Rev Lett, 62(1):40–43, 1989. 49

[76] HM Jennings. A model for the microstructure of calcium silicate hydrate

in cement paste. Cem Concr Res, 30:101, 2000. 29



[77] HM Jennings and PD Tennis. Model for the developing microstructure in

portland cement pastes. J Am Ceram Soc, 77:3161, 1994. 29

[78] WL Jorgensen and J Tirado-Rives. The opls [optimized potentials for liquid

simulations] potential functions for proteins, energy minimizations for crys-

tals of cyclic peptides and crambin. J. Am. Chem. Soc., 110(6):1657–1666,

1988. 112

[79] W Kauzmann. Some factors in the interpretation of protein denaturation.

Adv. Protein Chem., 14:1, 1959. 65

[80] GR Kneller, K Hinsen, and MC Bellissent-Funel. Molecular dynamics sim-

ulation and neutron scattering from proteins. LLB Sientific Report 2001-

2002, pages 144–145, 2002. 91

[81] R Kohlrausch. Theorie des elektrischen ruckstandes in der leidner flasche.

Poggendorff, 91:56–82, 1854. 9

[82] P Kumar, Z Yan, LM Xu, MG Mazza, SV Buldyrev, SH Chen, S Sastry, and

HE Stanley. Glass transition in biomolecules and the liquid-liquid critical

point of water. Phys Rev Lett, 97(17):177802, 2006. 74

[83] V Kurkal-Siebert and J C Smith. Low-temperature protein dynamics: A

simulation analysis of interprotein vibrations and the boson peak at 150 k.

J Am Chem Soc, 128(7):2356–2364, 2006. 44

[84] M Lagi, P Baglioni, and SH Chen. Logarithmic decay in single-particle

relaxation of hydrated lysozyme powder. Phys Rev Lett, 103(10):108102,

2009. 50

[85] M Lagi, XQ Chu, C Kim, F Mallamace, P Baglioni, and SH Chen. The low-

temperature dynamic crossover phenomenon in protein hydration water:

Simulations vs experiments. J Phys Chem B, 112(6):1571–1575, 2008. 53,

74



[86] SH Lee and PJ Rossky. A comparison of the structure and dynamics of

liquid water at hydrophobic and hydrophilic surfacesa molecular dynamics

simulation study. J. Chem. Phys., 100:3334, 1994. 21

[87] H Leyser, W Doster, and M Diehl. Far-infrared emission by boson peak

vibrations in a globular protein. Phys. Rev. Lett, 82:2987, 1999. 57

[88] CY Liao and SH Chen. Theory of the generalized dynamic structure factor

of polyatomic molecular fluids measured by inelastic x-ray scattering. Phys

Rev E, 64(2):021205, 2001. 45

[89] D Liu, XQ Chu, M Lagi, Y Zhang, E Fratini, P Baglioni, A Alatas, A Said,

E Alp, and SH Chen. Studies of phononlike low-energy excitations of protein

molecules by inelastic x-ray scattering. Phys Rev Lett, 101(13):135501,

2008. 44

[90] D Liu, Y Zhang, CC Chen, CY Mou, PH Poole, and SH Chen. Observation

of the density minimum in deeply supercooled confined water. P Natl Acad

Sci Usa, 104(23):9570–9574, 2007. 19

[91] L Liu, SH Chen, A Faraone, CW Yen, CY Mou, AI Kolesnikov, E Ma-

montov, and J Leao. Quasielastic and inelastic neutron scattering inves-

tigation of fragile-to-strong crossover in deeply supercooled water confined

in nanoporous silica matrices. J Phys-Condens Mat, 18(36):S2261–S2284,

2006. 22

[92] Y Liu, SH Chen, D Berti, P Baglioni, A Alatas, H Sinn, E Alp, and A Said.

Effects of counterion valency on the damping of phonons propagating along

the axial direction of liquid-crystalline dna. J. Chem. Phys., 123:214909,

2005. 47

[93] Kourosh Malek. Solute transport in orthorhombic lysozyme crystals: a

molecular simulation study. Biotechnol Lett, 29(12):1865–1873, 2007. 112

[94] F Mallamace, SH Chen, M Broccio, C Corsaro, V Crupi, D Majolino,

V Venuti, P Baglioni, E Fratini, C Vannucci, and HE Stanley. Role of the



solvent in the dynamical transitions of proteins: The case of the lysozyme-

water system. J Chem Phys, 127(4):045104, 2007. 80

[95] F Mallamace, C Corsaro, M Broccio, C Branca, N Gonzalez-Segredo,

J Spooren, SH Chen, and HE Stanley. Nmr evidence of a sharp change

in a measure of local order in deeply supercooled confined water. Proc.

Natl. Acad. Sci. U.S.A., 105:12725, 2008. 80

[96] C Masciovecchio, F Bencivenga, and A Gessini. Water dynamics at the

nanoscale. Condensed Matter Physics, 11(1):47–56, 2008. 8

[97] J Maxwell. On the dynamical theory of gases. Philosophical transactions

of the Royal Society of London, 157:49–88, 1867. 2

[98] O. V Mazurin. Problems of compatibility of the values of glass transition

temperatures published in the world literature. Glass Phys Chem, 33(1):22–

36, 2007. 10, 11

[99] F Merzel and J C Smith. Is the first hydration shell of lysozyme of higher

density than bulk water? P Natl Acad Sci Usa, 99(8):5378–5383, 2002. 76

[100] FJ Millero, GK Ward, and P Chetirkin. Partial specific volume, expansi-

bility, compressibility, and heat capacity of aqueous lysozyme solutions. J.

Biol. Chem., 251:4001, 1976. 58

[101] G Monaco, A Cunsolo, G Ruocco, and F Sette. Viscoelastic behavior of

water in the terahertz-frequency range: An inelastic x-ray scattering study.

Phys. Rev. E, 60:5505, 1999. 45

[102] Angel J Moreno and J Colmenero. Is there a higher-order mode coupling

transition in polymer blends? J Chem Phys, 124(18):184906, 2006. 49, 54

[103] Angel J Moreno and J Colmenero. Logarithmic relaxation in a kinetically

constrained model. J Chem Phys, 125(1):016101, 2006. 49

[104] VN Morozov and S Gevorkian. Low temperature glass transition in pro-

teins. Biopol, 24:1785–1799, 1985. 68



[105] Thomas Neusius, Isabella Daidone, Igor M Sokolov, and J C Smith. Subdif-

fusion in peptides originates from the fractal-like structure of configuration

space. Phys Rev Lett, 100(18):188103, 2008. 52

[106] P Nordblad, P SvedLindh, L Lundgren, and L Sandlund. Time decay of the

remanent magnetization in a cumn spin-glass. Phys Rev B, 33(1):645–648,

1986. 49

[107] VN Novikov and AP Sokolov. Universality of the dynamic crossover in glass-

forming liquids: A ”magic” relaxation time. Phys Rev E, 67(3):031507,

2003. 34

[108] G Otting. Nmr studies of water bound to biological molecules. Prog. NMR

Spect., 31:259–285, 1997. 68

[109] A Paciaroni, AR Bizzarri, and S Cannistraro. Molecular-dynamics simula-

tion evidences of a boson peak in protein hydration water. Phys. Rev. E.,

57:6277–6280, 1998. 68

[110] A Paciaroni, AR Bizzarri, and S Cannistraro. Neutron scattering evidence

of a boson peak in protein hydration water. Phys. Rev. E., 60:2476–2479,

1999. 68

[111] RG Palmer, DL Stein, E Abrahams, and PW Anderson. Models of hi-

erarchically constrained dynamics for glassy relaxation. Phys Rev Lett,

53(10):958–961, 1984. 10

[112] CF Polnaszek and RG Bryant. Nitroxide radical induced solvent proton

relaxation: Measurements of localized translational diffusion. J. Chem.

Phys., 81:4038–4045, 1984. 68

[113] PH Poole, F Sciortino, U Essmann, and HE Stanley. Phase behaviour of

metastable water. Nature, 360:324, 1992. 19

[114] PH Poole, F Sciortino, T Grande, HE Stanley, and CA Angell. Effect of

hydrogen bonds on the thermodynamic behavior of liquid water. Physical

Review Letters, 73:1632, 1994. 20



[115] AM Puertas, M Fuchs, and ME Cates. Comparative simulation study of

colloidal gels and glasses. Phys Rev Lett, 88(9):098301, 2002. 49

[116] R Rajagopalan. Simulations of self-assembling systems. Curr Opin Colloid

Interf Sci, 6(4):357–365, 2001. 107

[117] D Rapaport. The art of molecular dynamics simulation. ed. Cambridge

University Press, 2004. 108

[118] BF Rasmussen, AM Stock, D Ringe, and GA Petsko. Crystalline ribonu-

clease a loses function below the dynamical transition at 220 k. Nature,

357:423–424, 1992. 67, 69

[119] R Richert and HJ Bassler. Dynamics of supercooled melts treated in terms

of the random-walk concept. J. Phys. Cond. Matt., 2:2273, 1990. 61

[120] A Rocchi, AR Bizzarri, and S Cannistraro. Water dynamical anomalies ev-

idenced by molecular-dynamics simulations at the solvent-protein interface.

Phys. Rev. E., 57:3315–3325, 1998. 68

[121] JA Rupley and G Careri. Protein hydration and function. Adv Protein

Chem, 41:37–172, 1991. 66, 67

[122] G Salvetti, E Tombari, L Mikheeva, and GP Johari. The endothermic ef-

fects during denaturation of lysozyme by temperature modulated calorime-

try and an intermediate reaction equilibrium. J. Phys. Chem. B, 106:6081,

2002. 80, 81, 87

[123] F Sciortino, L Fabbian, SH Chen, and P Tartaglia. Supercooled water and

the kinetic glass transition .2. collective dynamics. Phys Rev E, 56(5):5397–

5404, 1997. 21

[124] F Sciortino, P Gallo, P Tartaglia, and SH Chen. Supercooled water and

the kinetic glass transition. Phys Rev E, 54(6):6331–6343, 1996. 21

[125] F Sciortino and P Tartaglia. Glassy colloidal systems. Adv Phys, 54(6-

7):471–524, 2005. 95



[126] F Sciortino, P Tartaglia, and E Zaccarelli. Evidence of a higher-order

singularity in dense short-ranged attractive colloids. Phys Rev Lett,

91(26):268301, 2003. 49, 54, 58

[127] KS Singwi and A Sjolander. Diffusive motions in water and cold neutron

scattering. Phys. Rev., 119:863, 1960. 82, 83

[128] L Smeller, F Meersman, and K Heremans. Stable misfolded states of human

serum albumin revealed by high-pressure infrared spectroscopic studies.

Biochim. Biophys. Acta, 1764:497, 2006. 80

[129] KA Snyder and DP Bentz. Suspended hydration and loss of freezable water

in cement pastes exposed to 90% relative humidity. Cem. Concr. Res.,

34:2045, 2004. 30

[130] H Solunov. The dynamic crossover temperature and the characteristic

length of glass transition in accordance with the extended adam-gibbs the-

ory. Journal of Non-Crystalline Solids, 352:4871–4876, 2006. 103

[131] RJ Speedy. Stability-limit conjecture - an interpretation of the properties

of water. Journal of Chemical Physics, 86:982, 1982. 19

[132] FW Starr, CA Angell, and HE Stanley. Prediction of entropy and dynamic

properties of water below the homogeneous nucleation temperature. Physica

A, 323:51–66, 2003. 104, 105

[133] HJ Steinhoff, B Kramm, G Hess, C Owerdieck, and A Redhardt. Rotational

and translational water diffusion in the hemoglobin hydration shell. Biophys

J, 65:1486–1495, 1993. 68

[134] J Swenson, H Jansson, J Hedstrom, and R Bergman. Properties of hy-

dration water and its role in protein dynamics. J. Phys.-Condens. Matter,

19:205109, 2007. 75

[135] P Taborek, RN Kleiman, and DJ Bishop. Power-law behavior in the vis-

cosity of supercooled liquids. Phys Rev B, 34(3):1835–1840, 1986. 19, 56



[136] M Tarek and DJ Tobias. The dynamics of protein hydration water: A

quantitative comparison of molecular dynamics simulations and neutron-

scattering experiments. Biophys J, 79(6):3244–3257, 2000. 74, 112

[137] M Tarek and DJ Tobias. Role of protein-water hydrogen bond dynamics in

the protein dynamical transition. Phys. Rev. Lett., 88:138101, 2002. 69

[138] MM Teeter. Water-protein interactions: Theory and experiment. Ann.

Rev. Biophys. Chem., 20:577–600, 1991. 67

[139] C Toninelli, M Wyart, L Berthier, G Biroli, and JP Bouchaud. Dynamical

susceptibility of glass formers: Contrasting the predictions of theoretical

scenarios. Phys Rev E, 71(4):041505, 2005. 17, 35

[140] AL Tournier, JC Xu, and JC Smith. Translational hydration water dynam-

ics drives the protein glass transition. Biophys J., 85:1871, 2003. 69

[141] F Volino and A Dianoux. Neutron incoherent scattering law for diffusion

in a potential of spherical symmetry: general formalism and application to

diffusion inside a sphere. Mol. Phys., 41:271, 1980. 60

[142] G Williams and DC Watts. Non-symmetrical dielectric relaxation behavior

arising from a simple empirical decay function. Transactions of the Faraday

Society, 66:80–85, 1970. 9

[143] K Wood, A Frolich, A Paciaroni, M Moulin, M. Hartlein, G Zaccai, DJ To-

bias, and M Weik. Coincidence of dynamical transitions in a soluble protein

and its hydration water: direct measurements by neutron scattering and

md simulations. J. Am. Chem. Soc., 130:4586, 2008. 87

[144] LM Xu, P Kumar, SV Buldyrev, SH Chen, PH Poole, F Sciortino, and

HE Stanley. Relation between the widom line and the dynamic crossover

in systems with a liquid-liquid phase transition. P Natl Acad Sci Usa,

102(46):16558–16562, 2005. 34



[145] Y Yang and KA Nelson. tc of the mode-coupling theory evaluated from

impulsive stimulated light-scattering on salol. Phys. Rev. Lett., 74:4883,

1995. 61

[146] JM Zanotti, MC Bellissent-Funel, and SH Chen. Relaxational dynamics of

supercooled water in porous glass. Phys. Rev. E., 59:3084–3093, 1999. 68

[147] JM Zanotti, MC Bellissent-Funel, and SH Chen. Experimental evidence of

a liquid-liquid transition in interfacial water. Eur. Phys. Lett.., 71:91, 2005.

21, 22

[148] Y Zhang, M Lagi, E Fratini, P Baglioni, E Mamontov, and SH Chen.

Dynamic susceptibility of supercooled water and its relation to the dynamic

crossover phenomenon. Phys Rev E, 79:040201, 2009. 14, 34, 77

[149] Y Zhang, M Lagi, Dazhi Liu, F Mallamace, and E Fratini. Observation of

high-temperature dynamic crossover in protein hydration water and its re-

lation to the reversible denaturation of lysozyme. J Chem Phys, 130:135101,

2009. 52, 84

[150] Y Zhang, M Lagi, F Ridi, E Fratini, P Baglioni, E Mamontov, and SH Chen.

Observation of dynamic crossover and dynamic heterogeneity in hydration

water confined in aged cement paste. J Phys-Condens Mat, 20(50):502101,

2008. 19, 22, 29, 36

[151] R Zwanzig. Time-correlation functions and transport coefficients in statis-

tical mechanics. Annual Review of Physical Chemistry, 16:67–102, 1965.

3


	List of Figures
	1 Introduction to the Dynamics of Liquids
	1.1 The concept of relaxation
	1.2 Density correlation functions, q(t)
	1.3 Relaxations in liquids
	1.3.1 Transport Properties
	1.3.2 Relaxations in supercooled liquids
	1.3.3 Dynamic transitions
	1.3.4 Dynamic heterogeneity


	2 Water Dynamics
	2.1 Overview of water dynamics
	2.2 Supercooled and confined water dynamics
	2.2.1 1-D Confined water dynamics: Silica nanopores
	2.2.2 2-D Confined water dynamics: Biomacromolecules
	2.2.3 3-D Confined water dynamics: Cement paste

	2.3 Bulk water dynamics: computer simulations
	2.4 Summary

	3 Protein Dynamics
	3.1 Overview of protein dynamics
	3.2 Short-time dynamics: Phonons
	3.2.1 An introduction to collective motions
	3.2.2 Phonon detection
	3.2.3 Temperature dependence of the phonon dispersion

	3.3 Mid-time dynamics: Log decay
	3.3.1 An introduction to the logarithmic decay
	3.3.2  relaxation: logarithmic decay
	3.3.3 Temperature dependence of  relaxation

	3.4 Long-time dynamics: Diffusion
	3.4.1 An introduction to the protein-glass analogy
	3.4.2  relaxation: exponential decay
	3.4.3 Temperature dependence of  relaxation

	3.5 Summary

	4 Water-Protein coupling
	4.1 Overview of protein hydration water dynamics
	4.2 The low temperature dynamic crossover
	4.2.1 An introduction to protein dynamic transition
	4.2.2 Theoretical framework
	4.2.3 The crossover from experiments and simulations

	4.3 The high temperature dynamic crossover
	4.3.1 An introduction to protein denaturation
	4.3.2 Theoretical framework
	4.3.3 The crossover from experiments and simulations

	4.4 Summary

	5 Conclusion
	A Liquid Theories
	A.1 The ideal mode-coupling approach
	A.2 MCT higher-order singularities
	A.3 Extended mode-coupling theory
	A.4 The Adam-Gibbs theory

	B Computer Experiments
	B.1 Simulations in physics and chemistry
	B.2 Molecular dynamics simulations
	B.3 Details of the computer experiments

	C Published Papers
	C.1 Specific Anion Effects on the Optical Rotation of -Amino Acids
	C.2 Organogels from a Vitamin C-based Surfactant
	C.3 The Low-Temperature Dynamic Crossover Phenomenon in Protein Hydration Water: Simulations vs Experiments
	C.4 Collective headgroup conformational transition in twisted micellar superstructures
	C.5 DNA Closed Nanostructures: a Structural and Monte Carlo Simulation Study
	C.6 Interconnected Networks: Structural and Dynamic Characterization of Aqueous Dispersions of diC8PC
	C.7 Studies of phononlike low energy excitations of protein molecules by inelastic x-ray scattering
	C.8 Observation of dynamic crossover and dynamic heterogeneity in hydration water confined in aged cement paste
	C.9 Observation of high-temperature dynamic crossover in protein hydration water and its relation to reversible denaturation of lysozyme
	C.10 Dynamic Susceptibility of Supercooled Water and its relation to the Dynamic Crossover Phenomenon
	C.11 Absence of the Density Minimum of Supercooled Water in Hydrophobic Confinement
	C.12 Neutron Scattering Studies of Dynamic Crossover Phenomena in a Coupled System of Biopolymer and Its Hydration Water
	C.13 Logarithmic decay in single-particle relaxation of hydrated lysozyme powder
	C.14 Evidence of dynamic crossover phenomena in water and other glass-forming liquids: experiments, MD simulations and theory

	References

