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PREFACE 

 

Since early ‘90s, the laboratory of Microbial Genetics of the Department of Evolutionary 

Biology has been focused on the investigation of nitrogen-fixing bacteria of the genus 

Sinorhizobium. Sinorhizobium genus comprises several species of soil bacteria that are 

symbionts of leguminous plants and in particular our attention was pointed to the alpha-

proteobacterium S. meliloti that represents the model organism to study the Medicago-

Sinorhizobium interaction. Our lab’s research has been principally focused on the study of 

genetic and phenotypic variability of Sinorhizobium, showing that high levels of 

polymorphism, both genetic and phenotypic, characterize these bacteria, together with a 

limited occurrence of horizontal gene transfer. More recently another aspect of the biology 

of Sinorhizobium was approached concerning the genetic mechanisms of cell cycle control, 

particularly in connection with the differentiation of the bacteroids, special bacteria forms 

that fix nitrogen inside the root nodules. The two research lines mentioned above, though 

both produced interesting results, suffered from the  lack of convenient genetic 

manipulation techniques, particularly the methods for the construction of site directed 

mutations. For this reason, this Ph.D thesis is primarily focused on the acquisition of the 

capabilities required to study the genetics of S. meliloti. Several techniques have been used, 

in fact, for the first time in our laboratory to genetically-manipulate this bacterium, as the 

construction of mutants and all gene transfer methods (conjugation, transformation and 

transduction), that are fundamental to manipulate bacteria for many purposes. These 

techniques were applied, in the present Thesis, to study the two important aspects of 

Sinorhizobium biology mentioned above: cell cycle and horizontal gene transfer, that will be 

discussed respectively in two separated sections (chapter I, cell cycle, and chapter II, 

horizontal gene transfer).  

During plant-bacteria interaction, plant root hairs develop in particular structures, called 

root nodules, where S. meliloti cells can fix nitrogen, after differentiation in a particular 

form, referred to as bacteroid. Bacteroids are morphologically diverse from the wild type 

cells, moreover, their viability is compromised, thus bacteroid differentiation represents an 

irreversible phase of the bacterium life. All these observations strongly suggest the 

involvement of the regulation of cell cycle progression to determinate differentiation from 

free-living cells to bacteroids. To investigate this hypothesis, our attention was focused on 
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the gene ctrA of S. meliloti. ctrA gene is essential and codes for an histidine kinase that 

represents the master regulator of cell cycle progression in the alpha-proteobacterium C. 

crescentus. Moreover, previous observations suggested CtrA functional-relation between S. 

meliloti and C. crescentus. Thus a S. meliloti ctrA conditional-mutant was produced and its 

morphology was analyzed. 

A second important aspect of the genus Sinorhizobium is the complexity of the web of gene 

exchanges that exists in the natural environment between different strains. The two species 

S. meliloti and S. medicae constitute an attracting model to study aspects related to gene 

transfer in leguminous-associated bacteria. S. meliloti and S. medicae, in fact, are 

phylogenetically,  genetically and ecologically closely related more than with other species, 

but genetic exchange between the strains of both species is rarely described and is not 

generalized. This observation suggests the presence of barriers to horizontal gene transfer. 

To evaluate this hypothesis experiments of gene exchange, between strains of both S. 

meliloti and S. medicae, were performed using transformation (electroporation). Moreover, 

a mutant for one putative restriction gene was produced and analyzed, suggesting that 

restriction can play an important role in the genetic isolation of strains. 
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A. INTRODUCTION 

 

A.1. CELL CYCLE REGULATION IN BACTERIA 

Although the cell cycle of eukaryotes has been now elucidated at molecular level, the 

bacterial cell cycle remains still poorly understood. Genome sequencing projects have 

demonstrated that the major cell cycle regulators in eukaryotes, such as cyclin-dependent 

kinases, are not present in bacteria. Early studies in the field of bacterial cell cycle used as 

model organisms the Gram negative, γ-proteobacterium E. coli and Gram positive bacterium 

B. subtilis. However, more recently, important advances in the comprehension of the 

molecular mechanism regulating bacterial cell cycle progression were achieved studying the 

bacterium Caulobacter crescentus. The α-proteobacterium C. crescentus is, in fact, an 

attractive model for examining cell cycle regulation in bacteria (McAdams and Shapiro 2003; 

Skerker and Laub, 2004) with peculiar features, such as asymmetric division (mother and 

daughter cell morphologically distinguishable), possibility to synchronize growing cells, and 

only one genome replication per cell cycle (see next section for more details). 

 

A.1.1. The bacterial model organism Caulobacter crescentus 

The dimorphic and intrinsically asymmetric α-proteobacterium C. crescentus has became an 

important model organism for the study the bacterial cell cycle, cell polarity, and polar 

differentiation. Members of the genus Caulobacter are dimorphic, stalked bacteria and 

inhabit almost all water bodies on Earth, where they play an important role in global carbon 

cycling by mineralization of dissolved organic material (Poindexter, 1981). One important 

feature of these bacteria is dimorphism. In Caulobacter dimorphism is maintained by 

obligate asymmetric cell division at each reproductive cycle, giving rise to two genetically 

identical, but morphologically different daughter cells: a sessile cell equipped with an 

adhesive stalk and a motile flagellated swarmer cell (Brun and Janakiraman, 2000) (Figure 1). 

The two daughter cells inherit a different developmental program. Stalked cell, immediately 

after cell division, reenters in a new cell cycle starting replication. On the other hand, the 

swarmer cell lives a first period with obligate motile life phase and both DNA replication and 

cell division are inhibited. After this period the swarmer cell can differentiate in a stalked cell 

and the process involves ejection of the flagellum, retraction of the pili, and generation of a 

stalk at the pole previously occupied by the flagellum and pili. During these differentiation 
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events the new stalked cell becomes actively reproductive, initiating a new cell cycle. The 

motile G1 phase, typical of the swarmer cell cycle, is presumed to give the opportunity to 

search for nutrients and to disperse the population to minimize competition for resources. 

 

 

 
 
Figure 1. The Caulobacter 
crescentus cell cycle. Cells 
attached to a surface by the 
adhesive holdfast at the end 
of the stalk produce motile 
swarmer daughter cells at 
each cell division (image 
from Laub et al., 2007). 
 

 

 

A.2. REGULATION OF CELL CYCLE PROGRESSION 

A.2.1. Cell cycle progression involves changes in global profiles of gene and protein 

expression. 

A unique strength of the Caulobacter system is the ease to obtain synchronized cell 

populations with a density gradient centrifugation that separates swarmer cells from stalked 

cells (Evinger and Agabian, 1977). Moreover, its genome has been completely sequenced 

and annotated (Nierman  et al., 2001). The small size of the Caulobacter genome and the 

ease of obtaining synchronized cell populations have opened the door to genome and 

proteome wide studies to investigate differentiation and cell cycle processes. A DNA 

microarray analysis of 90% of all predicted ORFs showed that 19% of the genes significantly 

change their expression at the mRNA level as a function of the cell cycle (Laub et al., 2000). 

This global analysis revealed an overall temporal correlation between the time of gene 

expression and the time when the corresponding gene product is needed. Genes involved in 

the initiation of chromosome replication, DNA methylation, chromosome segregation, cell 

division, and membrane and peptidoglycan synthesis were expressed in accordance with the 

time of their expected function (Laub et al., 2000). Similarly, genes encoding proteins 

participating in the assembly of polar organelles, such as the flagellum and pili, were 
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expressed in regulatory cascades, reflecting the order of assembly of their gene products 

(Laub et al., 2000). Thus, transcriptional control clearly plays a crucial role in the temporal 

regulation of polar morphogenesis and the cell cycle. Moreover, another interesting 

observation was that a large part of the general metabolism (e.g. oxidative respiration) and 

other cellular housekeeping activities (ribosomal genes) might be under cell cycle control 

(Laub et al., 2000).  

Grunenfelder et al. (2001) complemented the genome-wide gene expression data examining 

the protein expression profiles of synchronized cell populations during the course of the cell 

cycle. In agreement with the microarray data, a large portion of detected proteins (15%), 

including many metabolic proteins, were differentially synthesized during the cell cycle. An 

important finding was that, proteins with a cell cycle–regulated expression were more likely 

to be unstable relative to the length of the cell cycle than proteins constitutively expressed 

during the cell cycle. This indicates that rapid and targeted degradation of proteins is an 

important mechanism to generate periodic changes in their abundance during the cell cycle, 

suggesting a global role of proteolysis in the regulation of the bacterial cell cycle. 

 

A.2.2. A master response regulator controls global regulation of cell cycle 

Transcriptional control of gene expression plays a critical role in determining the temporal 

occurrence of events during the cell cycle. What are the factors involved in transcriptional 

regulation? Because the polar morphogenetic events in Caulobacter invariably happen in 

coordination with cell cycle progression, it was originally proposed that the cell cycle acts as 

a biological clock that provides cues for the timing of events involved in morphological 

differentiation (Huguenel and Newton, 1982). One important early observation was that 

chromosome replication was required for flagellum formation (Sheffery and Newton, 1981), 

suggesting that a common regulator controls both the transcription of early flagellar genes 

and the initiation of DNA replication. Owing to the latter activity, this gene was expected to 

be essential for viability and a genetic screen was designed to isolate temperature-sensitive 

(ts) mutants that were defective in the regulation of an early flagellar gene, fliF, at 28°C 

(which is the normal growth temperature used in laboratory) and had a lethality defect at 

37°C (Quon et al., 1996). Performing this screen and another one with a similar logic (Jacobs 

et al., 1999) yielded the identification of two essential signaling proteins, the CtrA response 

regulator and the CckA histidine kinase (Jacobs et al., 1999; Quon et al., 1996). Recently, 
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Biondi et al. (2006) found a third signaling protein, ChpT, that is also essential for viability 

and is strongly related to CtrA and CckA (for details see A.2.6. and figure 3). CtrA, CckA and 

ChpT belong to the superfamily of two-component signal transduction proteins (see Box 1) 

which play a major role in signal transduction in bacteria (Stock et al., 2000).  

 
 
Box 1. Two component signal transduction proteins 
In the two-component paradigm, after 
receiving a signal on its sensor domain, the 
histidine kinase autophosphorylates on a 
conserved histidine residue of its 
transmitter domain (Wolanin et al., 2002). 
Signal transduction is achieved by the 
transfer of the phosphoryl group to a 
conserved aspartate residue in the receiver 
domain of the cognate response regulator. 
Phosphorylation of the response regulator 
results in execution of the output response, 
which often is transcriptional activation or 
repression of target genes (Stock et al., 
2000). A variation of the two-component 
system is the multicomponent 
phosphorelay signal transduction system, in 
which a receiver domain resembling those 
found in response regulators and a histidine 
phosphotransferase domain participate in a 
phosphorelay that culminates in the 
phosphorylation of the response regulator that mediates the output response. 
(Image from www.user.gwdg.de/~genmibio/mascher/research1.html). 
 

 

A.2.3. The master regulator of cell cycle progression and polar morphogenesis: CtrA 

CtrA is a response regulator with a conventional structure consisting of a conserved N-

terminal receiver domain and a C-terminal DNA binding output domain (Quon et al., 1996). 

Phosphorylation at the conserved aspartate residue (Asp51) of the receiver domain 

enhances the binding activity of CtrA for its target DNA sequences (Reisenauer et al., 1999; 

Siam and Marczynski, 2000). Accordingly, phosphorylation of CtrA (CtrA~P) is essential for 

its activity and therefore for cell viability (Quon et al., 1996). Interestingly, already before 

the discovery of CtrA, a conserved 9-mer sequence motif had been detected in the promoter 

regions of many cell cycle–regulated genes, including several of the early flagellar genes 
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(Stephens and Shapiro, 1993; Zhuang and Shapiro, 1995), the essential DNA 

methyltransferase encoding gene ccrM (Stephens et al., 1995), and the hemE Ps promoter 

that resides within the chromosomal origin of replication (Marczynski et al., 1995; 

Marczynski and Shapiro, 1992). DNA footprinting and genome-wide location experiments 

have shown that CtrA~P binds to this conserved 9-mer sequence motif (Boyd and Gober, 

2001; Laub et al., 2002; Mohr et al., 1998; Ouimet and Marczynski, 2000; Quon et al., 1998). 

CtrA controls both polar morphogenesis and essential cell cycle processes. For instance, 

expression of ftsZ encoding the essential cell division protein FtsZ is directly controlled by 

CtrA~P (Kelly et al., 1998; Laub et al., 2002). Transcriptional control of ftsZ is an important 

mechanism by which to control the abundance of FtsZ in the cell, thereby regulating the 

initiation of cell division (Kelly et al., 1998; Quardokus et al., 1996; Quardokus et al., 2001). 

CtrA also controls the expression of ccrM, a gene encoding an essential DNA 

methyltransferase that is involved in cell cycle control (Laub et al., 2002; Reisenauer and 

Shapiro 2002; Stephens et al., 1996; Zweiger et al., 1994). Similarly, CtrA controls the 

expression of many genes involved in flagellar synthesis, pili assembly, and chemotaxis (Boyd 

and Gober, 2001; Jones et al., 2001; Leclerc et al., 1998; Mohr et al., 1998; Ouimet and 

Marczynski, 2000; Skerker and Shapiro, 2000). Comparative expression microarray 

experiments performed on a wild-type Caulobacter strain and a derivative strain harboring a 

ctrA ts loss-of-function allele indicated that a third of the cell cycle–regulated genes are 

directly or indirectly under the control of CtrA (Laub et al., 2000).  

The direct gene targets of CtrA were later determined in a genome-wide location study 

(Laub et al., 2002). This study showed that CtrA directly bound as many as 55 promoters, 

controlling 95 genes (some of which were in fact organized in operons). In addition to its role 

as a global transcriptional regulator, CtrA~P represses the initiation of chromosome 

replication by directly binding to five sites within the chromosomal origin of replication 

(Quon et al., 1998, Siam and Marczynski, 2000). These CtrA binding sites overlap an essential 

DnaA box and a promoter in the origin of replication, both of which are essential for 

initiation of chromosome replication (Marczynski et al., 1995). 

By controlling polar morphogenesis on the one hand and the initiation of chromosome 

replication and cell division on the other, CtrA orchestrates the coordinated progression of 

these distinct events. Thus, the control of CtrA activity, which determines when these cell 

cycle events occur, is critical for the cell. 
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A.2.4. CtrA controls gene expression throughout the cell cycle 

CtrA does not exert its regulation only at one specific cell cycle stage. Instead, CtrA-

dependent events occur throughout the cell cycle. This was illustrated observing that the 55 

promoters that are directly controlled by CtrA~P are regulated at different times during the 

cell cycle (Laub et al., 2002, Laub et al., 2000). CtrA~P has the ability to either activate or 

repress gene transcription. Genes repressed by CtrA~P are typically expressed during the 

G1-S cell transition when CtrA activity is cleared from the cells, whereas genes activated by 

CtrA~P are maximally expressed in the predivisional cells when CtrA is present and 

phosphorylated at the highest level (Laub et al., 2002). Another mechanism governing 

temporal regulation of gene expression relies on the binding affinity of CtrA~P for the 

promoter region and the regulation of CtrA~P levels during the cell cycle. The levels of 

CtrA~P are significantly higher in predivisional cells than in swarmer cells (Domian et al., 

1997; Jacobs et al., 2003) (Figure 2), and this difference may be sufficient to differentially 

regulate the temporal expression of different genes. In this context, low levels of CtrA~P in 

swarmer cells bind only to high-affinity CtrA binding sequences, such as those in the 

chromosomal origin of replication (Laub et al., 2002, Quon et al., 1998; Siam and Marczynski, 

2000). Later, the combined action of dephosphorylation and degradation of CtrA~P during 

the G1-S cell transition results in initiation of DNA replication. In early predivisional cells CtrA 

is resynthesized and immediately phosphorylated to ensure that no extra round of initiation 

of DNA replication occurs. As CtrA~P levels rise in predivisional cells, CtrA~P binds and 

activates gene promoters in the reverse order of their binding affinity for CtrA~P. For 

example, early flagellar genes and the ccrM gene are expressed in the early and late 

predivisional cell stages, respectively (Reisenauer et al., 1999). Thus, the careful control of 

CtrA phosphorylation levels during the entire course of the cell cycle play an important role 

in orchestrating the orderly sequence of cell cycle events. 

 

 

 

A.2.5. Mechanisms regulating CtrA activity 

CtrA activity is regulated by multiple spatial and temporal mechanisms (Figure 2). As 

described previously, CtrA activity is controlled temporally at three levels: transcription, 
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proteolysis, and phosphorylation. The transcription of ctrA is cell cycle regulated, with a peak 

expression in the predivisional cell stage (Domian et al., 1999; Laub et al., 2000; Quon et al., 

1996). 

Expression of ctrA is under the control of two promoters, P1 and P2, that are active at 

different times during the predivisional stage and are directly regulated by CtrA itself 

(Domian et al., 1999). The weaker P1 promoter is active in the early predivisional cell and is 

repressed by CtrA, whereas the stronger P2 promoter is activated later during the 

predivisional stage and is positively regulated by CtrA. Thus, the absence of active CtrA in the 

stalked cells due to proteolysis and dephosphorylation (as explained below) presumably 

triggers the expression of CtrA from the weaker P1 promoter in the early predivisional cells. 

Accumulation of CtrA (and subsequent phosphorylation of it) causes the repression of the P1 

promoter and the activation of the stronger P2 promoter, resulting in elevated levels of the 

CtrA protein in the late predivisional cell (Domian et al., 1999). 

To be active CtrA has to be phosphorylated (Jacobs et al., 2003; Quon et al., 1996). In fact 

the levels of CtrA~P change dynamically during the course of cell cycle (Domian et al., 1997; 

Jacobs et al., 2003). CtrA is present and phosphorylated in swarmer cells. The level of 

CtrA~P drops during the swarmer-to-stalked (G1-S) cell transition. When CtrA is 

resynthesized by transcriptional activation in early predivisional cells, the CtrA~P level rises 

to reach the highest level in predivisional cells (Figure 2). Because CtrA~P represses 

initiation of DNA replication by directly binding to the origin of replication (Quon et al., 

1998), the disappearance of CtrA~P during the G1-S cell transition relieves repression and 

thereby allows initiation of DNA replication to occur. Two redundant mechanisms are 

responsible for removing CtrA~P from the cells at the G1-S cell transition. One mechanism is 

the targeted proteolysis of CtrA by the ClpXP protease complex (Domian et al., 1997; Jenal 

and Fuchs, 1998). An another mechanism is dephosphorylation (Domian et al., 1997). Thus, 

CtrA phosphorylation is also cell cycle regulated  (Figure 2). 
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Figure 2. Schematic representation of the regulatory mechanisms that modulate 
the level of CtrA~P (in gray) during the cell cycle (from Ausmees and Jacobs-
Wagner, 2003).  

 

Upon cell division the asymmetry in CtrA~P levels in the late predivisional cell generates a 

swarmer daughter cell with CtrA activity and a stalked daughter cell without CtrA activity. 

This segregation in CtrA activity results in a different competence in DNA replication and in a 

different program of gene expression between the two daughter cells. Thus, CtrA~P acts as 

a cell fate determinant. 

 

A.2.6. Signal transduction pathways upstream CtrA: an integrated genetic circuit regulates 

the bacterial cell cycle 

Given its importance, the cellular level of CtrA~P must be precisely controlled throughout 

the cell cycle. Biondi et al. (2006b) proposed for the first time an integrated molecular-level 

model of a regulatory network that accounts for Caulobacter cell cycle oscillations and the 
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ability of a single cell to produce daughter cells committed to different cell cycle phases. A 

multicomponent signal transduction pathway controls CtrA phosphorylation (Figure 3), 

involving the CckA→ChpT (CtrA, CpdR) pathway and the PleC-DivJ→DivK patway (Biondi et 

al., 2006a, Biondi et al., 2006b). This multipathway signaling network leads to the precise 

and dynamic control of CtrA activity during the cell cycle. In stalked and predivisional cells 

the histidine-kinase CckA is active and  localized to both cell poles. CckA leads to CtrA 

phosphorylation and its protection from proteolysis. As CtrA~P accumulates, it triggers the 

expression of several genes that are required for late stages of the cell cycle, including divK 

and the essential cell division genes ftsQ and ftsA (Laub et al., 2002; Hung and Shapiro 2002; 

Wortinger et al., 2000). The primary DivK kinase (DivJ) and phosphatase (PleC) are located at 

opposite ends of the predivisional cell such that daughter cells inherit one or the other 

(Wheeler and Shapiro, 1999). The stalked cell inherits DivJ, but not PleC, and can therefore 

accumulate phosphorylated DivK. This DivK~P triggers the delocalization and 

downregulation of CckA, thereby preventing the phosphorylation of CtrA and CpdR. 

Consequently, CtrA is dephosphorylated and degraded, permitting another round of DNA 

replication. This eventually triggers new synthesis of CtrA and, hence, resets the cell cycle 

(Holtzendorff et al., 2004). By contrast, the swarmer cell inherits PleC and dephosphorylates 

its pool of DivK. The lower levels of DivK~P allow CckA to remain localized and active, which 

stabilizes CtrA~P levels and blocks DNA replication initiation. As the swarmer cell develops, 

DivJ replaces PleC at the newly formed stalked pole (Wheeler and Shapiro, 1999; Sciochetti 

et al., 2002), DivK~P accumulates and CckA is delocalized and inactivated. As with the 

stalked cell, these steps allow the initiation of DNA replication, the expression of gcrA and 

ccrM and resetting of the cell cycle. cckA, chpT, ctrA and divK are each essential for cell cycle 

progression, divJ and divJ-pleC mutants are viable, albeit with severe phenotypes (Biondi et 

al., 2006b), indicating that other factors might regulate DivK. This integrated network forms 

the basis of an oscillatory circuit that underlies cell cycle progression in Caulobacter (Figure 

3). Thus, the core oscillating machinery involves the master regulator CtrA, whose activity 

accumulates during the cell cycle. CtrA triggers its own destruction by inducing divK 

transcription and cell division, which ultimately enable DivK~P to feedback and inhibit CckA 

and CtrA (Biondi et al., 2006b).  
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Figure 3. The cyclical genetic circuit driving cell cycle progression in C. crescentus. 
DnaA activates gcrA, GcrA activates ctrA, CtrA activates ccrM, and then CcrM 
closes the loop by activating dnaA by an epigenetic mechanism. GcrA is involved 
in activation of CtrA, and there may be another unidentified factor involved 
(Holtzendorff et al., 2004). The CcrM methyltransferase enables dnaA expression 
by an epigenetic mechanism involving the methylation of the dnaA promoter 
region to restart the process. A second, interlocking cyclical circuit appears to 
control the phosphorylation of CckA, which in turn controls phosphorylation and 
stability of CtrA through the CckA→ChpT→(CtrA, CpdR) phospho-cascade (Biondi 
et al., 2006a; Biondi et al., 2006b). A model for control of the phosphorylation 
state of CckA involving DivK, as shown, along with differentially localized DivJ and 
PleC controlling DivK activity (not shown) has been proposed (Biondi et al., 
2006b) (see text). The positive autoregulation of CtrA through the P2 promoter 
serves to hold the concentration of CtrA∼P high until the feedback loop is 
broken by interruption of the CckA→ChpT→(CtrA, CpdR) phospho-cascade with 
consequent dephosphorylation and degradation of CtrA. 
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A.2.7. The general architecture of Caulobacter cell cycle control 

As recently reviewed in Laub et al., 2007, the core engine that controls cell cycle progression 

in Caulobacter is a genetic circuit involving four master regulatory proteins (CtrA, GcrA, 

DnaA, and CcrM) that together control expression of at least 200 genes (Collier et al., 2006; 

Holtzendorff et al., 2004; Hottes et al., 2005; Laub et al., 2002) (Figure 3). The four proteins 

are synthesized in succession to drive the series of modular functions that execute the cell 

cycle program (e.g., build the flagellum, replicate, separate, and methylate the chromosome, 

divide the cell, etc.). The overall design of the cell cycle control system includes epigenetic 

regulatory mechanisms, sensors, and signal transduction systems that provide feedback 

signals to synchronize the advance of the core engine with progression of chromosome 

replication and cytokinesis. The stabilities of CtrA, GcrA, and DnaA are actively controlled 

over the cell cycle. The molecular mechanisms of the pathway controlling CtrA proteolysis 

have been characterized (Biondi et al., 2006b; Iniesta et al., 2006; McGrath et al., 2006), but 

those controlling GcrA and DnaA are largely unknown. CtrA, is the essential master DNA-

binding response regulator member of the two-component signal transduction family. DnaA 

and GcrA, and the DNA methyltransferase, CcrM, are involved in controlling ctrA 

transcription (Collier et al. 2006; Collier et al. 2007). DnaA is a key element in the cell-cycle 

regulation because it is required for the initiation of DNA replication; it also controls the 

transcription of 40 genes involved in nucleotide biogenesis, cell division, and polar 

morphogenesis (Gorbatyuk and Marczynski 2005; Hottes et al. 2005), and it activates the 

transcription of gcrA gene (Holtzendorff et al. 2004). GcrA controls the transcription of ctrA 

and genes involved in DNA metabolism and chromosome segregation, including those 

encoding for DNA gyrase, DNA helicase, DNA primase, and DNA polymerase III (Holtzendorff 

et al. 2004). As a consequence of this genetic circuit, CtrA accumulates out-of-phase with 

GcrA (Holtzendorff et al. 2004). The transcriptional loop of ctrA is closed by CcrM. CtrA 

activated transcription of ccrM, which encodes for a DNA methyltransferase whose activity is 

cell cycle dependent. CcrM methylates and consequently activates dnaA promoter region, 

closing the positive feedback composed by CtrA, DnaA and GcrA. Thus, the protein 

concentrations of the master regulators, CtrA, GcrA and DnaA drive creation and operation 

of many modular subsystems that implement cell cycle progression.  
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A.3. CELL CYCLE REGULATION IN THE ALPHA-PROTEOBACTERIA GROUP 

Living cells continuously receive and process signals coming from their environment, and, 

integrating this information with their own internal state, are able to react with appropriate 

responses. Ultimately cell cycle, comprising DNA replication, cell division and cell growth, 

together with coordination of biogenesis of cellular structures, must be controlled by 

environmental conditions. Regulation of cell cycle progression needs to be a robust but 

versatile process that integrates different exogenous and endogenous signals and that 

guarantees fidelity and controlled progression throughout the different phases. Different 

bacteria have evolved different regulation systems for cell cycle coordination, due probably 

to different ecological constrains and evolution (Fawcett et al., 2000; Haeusser and Levin 

2008). Alpha proteobacteria group is a very heterogeneous group of bacteria and includes 

symbionts of plants (Rhizobia), pathogens for animals (Brucella, Rickettsia), pathogens for 

plants (Agrobacterium), photosynthetic bacteria (Rhodobacter) and also several genera 

metabolizing C1-compounds (Methylobacterium). Moreover the precursors of the 

mitochondria of eukaryotic cells are thought to have originated in this bacterial group. 

As explained above (A.2.6. and A.2.7.) and schematized in figure 3, regulation of cell cycle as 

in Caulobacter is composed by circuits that work at different regulatory levels: transcription, 

protein-protein interaction, phosphorylation and epigenetic mechanisms (DNA methylation). 

Basically two main oscillators are working during cell cycle progression: i) the transcriptional 

and epigenetic circuit (CtrA-DnaA-GcrA-CcrM); ii) the phosphorylation/proteolysis and 

transcription circuit (CckA-CtrA-DivK). The last one involves also coordination of CtrA 

proteolysis and cell division by the regulation of the DivK activity. So far, it has been 

demonstrated that only phosphorylation is not dispensable during cell cycle progression; in 

fact, cell cycle regulated transcription of ctrA can be substituted by constitutive transcription 

(Biondi et al., 2006b) and also proteolysis can be removed, being probably compensated by a 

not yet identified dephosphorylation mechanism. Caulobacter regulation of cell cycle 

progression has evolved in order to respond to a life style in nutrient-poor environments but 

other alpha proteobacteria occupy different ecological niches suggesting that regulation of 

cell cycle must respond to different requirements although several features can be 

conserved. 
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Several preliminary studies have been carried out on regulation of cell cycle progression in 

other alphas such as Brucella, Sinorhizobium, Silicibacter, Agrobacterium, Rickettsia and 

Rhodobacter. It has been recently demonstrated that asymmetric division takes place in 

Agrobacterium tumefaciens, Sinorhizobium meliloti and Brucella abortus (Hallez et al., 2004), 

indicating that at least some of the features governing cell cycle progression in Caulobacter 

might also be present in other species. Indeed, sporadic studies have been carried out in 

those organisms revealing a fairly consistent conservation of the properties of several 

factors involved in cell cycle regulation in Caulobacter but also remarkable differences.  For 

example, in R. capsulatus, CtrA and CckA are not essential and are required for the 

expression of the GTA, a system for genetic exchanges (Bellefontaine et al., 2002). CtrA in 

Brucella controls cellular events similar to those controlled by CtrA in Caulobacter, but 

through a direct effect on different targets (Bellefontaine et al., 2002). Moreover CtrA from 

Caulobacter is able to bind the B. abortus ccrM promoter in vitro (Robertson et al., 2000). 

CtrA of Brucella abortus binds to ccrM, pleC, rpoD, ftsE and minC but not to divK, ftsZ or the 

origin of replication (known targets in Caulobacter) (Bellefontaine et al., 2002). 

In Silicibacter pomeroy three known mutants affect the motility: cckA, ctrA and one concerns 

a gene with negligible homology to protein sequences from non-roseobacters (FlaA, 

ORF1857) (Miller and Belas 2006). In A. tumefaciens ccrM is essential and cell-cycle 

regulated (Kahng and Shapiro 2001). Also in Brucella ccrM is essential and its overexpression 

impairs proper intracellular replication in murine macrophages (Robertson et al., 2000). A 

yeast two hybrid in Brucella with DivK as a bait returned DivL, DivJ, PleC and PdhS (Hallez et 

al., 2007). In S. meliloti ctrA is essential (Barnett et al., 2001) and the closest PdhS homolog, 

called CbrA is not essential and it appears to be involved in succinoglycan production (Gibson 

et al., 2006). Although several features appeared conserved in alphas other features 

revealed by those studies showed unique features suggesting variability as well and the 

missing of a systematic comparison of factors that are involved in cell cycle regulation. 

 

A.4. THE ALPHA-PROTEOBACTERIUM SINORHIZOBIUM MELILOTI 

The organism object of this work is the Gram-, α-proteobacterium S. meliloti. S. meliloti is an 

important organism in research, representing the model system for the study of both plant-

bacteria interaction and nitrogen fixation. Sinorhizobium meliloti is one of the most studied 

members of alpha-proteobacteria belonging to the family of Rhizobiaceae (Young et al., 
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2001), which lives either free in soil or in symbiosis with leguminous (Fabacae) plants. During 

symbiosis S. meliloti invades root hairs of the plant and forms root nodules. Inside them the 

bacteria can perform nitrogen fixation. 

For an overview of the nitrogen fixation process and the general features of S. meliloti, 

excluding information related to root nodules and cell cycle, see the Introduction of the 

Chapter II, section A.3. 

 

A.4.1. Determinate and indeterminate nodules 

The symbiosis between Rhizobia and their host plants results in the formation in the roots of 

specialized symbiotic organs called nodules. Nodules are formed by the plant tissue and 

occupied by the nitrogen-fixing bacteria. Mature nodules can be of two types, determinate 

or indeterminate.  

Determinate nodules  

Determinate nodules are formed on tropical and subtropical legumes (Glycine max, 

Phaseolus vulgaris, Lotus japonicus). These kind of nodules are characterized by 

disappearance of meristematic activity after nodulation. Thus, determinate nodules stop to 

grow after formation and have a globose shape (Brewin, 1991). Differentiation of infected 

cells occurs synchronously and the mature nodule contains symbiotic bacterial cells with a 

homogenous population of nitrogen-fixing bacteroids (Franssen et al., 1992). 

Indeterminate nodules  

Indeterminate nodules are usually formed on temperate legumes (e.g., Medicago sativa, 

Pisum sativum, Vicia hirsuta) and are characterized by persistent meristematic activity, that 

causes elongated shape of nodules. The central tissue of such nodules consists of a number 

of distinct zones containing invaded plant cells at different stages of differentiation, in which 

bacteria also show a progressive differentiation (Figure 4) (Patriarca et al., 2002; Pawlowski 

and Bisseling, 1996). 

The bacteria object of this work, Sinorhizobium meliloti, forms indeterminate nodules, thus 

the following description will be focused on this kind of nodules. 
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Figure 4. Scheme of the indeterminate elongated nodule. BA, bacteria; BTs, 
bacteroids; SBs, symbiosomes; SG, starch grain; CS, central stele; VB, vascular 
bundle. The nodule zones (Z) are indicated (Patriarca et al., 2002). 

 

A.4.2. Formation of indeterminate nodules 

Formation of nodule is a complicated and selective process, characterized by the exchange 

of molecular signals between the symbionts. At the first step of the interaction, bacteria 

sense the specific compounds of plant root exudates. Amino acids, dicarboxylic acids and 

flavonoids present in the root exudates induce positive chemotaxis of rhizobia (van Rhijn and 

Vanderleyden, 1995). Furthermore, bacteria respond to the flavonoids by the production of 

the lipochitooligosaccharide signalling molecules known as Nod factors. 

At the second step of nodule formation, the rhizobia attach to the plant root surface. At the 

same time, the root hair deforms by reinitiating tip growth with a changed growth direction 

in response to the Nod factors. Root hairs curl in the way that the bacterial cells become 

entrapped in a pocket of host cell wall. After the entrapment, a local lesion of the root hair 

cell wall is formed by hydrolysis of the cell wall, so that infection can be initiated. The plasma 

membrane invaginates, and a tube-like structure, called an infection thread, is formed. The 

infection thread grows down, inside of the root hair and into the body of the epidermal cell. 

Rhizobia inside the infection thread grow and divide, thereby keeping the tubule filled with 

bacterial cells (Gage, 2004). Even before the infection thread has crossed the epidermis, cells 
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of cortex and pericycle respond in a local manner to the presence of rhizobia. Cells in the 

inner cortex dedifferentiate by entering the cell cycle; later these cells will form the nodule 

tissue. The group of dividing cortical cells is called the nodule primordium (Geurts and 

Bisseling, 2002; Timmers et al., 1999). In the following step, the infection thread branches in 

the nodule primordium, thereby increasing the number of sites from which bacteria can exit 

the thread and enter nodule cells. At this point, cells at the base of primordium establish a 

radial pattern consisting of a central tissue surrounded by peripheral tissues, and the cells at 

the apex of primordium form the meristem tissue, thus creating a young nodule (Pawlowski 

and Bisseling, 1996). Eventually, rhizobia are released from infection threads in the 

cytoplasm of postmitotic nondividing plant cells by endocytosis. At this step bacteria are 

called bacteroid. The term ‘‘bacteroid’’ refers to these intracellular membrane encapsulated 

bacteria. Bacteroid form the, so called “symbiosomes”: the compartments containing 

nitrogen-fixing rhizobia surrounded by the plant-derived peribacteroid membrane (Becker et 

al., 2005). 

 

A.4.3. Structure of mature indeterminate nodules 

Once inside nodule cells, the bacteria continue to differentiate and synthesize proteins 

required for nitrogen fixation. Ultrastructural studies of wild type nodules distinguish 5 steps 

in bacteroid differentiation (types 1 to 5), each of them being restricted to a defined 

histological region of the nodule (Zones I to IV) (Figure 4) (Luyten and Vanderleyden, 2000; 

Vasse et al., 1990). 

Zone I contains meristematic tissue, situated at the apex of the nodule. This is a region of 

actively dividing plant cells devoid of bacteria.  

Zone II is called the infection zone. Here the bacteria enter the root cells via infection 

threads. Bacteria, released from the infection threads, are called type 1 bacteroids. These 

bacteroids divide and resemble free-living bacteria by size and cytoplasm content. They have 

a large periplasmic space, and the peribacteroid membrane (membrane of the plant origin 

that surrounds invading bacteria) appears irregular in shape due to local fusions with plant 

cytoplasmic vesicles. In the proximal part of Zone II, type 2 bacteroids are the most 

abundant. These bacteroids are elongated; their periplasmic and peribacteroid spaces are 

reduced, and the peribacteroid membrane is more regular in shape. The cell division stops 

once the type 2 bacteroid stage is reached.  
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Interzone II-III is a very restricted zone that contains only 3-4 layers of cells, separating the 

prefixation zone II and nitrogen-fixing Zone III. The Interzone II-III contains bacteroids of type 

3 which have stopped elongating and are about seven times longer than the free-living 

bacteria. The membranes surrounding each bacteroid, including the peribacteroid 

membrane, are smooth, often in contact with each other, with small periplasmic and 

peribacteroid spaces. 

Zone III is filled with the fully differentiated, nitrogen-fixing bacteroids of type 4. In this zone, 

the leghaemoglobin is produced giving the typical pink or red color of the nitrogen-fixing 

nodules. Leghaemoglobin is essential because of it binds oxygen molecules, protecting 

oxygen-sensitive nitrogenase, the crucial bacterial enzyme catalyzing nitrogen fixation. Thus, 

in Zone III, the bacteroids fix nitrogen and show a dispersion of the ribosome-enriched areas, 

thus becoming the bacteroids of type 5. 

Zone IV is the senescence zone, located proximal to the point of attachment to the plant 

root. Here, both symbiotics partners degrade and the number of bacteroids gradually 

decreases. Ghost membranes of plant and bacteroid origin are the ultimate result of the 

senescing process. 

 

In both nodule types, indeterminate and determinate, growth and differentiation of infected 

plant cells involve extreme cell enlargement. This cell enlargement is predominantly 

responsible for the growth of the nodule organ and is mediated by repeated 

endoreduplication cycles resulting in 64C or 128C polyploid nodule cells (C being the haploid 

DNA content) (Kondorosi et al., 2000; Gonzalez-Sama et al., 2006). In symbiotic nodule cells, 

high ploidy levels allow extreme cell growth, hosting thousands of bacteroids and sustaining 

the energy-demanding nitrogen fixation. 

Cytological studies showed that, similarly to the hosting plant cells, the bacterial symbionts 

in the nodules of the galegoid legumes Medicago sativa (alfalfa) or Vicia sativa (vetch) 

undergo a profound differentiation process including important cell enlargement (Vasse et 

al., 1990). 
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A.4.4. Free living bacteria versus bacteroids 

A recent a study Mergaert et al. (2006) has shown that differentiation of bacteroids in 

galegoid legumes involves indeed genome amplification that is generated by 

endoreduplication cycles and correlates with elongation of bacteria.  

The differentiation includes an important elongation of the cells, free-living cells were 1–2 

µm long, whereas the bacteroids were 5–10 µm (Mergaert et al., 2006). Moreover, the 

bacteroids exhibited higher fluorescence corresponding to higher DNA content and were 

polynucleoid. The multiple nucleoids appear randomly organized, with large cell-to-cell 

variations and differences in nucleoid sizes (Mergaert et al., 2006). Moreover the DNA 

content and size of cultured rhizobia and bacteroids is 1C-2C DNA (C being the haploid DNA 

content) content of free-living S. meliloti, while the DNA content of bacteroids is 24C, when 

measured by flow cytometry (Mergaert et al., 2006). Thus positive correlation exists 

between the DNA content and the size of the bacteroids. Comparison of the genomes of S. 

meliloti bacteroids and cultured S. meliloti cells by comparative genomic hybridization (CGH) 

shows that the hybridization ratio of DNA from bacteroids and cultured bacteria of strain 

Sm1021 is close to 1 for all genes as well as for the control comparing two samples of 

cultured Sm1021 bacteria (Mergaert et al., 2006). This indicates neither amplification nor 

deletion of specific regions in the bacteroid genome. Thus the 24C DNA content in S. meliloti 

bacteroids arises from endoreduplication of the whole genome suggesting a deregulation of 

the DNA replication normal 

program. 

 

 

Figure 5. Size, shape, 
and DNA content of 
free-living, cultured S. 
meliloti bacteria and S. 
meliloti bacteroids 
isolated from nitrogen-
fixing M. truncatula 
nodules. Nomarski 
(Upper) and 
fluorescence (Lower) 
microscopy of DAPI 
stained bacteria and 
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bacteroids (image from Mergaert et al., 2006). 
The viability of bacteroids (ability to resume growth and to produce descendants) is a long 

controversy in the literature (Oke and Long, 1999). But from bacteroid preparations only 

0.8% of the cells, likely arisen from undifferentiated rhizobia, form colonies on agar plates, 

demonstrating that differentiated S. meliloti bacteroids are non-dividing (Mergaert et al., 

2006). 

The reason of the loss of bacteroid viability in the galegoid legumes could be related to the 

endoreduplication and multiple nucleoids in bacteroid cells, which may preclude the ability 

to perform again cell division correctly (Mergaert et al., 2006). This is also impossible in 

endoreduplicated, highly polyploid eukaryotic cells. Moreover, the membranes of the 

bacteroids of galegoid legumes became permeable for diffusion (Mergaert et al., 2006), 

which could also compromise the capacity of bacteroids to reproduce. 

The meaning of differentiation process from free-living form to bacteroid is under 

discussion. It could be either, the differentiated bacteroids have a better symbiotic 

performance, for example higher nitrogen fixation or better exchange of nutrients and fixed 

nitrogen, or the terminal bacteroid differentiation is a means by the plant to control 

proliferation of the bacterial endosymbiont. 

Those observations reported above strongly suggest that the differentiation from free living 

rhizobia to bacteroids requires a different regulation of the normal cell cycle progression. Up 

to date, both the cell cycle regulation in rhizobia or a connection between the 

developmental process of nodulation and the cell cycle regulation have not been explored 

even if it represents one of the most interesting directions in the plant-rhizobia symbiosis 

research. 
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B. AIM OF THE WORK 

 

As illustrated in the introduction, regulation of bacterial cell cycle is still poorly understood. 

A single complete model has been proposed, explaining the regulation of cell cycle 

progression only in the model organism C. crescentus, a member of the alpha proteobacteria 

group. Preliminary studies suggested that the regulation found in Caulobacter might be 

conserved also in alpha proteobacteria. One of the most studied members of alpha-

proteobacteria group is S. meliloti, because of it is the symbiont of agriculturally important 

leguminous plants such as Medicago sp. To establish symbiosis S. meliloti forms root nodules 

where it can perform the fundamental process of nitrogen fixation. Inside the nodule, 

bacterial cells differentiate in a peculiar form called bacteroid, that is the one able to fix 

nitrogen. Bacteroids are both morphologically and metabolically different from free living 

bacteria. A recent study from Mergaert et al. (2006) has shown that mature bacteroids 

deeply increase both the cell size and the intracellular DNA content, accumulating multiple 

genome copies. Moreover, bacteroids lose the ability to divide, representing an irreversible 

form of differentiation. Those observations suggest that the differentiation process from 

free-living cell to bacteroid involves the mechanisms regulating the cell cycle progression. 

Unfortunately, up to date, both the cell cycle regulation and a connection between the 

differentiation process and the cell cycle regulation have not been explored in rhizobia, even 

if this field represents one interesting direction to comprise plant-rhizobia symbiosis. 

In Caulobacter, cell cycle regulation is mostly controlled by two component system proteins 

(Skerker et al., 2005; Biondi et al., 2006b) and at the core of cell cycle regulation there is an 

essential response regulator named CtrA (Quon et al., 1996). CtrA phosphorylated (CtrA~P) 

is able to bind and silence the origin of replication and in predivisional cells drives the 

expression of more than 50 genes, many of which are required for completing the cell cycle 

(Skerker and Laub, 2004). 

The indication that bacteroids are bigger in size, lose ability to divide and accumulate 

multiple chromosomes (Mergaert et al. 2006) suggests that CtrA activity may be 

compromised in bacteroids. In C. crescentus, in fact, a typical CtrA-loss of function strain 

shows many features that resemble those found in bacteroids. A preliminary study from 

Barnett et al. (2001) individuated the CtrA orthologue in S. meliloti and demonstrated, such 

as for other alpha-proteobacteria, that it is essential. 
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Considering  all those observation, the aim of this work is to explore, for the first time, the 

cell cycle progression mechanism in the nitrogen fixing bacterium S. meliloti. Thus, the 

experimental work will be addressed to the production and investigation of a conditional 

CtrA-loss of function strain of S. meliloti. To observe the phenotype of this strain in 

restrictive conditions it will be necessary to construct a S. meliloti  mutant stain where the 

expression of ctrA gene can be opportunely induced or stopped by environmental 

controllable input. This particular mutant will allow verifying the hypothesis of a connection 

between cell cycle progression machinery and development of bacteroid state. Confirmation 

of this hypothesis will require to explore the mechanisms that regulate CtrA function and cell 

cycle progression in S. meliloti, to find the possible link between plant and bacteroid 

differentiation. Moreover, using bioinformatic tools, the analysis of genes in S. meliloti, that 

are orthologous of those genes involved in the C. crescentus cell cycle regulation, will be 

presented. 



CHAPTER  I 

28 
 

C. RESULTS 

 

Results presented in this section were aimed at the investigation of a conditional CtrA-loss of 

function strain of S. meliloti. Preliminary work was focused on the construction of a system 

to obtain chromosomal ctrA deletion in S. meliloti, confirming it essentiality. Thus, two 

different strategies were explored to complement ctrA deletion in S. meliloti with a 

conditional allele. Finally, a depletion ctrA mutant of S. meliloti was described together with 

preliminary observations of CtrA-loss of function phenotype. 

 

C.1. STRATEGY TO OBTAIN A ctrA DEPLETION MUTANT IN S. MELILOTI 

In 2001 Barnett et al. demonstrated that an homologue of ctrA is present in S. meliloti and, 

as in C. crescentus, ctrA is essential for viability. The primary sequence of S. meliloti CtrA is 

very similar to C. crescentus CtrA (Barnett et al., 2001). In fact, C. crescentus ctrA gene 

complements the deletion of chromosomal ctrA gene in S. meliloti. In 1996, Quon et al. 

isolated a C. crescentus temperature-sensitive (ts) mutant that grew at 28°C and had died at 

37°C. This strain allowed many fundamental advances to explain C. crescentus cell cycle 

regulation (Laub et al., 2000). 

Our first strategy to obtain a constrictive-ctrA mutant of S. meliloti was based on the 

construction of a S. meliloti strain carrying deletion of the chromosomal copy of ctrA, where 

viability was restored by complementation with the ctrA-ts allele of C. crescentus (for details 

C.3.1.).  

The second strategy, instead, was based on the fusion of ctrA coding region with an 

inducible promoter, to obtain conditional expression of CtrA (for details C.3.2.). 

 

C.2. CONSTRUCTION OF A PLASMID TO DELETE ctrA GENE IN S. MELILOTI 

Strategies for deleting a genomic region in bacteria are principally based on the use of 

suicidal vectors and selection of double crossing-over events. Suicidal vectors are narrow 

host range plasmids carrying, at least, a marker for antibiotic resistance, but are not 

replicative in the host organism. Thus, they need recombination to be integrated in the 

genome of the host. The sequence of the plasmid is not complementary to the sequence of 

the host, so recombination (crossing-over) can be driven in a specific site engineering the 

plasmid by adding a copy of the targeted gene disrupted with the insertion of an antibiotic-
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resistance cassette. After the first integration the wild type copy of the gene and the 

disrupted one are separated by the plasmid. A second event of crossing-over, opportunely 

selected, will excise the wild-type copy of the targeted gene, leaving only the disrupted copy. 

This event can be selected because the vector carries a particular gene that is lethal in 

certain media conditions (in our case sacB gene from B. subtilis). The product of sacB gene 

provokes death of the cell when grown in presence of sucrose, consequently only cells that 

lose the vector (and sacB) in the second crossing-over event, can survive in medium 

supplemented with sucrose. The resulting strain will carry an irreversible deletion of the 

gene. Figure 6 shows the strategy utilized using the suicidal vector pNPTS138 (Spratt et al., 

1986). 

 

Figure 6. Scheme of targeted-gene deletion. (A) The suicidal plasmid, derivative of  the 
vector pNPTS138, contains the tetracycline gene flanked by the regions upstream (F1) 
and downstream (F2) of the targeted gene (ctrA). Plasmid is moved in S. meliloti by 
conjugation and a first single crossing over event carries integration of the plasmid. (B) 
strain with plasmid integrated can be selected for this phenotype: resistance to 
kanamycin (kanR), resistance to tetracycline (tetR) and sensibility to sucrose (sacB). (C) 
ON growth with only tetracycline will produce cells where a second crossing-over event 
recircularize the plasmid, but deleting the gene. The plasmid will be lost because it is 
suicidal and these colonies will have this phenotype: resistance to tetracycline, 
resistance to sucrose and sensitivity to kanamycin.   

(A) 

(B) 

(C) 
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The construction of the deletion cassette was carried out as follows (figure 7): upstream and 

downstream 1 Kb regions flanking the ctrA gene were amplified from S. meliloti type-strain 

Rm1021, using primers HindIII-P1 + EcoRI-P2 and EcoRI-P3 + SphI-P4. Tetracycline cassette 

was obtained by excision with EcoRI from the plasmid pKOC3. Tet-cassette, PCR fragments 

flanking ctrA and the vector pNPTS138 opportunely treated with restriction enzymes (see 

figure 7) where ligated and transformed in E. coli JM109 competent cells. 

 

Figure 7. Construction of the deletion cassette for S. meliloti ctrA. (A) PCR 
amplification of the regions upstream and downstream of the target gene and 
subsequent restriction with appropriate enzymes. (B) Excision of the tetracycline 
cassette from the plasmid pKOC3 by restriction with EcoRI. (C) Ligase of all 
fragment produced with the vector pNPTS138 previously cut with both HindIII 
and SphI. All restriction enzymes used generate sticky ends, so, using different 
enzymes, the ligation is forced to assemble the desired final product (D), that can 
be selected for tetracycline and kanamycin resistances and sucrose sensitivity.   
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The plasmids obtained from different tetR, kmR and sacBS (sucrose sensitivity) E. coli colonies 

were checked for the correct restriction profile. Different combinations of the same 

restriction enzymes used to construct the plasmid were assayed. Plasmids showing the 

expected profile were also confirmed by direct sequencing of the insert. Thus, a correct 

plasmid was selected and called pNPTS∆ctrA::tet. 

 

C.3. CONSTRUCTION OF A SET OF PLASMIDS TO COMPLEMENT THE DELETION OF S. 

MELILOTI CHROMOSOMAL COPY OF ctrA 

C.3.1. First strategy: the ctrA ts allele of C. crescentus. 

ctrA gene, including its promoter, was amplified by both strains of C. crescentus, the wild 

type CB15N and the ctrA401ts strain, that possesses the allele of ctrA coding for a protein 

sensitive to temperature. This version of CtrA is functional at 30°C and loses its function at 

37°C. Moreover, the wild type copy of S. meliloti ctrA complete gene was also amplified from 

strain Rm1021. Amplifications were carried out as reported in material and methods 

(E.2.13.).  For C. crescentus primers pPctrA-ctrA-fw and pPctrA-ctrA-rev were used that 

amplify a fragment of about 1 Kbp composed by the coding sequence and 200 bp upstream. 

For S. meliloti two primers P1 and P4 (used for the construction of the deletion cassette) 

were used amplifying a fragment of about 2,7 Kbp. Amplifications were performed with 

Accuprime pfx (Invitrogen) that possesses proof-reading activity and gives blunt-ended PCR 

fragments. Gel-purified PCR fragments were ligated in the EcoRV site of the multicloning site 

(MCS) of the vector pJS14 (high copy number in Caulobacter, 15-20 copies per cell) that 

confers resistance to chloramphenicol, and ligation products were transformed in E. coli 

JM109 cells. Plasmids extracted from clones obtained after transformation were first 

checked by restriction. Nucleotide sequence of molecules with correct restriction pattern 

were finally confirmed by DNA sequencing. Plasmid obtained with the wild type C. 

crescentus ctrA was called pJS14-ctrA(C.cre), with the ts allele of C. crescentus ctrA, pJS14-

ctrAts and plasmid with the wild type allele of S. meliloti Rm1021, was called pJS14-

ctrA(S.mel), (strains were called BM20, BM21 and BM43 respectively).  

The same inserts previously cloned in pJS14, were cloned also into the low copy plasmid 

pMR10: restriction of pJS14 derivative plasmids with both KpnI and EcoRI allowed excision of 

the inserts which were gel-purified and ligated into the plasmid pMR10 previously treated 

with the same enzymes. Plasmid pMR10 carries a kanamaycin resistance cassette and, 
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differently from pJS14, is a low copy plasmid (2-5 copies per cell). Transformation was 

performed in E. coli JM109 cells and plasmids obtained from transformants were checked for 

the correct size by agarose gel electrophoresis. Correct  plasmids were confirmed by 

restriction with KpnI and EcoRI and plasmids obtained were called pMR10-ctrA(C.cre), 

pMR10-ctrA(ts) and pMR10-ctrA(S.mel) respectively (E. coli JM109 derivatives were 

designated BM118, BM120 and BM121, respectively). 

 

C.3.2. Second strategy: conditional expression of CtrA 

Recently, Khan et al. (2008) described a new family of vectors called pSRK, constituted by 

three members: pSRK-Km, kanamycin resistence, pSRK-Gm, gentamycin and pSRK-Tc, 

tetracycline, that are identical except for the resistance marker. All these vectors contain the 

wild type complete promoter of the lac-operon of E. coli engineered to be fused with a 

coding sequence of interest (figure 8). Although there are a number of broad-host-range 

vectors based on the lac-promoter system (Graupner and Wackernagel 2000; Luo and 

Farrand 1999; Chen and Winans, 1991; Bagdasarian et al., 1983), in S. meliloti genes cloned 

in these vectors are known to be  expressed also in the absence of induction (Hallez et al., 

2007a). The lac-promoter of pSRK vectors, instead, allows complete suppression of gene 

expression in absence of the inducer also in S. meliloti (Khan et al., 2008). Cloning of the 

appropriate insert must be performed between the NdeI and another restriction site of the 

MCS. Fusion in the NdeI of the first codon (ATG) of the cloned gene assures translation in the 

correct frame (figure 8). 

Primers NdeI-Smc00654-pctrA-fw and KpnI-Smc00659-pctrA-rev where designed and used to 

amplify the coding region of ctrA from S. meliloti Rm1021, including the start codon in the 5’-

NdeI site and the stop codon before the 3’-end. PCR product obtained with Accuprime pfx 

(Invitrogen), was gel purified and treated with a common Taq polymerase to add A-tails at 

both ends (E.2.14). This fragment was cloned in the pGEM-T-Easy vector system (Promega) 

and transformed in E. coli JM109 cells. Plasmids obtained was checked by sizing on agarose 

gel, by NdeI-KpnI restriction for the presence of the insert, and confirmed by sequencing. 

The correct plasmid selected, called pGEM-ctrA(S.mel), was restricted with both NdeI and 

KpnI. Then the insert excised from pGEM-ctrA(S.mel) was gel purified and ligated in pSRK-

Km, previously treated with both enzymes. By this way the final plasmid was obtained and 

called pSRK-Km-ctrA(S.mel) (The E. coli strain maintaining this plasmid was called BM221). 
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Following the same approach two other plasmids were constructed, pSRK-Km-ctrA(C.cre) 

and pSRK-Km-ctrAts, with respectively the ctrA coding region of C. crescentus wild type and 

the ctrA401ts mutant allele (E. coli strains were respectivly BM204 and BM207. Primers used 

for amplification of the insert in both cases were NdeI-CC3035-pctrA-fw and KpnI-CC3035-

pctrA-rev. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Structures of the pSRK-Km broad-host-range expression vector. The 
physical map shows the locations of the key genetic determinants, including 
replication (rep), antibiotic resistance (kanamycin (kan, Km)), mobilization (mob) 
and the expression cassette, composed of lacIq (coding for the repressor of 
transcription), the lac promoter (PlacZ) and the lacZα (α) coding sequence. The 
sequence of the NdeI cloning site is shown.  

 

 

C.4. CONSTRUCTION OF S. MELILOTI Rm1021 DERIVATIVE STRAINS CONTAINING 

PLASMIDS FOR THE COMPLEMENTATION OF ctrA DELETION 

pJS14 derivatives, pMR10 derivatives and pSRK-Km derivatives produced in this work were 

moved in S. meliloti wild type strain Rm1021 by triparental mating, involving pRK2013 as 

helper plasmid. Also empty vectors pJS14 and pMR10 were moved in Rm1021 by the same 

way to create control strains. Transconjugants obtained were checked by plasmid extraction 

(see E.2.11.). In four cases the plasmid extraction failed from all transconjugants colonies 

tested: pJS14-ctrA(C.cre), pJS14-ctrAts, pSRK-Km-ctrA(C.cre) and pSRK-Km-ctrAts. In all these 
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cases however the presence of the plasmid was confirmed by specific PCR amplification of 

the insert with the same primers used to amplify it.   

Both pJS14 and pSRK plasmids share the same group of incompatibility that is different from 

pMR10. These feature could be at the origin of the failure of the extraction such as the 

exogenous origin of the insert, because of the presence of the self ctrA gene doesn’t 

compromise visualization of the plasmid extracted. Moreover, the protocol for plasmid 

extraction derive from the standard protocol for E. coli and it could not be sufficiently 

adapted to S. meliloti. Thus, strains that failed extraction but were positive to the specific 

PCR amplification were though considered corrected and were used for other experiments.  

 

C.5. ctrA IS ESSENTIAL IN S. MELILOTI 

C.5.1. Low-copy complementation of ctrA deletion 

As shown in section C.2. the first step to produce ctrA deletion was the integration of 

pNPTS138∆ctrA::tet in the genome of S. meliloti. In order to transfer the plasmid in S. 

meliloti, triparental mating and electroporation (see Methods) were attempted, but no 

transfer of pNPTS138∆ctrA::tet was obtained probably because the efficiency of transfer of a 

suicidal plasmid is lower than that of a self replicative plasmid, because it needs 

recombination. Higher efficiency of conjugal transfer can be obtained by biparental mating, 

based on an E. coli strain S17-1 (Simon et al., 1983), that carries genes for transfer in the 

chromosome and doesn’t need the contribution of the helper plasmid from a third strain. 

Thus, S17-1 was electroporated with pNPTS138∆ctrA::tet DNA, and transformants were 

confirmed by plasmid extraction. This E. coli strain, called BM61, was then mated with S. 

meliloti Rm1021 and transconjugants were obtained (with an efficiency of about 10-4 

transconjugants/donor). All transconjugants tested were kanamycin and tetracycline 

resistant and sensitive to sucrose as expected, so one of these strains, BM65, was obtained 

which carries the ctrA deletion cassette within the chromosome.  

In order to obtain the ctrA deletion mutant, the insertion cassette should be transferred to 

the strains with ctrA complementation plasmids; this was achieved by transduction with 

M12 phage (Finan et al., 1984). A bacteriophage M12 lysate was produced from the S. 

meliloti strain BM65. BM65 phage-lysate was used to transduce the integration of 

pNPTS138∆ctrA::tet in strains BM113, BM130, BM131 and BM132 (strains Rm1021 

containing pMR10 derivative plasmids). Transduction was successful in all cases giving 
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strains BM178, BM180, BM181 and BM182. All these strains were resistant for both 

kanamycin and tetracycline and were sensitive to sucrose.  

Three colonies from each transduction were used for  the selection  of sucrose resistant 

colonies, whereby corresponding to the final deletion mutants (E.2.17.). Results of the 

selection are shown in Table 1.   

 

Table 1. ctrA deletion: selection for sucrose resistant colonies. 

Strain Clones tested 
Sucrose resistants 

(cells/ml)  
Average of sucrose 

resistants 

BM182 
Clone 1A 2,8 x 103 

2,83 x 103 Clone 2A 2,7 x103 
Clone 3A 3,0 x103 

BM178 
Clone 2A 1,99 x 105 

1,24 x 105 Clone 2B 1,02 x 105 
Clone 2C 7,0 x 104 

BM180 
Clone 3B 3,9 x 103 

4,8 x 103 Clone 3C 6,5 x103 
Clone 3D 4,0 x103 

BM181 
Clone 4A > 1,0 x105 

> 1,0 x105 Clone 4C > 1,0 x105 
Clone 4D > 1,0 x105 

*All the strains were grown for selection at the same optical density in 

order to plate the same number of cells. 

 

As previously shown by Barnett et al. (2001), ctrA gene is essential for viability, and 

therefore  it is not surprising the low number of sucrose resistant colonies obtained from the 

strain BM182 (it has the pMR10 vector without any complementing insert). These colonies 

didn’t lose the pNPTS138 plasmid, but represent the amount of spontaneous inactivation of 

sacB gene. Higher number of colonies were obtained by BM178 and BM181, with 

complementing plasmids. In the case of BM180, the strain carrying the ctrAts allele, the 

number of colonies was similar to the background, suggesting failure of complementation. 

Sucrose resistant colonies obtained transducing BM178 and BM181 were analyzed by PCR to 

check for the deletion of the chromosomal copy of ctrA (Data not shown). All the colonies 

screened were confirmed to be effectively ∆ctrA mutants, and strains BM146 (Rm1021∆ctrA 

+ pMR10-ctrA(C.cre)) and strain BM196 (Rm1021∆ctrA + pMR10-ctrA(S.mel)) were 

produced. 
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Using BM146 or BM196, where ctrA was in fact deleted, it was possible to transfer the 

mutation in other genetic backgrounds by transduction and selection for tetracycline 

resistance. Thus, a M12 phage-lysate of BM146 was produced and used to infect recipient 

strains BM113, BM130, BM131 and BM132. All strains were successfully tested for sensitivity 

to phage infection (E.2.10) and then ctrA deletion was transduced. For each sample a non-

infected control was performed permitting to evaluate the spontaneous tetracycline-

resistantsthat were absent in each strain tested. Results obtained from transductions of ctrA 

deletion are shown in table 2. 

 

Table 2. Transduction of ctrA deletion in low-copy complemented strains.  

Recipient strain Viable title (cfu/ml) 
Number of transduced 

(cfu/ml) 
BM113 5,6 x 1010 0 
BM130 4,5 x 1010 3,2 x 102 
BM131 2,3 x 1010 0 
BM132 2,6 x 1010 3,1 x 102 

 

 

Results confirmed unambiguously that ctrA is essential for viability as previously reported 

(Barnett et al., 2001) and that viability can be restored by wild-type ctrA of C. crescentus as 

well as by the S. meliloti ctrA. As previously reported  (Table 1), the temperature-sensitive 

allele of C. crescentus ctrA failed to complement chromosomal deletion of S. meliloti ctrA 

even at permissive temperature. Since the correct function of ctrA requires coordinated 

expression of the gene, phosphorylation, and proteolysis of the gene product, the 

heterologous product of the ts-allele may have failed at any one of these levels. The ts-

mutation could reduce the functionality of the protein, becoming non functional when 

expressed in a low copy system. By the other hand an increment of the copy number of the 

gene, by using a high copy number vector, could increase the intracellular concentration of 

CtrA protein, improving its ability to complement deletion of the chromosomal copy. For this 

reason plasmid derivates of pJS14 were tested as carriers of the complementing ts-allele. 
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C.5.2. High-copy complementation of ctrA deletion 

Phage-M12 lysate of mutant BM146 was used to transduce S. meliloti Rm1021 derivatives 

strains BM23, BM39, BM41 and BM42. These strains carry the same extra-copy of ctrA 

tested in low-copy plasmid, but in a high copy-plasmid (the plasmid pJS14). Since C. 

crescentus ctrAts allele failed complementation of chromosomal ctrA deletion of S. meliloti 

in a low-copy vector, this new experiment allows to verify if the increment of copy number 

of ctrAts gene can restore viability in S. meliloti.   

All strains were first successfully tested for sensitivity to phage infection (E.2.10.) and then 

ctrA deletion was transduced. For each sample a non-infected negative control was 

performed permitting to evaluate the spontaneous tetracycline-resistants. Spontaneous 

tetracycline-resistants were absent for strains BM23, BM41 and BM42; instead strain BM39 

gave spontaneous tetracycline resistant mutants with a frequency of about 10-7 

resistants/ml. After transduction of ctrA deletion, no transduced colonies were obtained for 

strains BM23, BM41, BM42. For BM39 tetracycline resistant colonies were obtained  and 

their number was comparable to the background of spontaneous resistants. These data 

indicate that high-copy complementing plasmids are unable to restore viability in a S. 

meliloti chromosomal ctrA deletion mutant. To confirm these results another approach was 

followed. Plasmid carrying the cassette for the deletion of ctrA gene pNPTS138∆ctrA::tet, 

was moved in the four recipients BM23, BM41, BM42 and BM39, using E. coli strain BM61 as 

donor. Transconjugants obtained were then selected for sucrose resistant colonies. The 

number of sucrose resistant colonies obtained from all the stains containing the ctrA extra-

copy (BM41, BM42, BM39) was comparable to the number of spontaneous sucrose resistant 

colonies obtained from the control BM23 (without complementation) confirming indeed 

that the high copy number vector system used here was not able to complement the ctrA 

chromosomal deletion in S. meliloti. Considering that pJS14 derivatives have the same 

inserts as pMR10 derivatives and successful complementation was obtained from both 

pMR10-ctrA(C.cre) and pMR10-ctrA(S. mel) (C.5.1.), we conclude that some unknown aspect 

of the pJS14 vector is responsible for the non-correct expression of the inserted gene and 

thus for the failed complementation of deletion of ctrA. 
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C.6. DELETION OF CHROMOSOMAL ctrA CAN BE RESTORED BY CONSTITUTIVE 

EXPRESSION OF S. MELILOTI CtrA. 

Plasmid pSRK-Km derivatives have chimerical genes in which the coding region of ctrA is 

cloned under the control of the lac-promoter and lac repressor (Khan et al., 2008), so the 

expression of the gene needs the presence of an inducer (IPTG). Transcription of ctrA from 

pSRK-Km derivatives, differently from pMR10 and pJS14 derivatives, is constitutive under 

induction, while the native promoter is differently regulated during cell cycle progression 

(Barnett et al., 2001). On the contrary, when IPTG is absent, the transcription is stopped. S. 

meliloti strains  used were: BM210, carrying pSRK-Km-ctrA(C.cre), BM212, carrying pSRK-Km-

ctrAts and BM240, carrying pSRK-Km-ctrA (S. mel). Two clones for each strain were infected 

with phage-M12 lysate of mutant BM146. All strains were successfully tested for sensitivity 

to phage infection (E.2.10.) and then ctrA deletion was transduced. For each sample a non-

infected negative control was performed permitting to evaluate the percentage of 

spontaneous tetracycline-resistants. Spontaneous tetracycline-resistants were absent for 

each strain tested. Results of transductions of ctrA deletion are shown in table 4. 

 

Table 4. Transduction of ctrA deletion in strain constitutively expressing ctrA.  

Strain 
Clones 
tested 

Viable title 
(cfu/ml) 

Number of 
transductants (cfu/ml) 
selected without IPTG 

Number of 
transductants (cfu/ml) 
selected with IPTG 500 

µg/ml 

BM210 
Clone A 3,9 x 109 0 0 
Clone D 4,3 x 109 0 0 

BM212 
Clone A 4,8 x 109 0 0 
Clone B 4,5 x 109 0 0 

BM240 
Clone B 8,0 x 108 0 5,8 x 101 
Clone C 8,0 x 108 0 7,4 x 101 

 

Data obtained showed that, in pRSK-system, only the S. meliloti ctrA coding region is able to 

complement the deletion of chromosomal ctrA gene (the mutant strain obtained was called 

BM249). Interestingly, this data shows that regulation of CtrA transcription during cell cycle 

progression is not essential for viability in S. meliloti as for C. crescentus (Domian et al., 

1997), indicating that CtrA activity can be sufficiently regulated only at post-translational 

level by phosphorylation/dephosphorylation and proteolysis. Moreover strain BM240 

without inducer failed to grow indicating the lack of complementation of ctrA.  
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C.7. MORPHOLOGICAL ANALYSIS OF THE ctrA-LOSS OF FUNCTION PHENOTYPE IN S. 

MELILOTI 

To study the phenotype of CtrA-loss of function, strain BM249 was grown as described in 

E.2.18. 

Optical densities (OD600) of the cultures are reported in table 5: 

 

Table 5. Growth of mutant strain BM249 in different conditions. 

Time (hours) no IPTG 250 mg/ml IPTG 500 mg/ml IPTG 
0 0,103 0,103 0,104 
8 0,188 0,186 0,180 

24 0,275 0,852 0,868 
32 0,295 2,260 2,390 

 

Data reported demonstrated that when IPTG is absent the cell cycle progression is stopped 

and that IPTG is essential for growth of mutant strain BM249. The small increment of OD600 

on the culture without IPTG can be interpreted as the increase of cell size (as shown in figure 

9) but presumably don’t involve cell division. Also in C. crescentus deletion of ctrA stops cell 

division inducing abnormal growth of the cells  (Biondi et al., 2006b).  

Concerning the effect of IPTG concentration, it is known that increasing IPTG concentration 

rises the level of gene-expression (Khan et al., 2008). Since both the concentration tested 

were equivalent for growth stimulation, we can conclude that 250 mg/ml of IPTG may 

ensure the highest level of induction of ctrA expression. Moreover this observation shows 

again that regulation of ctrA transcription during cell cycle progression is not essential for 

viability in S. meliloti. 

Aliquots of cells from the above described cultures were taken at each time point and were 

observed under microscope. Figure 9 shows the morphology of S. meliloti cells determined 

by CtrA loss of function. 
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Figure 9. Changes of morphology determined by CtrA-loss of function in S. 
meliloti Rm1021. A) wild type Rm1021; B-C) conditional-mutant BM249 grown 
with IPTG 500 mg/ml; D-E-F) BM249 after 32 h of incubation without IPTG. 
Pictures were taken with a FinePixS1pro (Fujifilm) camera connected to a LEICA 
DM-L phase contrast microscope. 

 

Figure 9 clearly shows that loss of CtrA function determines extreme morphological changes 

of S. meliloti cells. When ctrA is constitutively expressed by IPTG induction (figures 9B and 

9C), cell’s morphology doesn’t show changes with respect to the morphology of the wild 

type strain S. meliloti Rm1021 (figure 9A). This demonstrates that the modifications 

determined by the absence of ctrA expression (figures 9D-E) are due to the deletion of CtrA 

activity. Pictures 9D-E shows three of the more frequent cell’s shapes observed after 32 

hours of incubation without induction which indicates that CtrA-function deletion resulted in 

a strong increase of the cell’s volume. Length was increased between 3-10 times and width 

of about 3 times. Thus it seems that CtrA-loss of function changed the morphology of S. 

meliloti in a different way respect to C. crescentus (Biondi et al., 2006b), that in fact 

developed highly elongated cells, maintaining the same width of the normal growing cells. 
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C.8. CtrA REGULON IN S. MELILOTI 

Laub and collaborators (2000, 2002) combining different sources of information were able to 

identify a set of genes possibly representing the CtrA regulon in Caulobacter (that is the 

whole set of genes whose expression is controlled by CtrA): 116 genes were identified 

through chromatin immunoprecipitation using phosphorylated CtrA; 88 of them were 

moreover identified as CtrA-dependent for normal expression levels, and 69 as cell cycle-

regulated. The 54 genes within the overlap of all three data sets were identified as members 

of the CtrA cell cycle regulon, and were used in our computational analysis of CtrA regulons. 

Upstream sequences of these C. crescentus 54 genes were retrieved and used to find 

enriched sequence motifs using AlignAce (Roth et al., 1998). The position weight matrix 

obtained (Appendix A) was found to correspond to a 16-mer containing the known CtrA 

binding motif and was used in a sliding window approach on the sequenced genome of S. 

meliloti Rm1021. An output was obtained where all genes have a score based on the 

presence of CtrA binding motif in the region comprised from 100 nucleotides within the 

coding sequence to 400 nucleotides upstream the start codon. 

The complete list of genes obtained from this analysis is reported in Appendix B at the end of 

chapter I. Among cell cycle regulator factors, this analysis indicated that S. meliloti CtrA 

controls the DivJ-DivK-PleC system, the CpdR-RcdA-ClpPX system and the GcrA-DnaA-CcrM. 

Moreover, CtrA can bind its own promoter, as in C. crescentus. 

As a second step the Caulobacter CtrA regulon, composed by the 54 genes previously 

described, was analyzed for its conservation in S. meliloti. For each gene the first blast hit in 

the genome of S. meliloti was selected; furthermore positive genes were sought in the 

promoter region for the presence of CtrA boxes. Results obtained showed that S. meliloti 

share with C. crescentus several cell cycle genes controlled by CtrA, such as ccrM, RcdA 

(responsible for proteolysis of CtrA) and the orthologs of two C. crescentus hybrid histidine 

kinases, CC2324 (59%) and CC3219 (62%). Other genes controlled by  CtrA  were the 

ortholog of CC2165 putatively involved in cell division and chromosome partitioning; the 

orthologs of CC1872 and CC0233 involved in cell envelope and outer membrane biogenesis; 

and genes involved in cell motility and secretion. Finally, processes of post-translational 

modification, protein turnover and chaperones can also be controlled by CtrA in S. meliloti, 

since it can putatively regulate the ATP dependent Clp-protease (CC1963). 



CHAPTER  I 

42 
 

All these bioinformatic predictions on the CtrA regulon in S. meliloti can now be confirmed  

using the conditional ctrA mutant strain with the inducible CtrA complementation. 

Microarray experiments in fact will be performed  in the near future to analyze variations of 

global expression levels of strain BM249 revealing the real extent of CtrA control in S. 

meliloti. 
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D. DISCUSSION 

 

Sinorhizobium meliloti is one of the most studied members of alpha-proteobacteria, 

belonging to the family of Rhizobiaceae (Young et al., 2001), which lives either free in soil or 

in symbiosis with leguminous (Fabacae) plants. During symbiosis S. meliloti invades root 

hairs of the plant and forms root nodules. Inside them the bacteria differentiate in 

bacteroids that can perform nitrogen fixation. A recent study from Mergaert et al. (2006) has 

shown that differentiation from free-living cells to bacteroids involves significant changes in 

morphology, as increment of the cell size and genome amplification. Moreover after 

differentiation S. meliloti bacteroids stop to divide, and lose viability, suggesting an 

important involvement of the regulation of cell cycle progression in the process of bacteroid 

differentiation. The master regulator of cell cycle progression in alpha-proteobacteria is 

CtrA, deeply studied in the model organism C. crescentus, whose gene is present also in S. 

meliloti, with consistent similarities to the C. crescentus gene (Barnett et al., 2001). 

The work carried out in the present study was aimed at elucidating the role of CtrA in S. 

meliloti by the use of a mutant of ctrA gene. First, ctrA was showed to be essential for 

viability in S. meliloti, according with a previous report (Barnett et al., 2001). Then, two 

strategies were developed to construct a S. meliloti strain with CtrA-loss of function 

phenotype, based on a ctrA deletion mutant with an extra-copy of ctrA for conditional 

complementation. The ctrA allele ctrA401ts of C. crescentus was tested for complementation 

with both low-copy and high-copy plasmid, but none of them were able to complement the 

deletion of ctrA in S. meliloti chromosome. As known in C. crescentus, the correct 

functioning of ctrA requires coordinated expression of the gene, phosphorylation, and 

proteolysis of the gene product. The heterologous product of the ts-allele may have failed at 

any one of these levels. The ctrA401ts mutation, in fact, causes the substitution of a residue 

of tyrosine (Thr-170) with a residue of isoleucine. This modification, even if, at permissive 

temperature, it can restore viability in C. crescentus, in S. meliloti the function of the protein 

might be compromised by preventing the correct interaction with one of its substrates, 

regulatory proteins or DNA binding regions. 

A second strategy for complementation of the ctrA deletion was developed by fusing the 

ctrA coding region with an IPTG-inducible promoter (Khan et al., 2008). Three alleles were 

tested, ctrA of S. meliloti, ctrA of C. crescientus and ctrA401ts. The ctrA coding region of S. 
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meliloti was found to restore viability of the chromosomal ctrA deletion in S. meliloti. 

Because the complementing gene is constitutively transcribed in the experimental 

conditions used, by the uninterrupted presence of IPTG, the result obtained demonstrates 

that the regulation of CtrA at the transcriptional level is not essential for cell cycle 

progression. This suggests that CtrA activity in S. meliloti can be sufficiently regulated only at 

the post-translational level by both phosphorylation/dephosphorylation and proteolysis, as 

demonstrated for C. crescentus (Domian et al., 1997). 

Conditional mutant is not viable when induction is interrupted, allowing the observation of 

the CtrA-loss of function phenotype in S. meliloti. Blocking CtrA expression provokes loss of 

motility and a strong modifications of the cell morphology. This result was expected as it was 

predicted by the bioinformatic study of CtrA regulon that cell motility and cell envelope 

should be regulated by CtrA in S. meliloti. Microscope observations revealed that cells that 

lost CtrA appeared clearly non-motile compared to the cells where CtrA expression is 

induced by IPTG and to the wild type Rm1021, confirming the bioinformatic prediction. 

Considering the overall morphology of the ctrA deletion mutant, all cells showed abnormal 

growth with larger cell volume in both dimensions. Moreover cells apparently develop an 

enlargement of the envelop  located at the center or at one pole, it appears bright under 

phase contrast microscopy, suggesting a different three-dimensional structure. Cell 

elongation ranged between 3 and 10 times the size of the cells induced with IPTG and of the 

wild type Rm1021. Since a similar elongation is typical of bacteroids, a relation between the 

stop of cell cycle progression by inactivation of CtrA and the differentiation from free-living 

bacteria to bacteroids within the nodule can be hypothesized. These observations shed new 

light in elucidating cell cycle progression in S. meliloti and understanding basic mechanisms 

regulating bacteroids formation. 
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E. MATERIALS AND METHODS 

 

E.1. MATERIALS 

E.1.1. Strains and plasmids 

Strain or plasmid Relevant properties* Source or 
Reference 

S. meliloti 
  

Rm1021 SU47 str-21, smR Meade et al., 
1982 

BM23 Rm1021 + pJS14, smR, cmR This work 
BM39 Rm1021 + pJS14-ctrA(S.mel), smR, cmR This work 
BM41 Rm1021 + pJS14-ctrA(C.cre), smR, cmR This work 
BM42 Rm1021 + pJS14-ctrAts, smR, cmR This work 
BM65 Rm1021::pNPTS138∆ctrA::tet, smR, kmR, tcR, sacBS This work 
BM113 Rm1021 + pMR10, smR, kmR This work 
BM130 Rm1021 + pMR10-ctrA(C.cre), smR, kmR This work 
BM131 Rm1021 + pMR10-ctrAts, smR, kmR This work 
BM132 Rm1021 + pMR10-ctrA(S.mel), smR, kmR This work 
BM146 Rm1021∆ctrA + pMR10-ctrA(C.cre), smR, kmR, tcR This work 
BM178 BM130:: pNPTS138∆ctrA::tet, smR, kmR, tcR, sacBS This work 
BM180 BM131:: pNPTS138∆ctrA::tet, smR, kmR, tcR, sacBS This work 
BM181 BM132:: pNPTS138∆ctrA::tet, smR, kmR, tcR, sacBS This work 
BM182 BM113:: pNPTS138∆ctrA::tet, smR, kmR, tcR, sacBS This work 
BM196 Rm1021∆ctrA + pMR10-ctrA(S.mel), smR, kmR, tcR This work 
BM210 Rm1021 + pSRK-Km-ctrA(C.cre), smR, kmR This work 
BM212 Rm1021 + pSRK-Km-ctrAts, smR, kmR This work 
BM240 Rm1021 + pSRK-Km-ctrA(S.mel), smR, kmR This work 
BM249 Rm1021∆ctrA + pSRK-Km-ctrA(S.mel), smR, kmR, tcR This work 

C. crescentus   
CB15N Wild type strain  Evinger and 

Agabian, 
1977 

LS2195 C. crescentus derivative of CB15N carrying ctrA401ts 
allele (functional at 30°C, dies at 37°C) 

Quon et al., 
1996 

E. coli   
DH5α F_ supE44 _lacU169 hsdR17 recA1 endA1 gyrA96 thi-

1 relA1 (_80lacZ_M15) 
Hanahan, 
1983 

JM109 e14–(McrA–) recA1 endA1 gyrA96 thi-1 hsdR17 (rK
– 

mK
+) supE44 relA1 Δ(lac-proAB) [F´ traD36 proAB 

lacIqZΔM15] 

Promega 
S.r.l. 

S17-1 RP4-2, Tc::Mu,Km-Tn7, for plasmid mobilization Simon et al., 
1983 
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BM18 DH5α + pNPTS138∆ctrA::tet, kmR, tcR, sacBS This work 
BM20 JM109 + pJS14-ctrA(C.cre), cmR This work 
BM21 JM109 + pJS14-ctrAts, cmR This work 
BM43 JM109 + pJS14-ctrA(S.mel), cmR This work 
BM61 S17-1 + pNPTS138∆ctrA::tet, kmR, tcR, sacBS This work 
BM118 JM109 + pMR10-ctrA(C.cre), kmR This work 
BM120 JM109 + pMR10-ctrAts, kmR This work 
BM121 JM109 + pMR10-ctrA(S.mel), kmR This work 
BM214 DH5α + pGEMT-Easy-ctrA(S.mel), amR This work 
BM204 DH5α + pSRK-Km-ctrA(C.cre), kmR This work 
BM207 DH5α + pSRK-Km-ctrAts, kmR This work 
BM221 DH5α + pSRK-Km-ctrA(S.mel), kmR This work 

Bacteriophage   
φM12 Phage specific for S. meliloti derivates of SU47 and 

useful to carry out general transduction 
Finan et al., 
1984 

Plasmid   
pNPTS138 KanR; sacB-containing integration vector Alley, 2001 
pNPTS138∆ctrA::tet 4 Kb S. meliloti ctrA deletion cassette cloned in 

HindIII-SphI sites of pNPTS138. kmR, tcR, sacBS 
This work 

pRK2013 Helper plasmid carrying the conjugal-transfer genes 
of RK2 

Ditta et al., 
1980 

pKOC3 Plasmid containing EcoRI sites-flanked TetR-cassette West et al., 
2002 

pJS14 pBBR1-derived medium copy number broad host 
range vector. cmR 

J. Skerker, 
unpublished 

pJS14-ctrA(C.cre) 1 Kb PCR fragment containing complete ctrA gene of 
C. crescentus CB15N, cloned in the EcoRV site. cmR 

This work 

pJS14-ctrAts 1 Kb PCR fragment containing complete ctrA gene of 
C. crescentus LS2195, cloned in the EcoRV site. cmR 

This work 

pJS14-ctrA(S.mel) 2,7 Kb PCR fragment containing complete ctrA gene 
of S. meliloti Rm1021, coned in the EcoRV site. cmR 

This work 

pMR10 RK2-derived low copy number broad host range 
vector. kmR 

Mohr C and  
Roberts R, 
unpublished 

pMR10-ctrA(C.cre) KpnI-EcoRI fragment from pJS14-ctrA(C.cre) 
containing complete ctrA gene of C. crescentus 
CB15N, cloned in KpnI-EcoRI sites of pMR10. kmR 

This work 

pMR10-ctrAts KpnI-EcoRI fragment from pJS14-ctrAts containing 
complete ctrA gene of C. crescentus LS2195, cloned 
in KpnI-EcoRI sites of pMR10. kmR 

This work 

pMR10-ctrA(S.mel) KpnI-EcoRI fragment from pJS14-ctrA(S.mel) 
containing complete ctrA gene of S. meliloti Rm1021, 
cloned in KpnI-EcoRI sites of pMR10. kmR 

This work 

pGEM-T-Easy cloning vector, amR Promega  
pGEM-ctrA(S.mel) PCR fragment containing S. meliloti ctrA coding 

region (T/A)-cloned in pGEM-T-Easy, amR 
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pSRK-Km pBBR1MCS-2 derived broad host range expression 
vector containing lac promoter and lacIq, lacZα+, kmR 

Khan et al., 
2008 

pSRK-Km-ctrA(C.cre) ctrA coding region of C. crescentus CB15N cloned in 
NdeI-KpnI sites of pSRK-Km. kmR 

This work 

pSRK-Km-ctrAts ctrA coding region of C. crescentus LS2195 cloned in 
NdeI-KpnI sites of pSRK-Km. kmR 

This work 

pSRK-Km-ctrA(S.mel) NdeI-KpnI fragment from pGEM-ctrA(S.mel), 
consisting of ctrA coding region of S. meliloti 
Rm1021, cloned in NdeI-KpnI sites of pSRK-Km. kmR 

This work 

*abbreviations: amR, ampicillin; cmR, chloramphenicol; kmR, kanamycin; smR, streptomycin; 
tcR, tetracycline; sacBS, sensitivity to sucrose. 
 
E.1.2. Primers 

Primer Sequence (5’-3’) 

Construction of ctrA deletion-cassette  
pSMc00654-HindIII-P1 GGAAGCTTCACAATGCGCCGATTCAACA 
pSMc00654-EcoRI-P2 GGGAATTCGATCAGTAGAACCCGCAT 
pSMc00654-EcoRI-P3 GGGAATTCGAGCCGGAAGGCAGCGAC 
pSMc00654-SphI-P4 GGGCATGCTTGCCGAGGCTGCGGAATAG 

Amplification of ctrA alleles from C. crescentus  
pCC3035-ctrA-fw GGCTGCAGTTCTCGATTTCTTGCGGC 
pCC3035-ctrA-rev GGAAGCTTAGTTCCAACGACTCAGGC 

Amplification of ctrA for pSRK-Km-derivates   
pCC3035-NdeI-ctrA-fw GGCATATGCGCGTACTGTTGATCGA 
pCC3035-KpnI-ctrA-rev GGGGTACCAGTTCCAACGACTCAGGC 
pSMc00654-NdeI-ctrA-fw GGCATATGCGGGTTCTACTGATCGAAG 
pSMc00654-KpnI-ctrA-rev GGGGTACCATGTCGCCTACGGGAATGCC 

Confirmation of ctrA deletion  
pSMc00654-(-900)-ctrA-seq TTGGCCCTTCACGCGATCGA 
pSMc00654-ctrA-ctrA-rev ATGGCGATCGACGTCGTATC 

Sequencing  
M13-fw GTAAAAGGACGGCCAG 
M13-rev CAGGAAACAGCTATGAC 
pSMc00654-PctrA-PctrA-fw CACCTCGACCACTAGAGAAGCCGGTT 
 
 
 
 
E.1.3. Growth media 

All the media were dissolved in distilled water and autoclaved. 
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LB medium (Luria-Bertrani Broth, (Sambrook et al., 1989)) 

10 g/l Tryptone 
5 g/l Yeast Extract 
5 g/l NaCl 
 

LB/MC medium 

LB medium supplemented with 2,5mM of CaCl2 and 2,5mM of MgSO4. 

Stock solutions for salts were prepared 2,5M and sterilized by 0,2µm-pores filtration. 

 

TY medium (Beringer, 1974) 

5 g/l Tryptone 
3 g/l Yeast extract 
0.4 g/l CaCl2 

 

PYE medium (Ely, 1991) 

2 g/l Tryptone 
1 g/l Yeast extract 
0.3 g/l MgSO4 
 

SOB medium (Sambrook et al., 1989) 

Stock A: 20 g Tryptone 
5 g Yeast extract 
0.5 g NaCl 
dissolved in 980 ml H2O 

Stock B: 18.65 g/l KCl 
Stock C: 406.6 g/l MgCl2 × 6 H2O 
Stock D: 493 g/l MgSO4 × 7 H2O 

10ml of the stock solution B were added to the stock solution A prior to autoclaving. 
Solutions C and D were autoclaved separately, and 5 ml of each were added to the 
autoclaved and cooled mixture of A and B solutions. 
 

SOC medium 
SOB medium supplemented with 20 mM of a 2 M solution of glucose. 
 

 

E.1.4. Supplements for growth media 

Agar  

For the solid bacterial media, 16 g/l were added. 
For LB/MC top agar the concentration of 0,3% was used. 
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Sucrose 

To select sucrose-resistant S. meliloti Rm1021 colonies (for loss of sacB gene) 10 g/l of 

sucrose were added directly to TY medium before autoclaving. To test E. coli sucrose-

sensitivity 5 g/l were added to LB medium before autoclaving. 

 

IPTG 

IPTG stock solution was prepared 50 mg/ml, sterilized by 0,2 nm-filtering and stored at -20°C 

in aliquots of 1 ml. 

 

Antibiotics 

Ampicillin (Am) 

For the selection of Am-resistant E. coli clones 100 µg/ml of antibiotic were added to 

both solid  and liquid media. 

 

Chloramphenicol (Cm) 

For the selection of Cm-resistant E. coli clones, 30 µg/ml of antibiotic were added to 

solid media; 20 µg/ml were added to liquid media to prevent the loss of plasmids. 

For the selection of Cm-resistant S. meliloti clones 50 µg/ml of antibiotic were added 

to both solid and liquid media. 

 

Kanamycin (km) 

For the selection of kanamycin-resistant E. coli clones 50 µg/ml of antibiotic were 

added to solid media; 30 µg/ml were added to liquid media to prevent the loss of 

plasmids. For the selection of kanamycin-resistant S. meliloti clones 200 µg/ml of 

antibiotic were added to both solid and liquid media. 

 

 

Streptomycin (Sm) 

For the selection of S. meliloti strains Rm2011, 600 µg/ml of antibiotic were added to 

both solid and liquid media. 

 

Tetracycline (tc) 
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For the selection of tetracycline-resistant E. coli clones 10 µg/ml of antibiotic were 

added to both solid and liquid media. For the selection of tetracycline-resistant S. 

meliloti Rm1021 2 µg/ml of antibiotic were added to solid media; 1 µg/ml were added 

to liquid media. 

 

E.1.5. Buffers and solutions 

TEA 50X 

242 g TRIS 
57,1 g Acetic Acid 
100ml EDTA pH.8 (0,5M) 
H2O up to a final volume of 1 liter 

 

Glycerol 10% 

100ml of Glycerol 99,9% (Sigma) 
900ml distilled water 
 

Physiological solution 

0,85 % (W/V) of NaCl. 

 

E.2. METHODS 

E.2.1. Cultivation of bacteria 

Bacteria were grown using solid media, as well as liquid media. In special cases, the media 

were supplemented with additives listed above (E.1.3.). E. coli cells were cultivated at 37°C 

in LB. S. meliloti cells were cultivated at 30°C in TY. Liquid cultures were also shaken at 180 

RPM. 

 

 

 

 

E.2.2. Storage of bacterial strains 

Bacteria were grown in the liquid medium overnight until the optical density (OD600) was 

more than 1 OD and than 500 µl of bacterial culture were mixed with 500 µl of glycerol 50% 

and stored at -80°C. 
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E.2.3. Determination of viable titre 

Viable titres were determined preparing serial 10-fold dilutions. 100 microliter of the 

appropriate dilutions were then plated on non selective plates using sterile handles. Plates 

were then incubated at the appropriate temperature until colonies were grown. 

 

E.2.4. Preparation of E. coli electrocompetent cells. 

 From an over-night culture of E. coli DH5α grown in LB medium at 37°C, inoculate 

500 ml of LB medium to an optical density of 0,2 OD. 

 Incubate the culture at 37°C to an optical density of 0.6-0.7 OD. 

 Chill the culture in ice for 15 min. 

 Pellet the cells centrifuging 5 min at 8000 RPM at 4°C and discard the supernatant. 

 Resuspend the pellet with 500 ml of sterile distilled H2O by vortexing and centrifuge 

again. 

 Resuspend the pellet with 250 ml of sterile distilled H2O by vortexing and centrifuge 

again. 

 Resuspend the pellet with 20 ml of sterile glycerol 10 % solution by vortexing and 

centrifuge again. 

 Resuspend the pellet in a final volume of 2 ml of glycerol 10 % and aliquot (50 µl) the 

suspension in eppendorfs. Store at -80°C. 

NB. Title of cells of each 50 µl aliquot will be ranged between 109 and 1010. 

 

E.2.5. Electroporation of E. coli DH5α 

All electroporations were performed using sterile electroporation cuvette (inter-electrode 

distance of 0.1 cm) supplied from Molecular BioProducts and a Gene Pulser® Apparatus 

connected to the Pulse controller, version 2-89 supplied from Biorad. 

 Thaw in ice electrocompetent cells, about 10 min. 

 Add DNA in a volume of no more than 4-5 µl and mix well by vortexing few seconds. 

Keep in ice. 

All the following sequence were performed quickly. 

 Transfer the suspension in a new electroporation cuvette. 

 Place immediately in the Gene Pulser apparatus and apply the following impulse: 

12,5 KV/cm; 5 msec (200 Ω, 25 µF). 
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 Immediately after pulse application resuspend the cells with 1 ml of SOC medium and 

transfer in a 13 ml tube. 

 Incubated at 37°C, with shaking at 200 RPM, for 1h and 30 secs without any 

antibiotic. 

 Proceed by plating aliquots from serial dilutions on non-selective and selective 

medium. 

 Incubate plates at 37°C until colonies are grown.  

 

E.2.6. Preparation of E. coli DH5α chemically competent cells 

 Grow DH5α overnight in 5 mL of SOB at 37°C.  

 Inoculate 100 mL of SOB to and OD600 =  0.1. 

 Grow at 37°C, with shaking, until OD600 = 0.5 -0.7. 

 Place the culture in ice for 15 minutes. 

 Divide the culture into 2 tubes with ~40 mL each (ok Falcon). 

 Centrifuge at 4000 rpm for 10 minutes at 4°C . 

 Gently re-suspend each pellet with 15 mL of cold Mg2+ /Ca2+ solution (see below). 

 Incubate in an ice bath for 30 minutes. 

 Centrifuge at 4000 rpm for 10 minutes at 4°C.  

 Resuspend each pellet with 1.6 mL of cold 0,1M CaCl2 solution. 

 Incubate in an ice bath for 20 minutes.  

 Combine cells to one tube. 

 Add 0.5 mL of cold 80% glycerol and swirl to mix. 

 Flash-freeze in liquid nitrogen as 100-µL aliquots. 

Note: when liquid nitrogen is not available prepare the aliquots and rapidly 

transfer in the -80°C freezer. 

 Store in the -80°C freezer. 

Note: efficiency of cells prepared by this way should range about 107 

transformants/µg of DNA. 

 

Mg2+ /Ca2+ solution: 
3,25g MgCl2 x 6H2O 
0,6g CaCl2 x 2H2O = 0,45g CaCl2 anhydrous 
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200mL H2O 
Sterilize by filtration with filter of 0,2µm-pores 
 
0,1M Ca2+ solution: 

0,56g CaCl2 anhydrous 
50mL H2O 

Sterilize by filtration with filter of 0,2µm-pores 
 

E.2.7. Transformation of E. coli DH5α chemically competent cells 

 Add 5-7 µL of ligation mixture to one aliquot of chemo-competent DH5α cells.  

 Incubate on ice for 30 minutes.  

 Heat shock at 42°C for 45 seconds.  

 Incubate on ice for 2 minutes. 

 Add 900 µL SOC. 

 Incubate 37°C for 1 hour and 30 minutes. 

 Plate onto the appropriate selective medium. 

 

E.2.8. Bacterial cells lysate 

From a fresh ON plate cells were resuspended in 20 µl of dH2O (alternatively 20 µl of fresh 

ON liquid culture), heated for 10 min at 99°C and then placed in ice for at least 3 min. 80 µl 

of dH2O were added. Bacterial lysates were stored at – 20°C until use. 

 

 

 

 

 

 

E.2.9. Conjugation  

Biparental mating 

 Grow E. coli S17-1 overnight in liquid LB medium supplemented with the opportune 

antibiotics, and recipient S. meliloti (Rm1021) in liquid TY supplemented with 

opportune antibiotics. 

 Dilute the cultures to an OD600 of 1.0 OD and take 4 ml of S. meliloti cells suspension 

and 2 ml of E. coli cells suspension. 
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 Pellet separately the cells centrifuging 8000 RPM for 2 min. 

 Wash twice with 1 ml of physiological solution. 

 Resuspend, mixing together with 100 µl of physiological solution and transfer the 

suspension, as a unique drop without spreading, in a TY plate without antibiotics.  

 Incubate overnight at 30 °C. 

 Resuspend cells in 1ml of physiological solution using a sterile handle. 

 Proceed by plating onto TY plates containing streptomycin to select recipient 

Rm1021 and the appropriate antibiotic to select the plasmid. 

 

Triparental conjugation 

 Grow E. coli donor and helper (pRK2013) strains overnight in liquid LB medium 

supplemented with the opportune antibiotics, and recipient S. meliloti (Rm1021) in 

liquid TY supplemented with opportune antibiotics. 

 Dilute the cultures to an OD600 of 1.0 OD and take 4 ml of S. meliloti and 2 ml of each 

E. coli. 

 Pellet separately the cells centrifuging 8000 RPM for 2 min. 

 Wash twice with 1 ml of physiological solution. 

 Resuspend, mixing together with 100 µl of physiological solution and transfer the 

suspension, as a unique drop without spreading, in a TY plate without antibiotics.  

 Incubate overnight at 30 °C. 

 Resuspend cells in 1ml of physiological solution using a sterile handle. 

 Proceed by plating onto TY plates containing streptomycin to select recipient 

Rm1021 and the appropriate antibiotic to select the plasmid. 

 

 

E.2.10. Transduction 

Preparation of lysates of bacteriophage φM12 

 Grow over-night S. meliloti donor strain at 30°C in LB/MC medium supplemented 

with opportune antibiotics. 

 Estimate the number of cells by direct count with the Burker’s chamber. It should be 

about 109 cells/ml. 

 Inoculate 5 ml with φM12 phage with a ratio cells:phages of 1 : 1. 
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 Incubate at 30°C by shaking over-night or until lysis occurs (no more than 24h). 

 Add several drops of chloroform (at least 100µl) and mix by vortexing. 

 Centrifuge 10,000 RPM for 10 min. 

 Recover the supernatant and aliquot in sterile eppendorfs over a drop of chloroform. 

 Store at 4°C. 

Titering φM12 lysates (sensibility to phage) 

 Make appropriate dilutions of the phage stock in LB/MC (expect more than 1010 

pfu/ml). 

 Mix 100µl of S. meliloti fresh overnight colture grown in LB/MC and 100µl of diluted 

phage stock. Mix gently by pipetting few times an incubate at room temperature for 

30 minutes. 

 Add 5 ml of molten (50°C) LB/MC top agar, mix and pour evenly onto an LB/MC agar 

plate. 

 Incubate at 30°C over-night. 

Transduction with φM12 lysates 

 Grow over-night S. meliloti recipient strain at 30°C in LB/MC medium supplemented 

with opportune antibiotics. 

 Estimate the number of cells by direct count with the Burker’s chamber. It should be 

more than 109 cells/ml. 

 Inoculate at least 109 S. meliloti cells with φM12 phage with a ratio cells to phages of 

2 : 1 (total volume about 1-1,5ml). 

 Incubate 30 min at room temperature. 

 Centrifuge 8,000 RPM for 2 min. 

 Wash once the pellet with 1 ml of LB and resuspend in LB. 

Note: do not use LB/MC to avoid further phage infection. 

 Plate cells on LB containing the appropriate antibiotics and supplements. 

 Incubate at 30°C until colonies are grown (usually 3-4 days). 

Note: all transductions should include the control of “recipient only” on the selective 

medium. Lysate can also checked for contamination by plating it on LB plate. 

 

E.2.11. Isolation and purification of plasmid DNA 

Isolation 
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Plasmid DNA was isolated by using NucleoSpin® Plasmid kit supplied from Macherey-Nagel. 

Supplier’s instruction were followed for E. coli, while for Sinorhizobium the following 

changes were applied: 

1) Each pellet of cells was obtained from 5ml of a dilution to 1.0 OD600 of an overnight 

culture. 

2) Time for Lysis (after added buffer A2 and before to add buffer A3) was extended to 10 

min. 

3) Time of centrifuging to pellet cell debris (after added buffer A3) was of 10 min. 

4) Elution of DNA was performed with 55 µl of nuclease free dH20 (Ambion) incubating 1 

min at room temperature and then centrifuging as indicated. After centrifugation 50 

µl of the eluate was recovered and loaded again in the same column incubating 1 min 

at room temperature and then centrifuging again. 

 

E.2.12. Visualization and quantification of DNA 

Agarose gel electrophoresis 

This method is used for visualization, as well as quantification of double-stranded DNA. The 

agarose gels were prepared of 0.6 - 1 % (W/V). 

 

 Mix the agarose with TEA 1X buffer and boil till diluted. 

 Chill the agarose-TEA to 50 °C, add Ethidium Bromide solution to a final 

concentration of 1mg/L and pour in a horizontal chamber with a comb. 

 After the gel becomes solid, cover it with TEA buffer and remove the comb. 

 Mix the DNA with BBF loading buffer 6X  and load into the pockets of the gel. 

 Run the gel using the voltage of 100 V. 

 Image of gel was collected making a photograph under UV light on the 

transilluminator. 

 

Quantification of DNA 

The concentration and purity of DNA was determined calculating the UV260 absorbance using 

spectrophotometer (BioPhotometer, Eppendorf). Analysis was performed as recommended 

by the manufacturer. 
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E.2.13. PCR amplification 

PCR amplification were performed as following. For PCR mixture 20 pmol each primer, 0,5 U 

of Accuprime pfx (Invitrogen) and 1X Accuprimer buffer (it comprises Mg2+ and dNTPs) were 

mixed with 2 µl of bacterial cells lysate. Sterile distilled H2O was added to a final volume of 

25 µl. Amplification was carried out as follow, 95°C 2min, then 35 cycles of denaturation at 

95°C 15sec, annealing (for temperature see table below) 30sec, extension 68°C for a time 

period related to the length of the product (1min for 1Kb). A final step kept reactions at 8°C, 

before to be moved and stored at -20°C. 

 

E.2.14. T/A cloning 

T/A cloning was performed with pGEM-T-Easy vector System I (Promega), according with 

supplier’s instruction. An insert:vector molar ratio 3:1 was applied. 

To add A-tail, blunt-end PCR product were mixed with 0,5 U of GoTaq (Promega), 1X of 

appropriate buffer, 1,5mM of MgCl2 and 100mM of dATP. H2O was added to a final volume 

of 50µl. Reaction was incubated 20min at 72°C then stopped in ice. Purification was carried 

out by using QIAquik gel extraction kit (Qiagen) following appropriate supplier’s instruction 

for DNA purification from enzymatic reactions. 

 

E.2.15. Restriction reactions 

Restriction reactions of PCR products and plasmids were performed by mixing purified DNA 

10 U of each enzyme and opportune buffer. Buffer for each single and double digestion was 

chosen as suggested by Double Digest Finder (New Englan Biolab, 

http://www.neb.com/nebecomm/DoubleDigestCalculator.asp). Reactions were incubated 

over-night at room temperature. 

E.2.16. Ligation 

Ligations were performed by mixing plasmid and insert (molar ratio 1 : 3) with 1 U of T4 

ligase (Invitrogen or Promega) and its appropriate buffer. Mixtures were performed in ice 

and then incubated at 4°C over night, for blunt-ends, or room temperature, for sticky-ends.  

For the construction of pNPTS138∆ctrA::tet, ligation of four fragments was performed with 

the molar ratio of 1 : 3 : 3 : 3, respectively vector, tet-cassette and PCR products. 

 

E.2.17. Selection of sucrose resistant colonies 
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Following procedure allows the selection of deletion mutants from the strain with plasmid 

pNPTS138-derivative integrated in the genome. S. meliloti strain was grown in TY medium 

with tetracycline, to select the deletion cassette, but, without kanamycin, that select the 

plasmid. After over-night grown, 100µl of colture were spread-plated in TY medium with 

tetracycline and  sucrose 10%. Plates were incubated at 30°C until colonies were grown. 

  

E.2.18. Growth of the ctrA deletion mutant 

Strain BM249 was grown in 20 ml of TY medium supplemented with IPTG (500mg/ml) and 

with opportune antibiotics. The following morning optical density (OD600) was measured. 

Cells were centrifuged at 8000 RPM for 5 min at room temperature and washed tree times 

with an equal volume of TY medium without any supplement. Finally cells were resuspended 

in a final volume of 1 ml and OD600 was measured. Tree different, 10 ml each, TY coltures 

(with appropriates antibiotic) were prepared, one without IPTG, one with IPTG 250 mg/ml, 

and one with IPTG 500 mg/ml. All coltures were inoculated with 170 µl of the suspension, 

OD600 was measured, and then were incubated at 30°C by shaking 180 RPM. 

 

E.2.19. S. meliloti CtrA regulon characterization 

Genes directly regulated by CtrA in S. meliloti genome were identified using the following 

multi-level approach:  

1) A Position Weight Matrix (PWM) describing CtrA binding sites in C. crescentus was 

obtained by using the program AlignAce (Roth et al., 1998) on upstream sequences of 

55 genes previously identified as being part of the CtrA regulon (Laub et al., 2002). 

We used such matrix to scan S. meliloti Rm1021 genome with a sliding window 

approach and a scoring function from Schneider et al. (1986): Si=(1/16) �j [2 + 

log2(Fij)],, where Fij is the frequency of base i at position j of the 16-mer. This score, 

whose maximum for the best match using CtrA position weight matrix is �1.22, is a 

measure of the information content of a potential binding site.  

2) We retained only motifs having a score greater than or equal to 30% of the maximum 

score attainable with the given matrix and moreover located in the range -100 to 400 

nucleotides from the start codon of a gene.  

3) Then we applied a Z-score transformation to highlight significant occurrences and 

take into account the background DNA implicitly: Zi=(Si - <Si>)/σi, where Si is 
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calculated using the above formula, and <Si>) is the average score in an organism and 

σi is the corresponding standard deviation. 



CHAPTER  I 

60 
 

F. REFERENCES 

 
1. Alley MR. (2001). The highly conserved domain of the Caulobacter McpA 

chemoreceptor is required for its polar localization. Mol. Microbiol. 40, 1335–1343. 
 

2. Ausmees N. and Jacobs-Wagner C. (2003). Spatial and temporal control of 
differentiation and cell cycle progression in Caulobacter crescentus. Annu. Rev. 
Microbiol.  57:225–47. 
 

3. Bagdasarian MM, Amann E, Lurz R, Rückert B, and Bagdasarian M. (1983). Activity 
of the hybrid trp-lac (tac) promoter of Escherichia coli in Pseudomonas putida. 
Construction of broad-host-range, controlled-expression vectors. Gene 26:273-282. 
 

4. Barnett MJ, Hung DY, Reisenauer A, Shapiro L, Long SR. (2001). A homolog of the 
CtrA cell cycle regulator is present and essential in Sinorhizobium meliloti. J. Bacteriol. 
183(10): 3204-3210. 
 

5. Becker A, Fraysse N and Sharypova, L. (2005). Recent advances in studies on 
structure and symbiosis-related function of rhizobial K-antigens and 
lipopolysaccharides. Mol. Plant-Microbe Interact. 18: 899–905. 
 

6. Bellefontaine AF, Pierreux CE, Mertens P, Vandenhaute J, Letesson JJ, et al. (2002). 
Plasticity of a transcriptional regulation network among alpha-proteobacteria is 
supported by the identification of CtrA targets in Brucella abortus. Mol Microbiol 
43(4): 945-960. 
 

7. Beringer J E. (1974). R factor transfer in Rhizobium leguminosarum. J. Gen. Microbiol. 
24,967-980. 
 

8. Biondi EG, Skerker JM, Arif M, Prasol MS, Perchuk BS et al. (2006a). A phosphorelay 
system controls stalk biogenesis during cell cycle progression in Caulobacter 
crescentus. Mol Microbiol. 59(2): 386-401. 
 

9. Biondi EG, Reisinger SJ, Skerker JM, Arif M, Perchuk BS, et al. (2006b). Regulation of 
the bacterial cell cycle by an integrated genetic circuit. Nature 444:899–904. 
 

10. Boyd CH and Gober JW. (2001). Temporal regulation of genes encoding the flagellar 
proximal rod in Caulobacter crescentus. J. Bacteriol. 183:725–35. 
 

11. Brewin NJ. (1991). Development of the Legume Root Nodule. Annual Review of Cell 
Biology. 7:191-226. 



CHAPTER  I 

61 
 

 
12. Brun YV, Janakiraman RS. (2000). The dimorphic life cycle of Caulobacter and stalked 

bacteria. In Prokaryotic Development ed. YV Brun, LJ Shimkets, pp. 297–317. 
Washington, DC: ASM Press. 
 

13. Chen CY and Winans SC. (1991). Controlled expression of the transcriptional 
activator gene virG in Agrobacterium tumefaciens by using the Escherichia coli lac 
promoter. J. Bacteriol. 173:1139-1144. 
 

14. Collier J, Murray SR, Shapiro L. (2006). DnaA couples DNA replication and the 
expression of two cell cycle master regulators. EMBO J. 25:346–56. 
 

15. Ditta G, Stanfield S, Corbin D, Helinski DR. (1980). Broad host range DNA cloning 
system for Gram-negative bacteria: construction of a gene bank of Rhizobium 
meliloti. Proc. Natl. Acad. Sci. USA 77(12) 7347-7351. 
 

16. Domian IJ, Quon KC, Shapiro L. (1997). Cell type-specific phosphorylation and 
proteolysis of a transcriptional regulator controls the G1-to-S transition in a bacterial 
cell cycle. Cell 90:415–24. 
 

17. Domian IJ, Reisenauer A, Shapiro L. (1999). Feedback control of a master bacterial 
cell cycle regulator. Proc. Natl. Acad. Sci. USA. 96:6648–53. 
 

18. Ely B. (1991). Genetics of Caulobacter crescentus. Methods Enzymol. 204:372–384. 
 

19. Evinger M and Agabian N. (1977). Envelope associated nucleoid from Caulobacter 
crescentus stalked and swarmer cells. J. Bacteriol. 132:294–301. 
 

20. Fawcett P, Eichenberger P, Losick R, Youngman P. (2000). The transcriptional profile 
of early to middle sporulation in Bacillus subtilis. Proc Natl Acad Sci U S A 97. 
14:8063-8068. 
 

21. Finan TM, Hartwieg E, Lemieux K, Bergman K, Walker GC and Signer ER. (1984). 
General transduction in Rhizobium meliloti. J. Bacteriol. 159(1), 120-124. 
 

22. Franssen HJ, Vijn I, Yang WC and Bisseling T. (1992). Developmental aspects of the 
Rhizobium-legume symbiosis. Plant Mol. Biol. 19, 89–107. 
 

23. Gage DJ. (2004). Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia 
during nodulation of temperate legumes. Microbiol. Mol. Biol. Rev. 68: 280-300. 
 



CHAPTER  I 

62 
 

24. Geurts R and Bisseling T. (2002). Rhizobium nod factor perception and signalling. 
Plant Cell 14:S239-249. 
 

25. Gibson KE, Campbell GR, Lloret J, Walker GC. (2006). CbrA is a stationary-phase 
regulator of cell surface physiology and legume symbiosis in Sinorhizobium meliloti. J. 
Bacteriol. 188(12): 4508-4521. 
 

26. Gonzalez-Sama A, Coba de la Pena T, Kevei Z, Mergaert P, Mercedes Lucas M M, de 
Felipe M R, Kondorosi E and Pueyo JJ. (2006). Nuclear DNA endoreduplication and 
expression of the mitotic inhibitor Ccs52 associated to determinate and lupinoid 
nodule organogenesis. Mol. Plant–Microbe Interact. 19, 173–180. 
 

27. Gorbatyuk B, Marczynski GT. (2005). Regulated degradation of chromosome 
replication proteins DnaA and CtrA in Caulobacter crescentus. Mol. Microbiol. 
55:1233–45. 
 

28. Graupner S, Wackernagel W. (2000). A broad-host-range vector series including a 
Ptac test plasmid and its application in the expression of the dod gene of Serratia 
marcescens (coding for ribulose-5-phosphate 3-epimerase) in Pseudomonas stutzeri. 
Biomol. Eng. 17:11-16. 
 

29. Grunenfelder B, Rummel G, Vohradsky J, Roder D, Langen H, Jenal U. (2001). 
Proteomic analysis of the bacterial cell cycle. Proc. Natl. Acad. Sci. USA 98:4681–86. 
 

30. Haeusser DP, Levin PA. (2008). The great divide: coordinating cell cycle events during 
bacterial growth and division. Curr. Opin. Microbiol. 11(2): 94-99. 
 

31. Hallez R, Bellefontaine AF, Letesson JJ, De Bolle X. (2004). Morphological and 
functional asymmetry in alpha-proteobacteria. Trends Microbiol. 12(8): 361-365. 
 

32. Hallez R, Letesson JJ, Vandenhaute J and De Bolle X. (2007a). Gateway-based 
destination vectors for functional analyses of bacterial orfeomes: application to the 
min system in Brucella abortus. Appl Environ Microbiol. 73(4) 1375-1379. 
 

33. Hallez R, Mignolet J, Van Mullem V, Wery M, Vandenhaute J et al. (2007b). The 
asymmetric distribution of the essential histidine kinase PdhS indicates a 
differentiation event in Brucella abortus. EMBO J. 26(5): 1444-1455. 
 

34. Holtzendorff J, Hung D, Brende P, Reisenauer A, Viollier PH et al. (2004). Oscillating 
global regulators control the genetic circuit driving a bacterial cell cycle. Science 
304:983–87. 
 



CHAPTER  I 

63 
 

35. Hottes AK, Shapiro L, McAdams HH. (2005). DnaA coordinates replication initiation 
and cell cycle transcription in Caulobacter crescentus. Mol. Microbiol. 58:1340–53. 
 

36. Huguenel ED, Newton A. (1982). Localization of surface structures during prokaryotic 
differentiation: role of cell division in Caulobacter crescentus. Differentiation 21:71–
78. 
 

37. Hung DY and Shapiro L. (2002). A signal transduction protein cues proteolytic events 
critical to Caulobacter cell cycle progression. Proc. Natl Acad. Sci. USA 99,13160–
13165. 
 

38. Iniesta AA, McGrath PT, Reisenauer A, McAdams HH, Shapiro L. (2006). A 
phosphosignaling pathway controls the localization and activity of a protease 
complex critical for bacterial cell cycle progression. Proc. Natl. Acad. Sci. USA 
103(29):10935–40. 
 

39. Jacobs C, Ausmees N, Cordwell SJ, Shapiro L, LaubMT. (2003). Functions of the CckA 
histidine kinase in Caulobacter cell cycle control. Mol. Microbiol. 47:1279–90. 
 

40. Jacobs C, Domian IJ, Maddock JR, Shapiro L. (1999). Cell cycle-dependent polar 
localization of an essential bacterial histidine kinase that controls DNA replication 
and cell division. Cell 97:111–20. 
 

41. Jenal U, Fuchs T. (1998). An essential protease involved in bacterial cell-cycle control. 
EMBO J. 17:5658–69 
 

42. Jones SE, Ferguson NL, Alley MR. (2001). New members of the ctrA regulon: The 
major chemotaxis operon in Caulobacter is CtrA dependent. Microbiology 147:949–
58. 
 

43. Kahng LS, Shapiro L. (2001). The CcrM DNA methyltransferase of Agrobacterium 
tumefaciens is essential, and its activity is cell cycle regulated. J. Bacteriol. 183(10): 
3065-3075. 
 

44. Kelly AJ, Sackett MJ, Din N, Quardokus E, Brun YV. (1998). Cell cycle-dependent 
transcriptional and proteolytic regulation of FtsZ in Caulobacter. Genes Dev. 12:880–
93. 
 

45. Khan SR, Gaines J, Roop RM 2nd, Farrand SK. (2008). Broad-host-range expression 
vectors with tightly regulated promoters and their use to examine the influence of 
TraR and TraM expression on Ti plasmid quorum sensing. Appl Environ Microbiol. 
74(16):5053-62. 



CHAPTER  I 

64 
 

 
46. Kondorosi E, Roudier F and Gendreau E. (2000). Plant cell-size control: growing by 

ploidy? Curr. Opin. Plant Biol. 3, 488–492. 
 

47. Laub MT, Chen SL, Shapiro L, McAdams HH. (2002). Genes directly controlled by 
CtrA, a master regulator of the Caulobacter cell cycle. Proc. Natl. Acad. Sci. USA 
99:4632–37. 
  

48. Laub MT, McAdams HH, Feldblyum T, Fraser CM and Shapiro L. (2000). Global 
analysis of the genetic network controlling a bacterial cell cycle. Science 290, 2144-8.  
 

49. Laub MT, Shapiro L, McAdams HH. (2007). Systems biology of Caulobacter. Annu. 
Rev. Genet. 41:429-441. 
 

50. Leclerc G, Wang SP, Ely B. (1998). A new class of Caulobacter crescentus flagellar 
genes. J. Bacteriol. 180:5010–19. 
 

51. Luo ZQ and Farrand SK. (1999). Signal-dependent DNA binding and functional 
domains of the quorum-sensing activator TraR as identified by repressor activity. 
Proc. Natl. Acad. Sci. USA. 96:9009-9014. 
 

52. Luyten E and Vanderleyden J. (2000). Survey of genes identified in Sinorhizobium 
meliloti spp., necessary for the development of an efficient symbiosis. Eur. J. Soil Biol. 
36: 1-26. 
 

53. Marczynski GT, Lentine K, Shapiro L. (1995). A developmentally regulated 
chromosomal origin of replication uses essential transcription elements. Genes Dev. 
9:1543–57. 
 

54. Marczynski GT, Shapiro L. (1992). Cell cycle control of a cloned chromosomal origin 
of replication from Caulobacter crescentus. J. Mol. Biol. 226:959–77. 
 

55. McAdams HH and Shapiro L. (2003). A bacterial cell-cycle regulatory network 
operating in time and space. Science 301, 1874-7. 
 

56. McGrath PT, Iniesta AA, Ryan KR, Shapiro L, McAdams HH. (2006). A dynamically 
localized protease complex and a polar specificity factor control a cell cycle master 
regulator. Cell 124:535–47. 
 

57. Mergaert P, Uchiumi T, Alunni B, Evanno G, Cheron A, Catrice O, Mausset AE, 
Barloy-Hubler F, Galibert F, Kondorosi A, Kondorosi E. (2006). Eukaryotic control on 



CHAPTER  I 

65 
 

bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis. Proc. Natl. 
Acad. Sci. U S A. 103(13):5230-5. 
 

58. Miller TR, Belas R. (2006). Motility is involved in Silicibacter sp. TM1040 interaction 
with dinoflagellates. Environ. Microbiol. 8(9): 1648-1659. 
 

59. Mohr CD, MacKichan JK, Shapiro L. (1998). A membrane-associated protein, FliX, is 
required for an early step in Caulobacter flagellar assembly. J. Bacteriol. 180:2175–
85. 
 

60. Nierman WC, Feldblyum TV, Laub MT, Paulsen IT, Nelson KE, et al. (2001). Complete 
genome sequence of Caulobacter crescentus. Proc. Natl. Acad. Sci. USA 98:4136–41. 
 

61. Oke V and Long SR. (1999). Bacteroid formation in the Rhizobium-legume symbiosis. 
Curr. Opin. Microbiol. 2, 641–646. 
 

62. Ouimet MC and Marczynski GT. (2000). Analysis of a cell-cycle promoter bound by a 
response regulator. J. Mol. Biol. 302:761– 75. 
 

63. Patriarca EJ, Tate R and Iaccarino M. (2002). Key role of bacterial NH4
+ metabolism in 

Rhizobium-plant symbiosis. Microbiol. Mol. Biol. Rev. 66: 203-222. 
 

64. Pawlowski K and Bisseling T. (1996). Rhizobial and actinorhizal symbioses: what are 
the shared features? Plant Cell 8: 1899-1913. 
 

65. Poindexter JS. (1981). The caulobacters: ubiquitous unusual bacteria. Microbiol. Rev. 
45:123–79. 
 

66. Quardokus E, Din N, Brun YV. (1996). Cell cycle regulation and cell type-specific 
localization of the FtsZ division initiation protein in Caulobacter. Proc. Natl. Acad. Sci. 
USA 93:6314–19. 
 

67. Quardokus EM, Din N, Brun YV. (2001). Cell cycle and positional constraints on FtsZ 
localization and the initiation of cell division in Caulobacter crescentus. Mol. 
Microbiol. 39:949–59.. 
 

68. Quon KC, Marczynski GT, Shapiro L. (1996). Cell cycle control by an essential 
bacterial two-component signal transduction protein. Cell 84:83–93. 
 

69. Quon KC, Yang B, Domian IJ, Shapiro L, Marczynski GT. (1998). Negative control of 
bacterial DNA replication by a cell cycle regulatory protein that binds at the 
chromosome origin. Proc. Natl. Acad. Sci. USA 95:120–25. 



CHAPTER  I 

66 
 

 
70. Reisenauer A, Quon K, Shapiro L. (1999). The CtrA response regulator mediates 

temporal control of gene expression during the Caulobacter cell cycle. J. Bacteriol. 
181:2430–39. 
 

71. Reisenauer A, Shapiro L. (2002). DNA methylation affects the cell cycle transcription 
of the CtrA global regulator in Caulobacter. EMBO J. 21:4969–77. 
 

72. Robertson GT, Reisenauer A, Wright R, Jensen RB, Jensen A et al. (2000). The 
Brucella abortus CcrM DNA methyltransferase is essential for viability, and its 
overexpression attenuates intracellular replication in murine macrophages. J. 
Bacteriol. 182(12): 3482-3489. 
 

73. Roth FP, Hughes JD, Estep PW, Church GM. (1998). Finding DNA regulatory motifs 
within unaligned noncoding sequences clustered by whole-genome mRNA 
quantitation. Nat Biotechnol. 16(10): 939-945 
 

74. Sambrook J, Fritsch EF and Maniatis T. (1989). Molecular cloning a laboratory 
manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 
 

75. Schneider TD, Stormo GD, Gold L, Ehrenfeucht A. (1986). Information content of 
binding sites on nucleotide sequences. Journal of Molecular Biology. 188:415-431. 
 

76. Sciochetti SA, Lane T, Ohta N and Newton A. (2002). Protein sequences and cellular 
factors required for polar localization of a histidine kinase in Caulobacter crescentus. 
J. Bacteriol. 184, 6037–6049. 
 

77. Sheffery M, Newton A. (1981). Regulation of periodic protein synthesis in the cell 
cycle: control of initiation and termination of flagellar gene expression. Cell 24:49–57. 
 

78. Siam R, Marczynski GT. (2000). Cell cycle regulator phosphorylation stimulates two 
distinct modes of binding at a chromosome replication origin. EMBO J. 19:1138–47. 
 

79. Simon R, Priefer U, Pühler A. (1983). A broad host range mobilization system for in 
vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. 
Bio/Technology 1:784–791. 

 
80. Skerker JM. & Laub MT. (2004). Cell-cycle progression and the generation of 

asymmetry in Caulobacter crescentus. Nat Rev Microbiol 2, 325-37. 
 



CHAPTER  I 

67 
 

81. Skerker JM, Prasol MS, Perchuk BS, Biondi EG, Laub MT. (2005).  Two-component 
signal transduction pathways regulating growth and cell cycle progression in a 
bacterium: a system-level analysis. PLoS Biol. 3(10):e334.  
 

82. Skerker JM, Shapiro L. (2000). Identification and cell cycle control of a novel pilus 
system in Caulobacter crescentus. EMBO J. 19:3223–34. 
 

83. Spratt, B. G., P. J. Hedge, S. te Heesen, A. Edelman, and J. K. Broome-Smith. (1986). 
Kanamycin-resistant vectors that are analogues of plasmids pUC8, pUC9, pEMBL8 
and pEMBL9. Gene 41:337-342. 
 

84. Stephens C, Reisenauer A, Wright R, Shapiro L. (1996). A cell cycle-regulated 
bacterial DNA methyltransferase is essential for viability. Proc. Natl. Acad. Sci. USA 
93:1210–14. 
 

85. Stephens CM, Shapiro L. (1993). An unusual promoter controls cell-cycle regulation 
and dependence on DNA replication of the Caulobacter fliLM early flagellar operon. 
Mol. Microbiol. 9:1169–79. 
 

86. Stephens CM, Zweiger G, Shapiro L. (1995). Coordinate cell cycle control of a 
Caulobacter DNA methyltransferase and the flagellar genetic hierarchy. J. Bacteriol. 
177:1662–69. 
 

87. Stock AM, Robinson VL, Goudreau PN. (2000). Two-component signal transduction. 
Annu. Rev. Biochem. 69:183–215. 
 

88. Tatusov RL, Galperin MY, Natale DA, Koonin EV. (2000). The COG database: a tool 
for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 
28(1):33-6. 
 

89. Timmers AC, Auriac MC, and Truchet G. (1999). Refined analysis of early symbiotic 
steps of the Rhizobium-Medicago interaction in relationship with microtubular 
cytoskeleton rearrangements. Development 126: 3617-3628. 
 

90. van Rhijn P and Vanderleyden J. (1995). The Rhizobium-plant symbiosis. Microbiol. 
Rev. 59: 124-142. 
 

91. Vasse J, de Billy F, Camut S and Truchet G. (1990). Correlation between 
ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J. 
Bacteriol. 172: 4295-4306. 
 



CHAPTER  I 

68 
 

92. West L, Yang D and Stephens C. (2002). Use of the Caulobacter crescentus genome 
sequence to develop a method for systematic genetic mapping. J. Bacteriol. 
184:2155–2166. 
 

93. Wheeler RT and Shapiro L. (1999). Differential localization of two histidine kinases 
controlling bacterial cell differentiation. Mol. Cell. 4, 683–694. 
 

94. Wolanin PM, Thomason PA, Stock JB. (2002). Histidine protein kinases: key signal 
transducers outside the animal kingdom. Genome Biol. 3:3013.1–8. 
 

95. Wortinger M, Sackett MJ and Brun YV. (2002). CtrA mediates a DNA replication 
checkpoint that prevents cell division in Caulobacter crescentus. EMBO J. 19, 4503–
4512. 
 

96. Young JM, Kuykendall LD, Martínez-Romero E, Kerr A, Sawada H. (2001). A revision 
of Rhizobium Frank 1889, with an emended description of the genus, and the 
inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de 
Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. 
rubi, R. undicola and R. vitis. Int. J. Syst. Evol. Microbiol. 51(1):89-103. 
 

97. Zhuang WY, Shapiro L. (1995). Caulobacter FliQ and FliR membrane proteins, 
required for flagellar biogenesis and cell division, belong to a family of virulence 
factor export proteins. J. Bacteriol. 177: 343–56. 
 

98. Zweiger G, Marczynski G, Shapiro L. (1994). A Caulobacter DNA methyltransferases 
that functions only in the predivisional cell. J. Mol. Biol. 235:472–85. 
 



CHAPTER  I 

69 
 

Appendix A 

CtrA motif found using AlignAce (Roth et al., 1998) used to characterize the CtrA regulon in 

the alphas. The known consensus sequence is TTAANNNNNNNTTAA(C). We have obtained a 

matrix that contains the known consensus and moreover is characterized by the presence of 

a conserved G (in bold) that has not been recognized in previous works.  

 

  A C G T 
1 T 0.1064 0.0213 0.1915 0.6809 
2 T 0.1064 0.1915 0.01 0.7021 
3 A 0.8298 0.1277 0.01 0.0426 
4 A 0.5957 0.1064 0.2979 0.01 
5 N 0.2128 0.2553 0.2766 0.2553 
6 N 0.383 0.234 0.234 0.1489 
7 N 0.1277 0.234 0.383 0.2553 
8 N 0.2766 0.2128 0.2553 0.2553 
9 N 0.234 0.2128 0.2128 0.3404 
10 N 0.2128 0.4681 0.2128 0.1064 
11 G 0.2553 0.01 0.7447 0.01 
12 T 0.01 0.01 0.0426 0.9574 
13 T 0.1277 0.0426 0.01 0.8298 
14 A 0.8723 0.0426 0.0213 0.0638 
15 A 0.97 0.01 0.01 0.01 
16 C 0.01 0.8723 0.1277 0.01 
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APPENDIX B 

CtrA regulon of S. meliloti 

Gene Name Function Strand COG cat.* N occurrences* Max Z-score** 
SMb21524 septum formation inhibitor - - 4 4,56661912 
SMc00776 PUTATIVE SENSOR HISTIDINE KINASE PROTEIN - COG0642T 2 4,43747328 
SMc00777 hypothetical protein + - 2 4,43747328 
SMc03835 PUTATIVE 2'-5' RNA LIGASE PROTEIN - COG1514J 3 4,01501827 
SMc00639 PUTATIVE HEAT RESISTANT AGGLUTININ 1 SIGNAL PEPTIDE PROTEIN - COG3637M 5 3,93936706 
SMc03241 hypothetical protein - - 5 3,91775327 
SMc03040 FLAGELLIN PROTEIN + COG1344N 6 3,78367284 
SMc02051 hypothetical protein - COG5457S 4 3,75992168 
SMc03143 hypothetical protein - - 6 3,71678641 
SMc03808 PUTATIVE CELL DIVISION TRANSMEMBRANE PROTEIN + COG1674D 2 3,69106496 

SMc02463 
PROBABLE SUCCINATE DEHYDROGENASE CYTOCHROME B-556 SUBUNIT 
TRANSMEMBRANE PROTEIN - COG2009C 2 3,65951879 

SMc03225 HYPOTHETICAL/UNKNOWN PROTEIN + - 3 3,65951879 
SMb20343 putative aldehyde dehydrogenase subunit protein - COG2080C 2 3,6109561 
SMc00718 hypothetical protein - - 5 3,57065126 
SMc00717 PUTATIVE ATP-BINDING ABC TRANSPORTER PROTEIN + COG2884D 5 3,57065126 
SMc03046 PUTATIVE TRANSCRIPTION REGULATOR PROTEIN + COG0745TK 5 3,53737303 

SMc01335 
PROBABLE N-ACETYLMURAMOYL-L-ALANINE AMIDASE AMIC PRECURSOR 
TRANSMEMBRANE PROTEIN + COG0860M 1 3,47637249 

SMc01163 PUTATIVE OXIDOREDUCTASE PROTEIN - COG0673R 2 3,43319255 
SMc01162 hypothetical protein + COG0121R 2 3,43319255 
SMc00638 PUTATIVE HEAT RESISTANT AGGLUTININ 1 PROTEIN - COG3637M 3 3,43026976 
SMb20652 putative asparagine synthetase protein - COG0367E 3 3,40065887 
SMb20654 hypothetical protein + - 3 3,40065887 
SMc00120 hypothetical protein - - 2 3,38741119 
SMc00062 hypothetical protein + COG4991S 2 3,38741119 
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SMc02396 PROBABLE OUTER MEMBRANE PROTEIN + - 3 3,28394945 
SMc00100 hypothetical protein - COG0433R 2 3,269338 
SMc00041 hypothetical protein + - 2 3,269338 
SMc01871 D-alanine--D-alanine ligase - COG1181M 3 3,26840646 
SMc02229 PUTATIVE ACYL-COA DEHYDROGENASE PROTEIN - COG1960I 4 3,26654853 
SMc02230 hypothetical protein + - 4 3,26654853 
SMc01563 RNA polymerase sigma factor RpoD - COG0568K 2 3,25759412 
SMb20909 hypothetical protein - - 1 3,22246774 
SMc02855 hypothetical protein - COG0697GER 2 3,21416359 
SMc02856 PUTATIVE PENICILLIN-BINDING PROTEIN + COG0744M 3 3,21416359 
SMa1016 hypothetical protein - COG1835I 1 3,1588988 
SMa1018 hypothetical protein + - 1 3,1588988 
SMc00469 PUTATIVE DNAK SUPPRESOR PROTEIN - COG1734T 3 3,14727716 
SMc00468 hypothetical protein + COG2062T 3 3,14727716 
SMb20039 putative transcriptional regulator protein - COG1167KE 1 3,09353098 
SMb20040 hypothetical protein TRANSMEMBRANE + - 1 3,09353098 
SMc02139 hypothetical protein - - 1 3,06239912 

SMc02138 
bifunctional N-succinyldiaminopimelate-aminotransferase/acetylornithine 
transaminase protein + COG4992E 1 3,06239912 

SMc00360 hypothetical protein - COG3672S 3 3,06237575 
SMc00743 hypothetical protein + COG2244R 3 3,0578412 
SMc04112 PUTATIVE PILUS ASSEMBLY SIGNAL PEPTIDE PROTEIN + - 1 3,03244941 
SMc02060 LIPOPROTEIN PRECURSOR + COG0739M 3 3,02977047 
SMa0794 hypothetical protein + COG2141C 1 3,01931142 
SMc01000 hypothetical protein - - 1 3,01333324 
SMc01001 hypothetical protein + COG0705R 1 3,01333324 
SMc00289 PUTATIVE COLD SHOCK TRANSCRIPTION REGULATOR PROTEIN - - 1 3,00773889 
SMc00290 PROBABLE LACTOYLGLUTATHIONE LYASE METHYLGLYOXALASE PROTEIN + COG0346E 1 3,00773889 
SMb20303 hypothetical protein + - 1 3,00151887 
SMb20302 hypothetical protein - - 2 3,00151887 
SMa1097 hypothetical protein - - 1 2,99571371 
SMa1099 Putative CycB1 cytochrome c-552 precursor + - 1 2,99571371 
SMb20724 hypothetical protein + COG3181S 2 2,99205881 
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SMc03037 FLAGELLIN A PROTEIN + COG1344N 2 2,98191083 
SMc00456 hypothetical protein - - 6 2,961406 
SMc00059 PUTATIVE SENSOR HISTIDINE KINASE PROTEIN + COG0642T 6 2,961406 
SMa2219 probable decarboxylase + COG0163H 4 2,94670394 
SMb20808 putative membrane-anchored protein - - 1 2,94320344 

SMb20809 
putative protein involved in assembly, operation or regulation of an export 
machinery for a cell surface saccharide + 

COG0794M,COG0
517R 1 2,94320344 

SMb21244 putative membrane protein, similar to putative polysaccharide transporter - COG2244R 3 2,91345601 
SMb21245 putative OMA family outer membrane protein precursor, similar to ExoF + - 3 2,91345601 
SMc04113 PUTATIVE PILUS ASSEMBLY TRANSMEMBRANE PROTEIN + COG4960OU 3 2,91111496 
SMc04115 hypothetical protein - COG4964U 4 2,91111496 
SMb20128 putative deaminase protein - COG0402FR 3 2,9074106 
SMb20129 putative transcriptional regulator protein + COG1802K 3 2,9074106 
SMc00584 hypothetical protein - - 3 2,90458254 
SMc00585 leucyl aminopeptidase + - 3 2,90458254 
SMc02278 HYPOTHETICAL UNKNOWN TRANSMEMBRANE PROTEIN - - 1 2,90108708 
SMc02279 HYPOTHETICAL SIGNAL PEPTIDE PROTEIN + - 1 2,90108708 
SMc01358 hypothetical protein - COG0679R 4 2,89719129 
SMc01356 hypothetical protein + - 4 2,89719129 
SMc01320 50S ribosomal protein L1 + - 1 2,89380683 
SMc03983 PROBABLE FRUCTOSE-BISPHOSPHATE ALDOLASE CLASS I PROTEIN + COG3588G 1 2,87422394 
SMb21511 putative plasmid stability protein + COG1487R 2 2,86848851 
SMc02369 PUTATIVE SENSOR HISTIDINE KINASE TRANSMEMBRANE PROTEIN - COG0642T 2 2,85852348 
SMb21597 putative exported oxidoreductase protein - COG0673R 2 2,85606652 
SMb21598 putative transcriptional regulator protein + COG1609K 2 2,85606652 
SMc00191 hypothetical protein - - 4 2,84217825 
SMc00190 hypothetical protein + - 4 2,84217825 
SMb21513 putative cell-surface polysaccharide exporter protein, PST family - COG2244R 2 2,83692492 
SMb21514 putative modification methylase protein + COG2890J 2 2,83692492 
SMb20483 putative catabolite repressor protein - COG1609K 1 2,83070779 
SMb20484 putative ABC transporter periplasmic sugar-binding protein + COG1879G 1 2,83070779 
SMb21080 putative response regulator protein + COG2197TK 2 2,82523915 
SMc02678 hypothetical protein - COG5465S 1 2,8203079 
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SMb21599 hypothetical protein + - 3 2,8162699 
SMc01579 hypothetical protein - COG1192D 5 2,81248038 
SMc00137 hypothetical protein + - 1 2,79646594 
SMb20372 hypothetical protein - COG1593G 1 2,7704092 
SMc00655 hypothetical protein - - 6 2,75956534 

SMc00654 
RESPONSE REGULATOR,CONTROLS CHROMOSOMAL REPLICATION INITIATION 
PROTEIN + COG0745TK 8 2,75956534 

SMb21008 putative transcriptional regulator, arsR family protein - COG0640K 2 2,75527754 
SMc03989 hypothetical protein + - 4 2,74134294 
SMc02376 PUTATIVE HEAT SHOCK PROTEIN - COG0443O 6 2,73999143 

SMc02377 
PROBABLE ELECTRON TRANSFER FLAVOPROTEIN-UBIQUINONE 
OXIDOREDUCTASE + COG0644C 6 2,73999143 

SMc03889 PUTATIVE TRANSPORT PROTEIN - - 1 2,7388663 
SMb20048 putative transcriptional regulator protein + COG2188K 3 2,73048559 
SMb20893 probable sugar uptake ABC transporter permease protein - COG4214G 2 2,7129156 
SMb21334 hypothetical exported glutamine-rich protein + - 1 2,71216685 

SMc00729 
PUTATIVE ELECTRON TRANSFER FLAVOPROTEIN BETA-SUBUNIT BETA-ETF 
FLAVOPROTEIN SMALL SUBUNIT + COG2086C 2 2,70938165 

SMa0473 hypothetical protein + COG3668R 1 2,70548082 
SMc02729 hypothetical protein - COG5345S 1 2,6980267 
SMc00651 hypothetical protein + - 3 2,68713613 
SMc00652 hypothetical protein - - 4 2,68713613 
SMb20403 putative oxidoreductase subunit protein + COG2080C 2 2,68136484 
SMc00003 PUTATIVE CHAPERONE PROTEIN + COG2214O 2 2,67892396 

SMc01794 
PUTATIVE POLYSACCHARIDE EXPORT SYSTEM PERIPLASMIC TRANSMEMBRANE 
PROTEIN - - 6 2,67547566 

SMc01795 
PUTATIVE POLYSACCHARIDE SYNTHESIS/TRANSPORT TRANSMEMBRANE 
PROTEIN + 

COG0489D,COG32
06M 6 2,67547566 

SMa0063 putative GntR-family transcriptional regulator + COG2186K 4 2,67547126 
SMc02823 PUTATIVE TRANSPOSASE PROTEIN + COG3385L 1 2,6674161 
SMc00084 HYPOTHETICAL/UNKNOWN PROTEIN - - 1 2,66116459 
SMc00026 hypothetical protein + - 1 2,66116459 
SMa2000 Putative ABC transporter, periplasmic solute-binding protein - COG1879G 3 2,64433659 
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SMa2002 hypothetical protein + COG2755E 3 2,64433659 
SMb20245 putative NDP-glucose dehydrataseepimerase protein - COG0451MG 1 2,6341749 
SMb20246 putative oxidoreductase protein + COG1063ER 1 2,6341749 
SMc02660 PUTATIVE TOXIN-ACTIVATING LYSINE-ACYLTRANSFERASE PROTEIN + COG2994O 1 2,63334309 
SMc02447 hypothetical protein - - 2 2,63289764 
SMc01014 hypothetical protein - COG2301G 4 2,63148948 
SMc01015 hypothetical protein + - 4 2,63148948 
SMb20560 hypothetical protein - COG2608P 1 2,62947474 
SMc02556 hypothetical protein - - 3 2,62643811 
SMc02848 hypothetical protein - COG3807S 2 2,62590809 
SMc02849 2-hydroxyacid dehydrogenase + COG1052CHR 2 2,62590809 
SMa1362 Putative inner-membrane permease - COG0395G 2 2,62343957 
SMa1724 hypothetical protein - COG1335Q 1 2,62284354 
SMa1725 putative AraC-family transcriptional regulator + COG4977K 1 2,62284354 
SMa0774 NoeB host specific nodulation protein + - 1 2,59956795 

SMc04018 PROBABLE 5'-NUCLEOTIDASE PRECURSOR (SIGNAL PEPTIDE) PROTEIN + 
COG1652S,COG07

37F 2 2,59943951 
SMb21523 putative cell division inhibitor protein - COG2894D 1 2,59736474 

SMc01148 hypothetical protein + 
COG2764S,COG43

19S 1 2,59398618 
SMc00548 CONSERVED HYPOTHETICAL SIGNAL PEPTIDE PROTEIN + - 1 2,59377766 
SMc01237 ribonucleotide-diphosphate reductase subunit alpha - COG0209F 7 2,58694456 
SMc00731 hypothetical protein + COG2096S 1 2,58518298 

SMb21506 
putative auxiliar protein involved in export of cell surface polysaccharides, 
MPA1 family without cytosolic domain, slightly exoP-like - COG3206M 2 2,58243519 

SMb21507 putative amino acid transporter, exporter protein + COG1280E 2 2,58243519 
SMc00336 hypothetical protein - - 2 2,5797238 
SMc00337 HYPOTHETICAL/UNKNOWN PROTEIN + - 2 2,5797238 
SMc00932 DNA mismatch repair protein - COG0323L 3 2,57213917 
SMc00888 PUTATIVE CONTAINS A 2-COMPONENT RECEIVER DOMAIN PROTEIN + - 3 2,57213917 
SMc02094 PUTATIVE OUTER MEMBRANE TRANSMEMBRANE PROTEIN + COG4775M 3 2,57119489 
SMa0252 hypothetical protein + COG1638G 2 2,55600132 
SMb20596 hypothetical protein - - 2 2,55213013 
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SMb20597 hypothetical protein + COG2259S 2 2,55213013 
SMc03039 PROBABLE FLAGELLIN D PROTEIN + COG1344N 4 2,54774297 

SMb20856 
putative sugar uptake ABC transporter periplasmic solute-binding protein 
precursor - COG1879G 2 2,53779988 

SMb20857 glucose-6-phosphate isomerase + COG2140GR 2 2,53779988 
SMb20881 hypothetical protein - COG3019R 1 2,53768696 
SMc03832 CONSERVED HYPOTHETICAL SIGNAL PEPTIDE PROTEIN - - 2 2,53031109 
SMc01029 hypothetical protein + COG2919D 2 2,53003428 
SMc03942 hypothetical protein - - 1 2,52836503 
SMc03943 hypothetical protein + COG2071R 1 2,52836503 
SMa1746 putative iron uptake protein - COG0614P 2 2,52688964 
SMa1747 putative ferrichrome-iron receptor + COG1629P 2 2,52688964 
SMc02150 hypothetical protein - COG2070R 2 2,51913877 
SMc02149 hypothetical protein + - 2 2,51913877 
SMc00989 HYPOTHETICAL SIGNAL PEPTIDE PROTEIN + - 2 2,51832493 
SMc01494 PUTATIVE PHOSPHOSERINE PHOSPHATASE PROTEIN + COG0560E 1 2,51829655 
SMc02203 hypothetical protein + - 1 2,50871262 
SMb20905 putative transposase protein - COG2801L 2 2,50581768 
SMb20906 hypothetical protein + - 2 2,50581768 
SMa2367 putative ABC transporter, permease + COG4603R 2 2,5028666 
SMb20907 hypothetical protein + - 3 2,50249839 

* COG categorists refer to Tatusov et al. (2000); ** Number of CtrA binding sites; ***See Materials and Methods (E.2.19). 
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A. INTRODUCTION 

 

A.1. HORIZONTAL GENE TRANSFER (HGT) 

Horizontal gene transfer (HGT) represents an important source of genetic variability in 

bacteria. The first evidence that HGT occurred was the recognition that virulence 

determinants could be transferred between pneumococci in infected mice, a phenomenon 

that was later shown to be mediated by the uptake of the genetic material DNA (Griffith, 

1928). In laboratory, horizontal transfer of genetic material between different bacteria has 

been detected in a wide variety of several bacterial species and genera. There are also data 

demonstrating HGT between phylogenetically very distant organisms such as Bacteria and 

Eucaria. In fact, the transfer of part of the Ti plasmid DNA from Agrobacterium tumifaciens 

to plants (reviewed in Zupan and Zambryski, 1995) and to yeast (Bundock and Hooykaas, 

1996), demonstrated the horizontal transfer of genes between different phylogenetic 

kingdoms.  

Each HGT event takes place in, at least, three consecutive fundamental steps: 

- release of DNA from an organism called Donor. 

- intracellular acquisition of DNA from the receiving organism, called Recipient. 

- integration of the exogenous DNA in the genome of the Recipient. 

Three different mechanisms of HGT have been identified in bacteria: conjugation, 

transformation and transduction. These DNA transfer methods enhanced our understanding 

of bacterial molecular genetics and provided elegant tools for the development of genetic 

engineering technology. 

 

A.1.1. Conjugation 

Conjugation is a cell contact-dependent DNA transfer mechanism found in most bacterial 

genera. Conjugative transfer is mediated by cell-to-cell junctions through which DNA can 

pass (Figure 1). Conjugative transfer systems are frequently associated with plasmids, 

probably because, to evolve, they would normally need the genetic element of which they 

are a part to be completely transferred to the recipient before the genes for the conjugative 

system can be reconstituted in an active form (Thomas and Nielsen, 1995). A plasmid is an 

autonomously replicating genetic element that, if it enters in a host cells as complete 

double-stranded, can remove the need for a foreign gene to integrate into the recipient 
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chromosome to become established. Conjugation may be of several types: a) Transfer of a 

self-transmissible conjugative plasmid. The classic examples are the F-plasmid and plasmid 

RP4 of E. coli. b) Mobilization, whereby a non-self-transmissible plasmid, which nonetheless 

contains an origin of conjugal transfer (oriT), can be transferred by the action of a 

conjugative plasmid. An example is the mobilization of the IncQ plasmid RSF1010 by 

conjugative IncP1 plasmids (Derbyshire et al., 1987). (c) Cointegration, whereby two 

different circular plasmids fuse to become one. Thus, a non self-transmissible non-

mobilizable plasmid may nonetheless be sexually transferred due to the action of its 

cointegrated self-transmissible partner. Conjugation may also be effected by conjugative 

transposons (Clewell et al., 1995). Many plasmids and conjugative transposons are of very 

wide host range. For example, the non-conjugative, mobilizable IncQ plasmids (e.g., 

RSF1010) have an extremely broad host spectrum and RP4, and conjugative transposons, 

such as Tn916, are also of very wide host range (Clewell et al.,1995; Salyers and Shoemaker, 

1996). 

 

 
Figure 1. Bacterial 
conjugation. The donor 
cell is on the left side and 
the recipient cell is on 
the right side. It is 
evident the conjugative 
pilus connecting donor 
with recipient. 

 

 

 

 

A.1.2. Transformation 

Transformation is the process involving the uptake and incorporation of naked DNA (Figure 

2). Many species of bacteria are naturally transformable as reported by Lorenz and 

Wackernagel (1994). Several species (e.g., Streptococcus pneumoniae) become competent in 

the natural course of their life cycle (Lunsford, 1998). Others (e.g., Neisseria gonorrhoeae) 

are always in a competent state (Lorenz and Wackernagel, 1994). Some species (e.g., E. coli) 

can be induced to take up DNA by a number of chemical or physical processes including 
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treatment with CaCl2, EDTA, temperature shifts, electro-shocks, and protoplast formation. 

Despite its sensitivity to nucleases, DNA is relatively common in almost all environments and 

may be excreted by living bacteria or be liberated during autolysis (Lorenz and Wackernagel, 

1994). Environmental DNA can be stabilized by adsorption to sand and clay particles, thereby 

becoming 100- to 1000-fold more resistant to DNase. Such adsorbed DNA may retain its 

transforming ability for weeks or even months (Romanowski et al., 1993; Khanna and 

Stotzky, 1992; Chamier et al., 1993; Lorenz and Wackernagel, 1994). The potential dilution of 

DNA in aqueous environments may seem a barrier to interactions with recipient cells. 

However, Baur et al. (1996) have pointed out that many genetic interactions may take place 

in a biofilm, rather than between pelagic bacteria. Transformation has been demonstrated in 

different bacteria in a variety of natural ecosystems. Stewart and Sinigalliano (1991) 

demonstrated transformation of Pseudomonas stutzeri in sterile or non sterile marine 

sediments. Williams et al. (1996) demonstrated that transformation could take place in 

Acinetobacter calcoaceticus growing in biofilms attached to river stones and incubated in 

natural rivers. Sikorski et al., 1988 demonstrated transformation of P. stutzeri in soil 

microcosm. 

 

 

 

Figure 2. Bacterial transformation. 1) 
DNA donor fragment bind to protein 
on cell surface. 2) Donor DNA 
fragment is transported into host cell 
as single strand. 3) Single stranded 
donor DNA is integrated in the 
genome of the host. 4) Donor DNA is 
degraded and not integrated in the 
genome.   
 

 

 

 

 

 

 



CHAPTER  II 

   82 
 

A.1.3. Transduction 

In the process of transduction, bacterial genes are incorporated by bacteriophage particles 

and transferred to another bacterium. Transduction may be either “generalized” (e.g., by 

coli-phage P1), whereby any bacterial gene may be transferred, or “specialized” (e.g., by coli-

phage lambda), where only genes located near the site of prophage integration are 

transferred. Bacteriophages have a restricted host range, sometimes being limited to a 

single bacterial species or even a strain. Furthermore, bacteria may mutate to become 

resistant (incapable of phage adsorption). For these reasons, transduction would seem an 

un-unlikely candidate for gene transfer in the environment. However, phages are very 

common in the environment (Jiang and Paul, 1998) and are relatively stable, being protected 

by a protein coat. Phages are also more compact and thus more diffusible than naked DNA. 

Finally, temperate phages may continue to coexist with the bacteria in the form of lysogens 

and be liberated in some distant future, in response to environmental factors. 

 

A.1.4. HGT and speciation 

The process of speciation can start only when genetic exchange is interrupted between two 

populations (Matic et al., 1996). Thus, the study of genetic isolation between closely related 

bacterial species might indicate what triggered the process of speciation. One theory 

considers isolation to be an accidental by-product of genetic divergence. Another regards 

isolation as a product of natural selection. The two theories for the origin of genetic isolation 

are not mutually exclusive. The degree of genetic isolation in nature between bacterial 

species may depend on several factors: differences in their microhabitats, the host ranges of 

genetic exchange vectors, and restriction-modification systems, as well as DNA sequence 

divergences and functional incompatibilities. It is not easy to identify functions involved in 

the initial phases of speciation because other functions contributing to genetic isolation may 

become fixed after speciation is complete (Matic et al., 1996). Barriers, such as different 

microhabitats and the host ranges of genetic exchange vectors, seem to slow down DNA 

transmission rather than to block it. The large overlap in host range, among conjugal 

plasmids, allows sequential DNA transmission among almost all bacterial species (Amabile-

Cuevas and Chicurel, 1992). Transformation and transduction may provide routes for gene 

transfer between conjugationally incompatible groups. The promiscuous transfer of DNA 

among virtually all eubacteria, yeasts and even plant cells suggests that there is no strong 
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selection against it (Heinemann, 1991). The major limitation for interspecies gene transfer 

seems to consist of barriers that block the establishment of the acquired genetic 

information. 

 

A.2. BARRIERS TO HGT 

Horizontal gene transfer is an important mechanism of bacterial genome evolution 

(Gogarten et al., 2002). Within this context, barriers limiting gene transfer induce bacterial 

genetic isolation (Matic et al., 1996).  

Depending on the bacterial species involved and the gene-transfer mechanisms that are 

active, a number of processes limit transfer, uptake and stabilization of foreign DNA 

molecules in bacteria. Whereas in transformation, it is the recipient that has the more active 

role that promotes HGT, in conjugative transfer it is the donor that seems to have the 

positive role and, by contrast, the recipient often has a negative role, limiting entry or 

establishment of the incoming DNA. Factors that can reduce horizontal gene transfer 

between bacteria, besides geographical separation, are surface exclusion barriers, 

cytoplasmic barriers as endonuclease restriction, DNA divergence and homologous 

recombination (Matic et al., 1996; Berndt et al., 2003; Thomas & Nielsen, 2005). More space 

will be spent to explain the biology of restriction-modification systems since they are crucial 

in this work. 

 

A.2.1. Surface exclusion as a barrier 

Surface exclusion creates an effective barrier against conjugative transfer into bacterial cells 

that already carry the genes for a closely related transfer apparatus (Frost et al., 1984). 

Surface exclusion is widespread (but not universal) in conjugation systems of both Gram-

negative (Haase et al., 1996; Hochhut et al., 2001; Pohlman et al., 1994) and Gram-positive 

elements (Possoz et al., 2003). It might be that surface exclusion has not evolved as a barrier 

to promote recombinational isolation of plasmids, but is more related to promoting the 

breakdown of mating pairs after gene transfer has taken place and release of the recipient 

to disperse the plasmid to new potential recipients (Thomas and Nielsen, 2005). 
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A.2.2. Barriers to plasmid replication and establishment in a heterologous host. 

A key property that allows a plasmid to promote horizontal transfer of genes that have no 

orthologue in the recipient genome is its ability to replicate and therefore avoid the need for 

recombination into a replicon like the chromosome. Some plasmids have a broad host range, 

whereas others are more limited (Thomas and Nielsen, 2005). The broad host range of IncQ 

plasmids like RSF1010 could be due to the plasmid encoding three replication proteins — an 

origin activation protein, RepA; a HELICASE, RepB; and a primase, RepC (Scherzinger et al., 

1991). Moreover its segregational stability is largely due to its copy number (Becker and 

Meyer, 1997). The absence of lagging strand synthesis, and therefore accumulation of single-

stranded DNA-replication intermediates, puts constraints on the amount of DNA that these 

plasmids can acquire and therefore transfer horizontally without becoming 

recombinationally unstable. An IncG (IncP-6) plasmid, called Rms149, the DNA sequence of 

which was determined (Haines et al., 2005), contains the IncQ-family mob genes but has 

acquired a different, more typical low-copy-number θ replicon with linked active partitioning 

genes, explaining its ability to have expanded to 57 kb through insertion of multiple 

transposable elements. Studies on plasmids with narrower host ranges have revealed 

various limitations to successful replication. For plasmid F of E. coli, the barrier to replication 

in Pseudomonas species seems to be due to the inability of its replication protein, RepE, to 

effectively recruit DnaB to complete the activation of the replication origin after the initial 

RepE–DnaA–ori complex has been formed (Zhong et al., 2005). For pPS10, originally from 

Pseudomonas syringae, the reason for the plasmid’s temperature-sensitive replication in E. 

coli is the lack of productive interactions between the plasmid-encoded Rep and DnaA, as 

indicated by mutations that allow replication at 37°C in E. coli mapping in either rep or dnaA 

(Maestro et al., 2002; Maestro et al., 2003). 

 

A.2.3. DNA divergence and homologous recombination 

To become replicable and stably inherited, chromosomal DNA transferred by HGT must 

become integrated into the recipient chromosome. The efficiency of integration by 

homologous recombination depends on the genomic sequence divergence between species. 

The increase in DNA sequence divergence has been shown to reduce the rate of 

transformation between Bacillus species (Zawadzki et al., 1995), and also to reduce the 

efficiency of recombination in E. coli (Shen and Huang, 1986). Recombination enzymes 
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appear to be highly selective for sequence identity only at the initial stage of the strand-

exchange process, which requires a minimal length of sequence identity below which 

recombination becomes inefficient (Shen and Huang, 1986). However, once initiated, strand 

exchange occurs despite large numbers of mismatches and even large insertions (DasGupta 

and Radding 1982; Bianchi and Radding, 1983). During this stage of recombination, fidelity is 

controlled by the mismatch-repair system. The mismatch repair system is a potent inhibitor 

of recombination between genomes of related bacterial species. The frequency of 

conjugational and transductional genetic exchange between E. coli and S. typhimurium is 

enhanced up to a thousand-fold when the MutHLSU mismatch-repair system is inactivated in 

recipients (Matic et al., 1995; Rayssiguier  et al., 1989). Also in P. stutzeri up-regulation of 

MutS can enforce sexual isolation and down-regulation can increase foreign DNA acquisition 

(Meier and Wackernagel, 2005). 

 

A.2.4. Restriction as a barrier 

Bacterial restriction-modification (RM) function as systems that attack foreign DNA entering 

the cell. DNA that is recognized as foreign because it does not have the same sequence 

specific chemical signatures can be broken into pieces by restriction endonucleases (Jeltsh, 

2003). The fact that DNA entering through conjugative transfer or natural transformation is 

single-stranded instead of double-stranded might provide some protection, and indeed, 

comparison with transformation frequencies of double-stranded DNA does confirm a greater 

ability to avoid destruction through the former mechanism (Lacks and Springhorn, 1984). 

Nevertheless, it is well established that the frequency of transconjugants can be reduced if 

the recipient has a restriction system to which the incoming plasmid is susceptible (Moser et 

al., 1993; Pinedo and Smets, 2005). Plasmids carrying genes encoding products that are 

known to interfere with the action of type I restriction systems can enter restriction-positive 

hosts more efficiently than plasmids without such anti-restriction systems (Belogurov et al., 

1992; Belogurov et al., 1993). Many plasmids carry restriction-modification systems 

(Kobayashi, 2001) and this can potentially affect transfer to new hosts. If the host DNA is not 

modified, it should therefore be susceptible to degradation by the newly introduced 

restriction endonuclease. In practice, expression of restriction-modification systems in a 

virgin host proceeds in such a way that the modification component of the system is active 

first (Nakayama and Kobayashi, 1998). 
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A.2.5. Restriction modification systems 

Typically, RM systems have enzymes responsible for two opposing activities: a restriction 

endonuclease (REase) that recognizes a specific DNA sequence for cleavage and a cognate 

methyltransferases (MTase) that confers protection from cleavage by methylation of 

adenine or cytosine bases within the same recognition sequence (Figure 3). REases recognize 

‘non-self’ DNA, such as that of phage and plasmids, by its lack of characteristic modification 

within specific recognition sites (Pingoud and Jeltsch, 2000). Foreign DNA is then inactivated 

by endonucleolytic cleavage. Generally, methylation of a specific cytosine or adenine within 

the recognition sequence confers protection from restriction. Host DNA is normally 

methylated by the MTase following replication, whereas invading non-self DNA is not. R-M 

systems are classified into four major groups according to their subunit composition, 

recognition site, cofactor requirement and cleavage position (Tock and Dryden. 2005). 

 

Figure 3. The function of R-M system. These enzymes recognize the methylation 
state of their specific target sequence. Fully methylated DNA (shown as two green 
circles on the target sequence on the host DNA) is recognized to be part of the 
bacterial genome. Hemimethylated DNA (a single green circle on host DNA target 
sequence) is recognized as newly replicated bacterial DNA, and the MTase (M) 
modifies the other strand by methylation. Invading DNA, for example a phage 
genome, generally lacks specific modification (red circles on the target sequence of 
phage DNA) and is recognized to be foreign by the REase (R) and cleaved into 
harmless fragments (from Tock and Dryen 2005). 
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Type I restriction-modification enzymes 

Type I RM enzymes are hetero-oligomeric complexes that typically contain two REase 

subunits that are required for DNA cleavage, one Specificity subunit (S) that specifies the 

DNA sequence recognized, and two MTase subunits that catalyze the methylation reaction 

(Dryden et al., 2001; Murray 2000). Depending upon the methylation status of DNA, this 

complex can function as either an REase or an MTase. Unmethylated DNA is targeted for 

restriction, hemi-methylated molecules are targeted for further methylation, and fully 

methylated DNA is immune to restriction (Vovis et al., 1974). 

Type II restriction-modification enzymes 

Most, but not all, type II R-M systems contain separate REase and MTase enzymes. The 

REase and MTase recognize the same DNA sequence, which is typically a 4–8 base pair (bp) 

palindrome. All Type II REases cleave within or adjacent to this specific DNA sequence to 

generate a defined restriction pattern of products (Pingoud and Jeltsch, 2000). Some Type II 

REases are active as homodimers, with each monomer cutting one strand in a coordinated 

fashion to generate double-strand breaks. Other Type II REases are able to act as monomers 

or tetramers, and there is evidence that many Type II REases must bind to two or more 

copies of their recognition site before the DNA is cleaved (Kruger et al., 1988; Halford and 

Marko, 2004). Type II MTases generally act as monomers to modify a specific base of their 

recognition sequence on each strand of the duplex (Sistla and Rao, 2004). 

Type III restriction-modification enzymes 

Type III RM enzymes are less complex but share many similarities with Type I R-M enzymes 

(Dryden et al., 2001). They are hetero-oligomers that consist of a modification (mod) 

subunit, which is required for substrate recognition and modification, and a restriction 

subunit (res), which is only active when associated in a res2mod2 complex (Janscak et al., 

2001). For cleavage to occur, a Type III RM enzyme must interact with two inversely oriented 

copies of its 5–6 bp asymmetric recognition sequence (Meisel et al., 1992). As with Type I R-

M enzymes, cleavage is preceded by DNA translocation during which two res2mod2 

complexes maintain contact with their recognition sequence (Dryden et al., 2001; Reich et 

al., 2004). Stalled DNA translocation and/or collision of res2mod2 complexes initiates 

cleavage by each monomer at a point that is 25–27 bases from the recognition site; one DNA 

strand is cut by each complex. In all known cases, Type III mod subunits are able to act 
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independently of their cognate res subunits. Type III R-M systems have been identified 

almost exclusively in phage and in Gram-negative bacteria. 

Type IV restriction-modification enzymes 

Type IV R-M enzymes are REases that will only cleave DNA substrates that have been 

modified, for example bases that have been methylated, hydroxymethylated and glucosyl-

hydroxymethylated. This enzyme detects two copies of a dinucleotide sequence, consisting 

of a purine followed by a cytosine methylated at either the N4 or the C5 position, which are 

separated by between 40 and 3000 nucleotides, and preferentially cuts 30 base pairs away 

from one of the sites (Sutherland et al., 1992). 

 

A.2.6. Evolutionary implications of RM systems 

Traditionally, RM systems are regarded as defense mechanism against bacteriophage 

infection. The efficiency of RM systems against phages is also documented by the occurrence 

of various anti-restriction defense mechanisms in phages, like incorporation of modified 

nucleotides, phage encoded multi-specific methyltransferases, and the reduction of the 

number of sites for RM systems in the DNA of many phages (Bickle and Kruger, 1993). In 

addition, conjugating plasmids can encode anti-restriction proteins (Velkov, 1999). 

On the other hand, RM systems never provide a full protection of a bacterial culture against 

bacteriophage infection (Arber and Dussoix, 1962). Population genetic experiments 

suggested that protection of bacteria is only a transient phenomenon and RM systems 

provide a significant selective value only under certain environmental conditions (Korona et 

al., 1993). Thus, although RM systems undoubtedly protect bacteria against bacteriophage 

infection to a certain degree, it remains questionable if this function can explain the 

enormous spreading of these biological systems in the prokaryotic world (Jeltsh, 2003). As 

reported above bacteria frequently exchange DNA among each other as well with organisms 

of different species, but maintaining the genetic uniqueness of species including the 

adaptations of each species to its special ecological niche requires genetic isolation to a 

certain degree. Furthermore, genetic isolation is a prerequisite to the evolution of new 

species, because only under conditions of genetic isolation a subpopulation is able to 

develop new biological properties. In bacteria, one way to achieve a genetic isolation is to 

control the uptake of DNA from the environment (Tortosa and Dubnau, 1999). As an 

alternative, the intracellular fate of DNA taken up can be regulated, which is the function of 
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RM systems. Moreover, bacteria evolved many different RM systems with different DNA 

recognition specificities. Thus, a function of RM systems in the maintenance of species 

identity explains why so many different RM systems are found in single bacterial species 

(Jeltsh, 2003). Such division of one species into different biotypes expressing mutually 

exclusive RM systems is an ideal starting point for a rapid adaptation to different ecological 

niches. It is interesting to note that under unfavorable environmental conditions, bacteria 

can shut down their RM systems (Velkov, 1999), which stimulates the uptake and integration 

of DNA. 

 

A.3. SINORHIZOBIUM MELILOTI  AND SINORHIZOBIUM MEDICAE 

Sinorhizobium meliloti and S. medicae are two phylogenetically closely-related species 

(Rome et al., 1996; Roumiantseva et al., 1999; Young et al., 2001) belonging to the family of 

Rhizobiaceae (alpha-proteobacteria) which live either free in soil or in symbiosis with 

leguminous plants, forming root nodules where they perform nitrogen fixation. 

 

A.3.1. Nitrogen fixation 

Nitrogen (N2) is one of the most abundant elements on Earth and together with hydrogen, 

oxygen and carbon, one of the most important components of macromolecules fundamental 

for the living cells. All of the nutritional nitrogen is obtained by humans and animals directly 

or indirectly from plants. Plants, in turn, acquire nitrogen from two principal sources: the 

soil, through commercial fertilizer and/or mineralization of organic material, and the 

atmosphere, through nitrogen fixation by bacteria (Vance, 2001). The process of biological 

nitrogen fixation is limited to prokaryotes. The prokaryotes that can fix nitrogen due to an 

evolutionarily conserved nitrogenase protein complex is diverse and contains both 

eubacteria and archaea (Zehr et al., 2003). Limiting factors in maintaining a high rate of 

nitrogen fixation are the large quantity of energy needed to break the N–N triple bond, and 

the high sensitivity of nitrogenase to oxygen. Different mechanisms have evolved to 

overcome this second limitation. For the anaerobic microorganisms (Clostridium) that 

predominate in waterlogged soils, where organic substrates are available but oxygen supply 

to the micro-environment of the bacteria is severely restricted, this is not problematic (Chen 

and Johnson, 1993). In cyanobacteria, nitrogen fixation occurs in special cells known as 

heterocysts which do not photosynthesize but are devoted solely to N2 fixation (Golden and 
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Yoon, 2003). The obligate aerobe Azotobacter protects the nitrogenase in two ways: 

producing special auxiliary proteins which cause nitrogenase to aggregate when exposed to 

oxygen and by very high respiratory rate that creates a nearly anoxygenic environment in 

the cytoplasm of the cells (Poole and Hill, 1997). The most efficient way of nitrogen fixation, 

however, is the symbiosis between bacteria and plants, where the plant supplies the carbon 

source for the reduction of nitrogen and at the same time, creates micro-anaerobic 

environment to protect the nitrogenase. Bacteria, in turn, provide the plant with the 

nitrogen in form of ammonia. This process is mostly restricted to a limited number of 

bacterial groups, including the genera Rhizobium, Mesorhizobium, Sinorhizobium (Ensifer), 

and Bradyrhizobium (collectively referred to as rhizobia), and Frankia. All these genera 

except Frankia belong to the Rhizobiacae family in the alpha-proteobacteria, and establish 

symbiosis with plants from the family of Fabacae (the leguminous plants). Frankia is an 

actinomycete that enters symbiosis with plants from the families Rosaceae, Casuarinaceae, 

Betulaceae, Myricaceae, Rhamnaceae, Datisticaceae, Eleganaceae and Coriariaceae (Gage, 

2004). Sinorhizobium meliloti and S. medicae are organism, from the genus Sinorhizobium, 

able to establish nitrogen fixing symbiosis with Fabacae plants of genera Medicago, 

Melilotus and Trigonella (Figure 4). 
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Figure 4. Schematic representation of the interaction between Sinorhizobium and 
the host plant. (A) Recognition: flavonoids produced by root cells are released in 
the soil and induce the production of nodulation factor (NF) by bacterial cells. NF 
interact with specific receptors present on the plant root cells. (B) Bacterial cells 
enter in the root hair and initiate the infection process. (C) Bacterial cells grow and 
divide themselves extending the infection thread. (D) The infection thread 
penetrates in the root where plant cells can pick up within themselves the 
bacterial cells. Within plant cells bacteria can differentiate in bacteroids initiating 
the nitrogen fixation process. (E) Root nodules (Jones et al., 2007a). 
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A.3.2. S. meliloti and S. medicae as a model 

Among the various symbiotic bacteria that are used to study the interaction between 

Fabaceae and Rhizobia, Sinorhizobium sp. interacting with Medicago sp. are particularly 

interesting. Sinorhizobium meliloti and S. medicae are, in fact, the sole symbionts of 

Medicago species with the exception of Medicago ruthenica (de Lajudie et al., 1994; Rome 

et al., 1996; van Berkum et al., 1998). Medicago species can be clustered in four groups 

depending on their symbiotic partners: a) species that establish efficient symbiosis with both 

S. meliloti and S. medicae, such as M. sativa alfalfa, or M. truncatula; b) species that interact 

solely with S. medicae, such as M. polymorpha; c) species that interact with specific S. 

meliloti biovars, such as M. laciniata with S. meliloti bv. medicaginis (Villegas et al., 2006) or 

M. rigiduloides (Materon 1991); d) M. ruthenica, which is specifically associated to a biovar 

of Rhizobium gallicum (Silva et al., 2005). Considering phylogeny, S. meliloti and S. medicae 

are closely related (Figure 5) and their genome show the same tripartite architecture (one 

chromosome, and two megaplasmids) (Roumiantseva et al., 1999) and a relative DNA 

homology value of 60% (Rome et al., 1996). The complete genome sequence of both species 

is available (Galibert et al., 2001, http://genome.jgi-

psf.org/finished_microbes/sinme/sinme.home.html). Their genome comprises a 

chromosome and two megaplasmids called pSymA and pSymB. The sizes of these different 

replication units are respectively 3.65 Mb, 1.35 Mb and 1.68 Mb in S. meliloti strain 1021 and 

3,78 Mb, 1,57 Mb and 1,24 Mb in S. medicae strain WSM419, that has a one more smaller 

plasmid of 0,22 Mb. Furthermore, these replication units display distinct functional features. 

Indeed, whereas housekeeping genes are located on the chromosome, genes involved in 

secondary metabolic pathways are located on both megaplasmids, pSymA harbouring also 

nearly all symbiotic genes. Thus, the two nitrogen fixing bacteria S. meliloti and S. medicae 

appear to be an ideal biological model for such studies, including studies about HGT in 

sympatry. 

 

A.3.3. HGT between S. meliloti and S. medicae 

Host selective pressures and lateral gene transfers are key mechanisms that shape the 

genetic population structure of symbiotic microorganisms (Tibayrenc 1996). Several studies 

focused on the genetic structure of natural population have demonstrated that the genetic 

structure of Sinorhizobium is strongly influenced by HGT (Maynard Smith et al. 1993; Bailly et 
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al., 2006; Bailly et al., 2007; Sun et al., 2006; Van Berkum et al., 2006). Studies focused on 

genetic structure of both S. meliloti and S. medicae, show that, considering HGT, 

Sinorhizobium strains are separated on the bases of the species (Bailly et al., 2007; Bailly et 

al., 2006; Biondi et al., 2003). On the other hand, within each species, there are evidence of 

intra-specific gene flow but strains are clustered in separated subgroups, not related by gene 

flow (Bailly et al., 2007; Bailly et al., 2006; Biondi et al., 2003). This observations reveal a 

complicate scenario with an elaborate web of gene exchange linkages between 

Sinorhizobium strains consisting with the presence of barrier to HGT. 

Figure 5. Phylogenetic tree of 16S rDNA of Rhizobiaceae and their relatives from 
Young et al. (2001). Sinorhizobium meliloti and Sinorhizobium medicae, indicated 
by the red line, are clearly closely related. 
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A.4. HGT BETWEEN S.MELILOTI AND S. MEDICAE IN VITRO 

Few and fragmentary information are available about in vitro experiments to investigate 

gene exchange between Sinorhizobium strains. Transduction is reported and described in lab 

conditions only for S. meliloti (Finan et al., 1984) and the published isolated phages are strain 

specific for the S. meliloti stain SU47 and for all the strain derived from SU47 (Finan et al., 

1984), like the sequenced strain Rm1021 (Meade et al., 1982). For those reasons 

transduction is not applicable to study gene flow between different S. meliloti and S. 

medicae strains, until it will be demonstrated the existence of phages able to infect strains of 

both species. Conjugation is the commonly used technique to transfer plasmid DNA into 

Sinorhizobium cells. It is performed in two way, biparental mating and triparental mating. In 

the first case the donor is an engineered E. coli strain, called S17-1 (Simon et al., 1983), that 

carries itself, within its genome, the genes coding for conjugative functions. In the case of 

triparental mating there are two E. coli strains: the donor that is a non conjugative E. coli 

strain and the helper that has a plasmid carrying genes for conjugative functions, like 

pRK2013 (Figurski, D. & Helinski, 1879). Concerning conjugation between Sinorhizobium cells 

only one paper reports the mating between two S. meliloti strains (Jones et al., 2007b) and 

no data are reported about S. medicae or inter-specific mating between them. In the paper 

of Jones et al. (2007b) the authors find a very low rate, approaching zero, of efficiency of 

conjugation between S. meliloti strain Rm1021 as donor and a natural S. meliloti strain as 

recipient. Thus, except for conjugation with engineered E. coli strains as donor, this 

mechanism is inefficient in lab conditions to study HGT between S. meliloti strains. 

Concerning transformation, Sinorhizobium cells can be naturally competent (Balassa 1963; 

Courtois et al., 1988), chemically competent (Kiss and Kalman, 1982) and  competent for 

physical-transformation(Gage et al., 1996; Hayashi et al., 2000; Vincze & Bowra, 2006). 

Development of natural competence described by Courtois et al. (1988), allows 

transformation of S. meliloti cells with an efficiency of about 10-4 or 10-5 cells per microgram 

of DNA if the transforming DNA is chromosomal or a self replicable plasmid respectively, but 

transformation requires quantity of donor DNA extremely great (6 microgram for sample). S. 

meliloti chemically competent cells can be also produced as described by Kiss and Kalman 

(1982). By this way the efficiency of transformation of strain 41 is reported to be greater 

than 103 cells per microgram of DNA, if the plasmid is extracted from the same strain S. 

meliloti 41, but it decrease strongly to lower than 3 x 101 cells per microgram of DNA if 



CHAPTER  II 

   95 
 

transformed with DNA from E. coli. Physical methods described to transform S. meliloti are 

essentially two: the so called freeze-thaw method and electroporation that will be described 

separately. Freeze-thaw method was described by Vincze and Bowra (2006) and permits 

transformation of opportunely treated cells by thawing frozen samples with a “soft” heat 

shock at 37°C after addition of plasmid DNA. The efficiency reported for this method is 6 x 

101 for the S. meliloti sequenced strain Rm1021, and 1,1 x 104 for S. meliloti 2011. 

 

A.4.1. Electroporation 

Electroporation is a transformation technique based on the application of high voltage 

electric field that opens transient pores in the plasma membrane of cells. Electro-pores 

permit the entrance of several kinds of molecules, including DNA, inside the cytoplasm 

(Dower et al., 1988). Main advantages of electroporation are the extremely easy preparation 

of electro-competent cells, the high frequency of transformation and the high 

reproducibility. Main disadvantages are the high degree of salt purity required for 

transforming DNA suspension and, of course, the availability of the electroporator machine. 

Electroporation of rhizobia is well described, with high efficiency, for Rhizobium 

leguminosarum (Garg et al., 1999), Bradyrhizobium japonicum (Guerinot et al., 1990; 

Hatterman and Stacey, 1990) and Mesorhizobium huakuii (Hayashi et al., 2000).  

Concerning S. medicae, electroporation, like transformation in general, have never been 

tested as far as we know, while S. meliloti can be electroporated (Gage et al., 1996; Hayashi 

et al., 2000), but no data are available about its optimization. A mutation that increased 

electroporation efficiency was previously reported for strain Rm1021, but the 

characterization of the specific mutation is still missing (Gage et al., 1996).  

In the study of barriers to foreign DNA acquisition from bacterial cells, electroporation 

overcomes the barriers to surface exclusion, allowing to focus the investigation on the 

intracellular barriers. Moreover if the DNA used is a self-replicating plasmid, this avoids also 

barriers against integration of exogenous DNA. Therefore, electroporation represents a 

convenient technique to test the specificity and selectivity of cytoplasmic barriers limiting 

gene transfer. Moreover, although electroporation is an artificial technique, its role in 

horizontal gene transfer in soil is under discussion, since it is possible to obtain bacterial 

electro-transformation in soil samples by lightning (Demanèche et al., 2001; Cérémonie et 

al., 2004). 
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B. AIM OF THE WORK 

 

Sinorhizobium meliloti and S. medicae are two important nitrogen fixing bacteria sharing 

particular features that can constitute a model to study barriers to horizontal gene transfer. 

These bacteria, in fact, are genetically and ecologically closely related.  They share a relative 

high degree of DNA homology, are phylogenetically closely related and can live in sympatry, 

sharing the same ecological niche. Several studies focused on the genetic structure of 

natural populations demonstrated that HGT plays a dominant role influencing the genetic 

structure of Sinorhizobium (Maynard Smith et al. 1993; Bailly et al., 2006; Bailly et al., 2007; 

Sun et al., 2006; Van Berkum et al., 2006). Considering inter-specific HGT, S. meliloti and S. 

medicae are separated on the bases of the species, while considering intra-specific HGT, 

there are evidence of intra-specific gene flow, but, within each species, strains are clustered 

in separated subgroups, not related by gene flow (Bailly et al., 2007; Bailly et al., 2006; 

Biondi et al., 2003). Several barriers, such as DNA restriction, can reduce horizontal gene 

transfer between different bacteria and have not been studied so far in Sinorhizobium. Thus, 

barriers to the horizontal transfer were studied here by electroporation in strains of S. 

meliloti and S. medicae. Electroporation represents a physical method for bacterial 

transformation that, if combined with the use of plasmid DNA, allows the investigation of 

cytoplasmic barriers to foreign DNA acquisition in bacterial cells. 

Thus, the aim of this work is the optimization of the transformation of S. meliloti and S. 

medicae by electroporation and the study of possible cytoplasmic barriers to horizontal 

plasmid DNA acquisition between different Sinorhizobium strains. 
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C. RESULTS 
 
C.1. SINORHIZOBIUM STRAINS 

Sinorhizobium strains analyzed in this work are listed in E.1.1. and chosen to be not 

geographically related. S. meliloti strains chosen comprise Rm1021, whose sequence is 

determined (Galibert et al., 2001) and two natural strains AK58 and BL225C. The strain BM7 

is a derivative of the strain Rm1021 and was produced in this work (E.2.6.). Strain AK58 

(Giuntini et al., 2005) was trapped from M. sativa (alfalfa), from soil samples collected in the 

northern Aral sea region by RIAM (St. Petersburg, Russia). Strain BL225C is an Italian strain, 

from Lodi, and was trapped on M. sativa (Carelli et al., 2000).  

S. medicae strains comprise the type strain LMG18864 (or LMG16580) (de Lajudie et al., 

1998), that was isolated from Syria by trapping with M. sativa, and two natural strains SS54 

and SS55 that were isolated in the Centre de Biotechnologie de Borj-Cedria (Hammam-Lif, 

Tunisia) by alfalfa trapping from agricultural soil samples collected in Soliman, Tunisia. 

 

C.2. THE PLASMID pMR20 

For the experiment presented in this work we chose to use a plasmid called pMR20. This 

plasmid was constructed by Roberts et al. (1996) as a derivative of another plasmid, pRK290, 

which is known to easily establish in S. meliloti (Ditta et al., 1980). A map showing of the 

plasmid pMR20 is shown in Figure 6. 

 
 
 
Figure 6. The plasmid pMR20. 
RK2 oriV is the broad host 
origin of replication of RK2. 
tetR and tetA constitute the 
tet-resistance cassette. 
Restriction enzymes indicated 
without parenthesis cut at 
unique site. 
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C.3. DETERMINATION OF THE MIC OF TETRACYCLINE 

The Minimum Inhibitory Concentration (MIC) is defined as the minimum concentration of 

antibiotic which will inhibit the growth of the isolated microorganism. The antibiotic of 

interest is the tetracycline that allow selection of the plasmid pMR20 used in this work. The 

MIC was determined on agar plates: more than 109 bacterial cells from a fresh over-night 

(ON) colture were spread-plated on TY medium plates with increasing concentration of 

antibiotic. Data collected are reported in the following table (Table 1). 

 

Table 1. Test of the MIC for tetracycline. 

Strain name 
Tetracycline concetration 

1 µg/mL 2 µg/mL 4 µg/mL 8 µg/mL 10 µg/mL 
Rm1021 + - - - - 
BM7 + - - - - 
AK58 / + + + - 
BL225C / + + + - 
LMG18864 + + - - - 
SS54 / + + + - 
SS55 / + + + - 

+ = growth; - = bacterial growth totally inhibited; / = not tested 

 

The minimum concentration determined were used in the following experiments for both to 

select plasmid acquisition by the strains and to prevent plasmid loss. 

 

C.4. OPTIMAL CONDITIONS OF ELECTROPORATION OF S. MELILOTI 

Optimal conditions of electroporations are that combinations of variable parameters that 

yields the highest value of efficiency of transformation.  

The physical parameter fundamental to have electroporation is the Electric Field. In fact, 

Electric field is responsible to produce the poration of the membrane and the entry of the 

DNA in the cytoplasm of the cell. 

Electric field (E) is defined by the following formula:   

E = KV/cm 

where KV is the difference of voltage expressed in kilovolts and cm is the distance between 

electrodes expressed in centimeters. 
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Electroporation cuvettes are supplied in three formats: 0,4 cm, useful for eukaryotic cells; 

0,2 cm, useful for yeast and bacteria; 0,1 cm, useful for bacteria. In our experiment we chose 

the 0,1 cm cuvettes because they allow to obtain the highest electric field value. 

Voltage can be varied in range from 0 to 2,5 KV by setting the electroporator, thus the 

Electric Field can vary from 0 to 25 KV/cm. 

Another important variable parameter is the time constant (τ), that represents the time 

needed to the Electric Field to turn back to zero after the impulse is supplied. Time constant 

is expressed in milliseconds (msec) and is determined by the following formula: 

τ = R x C 

where R is the Resistance expressed in kiloohm (Ω) and C is the capacitance expressed in 

microfarad (µF). Electroporator machinery allows to change both Resistance and 

Capacitance. Usually capacitance can be hold fixed at 25 µF and resistance can be varied in a 

range from 100 up to 1000 Ω. 

To find optimal conditions of electroporation of S. meliloti we chose the type strain Rm1021. 

Electrocompetent cells were prepared as reported in E.2.4. and electroporated as described 

in E.2.5. Each sample was transformed with 1 µg of plasmid pMR20 DNA extracted from E. 

coli DH5α. 

As first step the time constant was fixed at 5 msec (200 Ω; 25µF) varying the voltage. The 

graphical representation of the average of the data is shown in Figure 8. Data obtained are 

reported in the Table 2. Negative controls were performed as follow, electrocompetent cells 

not treated with DNA and not electroporated were resuspended with 1 ml of TY medium 

and then treated as each other sample. Spontaneous mutants resistant to tetracycline were 

never found. 
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Figure 8. Transformation efficiencies of S. meliloti type strain Rm1021 varying 
the voltage from 1,5 to 2,4 KV. Each value is the average of three independent 
replicates and bars indicate the standard deviation. 

 

 

 

Data obtained show clearly that the optimal value of voltage for S. meliloti is of 2,1 KV. 

The following step was the variation of the time constant to determine its optimal value. 

Thus the voltage was fixed at 2,1 KV and the resistance was changed to vary the time 

constant. Data obtained are showed in Table 3. 
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Table 2. Efficiency of electroporation of S. meliloti Rm1021 at different voltages. 
Sample Voltage applied (KV) Effective time 

constant (msec)a 

Viable title 

(cfu/ml) 

Survival (% )b Transformants 

(cfu/ml) 

Efficiency (cfu/µg 

of DNA) 

1 1,5 4,1 1,19 x 1010 3,31 x 101 1,60 x 102 1,60 x 102 

2 1,5 4,1 1,31 x 1010 3,64 x 101 1,55 x 102 1,55 x 102 

3 1,5 4,1 1,08 x 1010 3,00 x 101 1,62 x 102 1,62 x 102 

4 1,8 3,9 7,32 x 109 2,03 x 101 1,87 x 102 1,87 x 102 

5 1,8 4,1 7,12 x 109 1,98 x 101 3,32 x 102 3,32 x 102 

6 1,8 4 7,40 x 109 2,05 x 101 1,83 x 102 1,83 x 102 

7 2,1 3,9 2,32 x 109 6,44 1,12 x 103 1,12 x 103 

8 2,1 3,9 2,50 x 109 6,94 9,63 x 102 9,63 x 102 

9 2,1 3,9 2,25 x 109 6,25 1,1 x 103 1,1 x 103 

10 2,4 3,8 7,50 x 108 2,08 5,42 x 102  5,42 x 102 

11 2,4 3,8 7,98 x 108 2,22 2,30 x 102 2,30 x 102 

12 2,4 3,8 7,80 x 108 2,17 2,33 x 102 2,33 x 102 
a(200 Ω; 25 µF; 1µg DNA) 
bSurvival was determined as the percentage of the viable title divided by the viable title of the control that was 3,60 x 1010 (the average of more 
than three separate measurements) . 
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Table 3. Electroporation of S. meliloti Rm1021 changing the time constant. 

/ = not reliable (see text below). 

 

Data obtained showed that reduction of the time constant results in decrease of the 

efficiency of transformation, if compared with the average value obtained with 5 msec, 1,07 

x 103 cfu/µg of DNA. 

Increase of resistance to 400 Ω resulted in an effective time constant very low respect to the 

attended one of 10 msec. Thus, this condition were not reliable. In this condition current 

passes throw the cuvette so the strength of electric field is very low and its duration is very 

short. This determines strong reduction of both recovery of viable cells and transformants. 

 

Finally the parameters of 2,1 KV and time constant of 5 msec (200 Ω; 25 µF) were 

considered as optimal for electroporation of S. meliloti and were used in the following 

experiments. 

 

C.5. OPTIMAL CONDITIONS OF ELECTROPORATION OF S. MEDICAE 

The same procedure followed to determine the optimal conditions of electroporation of S. 

meliloti was followed for S. medicae strain LMG18864. As first step the time constant was 

fixed at 5 msec (200 Ω; 25µF) varying the electric field. Negative controls were performed as 

follow, electrocompetent cells not treated with DNA or not electroporated were 

resuspended with 1 ml of TY medium and then treated as each other sample. Spontaneous 

mutants resistant to tetracycline were never recovered. The graphical representation of the 

average of the results is shown in Figure 9. Data obtained for each proof are reported in the 

Table 4. 

Sample Resistance 

(Ω) 

Attended time 

constant (msec) 

Effective time 

constant (msec) 

Efficiency (cfu/µg 

of DNA) 

1 100 2,5 2,2 1,95 x 102 

2 100 2,5 2,2 1,15 x 102 

3 100 2,5 2,2 1,42 x 102 

4 400 10 0,1 / 

5 400 10 0,1 / 

6 400 10 0,1 / 
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Table 4. Efficiency of electroporation of S. medicae LMG18864 at different voltages. 
Sample Voltage applied (KV) Effective time 

constant (msec)a 
Viable title 

(cfu/ml) 
Survival (% )b Transformants 

(cfu/ml) 
Efficiency (cfu/µg 

of DNA) 
1 1,5 4,3 4,20 x 109 3,81 x 101 8,20 x 104 8,20 x 104 

2 1,5 4,3 6,25 x 109 5,68 x 101 1,18 x 105 1,18 x 105 

3 1,5 4,3 5,70 x 109 5,18 x 101 9,89 x 105 9,89 x104 

4 1,7 4,2 4,20 x 109 3,93 x 101 1,60 x 105 1,60 x 105 

5 1,7 4,2 3,94 x 109 3,58 x 101 2,13 x 105 2,13 x 105 

6 1,7 4,2 4,01 x 109 3,64 x 101 1,90 x 105 1,90 x105 

7 1,9 4,2 3,70 x 109 3,35 x 101 3,31 x 105 3,31 x 105 

8 1,9 4,1 3,98 x 109 3,61 x 101 5,30 x 105 5,30 x 105 

9 1,9 4,2 3,60 x 109 3,27 x 101 4,23 x105 4,23 x105 

10 2,1 4,2 2,79 x 109 2,99 x 101 6,00 x 105 6,00 x 105 

11 2,1 4,1 3,63 x 109  3,3 x 101 1,10 x 106 1,10 x 106 

12 2,1 4,1 3,20 x 109 2,9 x 101 7,32 x 105 7,32 x 105 

13 2,3 4,1 2,57 x 109 2,41 x 101 1,14 x 106 1,14 x 106 

14 2,3 4,1 2,89 x 109 2,63 x 101 8,61 x105 8,60 x 105 

15 2,3 4,1 2,33 x 109 2,11 x 101 9,78 x 105 9,78 x 105 
a(200 Ω; 25 µF; 1µg DNA).  

bSurvival was determined as the percentage of the viable title divided by the viable title of the control that was 1,10 x 1010 (the average of more 

than three separate measurements).
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Figure 9. Transformation efficiencies of S. medicae type strain LMG18864 
varying the voltage from 1,5 to 2,3 KV. Each value is the average of three 
independent replicates and bars indicate the standard deviation. 

 

 

 

Data obtained show that the optimal value of voltage for S. medicae is of 2,3 KV. Increase of 

voltage up to 2,3 KV resulted in an effective time constant very low (0,1-0,5 msec) respect to 

the attended one of 5 msec. Thus, this condition was not reliable and so it is not included in 

Figure 9. 

The following step was the variation of the time constant to determine its optimal value. 

Thus the voltage was fixed at 2,3 KV and the resistance was changed to vary the time 

constant. Data obtained are showed in Table 5. 
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Table 5. Electroporation of S. medicae LMG18864 changing the time constant. 

 

 

Data obtained showed that reduction or increase of the time constant resulted in decrease 

of the efficiency of transformation, if compared with the average value obtained with 5 

msec, 1,00 x 106 cfu/µg of DNA. 

 

Finally the parameters of 2,3 KV and time constant of 5 msec (200 Ω; 25 µF) were 

considered as optimal for electroporation of S. medicae and were used in the following 

experiments. 

 

C.6. ELECTROPORATION OF S. MELILOTI WITH SELF DNA 

For both strains S. meliloti Rm1021 and S. medicae LMG18864 four colonies of transformants 

were selected and analyzed for the presence of the plasmid. Plasmid was checked by direct 

plasmid extraction  and subsequent visualization on agarose gel. 

The plasmid extracted from each colony (E.2.7.) was run on agarose gel (E.2.8.) and the size 

of the molecules was found to be as attended for pMR20. This confirmed that the plasmid 

was not integrated in the genome and that was possible to extract it from Sinorhizobium 

cells. 

A large amount of plasmid DNA from S. meliloti Rm1021, from S. medicae LMG18864 and 

from E. coli DH5α was obtained purifying the supercoiled form of the plasmid from gel 

(E.2.7.) Those plasmids were used to transform Rm1021 and LMG18864 and to compare the 

efficiency of transformation of self DNA to that of exogenous DNA from E. coli.  

Sample Resistance 

(Ω) 

Attended time 

constant (msec) 

Effective time 

constant (msec) 

Efficiency (cfu/µg 

of DNA) 

1 100 2,5 1,7 1,95 x 105 

2 100 2,5 1,8 2,00 x 105 

3 100 2,5 1,7 2,12 x 105 

4 400 10 7,1 8,00 x 105 

5 400 10 7,0 4,68 x 105 

6 400 10 7,0 3,60 x 105 
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Each transformation was performed using 50 ng of DNA per sample and results obtained are 

reported in Figure 10. Data are listed in the following Table 6. 

 

 

Figure 10. Transformation efficiencies of S. meliloti Rm1021 and S. medicae 
LMG18864 with plasmid DNA from E. coli DH5α and with self plasmid DNA. 
Each bar represent the average of three independent replicates with standard 
deviation. 

 

Table 6. Efficiencies of electroporation (cfu/µg of DNA) of S. meliloti Rm1021 and S. medicae 

LMG18864 with DNA from DH5α and with self DNA. 

Recipient 
DNA from DH5α Self DNA 

Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3 

Rm1021 3,83 x 103 2,94 x 103 3,44 x 103 5,70 x 106 5,40 x 106 5,20 x 106 

LMG18864 5,00 x 106 4,80 x 106 4,90 x 106 2,76 x 106 2,75 x 106 2,50 x 106 

 

Results obtained showed that transforming the two strains with 50 ng of plasmid DNA, 

instead 1 µg, increased the efficiency by more than 3 time (from 1,06 x103 to 3,41 x 103) for 

Rm1021 and 5 times (from 9,78 x 105 to 4,90 x 106) for LMG18864. This demonstrates that 

transformations can be performed reducing the quantity of the DNA to 50 ng increasing the 

efficiency, thus each subsequent transformation was performed using 50 ng of DNA per 

sample. 
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Data obtained shows that, differently from LMG18864, the origin of the DNA strongly 

influenced the efficiency of transformation of the strain Rm1021, suggesting the presence of 

an efficient cytoplasmic barrier against non-self DNA in this strain. 

 

C.7. PUTATIVE CYTOPLASMIC BARRIERS OF S. MELILOTI Rm1021 

Cytoplasmic barriers to the acquisition of foreign DNA can be the barriers of restriction and, 

in case of plasmids, the barrier to the establishment in the genome (see A.2.). The plasmid 

used in this work is known to establish easily in Sinorhizobium cells, so we focused on 

restriction. In the genome of Rm1021 a putative gene coding for a type I restriction 

modification system is annoted. The system is composed by the tree genes hsdM, hsdS and 

hsdR, the first coding for the putative modification subunit, the second responsible for the 

sequence specificity and the third coding for the putative restriction system. Moreover these 

genes are clustered, suggesting to be organized as an operon (Figure 11).  

 

Figure 11. The putative type I restriction system in the genome of S. meliloti 
Rm1021, composed by hsdR (Smc02292); hsdS (Smc02295) and hsdM 
(Smc02296), colored in green. 
(Image from http://iant.toulouse.inra.fr/bacteria/annotation/cgi/rhime.cgi). 
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C.8. CONSTRUCTION OF THE MUTANT FOR THE PUTATIVE hsdR GENE 

To test the involvement of the gene Smc02292 (hsdR) in the barrier to the acquisition of 

foreign DNA, the mutant strain called BM7 was constructed. The mutation was produced 

disrupting the gene by plasmid integration, using the strategy of Luo et al. (2005), showed in 

Figure 12. 

The plasmid, kindly provided by A. Becker (Molekulare Genetik, Institut für Biologie III, 

Albert-Ludwigs-Universität Freiburg), was derived from the suicidal plasmid 

pK19mob2ΩHMB (Luo et al., 2005) and carries a PCR fragment of 341 nucleotides 

corresponding to the middle part of the Smc02292 gene (position 1041-1382 nucleotides 

downstream the start codon) inserted into the HindIII-BsrGI site. Mutant strain obtained by 

biparental mating (E.2.6.) was tested to evaluate its electroporation efficiency with plasmid 

pMR20 from E. coli DH5α as donor of DNA. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12. The strategy of mutagenesis by plasmid integration of 
pK19mob2ΩHMB. Plasmid pK19mob2ΩHMB is suicidal in S. meliloti but can be 
established in its genome by single crossing-over on the bases of the homology 
between the hsdR gene region cloned in the plasmid and the hsdR gene 
sequence on the genome. Integration disrupt the gene (image obtained 
modifying the original one of Luo et al., 2005). 

 

pK19mob2-hsdR 
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C.9. ELECTROPORATION OF THE MUTANT BM7 

To test the electroporability of the mutant BM7, the strain was transformed with the 

plasmid pMR20 from E. coli DH5α. Results are shown in Table 7. 

 

Table 7. Efficiencies of electroporation of BM7 with plasmid DNA from E. coli. 

Sample 
Viable title 

(cfu/ml) 
Survival (%)a 

Transformants 

(cfu/ml)b 

Efficiency (cfu/µg 

of DNA) 

Sample 1 2,13 x 109 7,08 1,00 x 103 2,00 x 104 

Sample 2 1,87 x 109 6,21 1,60 x 103 3,20 x 104 

Sample 3 1,92 x 109 6,38 3,00 x 103 6,00 x 104 
a Survival was determined as the percentage of the viable title divided by the viable title of 
the control that was 3,01 x 1010 (the average of more than three separate measurements). 
b50ng of DNA were used. 

 

The efficiency of transformation of the strain BM7 with plasmid DNA from E. coli was 3,73 x 

104 cfu/µg of DNA (± SD 2,05 x 104), of 10,9 times higher than the efficiency of the wild type 

Rm1021 (3,41 x 103). 

 

C.10. ELECTROPORATION OF S. MELILOTI Rm1021 AND BM7 WITH PLASMID DNA FROM 

SINORHIZOBIUM DONOR 

The experiments were carried out to evaluate the barrier of S. meliloti Rm1021 against DNA 

acquisition from other Sinorhizobium strains. To prepare donor DNA, all Sinorhizobium 

strains analyzed (E.1.1.) were electroporated  with pMR20 plasmid DNA from E. coli DH5α, 

using the optimal conditions previously determined. Tetracycline resistance transformants 

were selected and pMR20 plasmid DNA was extracted from each strain. Those preparations 

were used in following experiments.  

Rm1021 and its putative hsdR mutant BM7 were transformed with pMR20 plasmid DNA 

from all other Sinorhizobium strains analyzed in this work (E.1.1.). Efficiencies of 

transformation obtained are reported in Figure 13. Data from each single experiment are 

reported in Table 8 and Table 9. 
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Figure 13. Transformation efficiencies of S. meliloti Rm1021 and mutant BM7 
with plasmid DNA from different Sinorhizobium donors including self DNA. In 
abscissa there are the recipient strains and each differently colored bar 
represents a different donor. Data are the average of three independent 
replicates with standard error.  

 

Data obtained show clearly that the barrier of Rm1021 is against all the non-self DNA tested, 

including DNA from conspecific strains as AK58 and BL225C. S. meliloti Rm1021 transformed 

with DNA from other strains showed an efficiency from 103 to 105 times lower than that with 

self DNA. The efficiency of transformation of mutant BM7, instead, is higher than that of the 

wild type for each foreign DNA tested. The increase ranged from nearly 20 times, for DNA 

from LMG18864, to 180 times, for DNA from AK58. Increase for other DNAs was 77 times for 

DNA from BL225C, 128 times for DNA from SS54 and 110 times for DNA from SS55. 

Surprisingly mutant strain BM7, however, was transformed less efficiently by foreign DNA 

than self-DNA. This observation indicates that hsdR gene does not represent the sole barrier 

mechanism of strain Rm1021 toward foreign DNA. 
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Table 8. Electroporation of S. meliloti Rm1021 with pMR20 plasmid DNA from different Sinorhizobium donors.  
DNA Donor  Species Viable title (cfu/ml) Transformants 

(cfu/ml) 

Efficiency (cfu/µg of 

DNA) 

BM7 S. meliloti 1,92 x 109 1,09 x 105 2,18 x 106 

BM7 S. meliloti 1,59 x 109 9,95 x 104 1,99 x 106 

BM7 S. meliloti 1,34 x 109 9,20 x 104 1,84 x 106 

AK58 S. meliloti 2,96 x 109 2,75 x 101 5,50 x 102 

AK58 S. meliloti 1,14 x 109 1,60 x 101 3,60 x 102 

AK58 S. meliloti 3,46 x 109 1,80 x 101 3,20 x 102 

BL225C S. meliloti 6,50 x 108 1,30 x 101 2,60 x 102 

BL225C S. meliloti 5,00 x 108 1,40 x 101 2,80 x 102 

BL225C S. meliloti 7,95 x 108 1,40 x 101 2,80 x 102 

LMG18864 S. medicae 1,64 x 109 9,20 x 101 1,84 x 103 

LMG18864 S. medicae 1,28 x 109 8,60 x 101 1,72 x 103 

LMG18864 S. medicae 1,95 x 109 8,30 x 101 1,66 x 103 

SS54 S. medicae 1,03 x 109 2,40 x 101 4,80 x 102 

SS54 S. medicae 1,54 x 109 4,50 x 101 9,00 x 102 

SS54 S. medicae 1,40 x 109 3,40 x 101 6,80 x 102 

SS55 S. medicae 5,55 x 108 1,00 x 100 2,00 x101 

SS55 S. medicae 1,14 x 109 1,00 x 100 2,00 x101 

SS55 S. medicae 1,20 x 109 0 0 
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Table 9. Electroporation of S. meliloti mutant BM7 with pMR20 plasmid DNA from different Sinorhizobium donors.  
DNA Donor    Species Viable title (cfu/ml) Transformants 

(cfu/ml) 
Efficiency (cfu/µg of 

DNA) 
Rm1021 S. meliloti 1,62 x 109 7,90 x 104 1,58 x 106 

Rm1021 S. meliloti 1,55 x 109 9,65 x 104 1,93 x 106 

Rm1021 S. meliloti 1,25 x 109 8,05 x 104  1,61 x 106 

BM7 S. meliloti 1,33 x 109 8,55 x 104 1,71 x 106 

BM7 S. meliloti 2,40 x 109 6,25 x 104 1,25 x 106 

BM7 S. meliloti 1,38 x 109 8,25 x 104 1,65 x 106 

AK58 S. meliloti 1,57 x 109 2,96 x 103 5,92 x 104 

AK58 S. meliloti 1,36 x 109 3,60 x 103 7,20 x 104 

AK58 S. meliloti 1,18 x 109 4,45 x 103 8,90 x 104 

BL225C S. meliloti 5,10 x 108 1,26 x 103 2,52 x 104 

BL225C S. meliloti 4,10 x 108 9,18 x 102 1,84 x 104 

BL225C S. meliloti 3,65 x 108 9,85 x 102 1,97 x 104 

LMG18864 S. medicae 8,90 x 108 1,85 x 103 3,70 x 104 

LMG18864 S. medicae 1,26 x 109 1,60 x 103 3,20 x 104 

LMG18864 S. medicae 1,70 x 109 1,65 x 103 3,30 x 104 

SS54 S. medicae 9,40 x 108 5,65 x 103 1,13 x 105 

SS54 S. medicae 1,08 x 109 3,40 x 103 6,84 x 104 

SS54 S. medicae 1,45 x 109 4,15 x 103 8,30 x 104 

SS55 S. medicae 8,00 x 108 4,00 x 101 8,00 x102 

SS55 S. medicae 1,08 x 109 4,00 x 101 8,00 x102 

SS55 S. medicae 1,69 x 109 3,00 x 101 6,00 x102 
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C.11. ELECTROPORATION OF S. MELILOTI AND S. MEDICAE STRAINS WITH PLASMID DNA 

FROM SINORHIZOBIUM DONORS 

To evaluate the presence of a cytoplasmic barriers to foreign plasmid DNA acquisition in 

other S. meliloti and S. medicae strains, all the Sinorhizobium strains used in this work 

(E.1.1.), other than Rm1021 and BM7 (C.11.), were analyzed. Recipient strains were 

transformed with 50 ng of pMR20 plasmid DNA extracted from three different donors:  

i) Rm1021 as representative donor of S. meliloti species; 

ii) LMG18864 as representative donor of S. medicae species; 

iii) The same strain used as recipient, as self DNA.  

Efficiencies of transformation obtained are reported in Figure 14. Data from each single 

experiment are reported in the following Table 10. 

 

Figure 14. Transformation efficiencies of S. meliloti AK58, S. meliloti BL225C, S. 
medicae LMG18864, S. medicae SS54 and S. medicae SS55, with plasmid DNA 
from different Sinorhizobium donors including self DNA. In abscissa there are the 
recipient strains and each bar differently colored represents a different donor of 
DNA. Each bar represent the average of three independent replicates with the 
standard error. 

 

Data obtained demonstrates that S. meliloti and S. medicae strains analyzed did not show 

donor-dependent efficiency of acquisition of foreign plasmid DNA and the efficiency of 

transformation with non-self DNA was never significantly reduced respect to that with self 

DNA. Results showed also that efficiency of electroporation, in the tested conditions, 
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represents a variable phenotype among different S. meliloti and S. medicae strains: the 

values with self DNA ranged in fact from 103 to 106 according to the strain. Compared with 

other DNAs, DNA from S. medicae strain SS55 was less efficient in the transformation of the 

three recipient strains tested: Rm1021, BM7 and the self SS55. Plasmid extraction from 

strain SS55 was repeated two other times, but each preparation confirmed the data 

obtained previously for all tree strains Rm1021, BM7 and SS55. The quality of plasmid DNA 

preparations from SS55 was assessed after gel purification and was apparently similar to 

other plasmid DNAs (data not shown). Some unidentified aspect of the quality of the DNA 

preparation from SS55 strain may be responsible of reduced transforming capacity with 

electroporation.
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Table 10. Electroporation of S. meliloti and S. medicae strains with pMR20 plasmid DNA from different Sinorhizobium donors.  
Recipient Species DNA Donor Viable title 

(cfu/ml) 
Transformants 

(cfu/ml) 
Efficiency (cfu/µg 

of DNA) 
AK58 S. meliloti Rm1021 2,64 x 109 1,95 x 103 3,90 x 104 

AK58 S. meliloti Rm1021 4,98 x 109 1,17 x 103 2,34 x 104 

AK58 S. meliloti Rm1021 3,92 x 109 1,45 x 103  2,90 x 104 

AK58 S. meliloti LMG18864 1,12 x 109 5,42 x 103 1,08 x 104 

AK58 S. meliloti LMG18864 4,73 x 109 2,46 x 103 4,09 x 104 

AK58 S. meliloti LMG18864 4,86 x 109 1,91 x 103 3,83 x 104 

AK58 S. meliloti AK58 2,34 x 109 1,42 x 103 2,86 x 104 

AK58 S. meliloti AK58 3,88 x 109 8,10 x 102 1,62 x 104 

AK58 S. meliloti AK58 3,34 x 109 1,10 x 103 2,02 x 104 

BL225C S. meliloti Rm1021 1,04 x 109 2,40 x 102 4,80 x 103 

BL225C S. meliloti Rm1021 3,01 x 109 1,45 x 102 2,90 x 103 

BL225C S. meliloti Rm1021 9,98 x 108 1,95 x 102 3,90 x 103 

BL225C S. meliloti LMG18864 9,70 x 108 1,68 x 102 3,36 x 103 

BL225C S. meliloti LMG18864 1,31 x 109 2,10 x 102 4,20 x 103 

BL225C S. meliloti LMG18864 1,03 x 109 6,00 x 101 1,20 x 103 

BL225C S. meliloti BL225C 8,95 x 108 1,30 x 103 2,60 x 103 

BL225C S. meliloti BL225C 9,84 x 108 1,55 x 102 3,10 x 103 

BL225C S. meliloti BL225C 1,08 x 109 1,20 x 102 2,40 x 103 

LMG18864 S. medicae Rm1021 1,81 x 109 2,55 x 105 5,10 x106 

LMG18864 S. medicae Rm1021 1,11 x 109 2,22 x 105 4,44 x106 

LMG18864 S. medicae Rm1021 1,02 x 109 2,01 x 105 4,02 x106 
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LMG18864 S. medicae LMG18864 1,27 x 109 1,38 x 105 2,76 x 106 

LMG18864 S. medicae LMG18864 1,54 x 109 1,38 x 105 2,75 x 106 

LMG18864 S. medicae LMG18864 1,02 x 109 1,25 x 105 2,50 x 106 

SS54 S. medicae Rm1021 2,96 x 109 2,26 x 103 4,50 x 104 

SS54 S. medicae Rm1021 2,54 x 109 2,12 x 103 4,24 x 106 

SS54 S. medicae Rm1021 2,36 x 109 2,20 x 103 4,40 x 106 

SS54 S. medicae LMG18864 1,70 x 109 1,21 x 103 2,42 x 104 

SS54 S. medicae LMG18864 1,76 x 109 1,70 x 103 3,40 x 104 

SS54 S. medicae LMG18864 1,70 x 109 1,64 x 103 3,28 x 104 

SS54 S. medicae SS54 1,95 x 109 9,30 x 102 1,86 x 104 

SS54 S. medicae SS54 3,10 x 109 7,50 x 102 1,50 x 104 

SS54 S. medicae SS54 3,15 x 109 8,60 x 102 1,72 x 104 

SS55 S. medicae Rm1021 9,80 x 108 4,32 x 103 8,64 x 104 

SS55 S. medicae Rm1021 7,50 x 108 4,18 x 103 8,34 x 104 

SS55 S. medicae Rm1021 8,90 x 108 4,28 x 103 8,56 x 104 

SS55 S. medicae LMG18864 5,00 x 108 1,44 x 103 2,88 x 104 

SS55 S. medicae LMG18864 2,20 x 109 1,33 x 103 6,16 x 104 

SS55 S. medicae LMG18864 1,17 x 109 1,81 x 103 7,24 x 104 

SS55 S. medicae SS55 6,40 x108 1,12 x 102 2,24 x 103 

SS55 S. medicae SS55 4,60 x108 1,30 x 102 2,60 x 103 

SS55 S. medicae SS55 5,15 x108 1,10 x 102 2,20 x 103 



CHAPTER  II 

   117 
 

C.12. CONJUGATION OF S. MELILOTI Rm1021 AND THE MUTANT BM7 WITH E. COLI S17-1 

AS DONOR 

Strain S17-1 (Simon et al., 1983) is an E. coli strain engineered to perform conjugational 

transfer of plasmid DNA by biparental mating. This kind of mating is simpler and known to be 

more efficient with respect the triparental mating, that requires an helper strain. Thus we 

chose this strategy to evaluate the effect of hsdR barrier of Rm1021 in conjugal foreign 

plasmid DNA acquisition. As first step, the plasmid pMR20 was introduced in S17-1 by 

electroporation. Preparation of electrocompetent cells and transformation by 

electroporation were performed using the standard protocol for E. coli (Dower et al., 1988). 

Four tetracycline resistant colonies were checked for the presence of plasmid and all of 

them carried the correct one.  Thus one of those transformants was used for subsequent 

experiments.  

Efficiency of conjugation was evaluated for both the wild type S. meliloti Rm1021 and its 

mutant strain BM7 in three independent replicates. Results obtained are reported in Figure 

15, while data obtained from each replicas are reported in Table 11. 

 

 

Figure 15. Conjugation efficiencies S. meliloti Rm1021 and its mutant BM7 with 
S17-1 as donor of pMR20 plasmid DNA. Conjugation efficiency is expressed as 
the number of transconjugants per donor cells. Each bar represent the average 
of three independent replicates with standard deviation. 
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Table  11. Conjugation of Rm1021 and BM7 as recipient with E. coli S17-1 as donor of pMR20 

plasmid DNA. 

Recipient No. of recipients No. of donors No. of 

transconjugants 

Efficiency of 

conjugation* 

Rm1021 1,20 x 109 1,00 x 108 1,90 x 106 1,90 x 10-2 

Rm1021 1,02 x 109 2,50 x 108 2,50 x 106 1,00 x 10-2 

Rm1021 1,26 x 109 1,70 x 108 2,40 x 106 1,41 x 10-2 

BM7 1,45 x 109 4,50 x 108 2,30 x 107 5,11 x 10-2 

BM7 1,42 x 109 3,50 x 108 1,80 x 107 5,14 x 10-2 

BM7 1,27 x 109 3,10 x 108 1,60 x 107 5,16 x 10-2 

* number of transconjugants per number of donors. 

 

 

Data obtained show that inactivation of hsdR gene in the mutant BM7 increases significantly, 

by 3,58  times, the efficiency of conjugation compared to the wild type Rm1021. 

In conjugation, the barrier constituted by hsdR in strain Rm1021 seems to have a lower 

effect (in the tested condition), than in transformation, where the effect is of more than 10-

fold. However these data demonstrate that hsdR (Smc02292) represents a barrier against 

foreign DNA acquisition by both mechanisms, transformation and conjugation. This finding is 

actually interesting because sometimes restriction is not considered to be effective against 

conjugation. In fact during conjugation DNA enters in the cell as single strand and this is 

considered a protection from restriction since it acts against double strands DNA. Our data, 

instead, indicate that restriction can act also against DNA acquisition by conjugation, 

demonstrating its importance as barrier against horizontal gene acquisition in S. meliloti 

Rm1021.
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D. DISCUSSION 

 

Sinorhizobium populations are characterized by a high degree of genetic diversity (Carelli et 

al., 2000; Biondi et al., 2003; Silva et al., 2007) both between species and also within each 

species. Those observations suggest the presence of barrier to genetic exchange blocking the 

spreading of the DNA horizontally transferred. In this work horizontal transfer of plasmid 

DNA between different strains of both species was studied by electroporation to investigate 

the presence of cytoplasmic barriers in different S. meliloti and S. medicae strains. Published 

data on electroporation for S. medicae and for S. meliloti optimization is missing. Thus the 

first step was the optimization of the protocol of electroporation for both S. meliloti 

(Rm1021) and S. medicae (LMG18864), demonstrating, for the first time, that high efficient  

plasmid transformation (more than 106 cfu/µg of DNA) with gel-purified plasmid DNA from 

E. coli in S. medicae is possible and that it is 103 times more efficient than the S. meliloti 

transformation. Low efficiency of transformation with plasmid DNA from E. coli was already 

known in S. meliloti strains (Hayashi et al., 2000; Vincze & Bowra, 2006), however the 

efficiency obtained here by electroporation is higher, nearly 30 times, than that obtained 

using other techniques like freeze-thaw transformation (Vincze & Bowra, 2006). 

Transforming S. meliloti and S. medicae strains with plasmid DNA from Sinorhizobium donors 

gave results leading to different conclusions. Firstly, concerning the efficiency of 

transformation, in the tested conditions, it represents a variable phenotype among different 

S. meliloti and S. medicae strains and this observation could be related to the high level of 

genetic diversity known in Sinorhizobium populations (Carelli et al., 2000; Biondi et al., 2003; 

Silva et al., 2007). Concerning barriers to gene transfer, we found that only the S. meliloti 

strain Rm1021 discriminates self DNA from foreign DNA. In silico analysis of the genome of 

this strain showed the presence of one type I restriction-modification system (hsdR 

Smc02292). From a previous comparative genomic hybridization experiment (Giuntini et al., 

2005), it emerged that strains BL225C and AK58 do not carry the Smc02292 gene; this 

observation was also confirmed by gene-specific PCR amplification. The same polymorphism 

was recently observed in another S. meliloti strain that also lacked this gene (Stiens et al., 

2008). Genes homologous to Smc02292 have not been found in the genome of the S. 

medicae sequenced strain WSM419 and no PCR products were obtained after amplification 

of the DNA of the S. medicae strains tested in this work with Smc02292 specific primers (see 
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material and methods). This polymorphism of hsdR has been previously reported also in 

other bacterial species as Helicobacter pylori (Nobusato et al., 2000) and Xylella fastidiosa 

(Picchi et al., 2006) where it was correlated with the transformability phenotype. 

The involvement of Smc02292 gene in the donor selectivity of strain Rm1021 was tested 

constructing and the mutant strain BM7. Strain BM7 derives from Rm1021 but the hsdR 

gene was disrupted by plasmid integration. Testing mutant BM7 by electroporation showed 

that the efficiency of transformation with non-self DNA was increased, demonstrating an 

important role of the gene Smc02292 as cytoplasmic barrier to foreign DNA acquisition in 

this strain. Furthermore mutant BM7 showed an increase in the efficiency of transformation 

respect to Rm1021 also when transformed with plasmid DNA from E. coli DH5α obtaining 

3,73 x 104 ± 1,19 x 104 instead of 3,41 x 103 ± 2,66 x 102. Mutant strain BM7, however, was 

transformed less efficiently by foreign DNA than self-DNA. This observation indicates that 

hsdR gene does not represent the sole barrier mechanism of strain Rm1021 toward foreign 

DNA. Residual barrier could have different possible causes. One possibility could be DNA 

methylation not related to restriction: as known in enterobacteria, the plasmid replication 

initiation can depend on the methylation status of the sequences of the origin of replication 

(as Dam methylation).  Another possibility is the presence of more than one restriction-

modification system in the strain Rm1021. Data reported here and genome annotation 

however do not allow to hypothesize which could be the genetic determinants of this 

further barrier. Conjugation experiments involving E. coli S17-1 as donor and  the mutant 

BM7 and the wild type Rm1021 as recipients show that inactivation of Smc02292 increases 

the efficiency more than three times. This data suggest an involvement of the hsdR barrier in 

horizontal gene acquisition in S. meliloti strain Rm1021. 

This is the first time that a genetic bases of sexual isolation between bacterial strains of the 

same species is described in S. meliloti, although it was previously observed in other species 

as Pseudomonas stutzeri (Lorenz and Sikorski, 2000; Berndt et al., 2003). Barriers to 

horizontal gene transfer, able to separate different species and different strains of the same 

species, can have important consequences at the population level. The ability of S. meliloti 

strain Rm1021 to discriminate self from non-self DNA suggests the occurrence of sexually 

isolated subpopulations within the S. meliloti species. This observation could partially explain 

the high degree of genetic diversity between S. meliloti strains (Carelli et al., 2000; Biondi et 

al., 2003; Giuntini et al., 2005; Bailly et al., 2006; Silva et al., 2007).  
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Since restriction-modification systems work to preserve genetic identity and can even 

support speciation (Jeltsch, 2003), a possible consequence of the results presented here is 

that Rm1021, with its ability to restrict DNA originated from other S. meliloti strains, could 

be considered the representative of one particular S. meliloti subpopulation. Accordingly, it 

will be essential to study more strains and their phenotypes to increase the understanding of 

the biology of the whole S. meliloti species. 
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E. MATHERIALS AND METHODS 

 

E.1. MATHERIALS 

E.1.1. Bacterial strains and plasmid 

Strain or plasmid Relevant properties* Reference 

S. meliloti   
Rm1021 SU47 str-21 Meade et al., 

1982 
BM7 Smc02292:: pK19mob2ΩHMB kanamycin resistant, 

Rm1021 hsdR- derivative 
This work 

AK58 isolated from Kazakhstan Giuntini et al., 
2005 

BL225C isolated from Italy Giuntini et al., 
2005 

S. medicae   
LMG18864 Isolated from Syria de Lajudie et al., 

1998 
SS54 Isolated from Tunisia** This work 

SS55 Isolated from Tunisia** This work 

E. coli   
DH5α F_ supE44 _lacU169 hsdR17 recA1 endA1 gyrA96 

thi-1 relA1 (_80lacZ_M15) 
Hanahan, 1983 

S17-1 RP4-2, Tc::Mu,Km-Tn7, for plasmid mobilization Simon et al., 1983 

Plasmid   
pMR20 RK2-derived low copy number broad host range 

vector. tcR 
Roberts et al., 
1996 

pK19mob2ΩHMB pK19mob2 derivative suicide plasmid, for plasmid 
integration mutagenesis in S. meliloti. kmR 

Luo et al., 2005  

pK19mob2-hsdR pK19mob2ΩHMB with cloned a PCR fragment of 
300bp from Smc02292 of Rm1021. kmR 

Anke Becker 

* abbreviations: kmR, kanamycin, tcR, tetracycline. 
**Both strains were isolated from agricultural Tunisian soil in the vicinity of Soliman by alfalfa 

trapping (Medicago truncatula) 
 
 
 
E.1.2. Primers 

Name Sequence (5’-3’) 

pSMc02292-full-fv CTGCCGTCTCCAGTGAAGGT 
pSMc02292-full-rv TTGCCGAGGCTGCGGAATAG 
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E.1.3. Growth media 

All the media were dissolved in distilled water and autoclaved. 

 

LB medium (Luria-Bertrani Broth, (Sambrook et al., 1989)) 

10 g/l Tryptone 
5 g/l Yeast Extract 
5 g/l NaCl 

 

TY-medium (Beringer, 1974) 

5 g/l Tryptone 
3 g/l Yeast extract 
0.4 g/l CaCl2 

 

E.1.4. Supplements for growth media 

Agar (Oxoid) 

For plates 16 g/l were added. 

 

Antibiotics 

Kanamycin (km) 

For the selection of kanamycin-resistant E. coli clones 50 mg/l of antibiotic were added 

to solid media; 30 mg/l were added to liquid media to prevent the loss of plasmids. 

For the selection of kanamycin-resistant S. meliloti clones 200 mg/l of antibiotic were 

added to solid media; 200 mg/l were added to liquid media. 

 

Tetracycline (tc) 

For the selection of tetracycline-resistant E. coli clones and  S. meliloti AK58, BL225C 

and S. medicae SS54 and SS55, 10 mg/l of antibiotic were added to solid media; 10 

mg/l were added to liquid media to prevent the loss of plasmids. 

For the selection of tetracycline-resistant S. meliloti Rm1021 2 mg/l of antibiotic were 

added to solid media; 1 mg/l were added to liquid media. 

For the selection of tetracycline-resistant S. medicae LMG18864 4 mg/l of antibiotic 

were added to solid media; 4 mg/l were added to liquid media. 
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Streptomycin (Sm) 

For the selection of S. meliloti strains Rm2011, 600 mg/l of antibiotic were added to 

both solid and liquid media. 

 

E.1.5. Buffers and solutions 

TE-buffer 

10 mM Tris-HCl 

1 mM EDTA 

pH 7.5 

 

10 mM dNTP-mix  

10 mM dATP 

10 mM dCTP 

10 mM dGTP 

10 mM dTTP 

 

TEA 50X 

242 g TRIS 
57,1 g Acetic Acid 
100ml EDTA pH.8 (0,5M) 
H2O up to a final volume of 1 liter 

 

Glycerol 10% 

100ml of Glycerol 99,9% (Sigma) 

900ml distilled water 

 

Physiological solution 

0,85 % (W/V) of NaCl. 
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E.2. METHODS 

E.2.20. Cultivation of bacteria 

Bacteria were grown using solid media, as well as liquid media. In special cases, the media 

were supplemented with additives listed above (D.1.4). E. coli cells were grown at 37°C in LB. 

S. meliloti cells were grown at 30°C in TY. Liquid cultures for both species were also shaken 

at 180 RPM. 

 

E.2.21. Storage of bacterial strains 

Bacteria were grown in the liquid medium overnight until the optical density (OD600) was 

more than 1 OD, then 500 µl of bacterial culture were mixed with 500 µl of glycerol 50% and 

stored at -80°C. 

 

E.2.22. Determination of viable title 

Sinorhizobium cells viable titles were determined by serial 10-fold dilutions. 100 microliter of 

the appropriate dilutions were then plated on non selective plates using sterile handles. 

Plates were then incubated at 30°C until colonies were grown. Each title was determined 

from the average of the number of colonies of at least two equivalent plates. 

Percentage of survival was determined as the ratio between the title of total viable cells 

after treatment and that of viable cells without treatment. Efficiency of transformation was 

expressed as the number of transformants per microgram of DNA. 

 

E.2.23. Preparation of Sinorhizobium electrocompetent cells 

The following protocol was applied as described by Dower et al. (1988) modified increasing 

the washing steps, to ensure removal of salts. 

 

 From an over-night culture of Sinorhizobium cells grown in TY medium at 30°C. 

Inoculate 500 ml (two 1L-flasks with 250ml each) of TY medium to an optical density 

of 0,2 OD. 

 Incubate the culture at 30°C to an optical density of 0.6-0.7 OD. 

 Chill the culture in ice for 15 min. 

 Pellet the cells centrifuging 5 min at 8000 RPM at 4°C and discard the supernatant. 
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 Resuspend the pellet with 500ml of sterile distilled H2O by vortexing and centrifuge 

again. 

 Repeat the last step. 

 Resuspend the pellet with 500 ml of sterile 10 %glycerol solution by vortexing and 

centrifuge again. 

 Resuspend the pellet in a final volume of 2 ml of 10 % glycerol and aliquot (50 µl) the 

suspension in eppendorf tubes. Store at -80°C. 

NB. Cell number of each 50 µl aliquot will range between 109 and 1010. 

 

E.2.24. Electroporation of S. meliloti and S. medicae 

All electroporations were performed using sterile electroporation cuvette (inter-electrode 

distance of 0.1 cm) supplied by Molecular BioProducts and a Gene Pulser® Apparatus 

connected to the Pulse controller, version 2-89 supplied by Biorad. 

 Thaw in ice electrocompetent cells, about 10 min. 

 Add DNA in a volume of no more than 4-5 µl and mix well by vortexing few seconds. 

Keep in ice. 

All the following steps were performed quickly. 

 Transfer the suspension in a new electroporation cuvette. 

 Place immediately in the Gene Pulser apparatus and apply to the sample the 

appropriate impulse. 

 Immediately after pulse application resuspend the cells with 1 ml of TY medium and 

transfer in a 13 ml tube. 

 Incubated at 30°C, with shaking at 200 RPM, for 4h without any antibiotic. 

 Proceed by plating aliquots from serial dilutions on non-selective and selective 

medium. 

 Incubate at 30°C until colonies are grown.  

 

E.2.25. Targeted mutagenesis of S. meliloti Rm1021. 

This method was used to generate the mutant strain BM7. Smc02292 gene was mutagenized 

by plasmid insertion using a suicide plasmid through homologous recombination, as 

described by Luo et al. (2005). The plasmid, kindly provided by A. Becker (Molekulare 

Genetik, Institut für Biologie III, Albert-Ludwigs-Universität Freiburg), was derived from the 
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suicidal plasmid pK19mob2ΩHMB (Luo et al., 2005) and carries a PCR fragment of 341 

nucleotides of the middle part of Smc02292 gene (position 1041-1382 nucleotides 

downstream the start codon) inserted into the HindIII-BsrGI site. The resulting plasmid is not 

self replicable in Rm1021 and confers the resistance to kanamycin. Plasmid was moved into 

the wild-type strain S. meliloti Rm1021 by biparental mating using the E. coli strain S17-1 

(Simon et al., 1983). 

 

Conjugation to obtain plasmid integration (biparental mating) 

 The E. coli S17-1 cells containing the plasmid for disruption of the hsdR gene were 

grown overnight in liquid LB medium supplemented with kanamycin.  

 S. meliloti Rm1021 cells were grown overnight in liquid TY supplemented with 

streptomycin.  

 Dilute the cultures to an OD600 of 1.0 and take 4 ml of S. meliloti cells suspension and 

2 ml of E. coli cells suspension. 

 Pellet the cells centrifuging 8000 RPM for 2 min. 

 Wash twice with 1 ml of physiological solution. 

 Resuspend, mixing together, the pellets with 100 µl of physiological solution and 

apply the drop in a TY plate without antibiotic.  

 Incubate overnight at 30 °C. 

 Resuspend cells in 1ml of physiological solution using a sterile handle. 

 Proceed by plating. 

 

Selection of conjugants was done on TY plates plus streptomycin, to counter-select E. coli 

donor strain, and plus kanamycin to select the targeted integration of the whole plasmid by 

single crossing-over in the genome of Rm1021. 

 

E.2.26. Isolation and purification of plasmid DNA. 

Isolation 

The system used to obtain cell lysis and plasmid extraction is the NucleoSpin® Plasmid kit 

supplied by Macherey-Nagel. Supplier’s instruction were followed for E. coli, while for 

Sinorhizobium the following changes were applied: 



CHAPTER  II 

   128 
 

5) Each pellet of cells was obtained from 5ml of a dilution to 1.0 OD600 of an overnight 

culture.  

N.B. Only one pellet was sufficient to check the presence of the plasmid from 

Sinorhizobium. 20 pellets were instead produced for large scale preparations of 

plasmid and subsequent gel purification. 

6) Time for Lysis (after addition of buffer A2 and before addition of buffer A3) was 

extended to 10 min. 

7) Time of centrifugation to pellet cell debris (after added buffer A3) was 10 min. 

8) Each single column was used to bind DNA from two pellets  

N. B. step 4 only for large scale preparations. 

9) Elution of DNA was performed with 55 µl of nuclease free dH20 (Ambion) incubating 1 

min at room temperature and then centrifuging as indicated. After centrifugation 50 

µl of the eluate was recovered and loaded again in the same column incubating 1 min 

at room temperature and then centrifuging again. 

Purification 

 The product of 20 pellets extractions was concentrated by Microcon® YM-30 

(Millipore) in a volume of about 20µl. 

 Concentrated DNA was all loaded and run on 0.6 % agarose gel (D.2.8.). 

 Covalently closed circular DNA was excised from gel and DNA purified from agarose 

using QIAquick® Gel Extraction kit (Quiagen) according with manufacturer’s 

instructions.  

 DNA was then visualized and quantified as described in D.2.8. on 0,8 % agarose gel. 

 DNA was stored at 4 °C and not frozen to avoid breaking of circular DNA. 

 

E.2.27. Visualization and quantification of DNA 

Agarose gel electrophoresis 

This method is used for visualization, as well as quantification of double-stranded DNA. The 

agarose gels were prepared at 0.6 - 1 % (W/V). 

 

 Mix the agarose with TEA 1X buffer and boil till dissolved. 

 Chill the agarose-TEA to 50 °C, add Ethidium Bromide solution to a final 

concentration of 1mg/L and pour in a horizontal chamber with a comb. 
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 After the gel becomes solid, cover it with TEA buffer and remove the comb. 

 Mix the DNA with BBF loading buffer 6X  and load into the wells of the gel. 

 Run the gel using the voltage of 100 V. 

 Image of gel was collected making a photograph over UV light transilluminator with 

red filter. 

 

Quantification of DNA 

The concentration and purity of DNA was determined calculating the UV260 absorbance using 

spectrophotometer (BioPhotometer, Eppendorf). Analysis was performed using a 

programmed method as recommended by the manufacturer. 

 

E.2.28. Bacterial cells lysate 

From a fresh ON colony cells were resuspended in 20 µl of dH2O (alternatively 20 µl of fresh 

ON liquid culture), heated for 10 min at 99°C and then placed in ice for at least 3 min. Thus, 

80 µl of dH2O were added. Bacterial lysates were stored at – 20°C until use.  

 

E.2.29. Polymerase chain reaction 

Polymerase chain reaction is a technique for enzymatic replication of DNA in vitro. PCR uses 

two primers that anneal to the forward and reverse strands at the ends of the DNA fragment 

which has to be amplified. The cycles of DNA denaturing - primer annealing – and primer 

extension, permit amplification of the targeted DNA fragment. AccuPrime Pfx DNA 

polymerase (Invitrogen) was used in all PCR reactions in this work. 

 

PCR mixture: 
(Prepared in ice) 
1X AccuPrime Pfx reaction mix 
10 µM of each primer 
1U AccuPrime Pfx DNA polymerase 
2 µl of bacterial lysate (see D.2.9.) 
dH2O up to 25 µl 
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PCR amplification program 
- 95°C for 2 min 
- 35 cycles as follow:  

95°C 15 sec 
58°C 30 sec 
68 °C 3,5 min 

- Hold to 8°C 
 

E.2.30. Conjugation 

 Grow ON S. meliloti strains in TY medium. Grow ON E. coli S17-1 containing the 

plasmid pMR20 in LB medium supplemented with tetracycline. 

 Direct count the titer of the cells with Burker’s chamber, under microscope.  

 Take at least 109 Sinorhizobium cells and 0,5 x 109 cells of E. coli cells (ratio 2:1) for 

each single mating sample.  

 Centrifuge separately donor and recipient 8,000 RPM for 5 min to pellet the cells and 

discard the supernatant.  

 Wash the pellets twice with 0,85% NaCl solution, centrifuging as above. 

 Mix recipient and donor cells and pellets again centrifuging as above. 

 Resuspend the pellet in a final volume of 0,1 ml of 0,85% NaCl solution.  

 Transfer the mating cells on a TY plate well dried and incubate at 30°C for 4 hours. 

 Recover the cells from the plate with a sterile handle and resuspend in 1 ml of 0,85% 

NaCl solution.  

 Prepare serial dilutions and spread-plate different aliquots on selective and non-

selective medium to estimate the titers of donor cells, recipient cells, and 

transconjugants.  

 Incubate plates at 30°C until colonies are grown. 

 Evaluate efficiency of conjugation as the ration between the number of 

transconjugants and the number of donor cells. 

N.B. Usually three days are sufficient to grow colonies of S. meliloti Rm1021, but 

incubating four-five days assure to estimate correctly the real titers after conjugation. 
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E.2.31. Statistical analysis 

All treatments were performed in triplicate. The significance of difference among means was 

assessed by a non-parametric Kruskal-Wallis test, followed by Bonferroni error 

protection with a significance level at p<0.0001 by using  Analyse-it for Microsoft 

Excel (Analyse-it Software, Ltd.). 
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