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Introduction 

In the computation of General Equilibrium (GE) models, one of the most 
debated issues concerns the determination and, consequently, the validity of the 
parameters describing the behaviour of economic agents, paying particular 
attention to production and demand functions (Mansur and Whalley, 1984; 
Shoven and Whalley, 1984, 1992; McKitrick, 1998; Arndt, Robinson and Tarp, 
2002; Boys and Florax, 2007; Partridge and Rickman, 2008).  
This topic is relevant because there are actually two important phases when 
computing a GE model: calibration and estimation. 
As several authors have pointed out, see as example Hoover (1995), Hansen and 
Heckman (1996), Browning, Hansen and Heckman (1999), Balistreri and 
Hillberry (2005), there is still a heated debate in literature concerning the 
definition and the specification of a “boundary line” between calibration and 
estimation. On this issue, Dawkins, Srinivasan and Whalley (2001) made an 
interesting proposal in their review article because, according to them, calibration 
and estimation are closely related and actually in less conflict than one might 
suppose, as they stress that “calibration is estimation and estimation is 
calibration”. The same authors define calibration as "… the setting of the 
numerical values of model parameters relative to the criterion of an ability to 
replicate a base case dataset as a model solution ". On the other hand, they refer 
to estimation as "… the use of a goodness of fit criterion in the selection of 
numerical values of model parameters". 
Calibration and estimation in a Computable General Equilibrium Model (CGE) 
are generally developed from databases represented by Social Accounting 
Matrices (SAMs), some additional macroeconomic information and other data 
coming from external sources, such as information resulting from similar contexts 
or time-series and cross-section data. However, SAM represents the core macro-
accounting document, since it sums up the economic situation of the system in 
question in terms of values.  
Specifically, calibration refers to the use of information contained in a SAM in 
order to express macroeconomic equalities, identities and sometimes behavioural 
function parameters of the model in value terms. This phase of the computation 
process does not present any particular difficulty except for the usual problems 
related to the possibility of obtaining a "good" SAM and of using this information 
correctly.  
This research is mainly focused on the phase of estimation which concerns the 
estimation of behavioural parameters. As stressed by Devarajan and Robinson 
(2002) this phase concerns those parameters, like elasticity parameters, related to 
production, consumption, import demand and export supply functions, which 
cannot usually be obtained from a single SAM, but for which additional external 
data or external information is required.  
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Starting from the earlier applications - which were developed in the 1960s – and 
up to the 1980s, by using the “imputation” procedure previously estimated 
parameters obtained from similar situations were frequently used in order to 
obtain the value of the behavioural parameters (Piggott and Whalley, 1980; De 
Melo and Robinson, 1981; Dixon, Parmenter, Sutton and Vincent, 1982; Shoven 
and Whalley, 1982). However, “borrowing” the values from existing literature is 
not a real statistical approach, as no estimation has been performed.  
In the most recent years, the estimation has usually been carried out by following 
the econometric approach which refers to above-mentioned use of cross-section 
and time-series databases in addition to the SAM (Jorgenson, 1984; Jorgenson and 
Slesnick, 1997; McKitrick, 1998; Adkins, Rickman and Hameed, 2003).  
However, both procedures have been widely criticised, and therefore obtaining 
appropriate values for behavioural parameters is still a debatable problem. In fact, 
the validity of these parameters, as stressed by Iqbal and Siddiqui (2001) Arndt, 
Robinson and Tarp (2002), McDaniel and Balistreri (2002) Nganou (2004) and 
other authors, is a very crucial point since CGE results have shown to be quite 
sensitive to their values. 
The imputation procedure has been widely criticised on several grounds by 
Jorgenson (1984) and McKitrick (1998). On this issue, Wing (2004) stated that, 
although CGE models are widely diffused and generally accepted, they are still 
doubted by economists and politicians who have labelled them “black boxes”, 
since the imposition of the use of values borrowed from existing literature may 
not be suitable to the economic context in question. Consequently, the results of 
the model cannot be meaningfully traced to any particular features of their 
database or input parameters, algebraic structure, or methods of solution. 
Similarly, Dawkins et al. (2001), in referring to the values of elasticity, underline 
that borrowing the values of these parameters from already existing studies 
represents one of the clearest “Achille’s heels” of CGE models.  
Whalley (1985) and Nganou (2004) pointed out that “borrowed values” for 
behavioural parameters are unlikely to be appropriate for the country the CGE 
model is trying to represent and, therefore, they do not usually suit the specific 
context of study.  
Partridge and Rickman (1998; 2008) outlined the same problem for the regional 
CGE (RCGE) models, stressing that the same external parameter values found in 
national or international contexts are routinely used also in the regional context. 
As regards the econometric approach, Jorgenson (1984), in his review concerning 
the procedure of imputation in a CGE model, was the first author to propose a 
model characterized by a computation process in which the behavioural 
parameters regarding the fields of production, consumption and commerce were 
estimated by using annual time-series data in an attempt to solve the problems 
related to the imputation procedure. 
Jorgenson’s study has opened a "new" path for CGE models characterized by the 
development of econometric methods for estimating behavioural parameters 
necessary for the equilibrium of the model. The same approach has been 
reviewed, further developed and improved by, Jorgensen, Slenick and Wilcoxen 
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(1992), Kehoe, Polo and Sancho (1995), Arndt, Robinson and Tarp, (2002), Boys 
and Florax (2007) and other authors. 
However, this approach has frequently been criticized as well.  As stated by 
Blackorby and Russel (1989), the estimation of specific input parameters, such as 
elasticity, is affected by conditions and assumptions specific to each estimation 
process and therefore not easily and immediately extensible. Moreover, by using 
external data, some problems of classification and comparability of data can arise. 
 
The main objective of this research is to overcome the weaknesses of these two 
procedures for the determination of behavioural parameters concerning production 
and demand functions, by using the information contained in a SAM only. In 
particular, this will be done in the framework of RCGE models. 
To be precise, our idea is to unify the calibration and the estimation phases into a 
simultaneous estimation process, so that the computation process is completed 
using the regional SAM (RSAM) only. In this way, we will also achieve a twofold 
additional result. On one hand, we will emphasize the important role that 
calibration plays in carrying out a “self-contained” computation process. On the 
other hand, we will enhance the existing debate in literature by proving that the 
calibration and the estimation phases are much more connected than they have 
been considered up to now. In such a way, our approach confirms the statements 
of Dawkins et al. (2001) and Balistreri and Hillberry (2005) who underlined that 
“calibrators and estimators actually communicate much less than they should and 
that this lack of communication leads to a lack of research”. 
The sole use of this type of macroeconomic information for the parameter 
estimates is equivalent to a “limited information” approach and specifically to an 
“ill-posed” situation since a RSAM does not contain enough information for a 
significant statistical estimation. 
Ill-posed situations have been dealt with in literature by taking advantage of the 
class of Information-Theoretic methods. All these methods, as underlined by 
Golan (2008), pursue the “classical” objective of extracting all of the available 
information from the data with minimal assumptions on the underlying 
distribution generating the data. 
In this research we specifically refer to the Generalized Maximum Entropy 
(GME) and Generalized Cross Entropy (GCE) estimators proposed by Golan, 
Judge and Miller (1996a), which are based on the entropy criterion introduced by 
Shannon (1948) and its extensions, such as the Kullback-Leibler’s divergence 
measure (1951), and represent a generalization of the Maximum Entropy (ME) 
principle introduced by Jaynes (1957a, 1957b).  
Golan et al. (1996a) stated that these methodological approaches allow us to solve 
the problem of an econometric model that otherwise would be ill-posed (Paris and 
Howitt, 1998) and to obtain estimates that are consistent with “what we know”, 
that is the original dataset.  
GME uses all and only the available data and it lets the data speak for itself 
without imposing unnecessary or arbitrary assumptions or restrictions and does 
not require any restrictive moment or distributional error assumptions. The 
starting point of GME’s optimization problem is the specification of a finite and 
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discrete support for each of the unknown parameters and for the error component. 
By taking into account in the data constraint the disturbance terms, the GME can 
be considered as an extension of the classical ME approach. 
The GME estimates are obtained as the solution of a maximization problem 
subject to the available data constraints. In fact, due to this optimization procedure 
a mathematical problem is transformed into a deductive problem. (Golan et al., 
1996a). In other words, the GME method leads to the maximization of the joint 
entropy of both the signal, represented by the deterministic part of the model (the 
data), and the noise which represents the stochastic component.  
The solution of the optimization problem results in the best prediction of unknown 
parameters by transforming the empirical evidence into a probability distribution, 
which describes the state of our knowledge. By proceeding in this way, the 
entropy can be viewed as a measure of uncertainty associated with the probability 
distribution which is consistent with the available information.  
Additional information concerning the unknown parameters may be expressed in 
the form of prior probability distributions on the supports identified for the 
unknown parameters. The introduction of “a priori” information in the form of a 
probability distribution leads to the GCE estimator and specifically to a 
minimization problem. Actually, the entropy objective is used here to find the set 
of “posterior” distributions on the supports that satisfy the observations and are 
“closest” to the prior distributions.   
Since their introduction, a notable number of applications of GME and GCE have 
appeared in literature referring to various types of economic contexts and 
situations.  
Concerning production and demand functions, interesting applications are 
provided by Lence and Miller (1998), Paris and Howitt (1998) , Fraser (2000), 
Balcombe, Rapsomanikis and Klonaris (2003), Golan, Perloff and Shen (2001), 
Howitt and Msangi (2006). 
Moreover, whenever a CGE framework is called for, GME and GCE estimators 
appear to be among the most appealing tools. On this issue, interesting 
applications are provided in the studies by Arndt, Robinson and Tarp (2002), 
Nganou (2004), Ferrari and Manca (2008).  
Regarding the empirical application of this research, the benchmark dataset under 
which the estimates will be carried out is represented by the RSAM of Sardinia  
for the year 2001 (Ferrari, Garau and Lecca, 2007). 
To put the analysis in the regional context, where additional data is much less 
readily available than at national level, means facing further complications due to 
peculiarities of a region such as the degree of specificity or mobility of the factors 
and the regional product differentiation (Partridge and Rickman, 1998). The 
greater degree of openness of a regional economy which not only trades with 
other countries but also with the other regions in the same country, is an example 
of this aspect. At the same time, labour mobility seems to be more accentuated 
among regions rather than among countries. 
Estimation procedures used for obtaining production and demand function 
parameter values are strictly related to the behavioural sphere in question.  
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Concerning production, we will introduce a three-step estimation process based 
on the entropy estimation approaches in which additional information is gradually 
incorporated into the estimation process, because it is necessary to combine the 
available RSAM data, the calibrated RSAM information and the economic theory 
requirements.  
By following this strategy, in the first step no “a priori” information regarding the 
order of sizes and magnitude of the parameter values will be introduced, 
according to the classical GME approach.  
In the second step additional information will be introduced, by using the results 
obtained in the previous step together with the RSAM information and the 
economic theory.  
Thirdly, the final step is based on GCE philosophy where prior information will 
be introduced both in terms of parameter support bounds, as a result of the second 
step, and in terms of an estimated prior probability distribution obtained by the 
ME estimator. 
Concerning demand, we will take advantage of the classical GME estimation 
method which does not assume any “a priori” information. In this context, we  
will explain how we estimate systems of demand equations for the different 
household groups portrayed in the Sardinian RSAM. 
As mentioned above, the most important aspect of this thesis is the obtainment of 
the estimates of behavioural parameters, which will be totally suitable for the 
computation process of the RCGE model for Sardinia, since the parameter values 
will be obtained in a “self-contained” approach where no external information is 
assumed.  
To our knowledge, there has been no research for the estimation of behavioural 
parameters using this approach and exclusively the data contained in the SAM.  
 
The remainder of this work is structured as follows.  
 
The first chapter deals with CGE models by analyzing the “state of the art”, the 
scientific debate concerning them and the different approaches used in literature to 
determine behavioural parameter values for both production and demand 
functions. Taking into account the faults and defects that these approaches have 
proved to have, we will illustrate the motivation and the main contribution of our 
approach.  
 
The second chapter deals with the class of Information Theoretic estimators by 
focusing on the entropy based methods. Beginning with Shannon’s entropy 
criterion and the ME principle developed by Jaynes, a functional description of 
the GME and the GCE estimators is provided, together with a description of the 
most important and interesting applications in the context of production and 
demand as well as in the CGE and RCGE framework. 
 
The third chapter describes the main features of our proposed approach in detail. 
After illustrating the key roles that production and demand functions have in the 
RCGE framework, we will describe the chosen functional forms for the Sardinian 
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context. This chapter also includes an explanation of the main characteristics of 
the Constant Elasticity of Substitution (CES) and the Working-Leser functions, 
which are the selected functional forms for the production and demand spheres, 
respectively. 
Furthermore, we will make a detailed explanation on the economic meaning of the 
SAM as well as on the specific structure of the RSAM of Sardinia for the year 
2001, which represents the database used for the estimates.  
 
In the fourth chapter the estimation of the CES production function, between 
value added and intermediate consumption, will be performed. This chapter also 
deals with the proposed three-step estimation procedure by providing the most 
essential aspects and some indications about future developments and further 
improvements. Finally, the parameter estimates, together with the obtained 
elasticity of substitution will be discussed. 
 
In the fifth chapter, we will carry out the Working-Leser demand system 
estimation. This chapter deals with the classical GME estimator approach by 
illustrating how this estimator works and discussing the obtained expenditure 
elasticity, suitable for feeding the RCGE model equations.   
 
In the concluding remarks, we will point out the main results obtained and how 
our approach can be included in the existing heated debate in literature. Finally, 
we will make further indications concerning some plausible improvements as well 
as other fields of application of the proposed estimation strategy. 
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Chapter 1  

The Economic Framework: CGE Models and 

the Computation Process 

“…In many areas elasticity estimates differ in both size and sign, while for a number of the issues 
 in which applied modellers are interested in, no relevant elasticity estimates exist.  

The choice of elasticity values in applied models is therefore frequently  
based on contradictory, or little or no empirical evidence.  

This obviously undetermines confidence in model results. [Whalley, 1985]  

1.1 CGE Models: the “State of the Art” and the Scientific Debate 

CGE models, have been widely used for quantitative analysis of global 
economic issues and are still among the most useful tools in applied economics 
for simulating alternative economic policies. 
CGE models actually represent the most important instrument for combining the 
theoretical/abstract general equilibrium structure formalized in the 1950s by 
Arrow and Debreu and realistic economic data in order to convert an abstract 
representation of an economy into realistic models of actual economies (Shoven 
and Whalley, 1984). At the same time, numerically speaking CGE models enable 
us to solve for the levels of supply, demand and price that support equilibrium 
across a specified set of markets (Wing, 2004).  
As underlined by Wise, Cooke and Holland (2002), CGE models explicitly 
capture the behaviour of the various agents (households, firms, government, and 
rest of the world), the institutional framework (fiscal system and transfer 
mechanisms), and the market clearing processes (prices and quantities). They 
provide an internally consistent representation of the economic structure through 
the specification of a system of simultaneous equations following the Walrasian 
general equilibrium system. 
The first empirically based CGE model was implemented by the economist Leif 
Johansen in 1960, who formulated a multi-sector, price-endogenous model, for 
Norway, analyzing resource allocation issues1. Johansen retained the fixed 
coefficient assumption in modelling demands for intermediate goods, but he 
utilized the Cobb-Douglas (CD) production functions for modelling the 
substitution between capital and labour services and technical changes (Jorgenson, 
1983). 
                                                 
1 Dixon (2006) underlines that on a broader definition, CGE modelling starts with Leontief’s 
input-output models of the 1930s and includes the economy-wide mathematical programming 
models of Sandee. 
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Initially confined to universities and research institutions, today CGE models are 
usually used by governments in policy formulation and debates (Devarajan and 
Robinson, 2002).  
As stressed by Bergman (1982), following Johansen’s study, the development and 
application of CGE models has become a rapidly growing field in economics.  
Much research has been carried out since the 1970s focusing on empirical 
applications for the analysis of trade, taxation, income distribution, structural 
adjustment, industrial policies, environmental issues and so on, both in developed 
and developing countries.  
Various types of CGE models can be developed. The choice depends on the 
particular objectives of the study for which the model will be used. On this issue, 
Devarajan and Robinson (2002) argued that models destined for use in policy 
analysis should meet a number of the following desirable features: i) policy 
relevance; ii) transparency in the links between policy variables and outcomes; iii) 
timeliness; iv) validation and estimation relevant to the policy issue, that is to 
mean the model must be determined to achieve accurate results for the domain of 
potential policy choices; v) diversity of approaches2.  
Several reviews concerning the different application of CGE models exist. Shoven 
et al. (1984) reviewed the early national CGE literature highlighting the main 
features of applied general-equilibrium tax models. In their paper, they stressed 
that earlier analytic work with these models examined the distortional effect of 
taxes, tariffs and other policies, along with functional incidence issues. On the 
other hand, more recent applied models cited in their review provide numerical 
estimates of efficiency and distributional effects. 
De Melo (1988) analyzes the application of CGE models for the quantification of 
trade policy scenarios. Decaluwè and Martens (1988) and Bandara (1991), 
examine applications of CGE models for developing economies. Bhattacharyya 
(1996) reviewed the implementation of CGE models concerning energetic and 
environmental problems.  
Concerning RCGE models, our field of interest, an interesting review is provided 
by Partridge and Rickman (1998) in which they also argued that practical 
approaches should be taken to overcome data limitations in the computation of 
RCGE models.  
André, Cardenete and Velaszquez (2005), by using a RCGE model, analyzed an 
environmental tax reform and the double dividend hypothesis for CO2 and SO2 
policies for the region of Andalusia in Spain. 
Saveyn and Regemorter (2007) developed and applied a RCGE model for 
environmental and energy policies for the federal structure of Belgium. His RCGE 
model differs from the national CGE models as they take into account the 
interregional mobility of labour, the common product market across the regions 
and the explicit modelling of two government levels within one Nation. 

                                                 
2 In this respect, the same Authors stressed that the experience of the past twenty years about 
applied CGE models seems to suggest that “it is better to have a good structural model capturing 
the relevant behaviour of economic actors and their links across markets, even if the parameters 
are imperfectly estimated, because the domain of applicability of such models makes them more 
useful for policy analysis than other stylized models”.  
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Partridge and Rickman (2008) discussed the likely reason for the limited use of 
RCGE models for economic analysis, particularly for small region. They also 
proposed methodological improvements in order to lead to a wider use of RCGE 
models in economic development practice.  
In actual fact, analyzing a sub-national context within the RCGE framework 
means facing additional issues which arise with the appropriate definition of a 
region such as the degree of factor specificity/mobility and regional product 
differentiation (Partridge and Rickman, 1998). 
 
Despite their extensive use and general acceptance, RCGE models (and 
equivalently national CGE models) have been frequently criticized for the weak 
empirical foundation on which they are based3 (Jorgenson, 1984; Singleton, 1988; 
Hoover, 1995; McKitrick, 1998; Iqbal and Siddiqui, 2001; Balistreri, McDaniel 
and Wong, 2002; Boys and Florax, 2007; Hertel, Hummels, Ivanic and Keeney, 
2007).  
One of the most debated issues concerns the selection and, consequently, the 
validity of the key behavioural parameter values used in the computation process 
since as stated by Wigle (1986) and other authors, the selection of parameter 
values may be highly subjective and therefore raises natural scepticism regarding 
the reliability of the resulting simulations.  
On this issue, Wing (2004) by stressing the wide diffusion of CGE models 
underlines that these models are still viewed with suspicion in economics and 
political communities and they are defined as “black boxes” since the results 
cannot be meaningfully traced to any particular features of their data base or input 
parameters, algebraic structures, or methods of solution. 
The importance of this problem has been recognized by several authors and 
various alternative approaches have been proposed for assessing the simulation 
uncertainty induced by parameter uncertainty (Pagan and Shannon, 1985; Wigle, 
1991).  
For all these reasons, the behavioural parameter values play a crucial role in the 
functioning of the model and consequently affect the results of policy and external 
shock simulations since their values, as stressed by Annabi, Cockburn and 
Decaluwè (2006) critically determine the magnitude of response to different 
exogenous shocks.  
Shoven and Whalley (1984) were the first authors to point out the critical role of 
parameter selection underlying the associated difficulties in the simulation results. 
These authors stressed that up to the 1980s the most widely used procedure for 
assessing the reliability of the simulations consisted in performing a few 
alternative simulations with different parameter values and that the most common 
procedure was to choose a central case specification, around which a sensitivity 
analysis could be performed. 
The behavioural parameter selection methods applied can be summarized into two 
main approaches. In short, the first approach known as “imputation procedure” 

                                                 
3 Schmalensee, Stocker and Judson (1998) underline that this problem is not really confined to 
CGE models, but it has been recognized for complex simulation models in general.  
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refers to taking the behavioural parameter values from existing studies and to 
insert them into the CGE model in question. The second approach, known as the 
“econometric approach”, refers to the determination of the behavioural parameter 
values through an estimation procedure based on “external source” data. 
However, both of the above mentioned procedures have been widely criticised, 
and therefore obtaining appropriate values for behavioural parameters is a 
debatable problem even today. In fact, the estimation of these parameters, as 
stressed by Arndt et al. (2002), McDaniel and Balistreri (2002), Nganou (2004) 
and other authors, is a very crucial point since CGE results have been shown to be 
quite sensitive to the value of these parameters. In the next paragraphs, an 
explanation of the two approaches can be seen. 

1.2 The Computation Process: Calibration versus Estimation? 

The computation process of a RCGE model consists of both the calibration and 
parameter estimation. (Figure 1.1)  
According to Dawkins et al. (2001) we will refer to calibration “as the setting of 
the numerical values of model parameters relative to a criterion of an ability to 
replicate a base case dataset as a model solution”. To be precise the calibration 
refers to the use of information contained in a SAM in order to express 
macroeconomic equalities, identities of the model in quantitative terms.  
On the other hand, we will refer to estimation as the use of a goodness of fit 
criterion in the selection of numerical values of model parameters.  
 
In this respect, Devarajan and Robinson (2002) specified that the computation 
process of a CGE model basically requires two kinds of parameters:  
 
i) share parameters, such as intermediate inputs costs, consumer 

expenditure shares, average saving rates, which can be determined from 
the RSAM which is the “core” dataset of a RCGE model under the well-
known assumption that the base year represented by the RSAM is an 
equilibrium solution of the RCGE model. In this way, the RCGE follows 
the RSAM disaggregation of factors, activities, commodities and 
institutions; 

ii) behavioural parameters and specifically elasticity parameters describing 
the curvature of various structural functions (such as production 
functions, consumption functions, import demand functions, export 
supply functions) which cannot usually be obtained from a single 
RSAM, but additional external data (secondary source of data) and 
external information are required for the estimation. 
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Figure 1.1. Computation process of a RCGE model: phases of calibration and 
estimation 

 
The parameters at the point i) are determined in the calibration phase and 
therefore by using the information contained in the RSAM.  
On the other hand, for recovering the parameter values specified at the point ii) it 
is not sufficient the information contained in the RSAM and therefore they are 
involved in the estimation phase. 
For the “assignment” of these values two main procedures have been introduced 
in literature, the imputation and the econometric procedures, as better specified 
later.  
The major debate on both RCGE and CGE models concerns this particular aspect 
of the computation process since the selection of appropriate parameters greatly 
influences, and in some cases even drives, the results of applied economic 
modelling exercises (Arndt et al. 2002; McDaniel and Balistreri 2002).  
 
However, it is worth noting that there is a heated debate in literature aimed to 
define a borderline, if existent, between the calibration and the estimation phases 
of a RCGE model. 
In this context, Hoover (1995) was one of the first authors to set out some of the 
lines of this debate discussing the empirical value of calibrated models over 
estimation. One of the most important paper on this issue is represented by the 
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research of Dawkins et al. (2001) in which they specified their position by the 
statement that “….calibration and estimation are in less conflict than one might 
suppose”.  
Balistreri and Hillberry (2005) - whose paper’s purpose is to demonstrate that the 
statement of Dawkins et al. it is equally relevant to micro-based general 
equilibrium models – stressed that there is too little communication between 
calibrators and estimators of such models. 
It is our intention in this research to enhance the already existing debate by 
demonstrating that these two phases in the RCGE framework, are really strictly 
related. In particular, by considering the computation process as a unitary process, 
in such a way that the two phases could be joined together, it is possible to 
parameterize all the unknown coefficients of production and demand functions 
characterizing a RCGE model, by only using the information contained in the 
RSAM.  

1.3 Different Approaches to the Determination of the  
Behavioural Parameters 

1.3.1 The imputation procedure 
Generally, calibration consists in determining the numerical values of the various 
parameters of functions compatible with the equilibrium represented by the 
RSAM, within the RSAM itself. 
However, in some cases information contained in a RSAM is insufficient or 
inadequate for the calibration of all parameters.  
To be precise, when functional forms such as the CES, the Working-Leser, the 
Almost Ideal Demand System (AIDS) or the Linear Expenditure System (LES) 
are defined, the complete parameterization of these functional forms requires 
values of some additional parameters, namely the parameters describing the 
economic agent behaviour, such as the elasticity of substitution or the expenditure 
(or income) elasticity.  
As mentioned before, the values of these parameters can be imputed or based on 
econometric estimations.  
 
Referring to the first approach, known as the “imputation approach”, the problem 
related to the behavioural parameter values is generally solved by imputing values 
taken from similar contexts and “borrowed” from existing studies. Moreover, 
where such estimations are not available for the country in question, assumptions 
on elasticity estimated for a country with similar characteristics can be applied. 
For example, this may mean using measures of central tendency of estimates (a 
kind of average) after carrying out a survey on existing literature. 
This is a non-statistical approach as no estimation is performed and the approach 
is based on a criterion of analogy. It was greatly criticized by Jorgenson (1984), 
Lau (1984), Jorgensen et al. (1992), Diewert and Lawrence (1994), Nganou 
(2004) and other authors, since the values borrowed from literature can be more 
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appropriate for other countries rather than the country or the region the CGE 
model was intended for.  
On this issue, Abdelkhalek and Dufour (1998) stress that the elasticity, available 
from literature are often distantly related to the case studied because they come 
from different countries or periods of times that those we are interested in.  
The main consequence of working with this procedure is the great uncertainty 
regarding these basic ingredients, which is transmitted to the overall simulation 
results.  
This procedure was also called “calibration procedure” by Mansur and Whalley 
(1984). These authors referred to the term “calibration” as a method for the 
behavioural parameter value selection and at the same time for indicating the 
“general” method which gives a numerical value to any parameter of a model. 
According to these Authors, the term calibration may concern both those 
parameters usually determined from the SAM (such as share parameters) and 
those parameters whose values cannot be obtained from the SAM and therefore 
are “borrowed” from existing studies.  
 
In order to avoid confusion, from now on in this research we will refer to 
calibration only for the parameter values which can be determined from the SAM, 
while we will refer to the “borrowed” values from literature as the imputation 
procedure.  
 
Despite the above-mentioned difficulties, many authors have taken advantage of 
this imputation procedure.  
Piggott and Whalley (1980) used the substitution elasticity provided by Caddy 
(1976) - whose paper represents one of the most widely used sources in CGE 
computation - and the aggregate import and export CES price elasticity by Stern, 
Frencis and Shumacher (1976). These elasticities are used as point estimates to 
approximately compute the model at the benchmark equilibrium.  
This approach was also adopted by De Melo and Robinson (1981), who obtained 
trade elasticity from Hickman and Lau (1973) and Alaouze (1977).  
Shoven and Whalley (1992) did not estimate income and price elasticity, and used 
the imputation procedure as well (Ferrari and Manca, 2008) 
Roland, Reinert and Shiells (1994) built a CGE model for three countries (USA, 
Canada and Mexico) and 26 sectors in order to analyze the impact of integration 
in North America and based their estimates on a study by Sobarzo (1992) for the 
same countries4. 
Defenders of the imputation approach pointed out that there are usually 
insufficient time-series data to reliably econometrically estimate the models. 
Shoven and Whalley (1984) tried to explain why the calibration approach was so 
widely used. In particular they underlined that some applied CGE models 
involved many thousands of parameters and the estimation of all of the model 
                                                 
4 For the Armington elasticity for Mexico between domestic goods, imports from USA and 
Canada, and imports from the rest of the world the authors base their estimates on a study by 
Sobarzo (1992) for the same countries. These elasticities vary from 0.46 for “Other 
manufacturing” to 2.25 for “Agriculture”. 
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parameters would require either unrealistically large numbers of observations or 
overly severe identifying restrictions using time series based estimation methods. 
At the same time benchmark data sets - the SAMs  - are in value terms and the 
decomposition into separate price and quantity observations makes it difficult to 
sequence equilibrium observations with consistent units through time as would be 
required for time series estimation. 

1.3.2 The econometric approach 
As mentioned before, in the imputation approach it is common practice to 
“borrow” behavioural parameter values, such as elasticity, from other published 
data and on the basis of other researches. Although this procedure might sound 
straightforward, it is often exceedingly difficult because each study is different 
from every other and it is strictly necessary recognizing and taking account of 
these differences in the computation process of a CGE model (Shoven and 
Whalley, 1984). Moreover, as stressed by Adkins, Rickman and Hameed (2003) 
elasticity may have been estimated for geographical and industry classifications 
that are inconsistent with those required for the model in question.  
Partridge and Rickman (2008) underlined that RCGE modellers routinely use the 
same external values of the behavioural parameters found in national or 
international models. In this way, these imputed values make the RCGE model 
inconsistent with the empirical evidence of the regional context.  
Despite their extensive use, the “imputation” method has been quite criticized by, 
among others, Jorgenson (1984), Lau( 1984), Jorgensen et al (1992), Diewert and 
Lawrence (1994) and McKitrick (1998) and on several grounds.  
The main three features of these critiques are summarized in the work of 
McKitrick (1998) called by himself the “econometric critique” of CGE modeling. 
First of all CGE modellers often make resort to elasticity (or in general to the 
behavioural parameters) estimated for commodity or industry classification which 
are inconsistent with those represented in the model and/or for countries other 
than the ones the CGE model studied is trying to represent. These expediencies 
detract from the ability of the model to represent “the technology and tastes of the 
economy under study” (McKitrick, 1998). 
Secondly, a direct consequence of the imputation procedures is a partially 
dependence of the quality of the model constructed to the quality of the data used 
for the parameter values imputed.  
Third, the imputation approach tends to limit the researchers to the use of 
“restrictive” functional forms all of which embody restrictive assumptions about 
the structure of the industries analyzed.  
The first attempt to solve the difficulties related to the imputation procedure was 
provided by Jorgenson (1984) who presented an econometric model of producer 
behaviour suitable for incorporation into a CGE model. He implemented the 
econometric models for the producer behaviour and technical change by 
assembling a time series database (for the period 1958-1974) for thirty-six 
industrial sectors of the United States economy (Jorgenson and Fraumeni, 1981). 
His model was based on a production function for each sector, giving output as a 
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function of inputs of intermediate goods produced by other sectors and inputs of 
the primary factors of production, capital and labour services. Output also 
depends on time as an index of the level of technology. Producer equilibrium 
under constant returns to scale implies the existence of a sectoral price function, 
giving the price of output as a function of the input prices and time. He also 
incorporated the restrictions implied by economic theory of producer behaviour 
by generating a price function for each sector.  
The most important conceptual innovation of Jorgenson’s work is represented by 
the determination of the rate of technical change and the distributive shares of 
productive inputs simultaneously as functions of relative prices.  Estimates of the 
unknown parameters of Jorgenson’s econometric model of producer behaviour are 
based on the nonlinear three-stage least squares estimator introduced by Jorgenson 
and Laffont (1974). 
A decade later, Mc Kitrick (1998) in his work has also specified that an empirical 
economic model, such as a CGE model, embodies three types of information: 
analytical, functional and numerical.  
The analytical structure is the theoretical background material that identifies the 
variables of interest and their causal relations and for CGE models it is  
represented, usually, by the neoclassical canon.  
The functional structure is the mathematical and quantitative  representation of the 
analytical background and consists of the algebraic equations which make up the 
actual model. 
The numerical structure consists of both the signs and magnitudes of the 
coefficients in the equations forming the functional structure. 
McKitrick’s econometric critique of CGE modelling is not directed to the 
analytical structure but it calls into serious questions the functional and numerical 
structures of the calibrated CGE models.  To show  that, he constructed two short-
run CGE models in his paper; the first one is based on CES functional forms 
while the second model is based on normalized quadratic functions. In both 
models, all equations are econometrically estimated on a single 29-year time 
series database ad hoc constructed and whose data have been taken from Statistics 
Canada’s Canadian Socio-Economic Information Management System. 
 
To summarize the econometric approach, firstly introduced by Jorgenson (1984) 
and further developed by McKitrick (1998) refers to the use of time-series or 
cross-section data in addition to the SAM, in order to estimate the unknown 
behavioural parameters of a CGE model. 
In this context an interesting application is provided by Arndt et al. (2002), who 
used time series data joined to prior information on the elasticity to perform an 
estimation of trade elasticity associated to a CES aggregated function, by using 
the entropy based estimation approach. In the model to be estimated, the data are 
aggregated up to six commodities (food, crash crops, processed food, fish, 
manufactures, services) and seven activities which correspond one to one to the 
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commodities plus the commerce activity5. Time series data of imports, exports, 
tariff revenue, total production, marketing margins, intermediate consumption and 
household consumption, referred to the period 1991-1996, are provided by the 
National Statistical Institute of Mozambico. 
Adkins et al. (2003) used a Bayesian estimation approach to obtain production 
parameters for a RCGE model of Oklahoma manufacturing sector, in which 
regional data was sparse and judged to be of poor quality. The Bayesian priors 
formulated included information derived from the neoclassical restrictions and 
information from national data. 
Liu, Arndt and Hertel (2003) presented a general approach to parameter 
estimation, based on an approximate likelihood function6, and developed some 
goodness-of-fit measures for RCGE and global CGE models. The method is 
applied to estimation of Armington substitution elasticity in a relatively standard 
global model including 10 countries and focused on East Asian trade, employing a 
modified version of a standard, global CGE model developed by Rutherford 
(1999) and nick-named by themselves "GTAP in GAMS." 
Nganou (2004) estimated own-price and income elasticities, as well as Frisch 
parameters for households, whose consumption behaviour is described by a LES 
demand function in the context of a CGE model for Lesotho. GME technique is 
used instead to estimate Armington parameters. Data used to estimate LES 
parameters consist of both 1986/87 Lesotho Household Expenditures Survey and 
2000 Consumer Price Index series by commodities and location (rural and urban) 
and are provided by the Lesotho Bureau for Statistics. 
 
However, the behavioural parameter econometric estimates from “secondary 
source”, such as time series or cross section data in addition to the national or 
regional SAM, have been quite criticized. On one hand, by using external data in 
addition to the original dataset the introduction and the complete specification of 
more flexible functional forms would be possible but, on the other hand, this 
would create problems concerning level of aggregation and comparability of the 
data.  
As argued by Blackorby and Russel (1989) the estimation of specific input 
parameters, such as elasticity, is affected by conditions and assumptions specific 
to each estimation process. More precisely the “external data” on which the 
estimates are based, creates several problems related to the comparability and 
reliability of the results since the aggregation level of the “secondary source” data 
might not be the same of the SAM under which the studied CGE model is 
constructed. In this way, it is worth noting the statement of Boys and Florax 
(2007) according to them the parameter estimates require thoughtful consideration 
of both the source of the data for estimation and the purpose for estimation and 
their utilization. 

                                                 
5 Information on the SAM underlying the CGE model is available in Arndt, Cruz, Jensen, 
Robinson and Tarp (1998). 
6 They developed an approximate likelihood approach that focuses on discrepancies between 
model predictions and available data through time, across industries and across regions. 
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1.4 The Proposal of a “Self-Contained” Approach: Motivation 
and Main Contribution 

The main objective of this thesis is to propose an estimation procedure which 
enables us to obtain the values of behavioural parameters by using the information 
contained in the RSAM only.  
Our proposal moves from the existing approaches and in particular, from the 
faults and defects they have demonstrated to have.  
By considering the economic framework in question, this approach will help to 
eliminate the problems connected both to the imputation procedure and to the 
econometric procedure originating from external sources.  
As already mentioned several authors have often underlined how values 
“borrowed” from already existing studies do not necessarily adapt to a specific 
context of study and therefore they can bias the results of the RCGE model. In 
addition, a partial dependence of the quality of the model constructed to the 
quality of the data used for the parameter values imputed is closely connected to 
the imputation procedure. 
The econometric procedure from external sources has also been widely criticized 
partly due to the unavailability of external data on which the behavioural 
parameters are estimated. In particular, the lower the level of analysis, the more 
difficult it will be to find the necessary data. On the other hand, even when this 
data is available it necessary to pay particular attention to the aggregation level 
since it can cause problems of comparability among the different sources of data 
and consequently problems of interpretation of the results.  
 
As an alternative to the two above described main approaches, it is worth noting 
the approach introduced by Boys and Florax (2007) who have proposed to survey 
the existing literature and to combine published elasticity estimates by using 
econometric estimation method. Firstly, they constructed a database of elasticity 
estimates through an extensive literature review7. Then, they used a meta-
regression analysis in order to identify structural sources of variation in elasticity 
estimates sampled from primary studies. In addition, in the research they 
underlined how the meta-regression analysis could be used to improve the 
estimation of these crucial economic parameters by combining relevant estimates, 
investigating the sensitivity of estimates to variations in underlying assumptions, 
identifying and filtering out publication bias, and explaining variation in reported 
estimates.  
 
To our knowledge, no attempt has been made, when time series or cross section 
data are not available, or even when they are, to use the information contained in 
the RSAM in order to estimate the behavioural parameters of production or 
demand functions. 

                                                 
7 In order to identify the ensemble of studies available, they performed a comprehensive review of 
the agricultural production literature and in particular they referred to the agricultural input 
substitution elasticity between labour and capital.   
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The proposal of a “self-contained” approach for the estimation of key parameters, 
both for production and demand functions, which is an approach based only on 
the information contained in a RSAM, enables us to solve the above-mentioned 
problems, as it does not introduce any source of external data, in addition to the 
RSAM. 
In this way, our approach is fully eligible to be included in the existing debate in 
literature aimed to define a “border-line”, if existent, between the calibration and 
the estimation of a CGE model.  
More precisely, our idea is to join the calibration and the estimation phases 
together, so that the computation process is only based on the information 
contained in the RSAM.  
In actual fact, our approach is in total agreement with Dawkins et al. (2001) 
according to whom “calibration is estimation, estimation is calibration”, and 
Balistreri and Hillberry (2005) for whom calibrators and estimators in reality 
communicate much less than they should and therefore this lack of 
communication leads to a lack of research. 
Statistically speaking our approach leads to an “ill-posed” situation since a RSAM 
does not contain enough information to obtain valid estimates. In order to 
overcome this difficulty our approach is based on GME and GCE methods which 
refer to Shannon’s entropy, Kullback-Leibler measure and the ME principle 
developed by Jaynes (1957a; 1957b). The methods used will be discussed in 
chapter 2.  
Moreover, whenever we need to estimate production and demand function 
parameters it is necessary to specify the functional forms describing the economic 
agent behaviours. The choice of the functional forms for the Sardinian economic 
context will be carried out in Chapter 3 by considering both the theoretical aspects 
of the selected functional forms and the available data. 
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Chapter 2 

 Entropy Based Estimation Approaches 

“...in making inferences on the basis of partial information we must use that probability distribution which 
has maximum entropy subject to whatever is known. This is the only unbiased assignment we can make; to 
use any other would amount to arbitrary assumption of information which by hypothesis we do not have” 

[Jaynes, 1957b] 

2.1 Ill-posed Problems and Proposed Solutions 

A large number of data sets, in economics and other social sciences, are 
non-experimental, very small, limited or highly collinear, that is to say there is not 
enough information for perfectly inverting the data matrix in order to obtain a 
solution (Golan et al. 1996a; Golan, 2003).  
Mittelhammer, Judge and Miller (2000) stressed that the data on which the 
analyses are based, is often partial or incomplete, since one, or more, of the 
following situations can arise:  
- repetitions of the experimental data generating process are unnatural if not 

impossible;  
- the number of observations is limited and the unknowns may be greater than 

the data points;  
- the covariates may be highly correlated;  
- data is in the form of count data and it may be in the form of averages, sample 

moments, or other aggregate measures, where probabilities must be used to 
represent partial information about individual outcomes.  

The same Authors suggest the use of the term “ill-posed” to refer generically to a 
situation characterized by any of the above-mentioned difficulties.  
 
Fraser (2000) stresses that the following distinction has been made in literature in 
order to sum up the types of problems that can affect a dataset. A situation is 
described as “ill-posed” because of non-stationarity or because the number of 
observations is limited. Alternatively, a situation is defined as “ill-conditioned” or 
“ill-behaved” when the parameter estimates are highly unstable due to the bad 
design of the experiment or because the data is generated non-experimentally. 
One of the related problems in this case is the collinearity of data.  
 
It is worth noting that in this research the term “ill-posed” will be used according 
to the general definition given by Mittelhammer et al. (2000), that can be referred 
to as “under-determined” as well. 
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Convenient assumptions, such as addition of prior or out of sample information to 
the original dataset, have been used to convert an “ill-posed” problem into a 
seemingly “well-posed” statistical problem. As stressed by Golan, Judge and Karp 
(1996c), ill-posed problems are often simplified by imposing “a priori” 
restrictions or by reducing the number of equations or unknowns, in order to use a 
traditional estimation method. Unfortunately, these devices often lead to 
unfavourable solutions and erroneous interpretations and treatments. 
One of the current estimation methods specifically developed for dealing with 
these situations are the GME and GCE estimators, proposed by Golan et al. 
(1996a). 
These estimation approaches lie on an extension of the entropy measure firstly 
introduced by Shannon (1948) and represent a generalization of the ME principle 
developed by E.T. Jaynes (1957a, 1957b). 
As stressed by Arndt et al. (2002), the GME and GCE approaches have a great 
number of advantages for estimating parameters within the CGE or RCGE 
context. First, they allow to impose all general equilibrium constraints. Secondly, 
they permit incorporation of prior information on parameter values. Moreover, 
they can be applied in the absence of copious data.    
The estimation of behavioural parameters of production and demand functions, in 
a RSAM-based approach is typically an “ill-posed” situation as in our case, since 
a RSAM does not contain enough information to obtain significant statistical 
estimates. Due to these peculiarities and taking into consideration the RCGE 
framework, the estimates will be carried out by taking advantage of these entropy-
based approaches. 

2.2 Entropy Criterion as Information Measure: an Historical 
Perspective 

The origin of the term “entropy” dates back to XIX century and to 
thermodynamics, as a measure of disorder of a system.  
More specifically, the second law of thermodynamics states that the entropy of a 
(closed) system (like the universe) increases with time. Thus, in this context, it 
represents the progression of a system towards equilibrium, that is reached at the 
highest level of entropy. Similarly, in the information theory field, entropy is 
defined as a measure of uncertainty or missing information.  
In 1948, Claude E. Shannon, a communication engineer, was concerned with the 
problem of communicating information across noisy channels in which there was 
the potential for information loss during the communication process. One of his 
principal aim was to measure the level of uncertainty contained in a possibly 
noisy message received by an individual1.   

                                                 
1 Since the principal reason for providing an informational message is to remove or reduce 
uncertainty regarding some issue or topic, and since probability theory can be used to characterize 
uncertainty in a proposition or in the occurrence of events, Shannon proceeded to define a measure 
of uncertainty in probabilistic terms. 
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With this objective in mind and by using an axiomatic approach which delineated 
certain primitive and logical properties that a quantitative measure of information 
should possess2, Shannon deduced a unique function, 1 2( , ,..., )kH p p p , able to 
measure the degree of uncertainty contained in a message.  
As the same author stressed in its seminal work, the entropy measure will quantify 
“…how much information is produced by such a process, or better, at what rate 
information is produced” (Shannon, 1948). 
The introduced function, satisfying some specified assumptions, is of the form: 

1
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In this way the measure’s criterion defined by Shannon, H(p), called entropy3,  is 
function of the probability distribution p and not a function of the actual values 
taken by the random variable X. 
Renyi (1961) argued that the entropy of a probability distribution can be 
interpreted not only as a measure of uncertainty but also as a measure of 
information. In actual fact, the amount of information, which we get when we 
observe the result of an experiment (depending on chance), can be taken 
numerically equal to the amount of uncertainty concerning the outcome of the 
experiment before carrying it out. 
Intuitively, as stated by Mittelhammer, Judge and Miller (2000) information 
should be a decreasing function of pi: the more unlikely an event, the more 
interesting it is to know that it can happen.  
Golan (2008), in his survey and in the context of information theory4, refers to 
entropy as expected information as well. The same Author states that entropy 

                                                 
2 Shannon (1948) underlines that it is reasonable to require of it the following properties: 

i) H should be continuous in the pi; 
ii) If all pi are equal, pi=1/K, then H should be a monotonic increasing function of n. 

With equally likely events there is more choice, or uncertainty, when there are more 
possible events; 

iii) If a choice be broken down into two successive choices, the original H should be the 
weighted sum of the individual values of H.  

3 As stressed by Golan (2008), Shannon in completing his work noted that “information” is already 
an overused term. The “legend” is that he approached his colleague John von Neumann, who 
responded: “You should call it entropy for two reasons: first, the function is already in use in 
thermodynamics under the same name; second, and more importantly, most people do not know 
what entropy really is, and if you use the word entropy in an argument you will win every time”.  
4 The review and synthesis by Golan (2008) on information and entropy econometrics, discusses 
the concept of information and as it relates to econometric and statistical analyses of data. The 
meaning of “information” is studied and related to the basics of Information Theory as it is viewed 
by economist and researchers who are engaged in deciphering information from the data, while 



 22

reflects what we expect to learn from observations, on average, and it depends on 
how we measure information. 
As stressed by Fraser (2000) the Shannon’s entropy formulation coincides with 
the minus expectation of the logarithms of the probabilities and thus, it is 
considered as a measure of uncertainty or missing information.  
In a more technical point of view, entropy is a measure of uncertainty of a single 
random variable and therefore it can be also viewed as a measure of uniformity. In 
such a way, Shannon’s entropy measure can be also viewed as a measure of the 
distance between the discrete uniform distribution and the distribution generating 
p. 
The values of Shannon’s entropy range between 0 and ln(k) quantifying the 
degree of uncertainty in a distribution, p, measured on a scale ranging from a 
maximum to a minimum information level.  
Entropy is minimized at the value of 0 if and only if p is degenerate on a 
particular outcome, xj, so that pj=1 and pi=0 for k≠j. The minimum value of 
entropy is associated with a maximally informative probability distribution for 
anticipating subsequent outcomes of the random variable, X, which implies that xj 
will occur with probability equal to one. Thus, by using the statement of Shannon 
(1948), “…only when we are certain of the outcome does H vanish, otherwise H 
is positive”. 
In more detail, the minimal value of the Shannon entropy will be reached in a 
situation like the following: 
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On the other hand, the maximum value of entropy is uniquely associated with the 
maximally uninformative (or that is the same the minimal informative) weight-
probability distribution. For a given K, H reaches its maximum when all K 
outcomes have the same probability to occur (i.e. equal to 1/K), that will be: 
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In a situation like that described by the [2.3] it can be noted that the statistical 
probability distribution associated to the maximum value of the Shannon entropy 
is the uniform distribution which treats all outcomes as equally likely and thus 
discriminate none of the potential outcomes as being more or less likely to occur 
than another. 

                                                                                                                                      
taking into account what they know about the underlying process that generated these data and 
their beliefs about the economic system under investigation.  
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After the study of Shannon, other entropy measures have been developed. The 
most known are those introduced by Rényi (1961, 1970) and Tsallis (1988), which 
include the measure of Shannon as a special case. 
Starting with the idea of describing the gain of information, Rényi (1961) has 
initially developed the entropy or order α for incomplete random variables (i.e. 

such that 
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≤∑ ) and later the generalized entropy measure of a proper 

probability distribution (Rényi, 1970) defined as: 
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where  the parameter α is assumed to be strictly positive (α>0).  
The other information measure introduced by Tsallis (1988) can be defined as: 
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where the value of c, a positive constant, depends on the particular units used.  
Both of these measure5 include the Shannon measure as a special case. 
Particularly as 1α → , ( ) ( ) ( )R TH H Hα α= =p p p . 
It is interesting to note that, as stressed by Golan (2008), the functional form of 
Renyi’s measure described by the [2.4], resembles the CES production function, 
while Tsallis’s equation described by the [2.5] is similar to the Box-Cox function. 
 
The three measures, introduced by the [2.1], [2.4] and [2.5] share the following 
three properties, as underlined by Golan and Perloff (2002): 

i) they are nonnegative for any arbitrary p. In fact, the three entropy 
measures are always strictly positive except when all probabilities but 
one equal zero (which coincides to a perfect certainty information 
context); 

ii) they reach a maximum value when all probabilities, related to all the 
possible events, are equal; 

iii) each measure is concave for arbitrary p; 
 
However, it is worth noting that in the Shannon’s entropy events with high or low 
probability do not add much to the entropy level. Indeed, in the measures 

                                                 
5 The Renyi and Tsallis entropies have been compared in Tsallis (1988) and Holste, Grobe and 
Herzel (1998) to show that:  

( ) (1/1 ) ln[1 (1 ) ln ]R TH Hα αα α= − + −p  
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introduced by the [2.4] and [2.5] higher probability events contribute more to the 
value than do lower probability events6.  
This property is one of the most important properties of the Shannon’s entropy 
and represents, in the meanwhile, one of the strength points to the extension of 
this measure in a statistical inferential context. 
 
Moreover, the three entropy measures differ in terms of their additive properties. 
In this context an important property, which distinguishes the Shannon’s entropy 
from the other generalized measures proposed, is known as “Composite Events 
property”.  
This property states that the value of the Shannon’s entropy for a composite event 
is equals to the sum of the marginal and conditional entropies.  
To demonstrate this property it is firstly necessary to define two discrete and finite 
random variables X and Y, whose possible realizations are { }1 2, ,..., kx x x  and 

{ }1 2, ,.., jy y y , respectively. Let us define also the probability associated to each 

single outcome xk and yj as ( )k kP X x p= =  and ( )j jP Y y q= = ; the joint 

probability ( , )k j kjP X x Y y w= = = ; the conditional probabilities 

|( | ) ( | )k j k jP X Y P X x Y y p= = = =  and |( | ) ( | )j k j kP Y X P Y y X x q= = = =  

where 
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The conditional entropy ( )H p q  represents the total information contained in X 
with the condition that Y has a certain value (Golan, 2003): 
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 [2.6] 

As shown by Renyi (1970) Shannon’s entropy is the only measure which satisfies 
the following expression:  
 

( , ) ( ) ( | ) ( ) ( | )H H H H H= + = +p q q p q p q p   [2.7] 
 
and, if X and Y are two independent random variables the above equation reduces 
to: 
 

                                                 
6Golan (2003) stresses that in the measure [2.4] and [2.5],unlike the Shannon’s measure, the 
average logarithm is replaced by an average of powers α. Thus, a change in α changes the relative 
contribution of the event k to the total sum. The larger the α, the more weight the “larger” 
probabilities receive the sum.  
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( , ) ( ) ( )H H H= +p q p q     [2.8] 
 
Another important property of the Shannon’s entropy is the additivity, (also 
known as Shannon’s additivity), according to which, the total amount of 
information in the entire K dimensional sample is equal to the weighted average 
of the information contained in two mutually exclusive sub-samples A and B of 
length L and M respectively (with L+M=K)7.  
The properties above-specified, together with further developments in 
econometric and statistical fields have conducted to view the Shannon’s measure 
under different point of views, also in term of image reconstruction.  
In the economic field, for example, at the beginning of the analysis a researcher 
never knows the specific true underlying values characterizing a system. 
Therefore, as underlined by Golan (2008), one may incorporate understanding and 
knowledge of the system in reconstructing (estimating) the image (represented by 
the unknown parameters) where this knowledge appears in terms of some global 
macro-level quantities such as moments. So, the entropy of the analyzed 
economic system measures the uncertainty of the researcher who knows only 
some moments’ values representing the underlying population. 
As stressed by Myung, Ramamoorti and Bailey (1996) Shannon’s entropy 
together with mathematical communication theory has found significant 
applications in a variety of fields spanning astronomy, economics, engineering, 
geology, physics, statistics, transportation and urban and regional planning.  

2.3 The ME Framework  

2.3.1 The ME principle 
In 1957, E.T. Jaynes formulated Shannon’s entropy as a method for estimation 
and inference particularly for limited and insufficient data situations by proposing 
the so-called ME principle. 
Jaynes (1957b) was motivated to develop his principle as a form of statistical 
inference, studying the prediction of equilibrium thermodynamic properties. His 
starting points were the Shannon’s entropy as an information measure and the 
subjective interpretation of probabilities.  
With these notions in mind, he developed the principle according to which “the 
probability distribution subject to whatever is known, provides the most unbiased 
representation of our knowledge of the state of the system”. Moreover, the chosen 

                                                 
7 Let the probabilities for the subsample A be { },...,1p pL  and for the subsample B be 

{ } { },..., ,...,1 1p p p pM L K= +  and define 
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(including α=1 which is the special case of Shannon’s entropy), 
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probability distribution under the ME principle is the broadest one compatible 
with the available information. 
As a general statistical inference method, the ME principle developed by Jaynes 
rests on the maximization of the Shannon’s entropy subject to appropriate 
consistency relation (such as specifically moments of the studied data) and adding 
up constraints, as a basis for assigning or recovering the unknown probabilities p 
that characterize a given data set. 
As underlined by Paris and Caputo (2001), following Jaynes, the idea of entropy 
defines a probability measure such that the probability distributions with high 
entropy are "favored" in the sense that they are more likely to occur and require 
less a priori information. 
Obviously, the maximization of the entropy which is not subjected to any 
consistency constraint, but subject to the proper probability distribution constraint, 
yields to the maximum value for H(p) and consequently the estimated distribution 
of the p's returns to the uniform one which describes, as known, the state of 
complete uncertainty.  
The introduction of some observed sample moments (such as means or variances) 
as constraints into the optimization problem takes the solution away from 
uniformity. Specifically, as underlined by Golan (2008), the more information 
there is in the data, the further away the resulting distribution is from uniformity 
or from a state of complete ignorance.  
Mittelhammer et al. (2000) underline that the ME principle is based on an 
extension of LaPlace’s “principle of insufficient reason” , on the basis of which  
one should choose the maximally uninformative uniform distribution as an 
estimate of the unknown probabilities vector, p, when there is maximal 
uncertainty about the values of the pi’s. In other words, the uniform distribution is 
the “right” distribution, when there is insufficient reason to choose any other 
distribution that favours some outcomes as being more likely than others8.  
The Jaynes’ ME principle represents an extension of Laplace’s Principle since it 
considers that moment information about p is available and it leads to choose the 
maximally uninformative uniform distribution as the available moment constraint 
information allows.  
According to this approach, as stressed by Fraser (2000), two or more feasible 
distributions satisfying the constraints could be found. The one to be selected is 
the one which is least informative, or most uncertain according to the Shannon 
entropy criterion. 
On this issue, Jaynes (1957a, 1957b), underlined that this procedure “…is the only 
assignment that one can make; to use any other would amount to arbitrary 
assumption of information which by hypothesis we do not have”. 

                                                 
8As argued by Jaynes (1957a) the problem of specification of probabilities in cases where little or 
no information is available, is as old as the theory of probability. However, except in cases where 
there is an evident element of symmetry that clearly renders the events “equally possible”, this 
assumption may appear just as arbitrary as any other that may be made. Since the time of Laplace, 
this way of formulating problems has been largely abandoned, owing to the lack of any 
constructive principle which would give us a reason for preferring one probability distribution over 
another in cases where both agree equally well with the available information. (Jaynes, 1957a) . 
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In such a way, it is possible to view the ME method as a method that yields the 
most uniformed distribution that is consistent with the observed sample moments. 
On this issue, Bera and Bilias (2002) underlines that maximization of Shannon’s 
entropy subject to the data-moment constraints make the resulting estimated 
probabilities as smooth as possible. 
The basic formulation of the ME principle proposed by Jaynes provides some new 
insight into the debate on “probabilities versus frequencies”. In fact, he specified 
the notion of probability via Shannon’s entropy measure. Jaynes’ principle states 
that in any inference problem the probability should be assigned by this principle, 
which maximizes the entropy subject to the requirement of proper probabilities 
and any other available information, such as sample data which constitutes a 
constraint into the optimization problem.  

2.3.2 ME principle and information entropy econometrics  
An important aspect concerning the ME approach is the strictly correlation 
between the ME principle, view as an estimation method, and the information 
theory. Several authors in literature have investigated this relation. 
Kesavan and Kapur (1989) underlined that the ME principle draws together 
concepts from information theory, statistical inference, optimization and “last but 
non least” a precise knowledge of the partial information one has about a 
probabilistic system in terms of a set of statistical moments.   
Fraser (2000) underlines that in the information theory, as well as for the ME 
principle, the information contained in an observation is inversely proportional to 
its probability.  
Golan (2008) has recognized two main and parallel paths that lead to the classical 
ME through the Information Theory (IT). These two lines of research, as the 
author underlines, are similar. The objective of the first line, pertaining to the 18th 
century and identified by the works of Bernoulli, Bayes and Laplace, is to 
formulate a methodology that allows understanding of the general characteristics 
of a system from partial and incomplete information. In the second line of 
research, pertaining to the 19th century and identified by the studies of Maxwell 
and Boltzmann and continued by Gibbs and Shannon (1948), this same objective 
is expressed as determining how to assign numerical values of probabilities when 
only some theoretical limited global quantities of the studied system are known. 
In the light of these two research paths, it is possible to view the ME formalism as 
a principle based on the philosophy of the first line of research and the 
mathematics of the second line of research. 
In a more general fashion, the ME principle represents one of the most important 
starting point of the Information and Entropy Econometrics (IEE) which is, as 
underlined by Golan (2007), the sub-discipline of processing information from 
limited and noisy data with minimal a priori information on the data-generating 
process. (Figure 2.1). 
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The main relationship linking all estimation methods which are included in the 
IEE9 is that, rather than starting with a pre-specified likelihood, they take 
advantage of the observed data, in order to estimate a set of natural weights, or 
empirical distribution, which is most consistent with the observed sample 
moments or data (Golan, 2007).  
 
Figure. 2.1 IEE: historical perspective 
 
 

 
Source: Golan, 2008 
 
Estimates obtained by using these methods are based on a maximization or 
minimization problem of a certain information criterion subject to the observed 
sample information. The objective functions used in these optimization problems 
are related to entropy of Shannon, which is a special case of the generalized 
entropy measure. (Golan, 2008). 10 

                                                 
9 This class of estimators includes the Empirical Likelihood (EL), the Generalized EL (GEL), the 
GME and the Generalized Method of Moments (GMM), as well as the Bayesian Method of 
Moments (BMOM). Golan (2008) provides a detailed discussion about this class of estimators. 
10 The core objective of all research within the IEE framework can be found in a simple example 
contained in the work of Jaynes (1963) and concerning a die toss experiment. In this example it is 
known the empirical mean value of a very large number of tosses of a six-sided die. With this 
information we wish to predict the probability that in the next throw of the die we will observe the 
value 1,2,3,4,5 or 6. Under the assumption that the probability vector is proper, we should predict 
six values (unknowns) with only two observed moments (knowns): the mean and the sum of 
probabilities. Since there are more unknowns than knowns there are infinitely many probability 
distributions that sum up to one and satisfy the observed mean. But, as stressed among other by 
Golan (2007), “which one of the infinitely many solutions should one use?”. In all of the IT 
methods, the one solution chosen is based on either the Shannon’s information measure-entropy, 
or other information measures that are directly connected to Shannon’s entropy.   
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The ME principle developed by Jaynes is specifically designed to deal with ill-
posed situations and as an estimation method able to recover a probability 
distribution from an insufficient number of moments which represent the only 
available information. 
In fact, by using this approach the “chosen” probability distribution for the data is 
the one, which maximizes entropy and which is at the same time the least 
informative over the set of probability distributions that are consistent with the 
evidence.  

2.3.3 Structure and solution of a ME problem 
As Jaynes (1984) noted, when ill-posed problems arise, creative assumptions or 
prior information have been used in literature to induce a well-posed problem 
which lead to feasible solutions. As an alternative to this, the same author 
introduced, as mentioned above, the ME principle specifically oriented to deal 
with these types of problems and based on the measure introduced by Shannon.  
The use of this formulation makes possible the transformation of the observed 
evidence, represented by the data in form of such empirical moments, into a 
distribution of probability describing our state of knowledge.  
In this way, it is possible to convert, as stressed by Golan et al. (1996a) the 
problem from one of deductive mathematics to one of inference involving an 
optimization procedure, where “we seek to make the best, most objective 
predictions possible for the information that we have” (Mittelhammer et al, 2000). 
The philosophy underlying this approach is to use all, and only, the information 
available for the estimation problem at hand. 
Assuming that the ill-posed inverse problem might be written as:  
 

=y Xp       [2.9] 
 

where y is a T-dimensional vector of observed moments (i.e. average or 
aggregated data) and X is a (T×K) design matrix. Our objective is to estimate the 
K-dimensional (with K>T) proper probability distribution p.  
According to the standard literature, (Golan et al, 1996a; Golan, 2008) the 
analytical definition, structure and solution of the estimation problem can be 
illustrated as follows: 
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subject to moment-consistency constraints:  
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and to the adding-up normalization constraints defined on the probabilities p, such 
that: 
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1k
k

p =∑      [2.12] 

 
To recover the unknown probability vector p one can form the Lagrangian 
function: 
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with the first-order conditions:  
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The solution to this system of K+T+1 equations and parameters yields 
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where ( ) exp t tk
k t

xλ⎛ ⎞
Ω = −⎜ ⎟

⎝ ⎠
∑ ∑λ is a normalization factor. In particular, the 

factor Ω converts the relative probabilities to absolute probabilities and it is 
known in literature as the partition function.   
The ME approach, in the form proposed by Jaynes (1957a; 1957b) has been 
primarily applied in the solution of estimation problems when information is 
given in the form of moment constraints or other aggregate measures.  
However, as argued by Jaynes (1982), the ME can be applied to probability 
estimation problems involving any other constraints, not necessarily in the form of 
moments, yielding distinct maximum entropy solutions. 
 
Golan et al. (1996a) generalized the traditional formulation proposed by Jaynes 
(1957a; 1957b) by defining the ill-posed pure inverse problem as: 
 

=y Xβ     [2.16] 
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where y is a T-dimensional vector, X is a (T×K) design matrix composed of 
explanatory variables and β is a K (with K>T) dimensional vector of unknown 
parameters. 
Mittelhammer et al. (2000) refer to the term pure to point out the absence of the 
error term (the noise component) in the relationship between variables and 
parameters; that is the relationships are assumed to be exact. 
In the aim of specifying the optimization problem on which the ME formulation 
proposed by Golan et al (1996a) is based, it is firstly necessary to re-parameterize 
each unknown parameter βk in terms of probabilities because of the fact that the 
arguments of the Shannon’s entropy, as mentioned above, are probabilities.  
Particularly, it is necessary to introduce a set of equally distanced discrete points 

( )1 2, ,..., Mz z z ′=z  with corresponding probabilities ( )1 2, ,...,k k kMp p p ′=kp  and 
with M≥2 where M is the number of support points defined on each  βk. 
Consistent with this specification it is possible to rewrite β as: 
 

Z=β p      [2.17] 
where:  
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Z is a block diagonal (KxKM) matrix of support points with: 

 

1
  for k=1,2,...,K   m=1,2,...,M

M

m km k
m

z p β
=

′ = =∑kz p       [2.19] 

 
By doing so, the re-parameterized system is described as: 

 
=y XZp      [2.20] 

 
As stressed by Eruygur (2005) by taking advantage of this re-parameterization, 
each parameter is converted from the real line into a well-behaved set of proper 
probabilities defined over the supports. The implementation of a ME estimation 
problem makes possible to choose and define for the unknown parameter a set of 
discrete points, which is called support space, on the basis of knowledge about 
size and magnitude of the unknowns. As a consequence of this, the specified 
support spaces could be different for each of the unknown parameters. 
However, in most cases researchers have not any knowledge about the unknown 
parameters and therefore, as stressed by Golan et al. (1996a) they should specify 
for each of the unknown βk a support space that is uniformly symmetric around 
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zero with end points of large magnitude, say ( ), / 2,0, / 2,k C C C C′ = − −z for M=5 
and for some scalar C. 
The equation [2.20] as introduced above for the data-moment formulation, will 
enter the optimization problem as data-consistency constraints. Also in this case, 
the related optimization problem consists in the maximization of the Shannon 
entropy measure for the H(p) subject to the constraints represented by the data 
and the normalization contraints introduced on the unknown probability p. The 
solution of the maximization problem yields to the β expressed as: Z=β p  and in 

scalar form as k m km
m

z pβ =∑ . 

2.3.4 The CE approach 
Kullback and Leibler (1951) and Kullback (1959) have introduced a more general 
measure of entropy specifically concerning the measure of the distance between 
two probability distributions, p and q. In general, as underlined by Preckel (2001) 
cross entropy  measures the discrepancy between two distributions. 
This measure, called cross-entropy (CE) or the Kullback-Leibler information 
criterion, can be expressed  as follows: 
 

1
( , ) ln( / )

K

k k k
k

I p p q
=

=∑p q    [2.21] 

 
As stressed, among others, by Mittelhammer et al. (2000) the CE formulation is a 
one-to-one function of Shannon’s entropy described by the [2.1] when q is a 
discrete uniform distribution. Under this point of view, this entropy formulation 
allows for prior information on the probability distribution values p, pertaining to 
the data, in the form of a proper probability distribution q which describes some 
form of prior conceptual knowledge. 
This general entropy formulation can be translated in the inference estimation 
context, by formulating the optimization problem and illustrating the related 
solution.  
In this way, as underlined by Fraser (2000) it is possible to derive an estimate of p 
subject to the existing constraints, in such a way that it can be discriminated from 
q with a minimum of difference. 
A more detailed description about the optimization problem connected to the CE 
estimator can be presented as follows.  
Firstly, it is necessary to suppose that, in addition to the data, some source of 
additional information concerning prior knowledge on the unknown parameters is 
available. This additional available information is expressed in the form of a 
proper probability vector q. 
The objective of the optimization problem may be reformulated into minimize the 
entropy distance between the data in the form of p and the prior q.11.  

                                                 
11 That is, the underlying principle is that of probabilistic distance or divergence.   



 33

Good (1963) refers to this objective as the minimization of the cross-entropy 
between the probabilities that are consistent with the information in the data and 
the prior information q. 
The solution of the optimization problem is reformulated into find for p, out of all 
the distribution satisfying the one closest to q.  
Following the metric introduced for the classical ME, the CE criterion between p, 
and q,can be expressed in the following way (Fraser, 2000): 
 

1 1 1
( , ) ln ln ln

K K K
k

k k k k k
k k kk

pI p p p p q
q= = =

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
∑ ∑ ∑p q   [2.22] 

 
Starting from a pure inverse problem like the one described by the [2.16], the 

related optimization problem, - where ( )1 2, ,...,k k kMp p p ′=kp  and 

( )1 2, ,...,k k kMq q q ′=kq represent the vector of unknown (to be estimated) and prior 
(known) probabilities respectively - can be specified by: 
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subject to the data-constraints: 
 

         for t=1,2,...,T            m=1,2,...,Mtk m km t
k m
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and the normalization adding up constraints.  
 

1       for all mkm
m

p =∑    [2.25] 

 
The solution of the optimization problem leads to the β  which in scalar form can 
be expressed as: 
 

 k m km
m

z pβ =∑ .     [2.26] 

 
It is important noting that with an uninformative prior, i.e. uniform q’s, the 
maximum entropy solution returns. In such a sense, the ME can be viewed as a 
special case of CE.  
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2.4  GME and GCE Estimation Approaches 

2.4.1 From the ME to the GME estimator  
Although the ideas of ME and CE have entered the economic and econometric 
literature, there have been difficulties in employing the concepts in their 
traditional form due to some technical difficulties. In particular, Fraser (2000) 
pointed out that the ME and CE approaches, in their primal version, by assuming 
the moment condition in the constraint sets, do not specifically account for the 
presence of disturbances. Golan (2008) stresses that in these situations the 
moment conditions have to be exactly fulfilled (zero-moment conditions) and that 
this property could be satisfactory for relatively large samples or for well-behaved 
samples 
Concerning the economic system, the ME and CE approaches focus on  relations 
that can be specified trough pure inverse problems. Unfortunately, in both the 
social and economic sciences we have to face up to small and/or ill-behaved data 
where the moment’s restrictions may be too costly. Particularly in the economic 
context, processes are typically interdependent, dynamic and stochastic, and the 
available economic data is often composed of limited and/or non-experimental 
observations.  
Given these characteristics of both the nature of the economic processes and data, 
few observations are without measurement errors and few economic relations are 
free of shocks.  
In the presence of these difficulties and by introducing the disturbance terms, the 
task of information recovery becomes, as argued by Golan et al. (1996a) an 
inverse problem with noise.  
These authors, with these considerations in mind, have introduced in the early 
1990’s the GME and the GCE estimators. 
In particular, the GME estimator uses a more flexible set of moment conditions in 
the optimization.  
As argued by Golan (2008), this method provides a greater flexibility resulting in 
more stable estimates for finite and/or ill-behaved data and provides the researcher 
with a general framework for incorporating economic theoretic and other 
behavioural information in a simple way that is consistent with information 
theory12. Generally speaking, this estimator, by treating the moments (and 
particularly each observation as we will specify shortly) as stochastic, can be 
viewed as the classical ME reformulated with stochastic moment conditions.  
Golan (2008) defines the term “stochastic moments” as moment conditions, or 
functions of the random variables and the unknown parameters13, with additive 
terms that have expectation of zero.  

                                                 
12 This information can be in terms of linear, non linear or inequality functions and does not have 
to be formulated in terms of zero-moment functions. 
13 These moments, or functions, can be conditional or unconditional. The stochastic moments can 
be introduced in two ways. First, by allowing for some additive noise (with mean zero) for each 
one of the moments conditions. Second, by viewing each observation as a noisy moment resulting 
from the same data generating process. 
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By doing so, in the GME approach each observation can be treated as a composite 
of two components: the signal, represented by the data and the noise, represented 
by the disturbance component.  
The optimization problem under which the GME estimator is based, will be 
discussed in the next pages.  

2.4.2 Structure and solution of a GME problem 
The optimization problem on which GME estimator is based, refers to the entropy 
measure introduced by Shannon (1948) and represents, in the meanwhile, a 
generalization of the ME principle developed by Jaynes (1957a, 1957b). 
To explain how GME works, let us consider the standard linear regression model, 
represented in matrix form, with T observation and K explanatory variables: 

 
y = Xβ + e       [2.27] 

 
where y is a T dimensional vector of noisy observation, X is a (T×K) design 
matrix composed of explanatory variables and β is a K-dimensional vector of the 
unknown parameters which we want to recover from the data; e is a T-
dimensional vector of the unobserved and unobservable disturbances. 
In the GME approach, rather than search for the point estimates β, each βk is 
viewed as the mean value of some well defined random variable z. To explain this 
important notion it is firstly necessary to express each kβ  as a discrete random 
variable with a compact support and 2 M≤ ≤ ∞ potential outcomes, where M 
indicates the number of elements in the specific support.  

Let zk be an M-dimensional vector ( )1,...,k kMz z ′≡kz  for all k=1,2,3,…,K., where  
zkl and zkM represent, the lower and upper bounds on the support of each kβ  
respectively. By defining  pk as an M-dimensional proper probability distribution 
defined on the set zk it is possible to express the k-th parameter as a convex 
combination of points zk with weights pk it is possible to formulate each kβ  as:   
 

[ ]k km km pk
m

p z Eβ = ≡∑ kz    [2.28] 

 
Without loss of generality, following Golan et al. (1996a) for the simple case 
M=2, each kβ  can be expressed as: 
 

( )1 1k k k k kMp z p zβ = + −    [2.29] 
 
This procedure has to be done for each unknown coefficient and further by 
assembling in matrix form, any β could be written as: 
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β = Zp= 

′⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣ ⎦

1 1

2 2

K K

z 0 . 0 p
0 z . 0 p
. . . . .
0 0 . z p

   [2.30] 

 
where Z is a K×(K×M) support discrete diagonal matrix of block diagonal matrix 
i=1,…,N and p 0  is a KM-dimensional vector of “unknown” and further 
estimated weights. The weights have to be strictly positive and to sum to 1 for 
each k. 
In this formulation, the observed data, y, are viewed as the mean process Z with a 
probability distribution P, that is defined on the supports zk’s and is conditional on 
X. Thus, as pointed out by Golan (2008) the choice of the support space is useful 
to estimate the P’s which yield the point estimates (β).  
The unobserved error vector e  is also viewed as another set of unknowns, and 
similar to the signal vector β, each et is treated as a finite and discrete random 
variable with J possible outcome (2≤J<∞). Specifically, as already done with the 
β’s above, each error term is redefined as:  
 

[ ]
tt tj j w

j

e w v E= ≡∑ v     [2.31] 

 
where the index t refers to the number of observations. 
The vector e of unknown disturbances is re-parameterized as well and it may be 
written in matrix form as: 
 

 

′⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣ ⎦

1 1

2 2

T T

v 0 . 0 w
0 v . 0 w

e Vw
. . . . .
0 0 . v w

    [2.32] 

 
where the matrix V is a (T×TJ) support discrete block diagonal matrix and w is a 
TJ-dimensional vector of weights. With this re-parameterization also the error 
terms can be viewed as elements taken as random draws from a certain 
distribution with probability weights wtj.  
For both the unknown parameters and the error terms, support spaces are 
constructed, here and later with reference to production and demand functions in a 
RCGE context, as discrete and bounded. However, it could be possible to specify, 
within the same framework, unbounded and continuous supports. Golan and Gzyl 
(2002; 2003; 2006) specified, in detail, this type of supports.  
Similar to other IT estimators discussed earlier, the main objective of the GME 
method is to estimate the unknown β with minimal distributional assumptions.       



 37

The starting point of a GME optimization problem, as illustrated above, is the 
specification of a finite and discrete support for each-one of the unknown 
parameters and for the error component.  
As stressed by Golan et al. (2001), the GME method carries out a re-
parameterization and a re-formulation of a general linear model (GLM) in order to 
estimate the parameters inside the framework of the extended ME principle.  
In this way, the GME approach uses a flexible, dual-loss objective function: a 
weighted average of the entropy of the deterministic part of the model and the 
entropy from the disturbance or stochastic part.  
Thus, the objective is to estimate simultaneously the full distribution for each kβ  
and each te  with minimal distributional assumptions.  
Using the above specified re-parameterizations, Judge and Golan (1992), firstly, 
in their earlier work rewrite the standard linear regression model as: 
 

= =y Xβ + e XZp + Vw     [2.33] 
 
where vectors p and w represent, as well, the dose of a prior information on both 
parameter’s support space and disturbances.  
 
GME estimator is obtained by maximizing the joint entropies of the distributions 
of the coefficients and the error terms subject to the data and the requirements for 
proper probabilities. In scalar notation, the GME formulation for a noisy inverse 
problem may be expressed as:  
 

1 1 1 1

max ( ) ln ln
K M T J

km km tj tj
k m t j

H p p w w
= = = =

= − −∑∑ ∑∑p,w
p, w    [2.34] 

 
subject to the constraints: 
 

1 1 1
                    for t=1,2,...,T

K M J

t tk km km tj tj
k m j

y x z p v w
= = =

= +∑∑ ∑   [2.35] 

 

1
1                        for k=1,2,...,K

M

km
m

p
=

=∑   [2.36] 

 
1tj

j
w =∑       [2.37] 

 
The solution to this maximization problem is unique. Forming the Lagrangean and 
solving for the first-order conditions yields the optimal solution for p and w.  
Each estimated kmp  and ijw  is expressed as:  
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( )
1 1

1 1

exp exp
     

exp

T T

t tkm tk km tk
t t

km M T
tkt km tk

m t

z x z x
p

z x

λ λ

λλ

= =

= =

⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= ≡
⎛ ⎞ Ω−⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑
  [2.38] 

 

( )
1 1

where    exp
M T

t tk km tk
m t

z xλ λ
= =

⎛ ⎞Ω = −⎜ ⎟
⎝ ⎠

∑ ∑ ; 
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1

exp exp
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tj J
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w

v

λ λ

λλ
=

− −
= ≡

Ω−∑
  [2.39] 

 

( ) ( )
1

where exp
J

t tt tj
j

vλ λ
=

Ω = −∑  

 
The estimated probabilities kmp  and ijw  produces the GME point estimates and 
the full distribution of kβ  and te  as:  
 

1

               for k=1,2,...,K
M

k kmkm
m

p zβ
=

=∑   [2.40] 

 

1

ˆ                    for t=1,2,...,T
J

tjt tj
j

e w v
=

= ∑   [2.41] 

 
As stressed by Eruygur (2005) and other authors, the β’s GME estimates depend 
on the optimal Lagrange multipliers tλ  for the model constraints. These 
multipliers reflect the “marginal information” of each observation.  
Golan (2008) outlines, as well, that like in the Empirical Likelihood (EL) the 
Lagrange multipliers capture the natural weight of each observation and transmit 
that information in the estimated exponential distribution  kmp  and ijw .  
Particularly, within the GME the “natural weight” of each observation (defined 
also the “natural empirical distribution”) is just a function of the T Lagrange 
multipliers: 
 

( )
exp( )( )
exp

t
t

t
t

λπ λ
λ

−
=

−∑
        [2.42] 
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As ,T π→∞ → uniform distribution. Unlike the other IT estimator, under the 
GME method, the weights are direct function of the information in the data. 
Specifically, the estimated Lagrange parameters reflect the contribution (in terms 
of information) to the optimal level of the entropy (objective) and as such, they 
capture the contribution of each observation to the “explanation” of the signal.  
There is no-closed form solution for tλ  and hence no closed form solution for p, 
w, β and e. Therefore numerical optimization techniques should be used to obtain 
the solutions and solutions must be found numerically.  
 
As stressed, among the others, by Golan (2003) the main difference between the 
“classical” ME approach and the GME is that in the former, data is in terms of 
moments (and specifically pure moments) while in the latter each (noisy) 
observation is taken directly into account.  
Nganou (2004) outlines as well that ME is a special case of the GME where no 
weight is placed on the entropy of the error terms and where data is represented in 
terms of exact moments. 
Thus, the GME method does not require a regularization parameter or a-priori 
assumptions on the exact nature of the relationship between the observed sample 
moments and the unobserved moments of the population. Instead, the 
regularization appears through the pre-specified bounds on the supports Z and V 
that re-parameterize both the unknown parameters and the error terms.  
By these re-parameterizations the solution values of the parameters are consistent 
with the prior beliefs about the range of plausible parameter values and with the 
available sample.  

2.4.3 The GCE estimator 
Additional information about the unknowns parameters may be mainly and easily 
expressed in this framework by two ways: 

i) as already discussed above, and as we will specify in a greater detail in 
the following pages, it is possible to incorporate information in the 
form of specifying the upper/lower bounds on a support space for each 
unknown parameter;   

ii) in addition “a priori” information about the unknowns may be 
expressed in the form of prior probability distributions on the supports 
concerning both the unknown parameters and the error terms. 

The first situation represents the already above-specified situation and it is 
included within the GME approach.  
Instead, the other situation leads to a “transformation” of the GME approach into 
the GCE estimator. The introduction of prior-beliefs about the unknown 
parameters by using a probability distribution is the main difference between the 
GME and the GCE approach.  
As already specified for the classical CE approach in the GCE, specifically, the 
unknown parameters p and w are subject to prior information, expressed as a 
probability distribution, q and u.  
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Particularly, the GCE formulation minimizes the entropy measure between prior 
assessments of a parameter and the estimated value. If in the GME formulation 
one maximizes the entropy, under the GCE formulation the entropy difference 
between p and q is minimized. If GCE yields a value greater than zero then the 
sample data have yielded a gain in information and learning can be assumed to 
have occurred. With repeated samples, GCE is a form of shrinkage rule so that the 
constructed probability approaches the true probability as the sample size 
approaches infinity (Fraser, 2000) 
GME and GCE methods are similar in the sense that the GME can be viewed as 
the GCE with uniform q’s. In this way, the optimization GME problem can be 
also viewed as a minimization of the joint entropy distance between the data and 
the state of complete uncertainty, namely the uniform distribution.  
By using the GCE method, the entropy objective is used to find the set of 
“posterior” distributions on the supports that satisfy the observations and are 
“closest” to the prior distributions14. Specifically, the GCE approach proceeds by 
minimizing the entropy between a prior estimate and the reconstructed 
probability.  
Transforming GME into GCE formulation yields the following objective function, 
with ( , 0p w ): 
 

min ( ) ln( / ) ln( / )
          = ln ln ln lnkm km km km tj tj tj tj

m k m k j t j t

I
p p p q w w w u

′ ′= + =

− + −∑∑ ∑∑ ∑∑ ∑∑
p,q,w,u p p q w w u

[2.43] 

 
Besides being capable to exploit all the available information regardless the 
sample size, the GME/GCE approaches reach a unique solution which is assured 
by the strict convexity/concavity of the dual loss objective function and by a 
positive/negative definite Hessian matrix (Golan, Judge and Miller, 1996a). 
In general GME/GCE solutions behave like other shrinkage estimators, the 
variance of the estimator is less than the variance of the sample-based rules like 
Least Squares (LS) or Maximum Likelihood (ML), but the use of prior 
information introduces bias. This bias is typically offset by variance reductions – 
so the mean squared error of the estimator is smaller than sample-based mean 
squared error. 
The estimation problems that will be carry out in this research, as further and 
better explained, will be based on the GME and the GCE approaches.  
In particular, we will implement a three step entropy approach to estimate the 
production function parameters. Concerning the demand system, we will take 
advantage of the GME property, as well.  
Estimates will be obtained by using the software GAMS (General Algebraic 
Modeling System) and the Minos and Path non linear solvers.  

                                                 
14 As stressed by Golan et al. (1996a) there are significant similarities between the entropy 
solutions and the posterior resulting from Bayes’ rule.  
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2.4.4 The choice of support spaces 
One of the most important steps in the implementation of both a GME and GCE 
optimization problem concerns the choice of the support spaces defined for each 
of the unknown parameters by the researcher.  
Concerning this issue, some “guiding principles” are suggested in researches in 
existing literature.  
Firstly, it is worth mentioning that the choice of the intervals for the support space 
should be such that the “true” value of the parameter is within the bounds. Any 
vector of support points corresponding to a given parameter implicitly contains 
inequality restrictions represented by the largest and smallest support points.  
However, as stressed by Lansink (1999), the chosen interval should be wide 
enough to allow for feasible solutions to the maximization problem.  
Where we do not have knowledge about the unknown coefficients, the best choice 
is to specify, symmetric supports around zero and with “large” negative and 
positive bounds, as underlined by Shen and Perloff (2001).  
Rezek and Campbell (2007) stated that in the absence of a compelling economic 
theory, these bounds are set wide enough to be non-binding. In this case, they are 
generally constructed symmetrically giving the parameters an expected value of 
zero.  
Whenever prior information or economic theories can be called upon, the highest 
or lowest bounds can be specified to restrict the plausible values of a coefficient to 
be either non-positive or non-negative. Since the parameter estimates simply 
represent convex combinations of the support points, this specification guarantees 
the theoretically consistent sign on the parameters.  
Concerning the number of the support points, Golan et al. (1996a) underlined that 
adding more points to the support of Z should decrease the variance of the 
associated point estimator in GME problems. These Authors constructed a 
sampling experiment based on 10000 Monte Carlo trials and a specified 
experimental design in order to check the impact of M. On the base of these 
limited results, it appears that the greatest improvement in precision comes from 
using M equal to 5 number of support points.  
 
Regarding the choice of V, it is firstly important to note that the elements of V 
reflect the variation (e.g. variance, support) of the underlying errors, and the 
bounds may be functions of  the T observations.   
In actual fact, the unobservable disturbance vector, e, may represent one or more 
sources of noise in the observed system, including sample and no-sample errors in 
the data, randomness in the behaviour of the economic agents and specification or 
modelling errors, if Xβ is a convenient approximation of the underlying system. 
The choice of the number of support points may be used to express or recover 
additional information about et (e.g. skewness or kurtosis).  
If we assume the error distribution is symmetric and centred around 0, we can 
specify a symmetric support 1t tJv v= − for each t where J is usually fixed at 3. 
Golan et al. (1996a; 2008) suggested that the choice of the support space for the 
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error should be made according to the 3-sigma rule, meaning that the error bounds 
should be set at three times the standard deviation from the origin. 
The support space for the errors will be therefore on the form [-3stdev; 0; 3 stdev], 
where st.dev. is the empirical (from the data) standard deviation of the dependent 
variable. 
 
In short, by re-parameterizing the unknown coefficients in terms of probability 
distributions on a finite and discrete support, the solution values of the parameters 
are consistent with the prior beliefs about the range of plausible parameter values 
and with the available sample. For this reason, as stressed by Lence and Miller 
(1998) the effective bounds placed on the parameter and sample spaces by the 
supports may be viewed as a virtue of GME. However, as stressed by the same 
Authors, if we have little or no information about the plausible values of the 
model parameters, the need to specify such supports may be viewed as the key 
drawback of the GME approach.  
In addition to these statements, Lence and Miller (1998) found that the GME 
results are not sensitive to changes in the width of the error supports, and the 
changes in the parameter supports must be relatively large to have an impact on 
the parameter and input estimates.  
It is usually recommended to perform a sensitivity analysis on the obtained 
estimates by making a moderate change in the support space specified for the 
unknown parameters. Golan et al. (2001) in the context of an AIDS for the 
Mexican meat demand, found that by making a moderate change in the support 
vectors while keeping the centre of the support unchanged, had negligible effects 
on the estimated coefficients and elasticities.  
However, Paris and Caputo (2001) underlined that by carrying out a complete 
comparative static analysis of the GME estimator for the general linear model, it 
is possible to show that nothing can be said, “a priori” concerning the direct 
response of the estimates to changes in either parameter or error bounds. This 
research will not attempt to arbitrate on such matter. In fact, we believe that 
entropy is a useful and practical way of incorporating prior information whenever 
researchers are reasonably certain that parameters lie within a region. 

2.4.5 Diagnostic measures  
A simple way for evaluating the estimated coefficients is to compare the obtained 
values to the “a-priori” (from the theory) expectations in terms of sign and 
magnitude (Fraser, 2000; Nganou, 2004).  
However, different tools were introduced for assessing the statistical validity of 
the estimated coefficients. These statistics are part of the output provided in SAS, 
LIMPDEP, SHAZAM and other software which includes the GME procedure. 
One of the best known and applied evaluation measures is the normalized entropy 
(NE) measure that quantifies the relative informational content in the data. This 
measure is obtained as the ratio between the Shannon entropy measure calculated 
on each of the unknown parameters and the maximal value of the Shannon 
entropy function. 
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In actual fact, it is possible to calculate two different normalized entropy measures 
which quantify the information contained in the data, by using the same 
formulation.  
For each variable k, the entropy measure is a continuous function from zero to ln 
(M). In order to make a comparison, these entropy measures are normalized to the 
zero-one interval.  
The NE measure ( )S ⋅ for the whole model is:  
 

,
ln

( )
ln

km kmk m
p p

S
K M

−
=
∑

p     [2.44] 

 
where k=1,…,K refers to the variables while M refers to the number of support 
points defined for the support space of the unknown parameters.  
The normalized entropy defined by the [2.44] lies in the interval ranging between 
0 and 1, [ ]( ) 0,1S ∈p  with ( )S p =0 and ( )S p =1 reflect the absence of uncertainty 
and complete uncertainty, respectively.  
By using this information index it is also possible to establish if additional 
information or even restrictions in the data (expressed in the form of restrictions) 
produce a reduction of uncertainty and consequently a reduction in the basic 
uncertainty relative to the observed phenomenon. It is worth noting that this 
information measure is conditioned by the choice of Z.  
It is interesting to note that, this measure also reflect the reduction of uncertainty 
achieved from the estimation problem.  
The numerator of the [2.44] indicates the entropy related to the data information, 
while the denominator indicates the maximum level of uncertainty, which is the 
entropy level of the uniform distribution with M outcomes, for each of the K 
defined variables.  
 
In order to assess the amount of information in each parameter, it is possible to 
use the NE measure as an information theory statistic reflecting the information  
in each of the variable k=1,2…K, which can be described as: 
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    [2.45]  

 
This specific information measures reflect the relative contribution (for explaining 
the dependent variable) of each of the independent variables. The above 
normalized entropy measure can be connected to Fano’s inequality and the 
probability of errors (Golan, 2008). 
As stressed by Tonini and Jongeneel (2008) it possible to calculate the NE 
measure, as described by the [2.45], separately for the signal and the noise parts of 
the model. In this way, they provide measures for the importance of the 
contribution of the parameters and each error term.   
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Concerning the NE measure, Fraser (2000) states that values near one mean that 
the solution is nearly uniform and that the data agrees with the prior information. 
For values near zero, the prior and the data reflect different information about the 
parameters and therefore the GME solution is non-uniform.   
In the diagnostic and inference contexts, Mittelhammer and Cardell (1996) 
proposed asymptotic standard errors for the estimates and performed simple t-
tests.  
In addition to the diagnostic tools described above it is possible to use the overall 
degree of fit measures (R2 and Adjusted R2) for the estimated equations. This 
overall goodness of fit measure remains a useful summary statistic although it is 
said to be biased downward in GME cases, due to its use of out of sample 
information (Fraser, 2000).  
Particularly, the R-square obtained from the GME case, as pointed out by Nganou 
(2004), will tend to be lower than the R-square obtained by using the OLS 
estimator. 
The determination of standard errors of the obtained estimates will be a further 
development of this research, and in the near future we aim at obtaining parameter 
distributions for the GME and GCE estimates by using the bootstrap method as 
well. 

2.5 The Use of Entropy Based Estimation Approaches in the 
Economic Context 

Since their introduction, an important number of GME and GCE applications have 
appeared in the empirical economics literature and have been applied to different 
economic contexts and situations.  
These estimation approaches have always been attractive, according to Heckelei, 
Mittelhammer and Jansson (2008) mainly for two reasons. On one hand, by using 
these methods it is possible to specify and to estimate under-determined models, 
which is a capability that is not provided by classical solution estimation methods. 
On the other hand, prior information on the unknown parameters can be included 
in a very simple way, making estimates potentially more efficient in a mean 
square error sense, or at least more “plausible” for model simulation, 
interpretation and analysis following estimation.  
One of the most significant areas of application refers to balancing large raw data 
sets by using accounting identities and prior information to fill gaps and reconcile 
conflicting data sources.  
These methods allow the researcher to set ranges for missing data values and 
provide a means for differentiating the reliability of various sources in the 
balancing process (Robinson, Cattaneo and El-Said, 2000; Britz and Wieck, 2002; 
Robilliard and Robinson, 2003).  
In particular Robinson et al. (2000), used a flexible CE approach starting from 
inconsistent data estimated with error, for dealing with the problem of 
incorporating and reconciling the information from several sources and in order to 
estimate a SAM for Mozambique. 
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Robilliard and Robison (2003) presented an approach for reconciling household 
surveys and national account data. These authors studied the problem concerning 
how to use the information provided by the national account data in order to re-
estimate the household weights used in the survey, so that the survey results were 
consistent with the aggregate data. In order to solve this problem statistically they 
took advantage of CE estimation criterion. They implemented their approach for 
Madagascar by underlining the power and flexibility of this approach in their 
results since it guarantees an efficient use of information from a variety of sources 
to reconcile data at different levels of aggregation in a consistent framework. 
 
However, GME and GCE applications are not only used for data recovery and 
calibration issues, and have been employed in the attempt to solve traditional 
estimation problems better or analyze new problems (Golan, Judge and Perloff, 
1996b; Zhang and Fan, 2001).  
In short, any economic model characterized by a vector of M equations in K>M 
unknowns, is an underdetermined model that can be solved by using GME or 
GCE techniques.  
Golan, Karp and Perloff (1996d) proposed the GME-Nash approach to estimate 
firm strategies consistent with the game theory and the underlying data generation 
process. In their research, they proposed the GME-Nash estimator which was 
compared to the Maximum Likelihood (ML)/ME estimator. The authors 
underlined that the proposed estimator allows for a greater flexibility than the 
ML-ME estimator; in particular they proved that it is more efficient in terms of 
mean square error, correlation and other measures of variances.  
Whenever production and demand function parameters or the RCGE/CGE 
framework are called for, GME and GCE approaches appear to be among the 
most attractive estimation methods, because they allow the researcher to 
successfully deal with the frequent problems of incomplete and insufficient data 
which lead to the already known “ill-posed” estimation problems.  
Lence and Miller (1998) used the GME approach as a feasible means for 
estimating production parameters when the activity-specific input allocations are 
not available. After re-parameterizing the production function parameters and the 
unknown disturbances, the maximum entropy framework may be used to recover 
estimates of the unknown parameter, error, and input values that are consistent 
with the available data and with the assumed production structure. 
Lansink (1999) used the GME method to estimate a dual model of production 
based on panel data of Dutch cash crop farms over the period 1970-1992. In 
particular, the GME estimator allows the author to define a coherent system of 
input demand and output supply to be estimated for each farm in the sample, thus 
capturing technological heterogeneity. The estimation results are used to perform 
a cluster analysis to identify groups of farms with similar technologies. 
Fraser (2000) used the GME and GCE methodologies in order to estimate a set of 
demand relationships, which are usually subject to a high degree of collinearity 
among the explanatory variables, for a UK meat demand data set. In his paper, the 
author makes some interesting comments about the potential of these estimation 
methods. 
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Zhang and Fan (2001) adapted the GME approach to empirically estimate multi-
output production functions and input allocations for Chinese agriculture and for 
each Chinese province.  
Arndt et al. (2002), in the context of a CGE model for Mozambique (Arndt, Cruz 
Jensen, Robinson and Tarp, 1998), provide an interesting application of the 
GME/GCE methods, in order to estimate the elasticity associated to aggregate 
CES and Constant Elasticity of Transformation (CET) functions, by using time 
series data and some “a priori” information on the parameters. 
Using the GCE estimator, Balcombe et al. (2003) carried out an interesting study 
whose results supplied the estimates of the AIDS concerning consumption in 
Greece. In addition to this, they reported some interesting comments regarding 
these entropy based estimators made by both Classical and Bayesian statisticians. 
In actual fact, they underlined that for classical statisticians the inclusion of 
“subjective” information is a common source of contention. On the other hand, 
Bayesian statisticians are likely to object to the fact that entropy estimation does 
not construct what they might see as properly formulated posterior distributions. 
The same authors underlined that there is no need for “priors” to be highly 
informative within the entropy approach and however, good prior knowledge 
concerning support spaces sometimes exists. Moreover, from an entropic point of 
view, the Bayesian approach amounts to a rule (using Bayes theorem) that 
requires ad hoc choices for both the prior and likelihood functions, that together 
give a posterior distribution. 
Nganou (2004) applied GME methodology to estimate Armington’s demand 
elasticity - representing the degree of substitution between domestic and imported 
goods - for some commodities in the context of a CGE model for the small South-
African country of Lesotho.  
Howitt and Msangi (2006) proposed GME estimates for disaggregate production 
functions regarding the Northern Mexico area. Specifically, these authors used 
values from a calibrated optimization model to define support spaces which were 
centred on values that were feasible solutions to the data constraints and 
consistent with prior parameter values.   
Ferrari and Manca (2008) used the GME approach to estimate the parameters of a 
CES production function for the Italian region Sardinia by using a regional SAM 
extended to the environment (RESAM).  
An interesting application is provided by Tonini and Jongeneel (2008), who used 
the GME approach for modelling the milk and beef supply for Hungary and 
Poland by reconciling sample and non-sample information. It is worth noting that 
in their research the authors introduced non sample information in the GME 
approach via microeconomic-theoretical constraints on parameters and constraints 
of the model originating from knowledge based on other economic and non-
economic research. In the discussion of the results, they underlined that the final 
parameter estimates, obtained by taking advantage of an estimation process which 
used all the available information, were close to the original sample data, widely 
consistent with the economic theory and which complied with their expectations.  
All of these interesting and successful applications of the GME and GCE 
estimators encouraged us to apply these entropy-based methodologies to our 
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estimation problem too. In actual fact, as already mentioned, the GME and GCE 
philosophies allow us to translate an “ill-posed” problem, namely the obtainment 
of RCGE behavioural parameters by only using the information in the RSAM, 
into a “well-behaved” statistical problem with a unique solution. 
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Chapter 3  

Functional Forms and Data  

 
“…Social accounting is intended to classify, measure and present the transactions which take place 

over a period in an economic system in such a way that as far as possible they will accord  
with economic definitions and distinctions and as a result will be useful for economic analysis  

especially as it relates to practical economic policy” 
 [R.Stone] 

 

3.1 The Role of Production and Demand Functions in the RCGE  
       Framework 

In the implementation of a RCGE model, the issue of the specification of a 
particular functional form, which illustrates producer and consumer behaviour, 
recovers a key role.  
As stressed by Annabi et al. (2006) the choice of the functional forms is critical, 
given that the estimation results may be sensitive to different model 
specifications. Therefore, functional forms appear to be influential in RCGE and 
CGE model performance. 
In actual fact, within the framework of the RCGE modelling, economists need to 
consider elasticity corresponding to each behavioural function used1. Most of the 
existing applied studies have often used functional forms which do not allow for 
flexibility in the values of elasticities parameters and above all in the value of 
elasticity of substitution parameters.  
In order to overcome the problems concerning lack and scarcity of data, which are 
among the most important obstacles to the computation of CGE models both at 
national and sub-national level, applied CGE modellers often use behavioural 
functional forms whose unknown parameters could be entirely calibrated from the 
RSAM (or from the SAM for the national CGE model). 
Furthermore, in the case of sub-national level, like a region, these difficulties are 
much more probable. However, this circumstance, thanks to the entropy based 
methods, does not prevent us from obtaining the behavioural parameter values, in 
order to introduce them in the RCGE model implemented for Sardinia. 
In this research, the selection among alternative competing functional forms 
concerning the structure of production and demand spheres is based on a careful 
                                                 
1 As already mentioned the majority of the modellers often prefer to borrow the values of 
elasticities from the literature, since the direct estimation requires the availability of the statistical 
data specific to each sector and each country.  
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examination of both theoretical and empirical aspects by taking into consideration 
also the type of data available.  
In order to decide the functional forms which will go to specify the relationships 
in the production and demand environments, the first necessary step consist in 
describing the general structure of the production and demand sphere in the 
studied context. It is worth noting that the two following paragraphs will be 
focused on the theoretical and empirical aspects (referred to the Sardinian 
economy structure) of the chosen functional forms, which are the CES function 
and the Working-Leser function for the production and household demand 
spheres, respectively.  
 
Production sphere in a RCGE model context is commonly described by using a 
multi-stage production process, with each stage containing a different set of 
factors in order to allow for different elasticity of substitution in each level and 
between different set of factors.2 Moreover, each producer is assumed to 
maximize profits, defined as the difference between revenue earned and the cost 
of factors and intermediate inputs. Following the standard literature on RCGE and 
CGE models (Lofgren, Harris and Robinson, 2002; Partridge and Rickman, 2008) 
the top-down structure of this production tree can be explained as follows.  
At the top level, regional output is modelled as a function of value added and 
intermediate consumption. The Leontief production functional form is usually 
chosen to represent the production of regional output with fixed proportions of 
composite value added and composite intermediate inputs. 
At the second level, the composite primary factors generally enter the production 
process which allows different factor substitution degree to be specified in order 
to consider different factor substitution degrees. In particular, primary factors, 
labour, land and capital, join together to generate value added. This relationship is 
generally described through CD or CES functional forms, where the former 
implicitly specifies unitary factor substitution elasticities while the latter is a more 
general case which gives a value of substitution elasticity which is not necessarily 
equal to one. At the same level, intermediate goods from different 
countries/regions join together to form composite intermediate goods (which will 
be included in the first level of production). To model this relationship between 
the two categories of intermediate inputs, the CES function is commonly applied.3 
The structure of a RCGE production process like the one described above, as 
stressed by Partridge and Rickman (2008) and other authors, distinguishes this 
                                                 
2 As Vargas, Scheiner, Tembo and Marcouiller (1999) argued, these models follow the 
neoclassical economic theory, where the factor demand depend on both output and relative factor 
prices and as a consequence of this, the RCGE models (but obviously the CGE models too) do not 
represent factor demands as linear function of output. 
3 A third level in the production process may represent substitution among labour skills within the 
overall labour input, among classes of land within the overall land input, or types of capital inputs 
within the overall classification of capital (Vargas et al., 1999). A common procedure is to 
consider the CES form of production which allows substitution elasticity to differ among 
industries. It is important to note that RSAM does not always show subcategories of primary 
inputs to model this type of relationship, so the most important relationships are those expressed 
by the two levels mentioned. 
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family of models from a simple Input-Output model (I/O), since demand factors 
do not linearly only depend on the output, but also on the sensibility of the output 
towards factor costs and towards the prices of intermediate goods.  
While the underlying assumption in regional I/O models and in the more general 
quantitative representation of a regional economy provided by a RSAM is the 
Leontief technology, production specification in RCGE models is made in a 
neoclassical theory framework. In almost all cases, production technology is 
portrayed as a compromise between these two views, with intermediate goods and 
services based on the Leontief technology – i.e. linearly depending on output – 
and sensitive to prices, factor demands that depend non-linearly on both output 
and factor prices.  
In particular, in order to specify the top level relationship between value added 
and intermediate consumption the Leontief functional form is often chosen. In 
fact, this functional form is characterized by a substitution elasticity equal to zero 
and the unknown parameters can be entirely calibrated from the RSAM. Usually 
the Leontief functional form is the default in this relationship. However, as 
stressed by Lofgren et al. (2002) the CES alternative may be preferable if 
particular evidence suggests that available techniques allow the aggregate mix 
between value-added and intermediate inputs to vary. 
On the other hand, in order to model the second level relationship, CD functions 
are often specified. Although a greater degree of substitution between factors is 
introduced, this function specifies a unitary and constant substitution elasticity 
and the unknown parameters, namely the efficiency and distribution parameters, 
are provided in the RSAM. 
Whenever more flexible functional forms, such as the CES or the Transcendental 
Logarithmic (TRANSLOG) production functions, are introduced in the 
computation process, the related unknown parameters are seldom directly 
estimated empirically since researchers prefer to “borrow” them from the 
estimates available in literature.  
By using a CES production function, the only unknown parameters has been 
represented up to now by the substitution elasticity since the efficiency and the 
share parameters have been calibrated from the RSAM. To this respect, an 
important innovative aspect of our approach is that all the unknown parameters 
are obtained as a result of a simultaneous estimation process. 
In this context, Salem (2001) estimated the elasticity of substitution of the CES 
production function, between capital and labour, for the case of Tunisia by using 
statistical data coming from I/O Tables for the period 1985-1994 for 14 sectors 
which produce tradable goods. In order to be able to estimate these elasticity for 
each economic sector and considering the chosen functional form, he applied the 
method of Non-Linear Least Squares (NLS) to the software GAMS4.  

                                                 
4 The obtained values of elasticities of substitution for each sector explain well the existence of a 
CES relation between the two factors of production, capital and labour. Salem found that the 
majority of elasticity are lower than 1 except for the textiles, clothing and leather sector (since the 
elasticity is equal to 1) and for the oil /gas sector (2.575) and the Transport and telecommunication 
sector (1.556).   



 52

In particular, the family of the CES production functions has been widely used in 
CGE models since it allows a considerable degree of flexibility in model 
specification. According to the existing literature (Kouparitsas, 2001) (Lofgren et 
al. 2002), our choice has been to model all the relationships characterizing the 
economy of Sardinia by CES production functions. 
Concerning demand and specifically the household demand analysis for 
consumption needs, it is firstly important to stress that households wish to attain a 
certain consumption level at the lowest possible expenditure according to the 
neoclassical logic. One of the most important issues studied by CGE modellers, 
regarding demand is demand elasticity. In fact, these elasticity values have 
important implications for the CGE models. 
As stressed by Sánchez (2004) trade policy reform will induce changes in 
domestic relative prices. This will result in a reallocation of resources, which in 
turn will affect the returns to production factors and the amount of factor earnings, 
mostly labour income, transferred to households. This income effect, as 
underlined by the same author, will enhance or constrain the capability of 
households to afford their basic consumption. 
In general, the knowledge of income or expenditure elasticity – since the 
expenditure is usually assumed as a proxy of the income in the demand analysis – 
reflects the responsiveness of household demand towards an income change (or 
towards expenditure changes induced by an income change).  
A functional form used to model the consumption block, as stressed by De Boer 
and Missaglia (2006) is the LES for which the Engel curves are straight lines. In 
their research, the same authors proposed the Indirect Addilog System (IAS) in 
order to model the demand sphere of the Palestinian CGE model for the year 
1998. By using this function they were able to estimate income elasticity for the 
CGE model studied by allowing for non-straight Engel curves, inferior 
commodities and elastic demand. 
In our research, we based the demand system specification on the Working 
(1943)-Leser (1963) functional form, by taking into consideration the economic 
meaning and structure of the RSAM, which can be considered as a one-period 
“snapshot” for the structure of a particular economy. 

3.2 Modelling the Production Sphere: the CES function 

3.2.1 Main properties, characteristics and the economic theory guidelines 
Several economic studies have used the CD functional form in order to model the 
production function and find relationships among economic variables. As stated 
by Kadiyala (1972) this choice has often been made since the parameters of this 
function can be easily determined and it is quite consistent with most economic 



 53

data. However, the assumptions on which the CD function is based5 are not 
always consistent with the specific economic context analyzed6.  

More specifically, the assumption of unitary elasticity of substitution between 
factors, that characterizes the CD function, has not been checked and confirmed 
by empirical studies.  
In 1961 Arrow, Chenery Minhas and Solow (ACMS7), firstly argued that 
economic analysis, based on the CD assumptions, often led to conclusions that 
were unduly restrictive. In particular, in their seminal work beginning with an 
empirical observation8 these authors pointed out that the elasticity of substitution 
is always not equal to one. These empirical findings encouraged these authors to 
find a mathematical function which contemporaneously had: i) the property of 
homogeneity; ii) a constant elasticity of substitution between two factors (i.e. 
capital and labour) and iii) the possibility of different elasticities of substitution 
for different industries, sectors or countries. 
On the base of this evidence and considering the above-mentioned requirements, 
Arrow et al. specified a general production function with these properties and 
which is described by the following expression: 
 

( )
1

1 21Y X Xρ ρ ρα δ δ
−− −⎡ ⎤= + −⎣ ⎦    [3.1] 

 
where Y is the output, X1 and X2 represent the two inputs.  
The parameter α represents the efficiency parameter: it serves as an indicator of 
the state of technology and it plays the same role as the coefficient α in the CD 
function. More precisely, Arrow et al (1961) refers to the α parameter as a neutral 
efficiency parameter since a change in the parameter α changes the output for any 
given set of inputs in the same proportion.  

                                                 
5 Kadiyala (1972) argued that the CD production function has some serious drawbacks: i) it 
requires all inputs to be positively employed and ii) it has a unitary elasticity of substitution.  
6 CGE modellers have often used the CD functional form to model the production system, since 
the parameters of this function can easily calibrated from the RSAM. 
7 The ensemble of the first letters of the surname of each proposer of this functional form, namely 
ACMS, has become an alternative name of this production function.   
8 Before exploring the possible functional forms of the “their” production function they tested, 
with a simple regression analysis,  the relations among the value added in thousands of US dollars 
(V), labour input in man-years (L) and money wage rate (W, obtained  by the ratio between total 
labour cost and L), described by the two following equations: 
V c dW
L

η= + +  

log log logV a b W
L

ε= + +  

From the regression analysis, they found that in 20 out of 24 industries, over 85 per cent of the 
variation in labour productivity is explained by variation in wage rates alone (Arrow et al. 1961).  
In a linear relationship like the above, Arrow et al. (1961) underlined that the elasticity of the 
dependent variable (i.e. the ratio V/L) with respect to W is constant and equal to b. At the same 
time, this production function will have a constant elasticity of substitution equal to b. 
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The parameter δ represents the share (distribution) parameter between the two 
input factors and it represents the relative factor distribution in the production 
process.  
The parameter ρ, as defined by Arrow et al. (1961) is a transformation of the 
elasticity of substitution σ and will be called the substitution parameter. In fact, it 
is the substitution parameter which determines the value of the (constant) 
elasticity of substitution σ9. For this reason, the substitution parameter plays a 
crucial role in the CES production function.  
The CES production function is characterized by a homogeneity of degree one10. 
To demonstrate this, let us replace X1 and X2 by jX1 and jX2, where j is a constant 
that multiplies each input factor; the output will change from Y to jY as explained 
by the following expression: 
 

( ) ( )( )
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1 2

1 1
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ρ ρ ρ
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α δ δ

α δ δ

−− −

− −− − − −
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  [3.2] 

 
For this reason, the CES function has constant returns to scale, like all linearly 
homogeneous production functions and possesses average products and marginal 
products that are homogeneous of degree zero, due to the properties of function 
homogeneity of degree one, in the variables X1 and X2.11  
The family of production functions described by the CES functional form includes 
all those functions which have a constant elasticity of substitution for all values of 
the ratio of two inputs X1 and X2.  
 

                                                 
9 As better specified later the elasticity of substitution between the two factors, σ, is obtained as: 
σ=1/(1+ρ) 
10 In general a function is said to be homogeneous of degree r, if multiplication of each of its 
independent variables by a constant j will alter the value of the function by the proportions jr, that 
is, if: 
( ) ( )1 1,..., ,...,r

n nf jx jx j f x x=  
In general j, can take any value. However, in order for the above equation to make 
sense, ( )1,..., njx jx , must not lie outside the domain of the function f. For this reason, in economic 
applications the constant j is usually taken to be positive, as most economic variables don’t admit 
negative values. (Chiang, 1984) 
11 According to Giusti (1994), the  marginal productivity of the two factor X1 and X2 are:  
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The dX1 and dX2 ratio is the negative of the slope of an isoquant; that is, it is a measure of the 
marginal rate of technical substitution of 1 for 2. Thus, the slope of isoquants (with X1 plotted 
vertically and X2 plotted horizontally) is:  

1
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The economic theory is a guide for the plausible values of the three parameters 
which characterize the CES production function.  
The parameter α reflects the productive efficiency and therefore cannot be 
negative. More specifically for a fixed combination of the input factors, a 
variation in α gives product changes in the same proportions. For this reason it has 
been named efficiency parameter, as stated by Giusti (1994).  
The parameter δ, ranges between 0 and 1 since it describes the relative 
contribution of each input in the production process. 
The admissible values of the ρ parameter are strictly related to the admissible 
values for the elasticity of substitution σ. A more detailed analysis concerning the 
relation between  ρ and  σ can be seen in the next paragraph12.  
 
Although the CES function allows the economists to overcome some assumptions 
belonging to the CD or the Leontief production functions which are considered 
too restrictive, this production function has been criticized for several reasons.  
One of the most debated issues concerns its non linearity (Gebreselasie, 2008). In 
fact, the CES function cannot be analytically linearized13, even in its logarithmic 
form. Therefore estimating functional parameters for the CES function must 
necessarily include non-linear fitting techniques which could be usually quite 
complicated both in the case of  two inputs and in the case of n-inputs .14  

3.2.2 The role of the ρ parameter and the elasticity of substitution 
The degree of substitutability between the input factors of a production function is 
an essential concept within the production theory. Hicks (1932) was the first to 
introduce and discuss a dimensionless measure of substitutability of input factors, 
the so-called elasticity of substitution for a two-factor production.  
More specifically, the Hicks elasticity of substitution, that is a pure number 
(Estrin and Laider, 1995) measures the percentage change in the factor ratio 
divided by the percentage change in the marginal rate of technical substitution 
(MRTS)15, with output being held fixed (Laureti, 2006).  
                                                 
12 It will be interesting to note that the CES function, for particular values of the elasticity of 
substitution includes the Leontief and the CD functions as its special cases. Also for these reasons  
the CES function is often used in the CGE models.  
13 Both the logarithmic of the CD production function and the translog form are linear; this makes 
these forms easy to estimate employing standard econometric packages. Also, the two input forms 
of these, as underlined by Hoff (2004) are easily extended to n inputs, and the resulting forms, also 
being linear, are easy to apply.  
14 In order to solve these kind of problems it has been proposed firstly by Kmenta (1967) a 
linearization of the two-input CES function, employing a Taylor approximation, the result of 
which is a restricted form of the general translog function. However the linearization of the CES 
function represents only an approximation and it is further only applicable for a certain range of 
CES parameters. 
15 The formal derivation of the marginal rate of technical substitution can be expressed as follows: 
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Considering a production function with two inputs x1 and x2 and along an isoquant consider a 
particular change in which only factor 1 and factor 2 change, and the change is such that output 
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According to Varian (1992), this is a relatively natural measure of curvature of an 
isoquant. It explains how the ratio of factor inputs changes as the slope of the 
isoquant, measured by the MTRS, changes. If a small change in slope gives a 
large change in the factor input ratio, the isoquant is relatively flat which means 
that the elasticity of substitution is large. 
By using the logarithmic derivative, that is the common practice in economics in 
order to obtain this measure, it is possible to re-write the elasticity of substitution 
as (Giusti, 1994): 
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   [3.3] 

 
Mishra (2008) in his interesting review on production functions underlines that 
the elasticity of substitution for the CES function is constant along and across the 
isoquants.  
Moreover, as already stressed above, it is the substitution parameter that 
determines the value of the elasticity of substitution.  
Applying the [3.3] in the CES production function, the elasticity of substitution is 
described as16:  
 

( )2 1ln 1
ln 1

d x x
d MRTS

σ
ρ

= =
+

    [3.4] 

 
The value of  σ can be anywhere between 0 and ∞; the larger the value of σ, the 
greater the degree of substitution between the two inputs. The two extreme cases 
can be described as follows. The former, that is when σ is equal to 0, describes a 
situation in which the two inputs are used in a fixed proportion, as complements 
to each other. The latter, with σ equal to infinite, is where the two inputs are 
perfect substitutes for each other. (Chiang, 1984). 

                                                                                                                                      
remains constant. (That is, d x1 and d x2 adjust along an isoquant). Since output remains constant, 
we can write:  
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To analyze this relation in more detail, and referring to a CES production function 
with two inputs, namely X1 and X2, it is firstly necessary to introduce the 
expressions of the marginal products of X1 and X2, respectively. 
As shown by the equation [3.4] the CES production function takes on a variety of 
shapes depending on the value of the parameter ρ. In such sense, the CES function 
contains several other well-known production functions as special cases, 
depending on the value of the parameter ρ. 
On the basis of the admissible values of the elasticity of substitution (0≤ σ ≤+∞) 
the lowest admissible value for ρ is -1. This implies an infinite elasticity of 

substitution, 1
1 1 1

1 1 1 0ρσ ρ=− = = = = ∞
+ − +

, and therefore the two inputs are 

perfect substitutes and the isoquants are straight-lines. 
For values of  ρ between -1 and 0, we have elasticities of substitution  greater than 
unity. 
The case of ρ=0 yields a unitary elasticity of substitution  which is characteristic 
of the Cobb-Douglas function. In this way, the CD function is a special case of the 
(linearly homogeneous) CES function. This does not appear immediately from the 
equation [3.1] since when ρ=0 the CES function is undefined. Nevertheless, it is 
possible to demonstrate that for values of ρ that approach to zero the isoquants of 
the CES production function look very much like the isoquants of the Cobb-
Douglas production function. 
For values of ρ greater than zero we have elasticity of substitution less than 1. As 
ρ approaches to +∞, a CES isoquant looks like an isoquant associated with the 
Leontief technology and therefore there is not possibility of substitution between 
the two inputs, that are combined in fixed proportions in the production process.  

3.2.3 The CES functions in the Sardinian RCGE context 
Regarding the Sardinian RCGE model, which represents the applied economic 
framework of this research, the production system is described with a two-stage 
process. As usual, at the first level value added and intermediate inputs join 
together to obtain the regional output. At the second stage, value added is assumed 
to be a function of capital and labour incomes.  
Each level, from the highest to the lowest, is modelled by using the CES 
functional form. Although the selected models seem to differ from the usual 
specifications applied in empirical literature, the specification introduced could be 
considered more general and at the same time more flexible, since the CES 
production function includes the Leontief (generally used to model the top-level) 
and the CD specifications (generally used to model the second level relationships) 
as special cases.  
These remarks ensure that the results of the analysis will absolutely agree the 
existing theory even if a more general specification is adopted. Precisely, 
whenever the substitution elasticity should be equal to zero in a CES function the 
Leontief functional form returns. At the same time, for values of elasticity of 
substitution equal to one the CES production function reduces to the CD 
functional forms. 
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For our estimation problem, we will refer to the logarithmic form of the CES 
production function, which can described by the following expression (Salem, 
2001; Mishra, 2008):  
 

( )1 2
1ln ln ln 1Y X Xρ ρα δ δ
ρ

− −⎡ ⎤= − + −⎣ ⎦    [3.5] 

 
and where the parameters have the same role and meaning of the traditional form 
of the CES introduced by [3.1]. 
The theoretical specification of the CES production function applied to the 
production process of the Sardinian RCGE model follows the original formulation 
introduced by Arrow et al (1961) which is expressed by the [3.1] expressed in 
logarithmic form like the [3.5].  
Concerning the top-level relationship, in which value added and intermediate 
consumptions are combined to obtain regional output, the specified functional 
form is expressed as:  
 

( )1ln ln ln 1i i
i i i i i i i

i

Y VA ICρ ρα δ δ ε
ρ

− −⎡ ⎤= − + − +⎣ ⎦   [3.6] 

 
where Yi, VAi and ICi are the regional output, the value added and the 
intermediate consumptions of the branch i, respectively17. 
At the second level, the CES function that combines capital and labour incomes to 
obtain value added, is expressed as:  
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where VAi, CIi and LIi are the value added, the capital incomes and the labour 
incomes of the branch i, respectively18. 
It should be stressed that the proposed approach allows for more flexibility not 
only concerning the parameterization of the behavioural functions, but it also 
introduces more flexibility on the degree of substitution between factors both in 
the first and in the second level of the production process. 

                                                 
17 Details on the definition of the variables will be discussed in the paragraph 3.4.  
18 It is worth noting that estimates have been carried out for both the two production stages, 
separately. To avoid repetitions, results will be described in detail in Chapter 4 for the top-level 
relationship. However, in the Appendix 1 we well provide the estimates for the second-stage 
relationship (namely concerning value added as function of labour and capital incomes) as the 
final results of the proposed three-step estimation approach. 
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3.3 Modelling the Demand Side: Working Leser Functional Form 

3.3.1 Main characteristics and properties 
The approach we adopted to model the demand side is included in the Engel curve 
framework, traditionally used to model consumer behaviour (Deaton and 
Muellbauer, 1980a, 1980b).  
The Engel curve represents the relationship between commodity expenditure and 
income and its shape plays an important role in consumer demand analysis.  
Leser (1963) in his seminal work underlined that the problem of finding the most 
appropriate form of an Engel function is a well-known problem in econometrics, 
“…but as yet no solution appears to have found general acceptance”.  
In his study, Leser proposed the following functional form that relates the value of 
the expenditure share to the logarithm of total expenditure, as follows: 
 

ln( )t t t tw Xα β ε= + +    [3.8] 
 

where, wt (wt≥0) is the relative quota or budget share of the expenditure for the 
“good” t over the total expenditure and X indicates the total expenditure. The αt 
and βt represent unknown parameters to be estimated and εt represents the error 
term. This formulation is generally known as the Working – Leser functional form 
since it was firstly proposed by Working in the 1943 and then further developed 
by Leser in 1963. This form, as underlined by Castaldo and Reilly (2007) is 
consistent with household utility maximization.  
Since the seminal papers by Working (1943) and Leser (1963), many studies have 
found and validated a log-linear relation between income and commodity 
expenditure share. This relation is also motivated by the popular AIDS models of 
Deaton and Muellbauer (1980a, 1980b) and Jorgenson, Lau, and Stoker (1980) 
which represent the natural extension of the Working Leser model when price 
information are required to introduce in the model. 
 
The model is based on the assumptions that: i) all budget share sum to unity; ii) 
the adding-up restrictions, which requires that: 1t

t
α =∑  and 0t

t
β =∑ . 

The Working Leser model, as underlined by De Mello, Pack and Sinclair (2002) 
rests upon a particular class of preferences, the PIGLOG class (which means 
logarithm of prices independent generalized linearity), which are represented with 
a cost or expenditure function defining the minimum expenditure required for 
gaining a specific level of utility at given prices. On this issue, Muellbauer (1976) 
showed that the PIGLOG class of preferences allows for an exact aggregation 
over consumers without imposing identical preferences.  
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3.3.2. The expenditure elasticity  
One of the most important issues of a demand relationship system study concerns, 
as already mentioned, the obtainment of income-expenditure elasticity, where 
expenditure is assumed to be a proxy of the income.  
The expenditure elasticity is a measure of the responsiveness of demand of a 
particular commodities (or a group of similar commodities) to changes in the total 
expenditure. As noted by Akbay Boz and Chern (2007) this measure is used to 
approximate corresponding unconditional income elasticities.  
To be precise, the expenditure elasticity shows how the quantity purchased 
changes, that is how sensitive it is, in response to a change in the consumer’s 
expenditure.  
The analytical formulation of the expenditure elasticity can be described as the 
ratio between percentage change in quantity demanded and percentage change in 
expenditure.  
For the Working Leser functional form, using the definition of elasticity, the 
expression of the expenditure elasticity can be derived as follows (De Mello et al., 
2002; Chern, Ishibashi, Taniguchi  and Tokoyama, 2003; Castaldo and Reilly, 
2007): 
 

( ) 1 1t
t t t

t t

w
w w

βη β= + = +     [3.9] 

 
The economic meaning of the expenditure elasticity is that if the percent change in 
the quantity demanded is greater than the percent change in consumer 
expenditure, the demand is said to be expenditure elastic, or responsive to changes 
in consumer expenditure. On the other hand, if the percent change in the quantity 
demanded is less than the percent change in consumer expenditure, the demand is 
said to be expenditure inelastic, or not responsive to changes in consumer 
expenditure. 

3.3.3 The Working Leser Model for Sardinia 
The study of the demand relationships and the consumer expenditure patterns can 
give an indication of the demand tendency and growth in a particular economy.  
Modelling the household consumption sphere in a macro-economic context, like 
the RSAM and consequently like the Sardinian RCGE context, means studying 
the consumption sphere within an extremely aggregated information context.  
Since a RSAM (or equivalently a SAM) is based on data which refers to a single 
year observation, prices related to the demanded quantity are assumed to be 
constant. As established by the Theory of Consumption (Deaton and Muellbauer, 
1980b) the demand functions are derived from the maximization problem of the 
consumer who make the demanded quantity of a good or service dependent on the 
income level of the individual and on prices.  
However, when prices are constant, as stressed by Beneito (2003) one obtains the 
specification corresponding to the Engel curve, where the demand of goods is 
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dependent only on the income of the individual. In such a case, the only condition 
to be met is the adding-up restriction since all the others are derived from the 
consideration of prices. 
Bearing this in mind, our choice was to relate the value of the expenditure shares 
to the logarithm of total expenditure following the original statistical analysis of 
budget shares by Working (1943) and Leser (1963).  
The peculiarity of the RSAM at our disposal allows us to carry out household 
consumption analysis by considering different groups of households. Thanks to 
this classification it will be possible to emphasize the different expenditure shares 
and the different expenditure patterns which refer to the various income levels. 
The analysis that will be carried out, whose results will be shown in Chapter 5, 
has different interesting aspects since it is aimed to study the demand elasticity of 
the household towards different production branches. 
The general expression of the Working-Leser function specified for the Sardinian 
household demand system is the following:  
 

ln( )
ji ji ji j jiw Xα β ε= + +    [3.10] 

 
where j refers to household income group studied while i refers to the economic 
production branch. Further details on this models will be specified in Chapter 5.  

3.4 Data: Regional SAM for Sardinia 

3.4.1 Some notes on the SAM 
The SAM, was firstly introduced by Richard Stone in 1962, as a database able to 
arrange flows in a coherent and economically meaningful way, which are 
expressed in terms of value and characterize an economic system in accountancy 
(Ferrari, 1999).  
In this way, a SAM represents an example of such a consistent database which 
can be defined as a numerical representation of the economic cycle. Sánchez 
(2004) underlines that the SAM represents an economy-wide data set that can be 
used to feed CGE model equations. 
The SAM as stressed by Robinson (2003) provides a framework for data 
organization, multiplier analysis, macro models, and multi-sectoral models such 
as CGE models.  
With particular reference to the RCGE models it is important to remember that the 
most crucial data requirement in developing this kind of model is represented by a 
recent and “good” RSAM for the particular region studied.  
The RSAM represents a snapshot of an economy in a particular year, to which the 
RCGE is calibrated19. Therefore regional SAM databases and regional CGE 

                                                 
19 Consequently, the base run of the model replicates the initial economic equilibrium captured in 
the SAM. 
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modelling frameworks share the same economic features and can be interpreted as 
different ways of representing the national economy.  
 
It is important to note that the RSAM is constructed in such a way that it contains 
the I/O table introduced by Leontief, namely in the sub-matrix describing 
intermediate consumption. In this way, it is possible to state that the RSAM refers 
to the technological structure of the I/O Table.  
As an extension of an I/O flow table, a RSAM is also a useful system in exploring 
the macroeconomic implications of policy changes. The RSAM framework allows 
more complete economic analysis, resulting from any changes in policies in 
comparison with a fixed coefficient I/O model. 
As stressed by Pyatt and Round (1985) a further objective of the SAM is to 
provide the statistical basis for the creation of a plausible model.  For this purpose 
a SAM approach integrates the distributional dimension within the system of 
national accounts in a way that reflects the interrelationship between employment, 
distribution of income and the structure of production20. In particular the SAM 
usually focuses on the distribution of income through disaggregation of household 
sector income and expenditure accounts together with disaggregation of 
production, factors etc.  
According to these interpretations, and in alignment with Stone’s theory (1962), 
the SAM, both at national and regional level, represents contemporarily: i) a 
macro-accounting structure ii) a matrix with all the properties of a true matrix and 
iii) an economic model.  
As an accounting structure a SAM is the result of an aggregation process 
concerning economic agents and institutions, no longer dividable, such as 
households, firms, government and rest of the world, each of them make 
transactions with the others in the economic system. The object of these 
transactions concerns flows in terms of value, such as the distribution of income 
(among different types of households) or of value added (among the different 
factors of production) (Thorbecke, 2000). 
In short, the SAM can be seen as a set of different subjects aggregated on the 
basis of their role in the economic system, and depending on i) the reason for 
which they carry out the transaction, and ii) their position in the social structure or 
sectoral location (Ferrari, 1998).  
As a matrix and more precisely as a square matrix a SAM represents a 
mathematical structure in which the functional and sectoral units record their 
transactions and where it is important to bear in mind the convention that entries 
are read as receipts for the row account in which they are located and as 
expenditure for the corresponding column account21.  
To sum up, the payments (expenditures) are listed in columns and the receipts are 
recorded in rows. As the sum of all expenditures from a given account (or 

                                                 
20 In other words, the SAM summarizes succinctly the interdependence between production 
activities, factor shares, household income distribution, balance of payments, capital accounts, etc. 
for the economy as a whole at a point in time. 
21 On this issue Torbercke (2000) underlines that within the SAM  “each transactor or account has 
its own row and column”.  
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subaccount) must equal the total sum of receipts or income for the corresponding 
account and therefore row sums must equal the column sums of the corresponding 
account22.  
At the same, the RSAM framework (Ferrari, 1999), as well as the SAM 
framework, must satisfy two basic rules (Pyatt, 1999):  
i) For every row there must be a corresponding column and the system is 

only complete if the corresponding row and column totals are identical;  
ii) Every entry is a receipt when it is read in its row context and expenditure 

when it is read in its column. The description of SAMs as single entry 
accounts derives from this rule.  

The SAM is also an economic model since it includes the three main functions of 
an economic system, - production, consumption and accumulation – under the 
Keynesian economic framework.  
According to these three interpretations of the SAM, it is worth emphasizing that 
the SAM, as well as the RSAM, represent flexible tools for modelling the 
structure of an economic system at a level of disaggregation which is coherent and 
agrees with the desired analysis, which is obviously subject to available data. In 
fact, a SAM captures transactions in an economy, regarding both income and 
expenditure, like double-entry accounting, but it contains much more information 
than a normal macro aggregate. A SAM, even if it is similar to a standard I/O 
model which systematically include production relationships, it has the added 
advantage of capturing income distribution and consumption relationships within 
an economy in an internally consistent way23. 

3.4.2 The RSAM for Sardinia 

As already mentioned, the main aim of this research is to estimate production and 
demand function parameters in a “self-contained” approach by only using the 
information contained in a SAM and  in particular in a RSAM.  
The dataset under which the estimates will be carried out is represented by the 
RSAM of Sardinia for the year 2001 (Ferrari, Garau and Lecca, 2007).  
The RSAM for Sardinia at our disposal was originally disaggregated into 23 
production branches.  
An interesting feature of the available RSAM concerning the household income 
allocations is represented by the subdivision of the Sardinian household into 6 

                                                 
22For example, the total income of a given institution (say a specific socioeconomic household 
group) must equal exactly the total expenditures of that same institution.. Hence, as stressed again 
by Torbercke (2000), analysts interested in understanding how the structure of production 
influences the income distribution can obtain useful insights by studying the SAM.  
23 Bearing these rules in mind it could be seen that SAM describes basic transformations in the 
economy. Production in the economy uses the intermediate materials and the primary factors of 
production. These factor supplies are contributed by the institutions, who, in turn, receive factor 
payment as value added. In addition to value added, institutions might get income from other 
sources such as transfers. (Sinha, 2008) 
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groups, which gives us a better understanding of the primary income allocation 
process24. 
In the aim of estimation and in order to increase the power of our estimates we 
aggregated the production sphere of the original RSAM into six production 
branches according to the NACE (Classification of Economic Activities in the 
European Community) classification concerning economic activities.  
By doing so, the RSAM used for the estimation process has a production sphere 
which includes the following economic activities: 
 

i) Agriculture, animal husbandry and fishing;  
ii) Energy and Mining products;  
iii) Industrial products;  
iv) Construction 
v) Market services;  
vi) Non Market services;  

 
For the sake of clarity, it is important noting that each one of these six production 
branches includes a different number of branches, as summarized in Table 3.1. In 
detail:  
 
i) The Agriculture, animal husbandry and fishing branch is composed of the two  
     following branches: 

- Agriculture, hunting and forestry; 
- Fishing and related services; 
 

ii) The Energy and Mining products branch includes the following branches:  
- Mining and quarrying; 
- Manufacture of non metallic mineral products; 
 

iii) The Industrial product branch includes the following branches:  
- Manufacture of food products, beverages and tobacco; 
- Manufacture of leather and leather products; 
- Manufacture of pulp, paper and paper products; publishing and printing; 
- Manufacture of coke, refined petroleum products; Chemical and 

pharmaceutical products; 
- Manufacture of basic metals and fabricated metal products; 
- Manufacture of machinery and equipment; manufacture of electrical and 

optical equipment; Manufacture of transport equipment; 
- Manufacture of wood, rubber and plastic and related products; other 

manufactured products;  
- Electricity, gas and water supply;  

                                                 
24 The classification of households is of crucial importance in a SAM analysis. In the SNA 1993, 
the importance of household classification has been explicitly discussed. This document states that 
“Conclusions regarding (changes in) inequality, and perhaps even poverty, may have to be based 
on subgroup averages, and thus depend very much on how the population has been subdivided.  
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iv) The Construction branch is composed of one branch and therefore  
         the name and the numerical amount of this aggregate branch and those of  
         the related disaggregated branch coincide; 
 
v)  The Market service branch is composed of the following branches: 

- Wholesale and retail trade; repair of motor vehicles, motorcycles etc…; 
- Hotels and restaurants;  
- Transport, storage and communication; 
- Financial intermediation; 
- Real estate, renting, research and development and other business 

activities; 
 

vi) The Non Market service branch is composed of the branches: 
- Public administration and defence; compulsory social security; 
- Education; 
- Health and social work; 
- Other community, social and personal service activities; 

 
Table 3.1 – Passage from the 23-branch RSAM to the 6-branch RSAM for Sardinia 
(2001)   
 

Sardinian RSAM   Number of branches included 
Agriculture, Animal Husbandry and 
Fishing 2 

Energy and Mining Products 2 
Industrial Products 9 
Construction 1 
Market Services 5 
Non Market Services 4 

Total 23 
Source: our elaboration on the RSAM for Sardinia (2001) 
 
It is important to note that the branches included in each of the aggregate branch 
represent at the same time the number of the observations under which our 
estimation processes are based.  
 
Regarding household classification, the same aggregation concerning the 
production branches was maintained.  
Moreover, household income distribution is divided into six household groups by 
considering different income levels and namely:  
 

i) Household income group A: disposable annual income lower than 
9,300 Euro;  

ii) Household income group B: disposable annual income from 9300 to 
12400 Euro;  

iii) Household income group C: disposable annual income from 12,400 to 
15,500 Euro; 
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iv) Household income group D: disposable annual income from 15,500 to 
24,800 Euro;  

v) Household income group E: disposable annual income from 24,800 to 
31,000 Euro; 

vi) Household income group F: disposable annual income higher than 
31,000 Euro;   

 
The aggregated RSAM for Sardinia is shown in Figure 3.2, where the values 
reported are in Millions of Euro. 
The Sardinian RSAM matrix offers a level of intermediate consumption 
distinguished for the six specified branches.  
Intermediate consumption is defined as the value of products, which are 
transformed or used up as inputs to a process of further production.  
For each branch the amount of intermediate consumption referred to the same 
itself branch or to the other branches can be seen by the cells from the (1,1) to the 
(6,6). Specifically each column, within these cells, identifies the intermediate 
consumption characterizing each of the six branches. 
Value added is specified in Income from Capital (CapInc), Income from Labour 
(LabInc) plus social contributions (SocContr). This specification means that value 
added at this form represents the amount remaining for distribution to the primary 
factors and equals the total value of factor incomes generated by production. 
 
Table 3.2 shows the amount, in millions of Euro, of the value added and the 
intermediate consumptions for each branch included in the Sardinian RSAM for 
the year 2001.  
 
Table 3.2 Value added and intermediate consumption for each branch (in Millions of Euro)  
 
Sardinian RSAM  Value added Intermediate consumption 
Agriculture, Animal Husbandry and 
Fishing 1039.654 574.604 

Energy and Mining Products 341.701 607.230 
Industrial Products 2882.636 7430.501 
Construction 1473.257 2039.906 
Market Services 11948.257 7739.105 
Non Market Services 6799.783 3357.496 
Source: our elaboration on the RSAM for Sardinia (2001) 
 
Intermediate consumption and value added are the macro-economic aggregates 
used to model the production system of Sardinia region.  
In the estimation process, described in the following chapter, we will consider 
value added and intermediate consumption as the two inputs which combine to 
produce the total regional output for each production branch. 
 
Rows 10 and 11 record net taxes and subsidies on production, respectively, while 
rows 12 records the Value Added Tax (VAT). 
As already mentioned, households are detailed in six group rested on their annual 
disposable income.  
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Table 3.3 shows the different expenditure amounts toward the six branches for 
each household group. 
 
Table 3.3 Household consumption expenditure (values in millions of Euro) towards the   
                production branches 
 

 
Aggregate RSAM 

 
Hh A Hh B Hh C Hh D Hh E Hh F 

Agriculture, animal husbandry and fishing 65 89 51 113 24 35 
Energy and mining products 7 17 10 20 9 9 
Industrial products 778 1244 824 1919 477 656 
Construction 5 5 4 7 2 3 
Market Services 1253 1959 1488 3460 962 1242 
Non Market Services 189 427 188 414 114 132 

Total expenditure 2297 3741 2565 5933 1588 2077 
HhA: households pertaining to the income group A;  
HhB: households pertaining to the income group B;  
HhC: households pertaining to the income group C;  
HhD: households pertaining to the income group D;  
HhE: households pertaining to the income group E;  
HhF: households pertaining to the income group F; 
Source: our elaboration on the RSAM for Sardinia (2001) 
 
Finally, rows from 22 to 24 record tax on imports and imports from Italy and from 
the Rest of the World. 
 



 

Table 3.4 RSAM for Sardinia (year 2001) – Aggregation into six  branches 
 

1 2 3 4 5 6 7 8 9 10 11 12 13A 14B 15C 16D 17E 18F 19 20 21 22 23 24 TOTAL

1 AGRAHF 174 1 504 1 46 12 65 89 51 113 24 35 1 1 779 6 1901

2 ENEMIP 3 199 1363 520 14 10 7 17 10 20 9 9 35 354 31 2601

3 INDUP 235 198 3638 621 1866 927 778 1244 824 1919 477 656 9 2439 3570 1923 21323

4 CONSTR 0,47 5 144 398 203 89 5 5 4 7 2 3 2898 19 0,4 3782

5 MARKSER 158 200 1713 489 5325 1384 1253 1959 1488 3460 962 1242 150 1009 418 629 21839

6 NMARKSER 5 4 69 13 285 935 189 427 188 414 114 132 7502 22 320 1 10619

7 LabInc 263 136 966 523 2984 3444 8316

8 SocContr 57 58 362 183 819 1352 2831

9 CapInc 719 148 1555 768 8145 2003 13338

10  Ind Tax 6 5 1054 42 199 215 1521

11 ProdContr ‐103 ‐4 ‐76 ‐192 ‐2 ‐377

12 Vat 15 6 591 193 812 87 1704

13 Household A 719 276 442 10 289 551 2287

14 Household B 746 297 752 34 979 1799 4608

15 Household C 491 155 1111 8 389 915 3068

16 Household D 3309 1125 1801 13 566 1234 8049

17 Household E 1201 392 672 4 186 422 2877

18 Household F 1849 585 1356 3 173 406 4373

19 Firms 7158 43 61 43 80 26 32 912 8354

20 Publ Adm 46 1521 ‐377 1704 509 543 485 412 309 294 3291 124 8860

21 Sav ‐572 230 ‐31 1610 949 1968 2482 ‐5042 1968 2841 6404

22 M tax 3 1 119 0,4 124

23 M IT 201 540 5660 21 851 154 7427

24 M RoW 163 1104 3662 12 481 10 5432

TOTAL 1901 2601 21323 3782 21839 10619 8316 2831 13338 1521 ‐377 1704 2287 4608 3068 8049 2877 4373 8354 8860 6404 124 7427 5432 151261  
Source: Our elaboration on RSAM for Sardinia (Ferrari, Garau and Lecca, 2007).  
Legend: AGRAHF: Agriculture, Animal Husbandry and Fishing; ENEMIP:Energy and Mining Products; INDUP: Industrial Products; CONSTR: Construction; MARKSER: 
Market Services; NMARKSER: Non Market Services; 
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Chapter 4  

 Three step Entropy Approach for the 

Estimation of the CES Production Function 

4.1 The Specified Functional Form and the Estimation Strategy 

The theoretical specification of the CES production function applied to the 
production process of the Sardinian RCGE model follows the original formulation 
introduced by Arrow et al (1961) which is described by the [3.1].  
For the estimation procedures, the logarithmic transformation of the CES 
production function is used, although its non-linearity in the logarithmic 
transformation, has been one of the most important obstacles to its 
econometrically application. It is worth to emphasize that in the GME and GCE 
estimation approaches the non-linearization of the CES production function does 
not cause any problems.  
Concerning the relationship in which value added and intermediate consumptions 
are combined to obtain total regional output, which describes the highest level of 
the multi-stage production system defined for Sardinia, the specified functional 
form is expressed as:  
 

( )1ln ln ln 1i i
i i i i i i i

i

Y VA ICρ ρα δ δ ε
ρ

− −⎡ ⎤= − + − +⎣ ⎦   [4.1] 

 
where Yi, VAi and ICi are the total output, the value added and the intermediate 
consumptions of the branch i, respectively1. 
As usual, the unknown parameters in the expression [4.1] are αi which represents 
the efficiency parameters describing “the state of technology”, δi which is the 
distribution parameter and ρi which is the substitution parameter; while εi 
represents

  
the error component.  

After having estimated the parameter ρi it will be possible to obtain the elasticity 
of substitution which characterizes each level and each branch, by using the 
already mentioned relation ( )1 (1 )i iσ ρ= + . 
The index i refers to the branches for which estimates will be carried out. 
Specifically, in the models to be estimated, data aggregation leads to the following 
six branches (see Chapter 3 for the aggregation criteria): 
                                                 
1 Details on the definition of the variables are available in chapter 3.  
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i) Agriculture, animal husbandry and fishing; 
ii) Energy and mining products ; 
iii) Industrial products ; 
iv) Construction ; 
v) Market services; 
vi) Non Market services; 

 
The base year for the model is 2001, which corresponds to the last year for which 
a detailed RSAM for Sardinia is available. 
Although the selected model seems to differ from the usual specifications applied 
in empirical literature for this kind of relationship, the specification introduced 
could be considered more general and at the same time more flexible, since the 
CES production function includes the Leontief (generally used to model this top-
level relationship) and the CD specifications as special cases.  
These remarks ensure that the results of the analysis will absolutely agree the 
existing theory even if a more general specification is adopted. Precisely, 
whenever the substitution elasticity should be equal to zero in a CES function the 
Leontief functional form returns. At the same time, for values of elasticity of 
substitution equal to one the CES production function reduces to the CD 
functional forms. 
 
However, the most essential aspect of the proposed approach is that a full 
estimation of the CES unknown parameters is carried out, by only using the macro 
information contained in the RSAM. On this issue, it is worth noting that, while 
the underlying assumption in regional I/O models and in the more general 
quantitative representation of a regional economy provided by a RSAM is that of 
Leontief technology, production specification in RCGE models is made in 
neoclassical theory framework.  
Therefore, on one hand our estimation approach aims to recover the value of 
unknown parameters by a process based on the RSAM information only. On the 
other hand, since we insert in the RCGE framework, where different and flexible 
functional forms are generally used to describe the economic agents’ behaviour, 
there was the need to make the approach more general, that is to say not only 
strictly related to the Leontief technology under which a RSAM is based. In order 
to accomplish these requirements, we will introduce a three-step estimation 
process.  
By following this strategy, in the first step any “a priori” information about the 
order of sizes of the parameter values and any prior knowledge about the 
parameter bounds will not be introduced thus allowing the data to speak. Then, in 
the second step additional information will be gradually introduced, by taking 
advantage of the results obtained in the first step together with the economic 
requirements. Finally, the third step follows a GCE philosophy on the basis of 
which prior information is introduced both in terms of parameter support bounds 
and in terms of an estimated prior probability distribution. 
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Further details on the suggested estimation strategy together with some possible 
further improvements, will be discussed in the paragraph 4.5, after the obtained 
results will have been illustrated. 

4.2 The First Estimation Step: GME Approach  

4.2.1 The GME re-parameterization and optimization problem 

In order to estimate the parameters of the equation [4.1] by using the GME 
method firstly we need to re-parameterize all the unknown parameters and the 
error components and express all of them in terms of probabilities. Clearly, this 
procedure was carried out for each branch.  
To provide the reader with a feeling of how GME operates, here the estimation 
procedure is reported only for the Agriculture, Animal Husbandry and Fishing2 
branch, in order to avoid repetition. 
For this branch, the CES production, before the GME re-parameterization, can be 
expressed as:  
 

( )1ln ln ln 1AGRAHF AGRAHF
AGRAHF AGRAHF AGRAHF AGRAHF AGRAHF AGRAHF AGRAHF

AGRAHF

Y VA ICρ ρα δ δ ε
ρ

− −⎡ ⎤= − + − +⎣ ⎦ [4.2] 

 
Regarding GME estimation purposes, as stated by Golan (2008), each of the 
unknown parameters is viewed as the mean value of some well defined random 
variable rather than searching for their point estimates. In the same manner, the 
unobserved error component is also viewed as another set of unknowns, and 
similar to the signal component, each εi is constructed as the mean value of some 
random variable v. Clearly, the main objective is to estimate the unknown 
parameters with minimal distributional assumptions.  
 
Concerning our estimation problem, firstly we have to express all the parameters 
and the error term in terms of proper probabilities.  
For example, in order to transform the parameter α, we will start by choosing a set 
of discrete points, 1( ,..., ,..., )i is iSa a a ′=ia  where i refers to the specific analyzed 
branch while s represents the dimension S≥2 of the support space.  
We will consider the dimension of the support space for all the parameters and for 
all the branches equal to 5 (i.e. for the efficiency parameter α, S=5).  
After defining the support space dimension, a vector of corresponding unknown 

weights is also introduced as follows: ( )1,..., ,...,i is iSp p p ′=ip  so that ,
1

1
S

i s
s

p
=

=∑  

and 0isp ≥ , which are the requirements that a proper probability distribution must 

                                                 
2 From here on the Agricultural, animal husbandry and fishing branch is named AGRAHF. 
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satisfy. At this point we are able to re-write the parameter αi, before the estimation 

process, as 
1

S

is is i
s

a p α
=

=∑  . 

The same procedure was used for the other unknown parameters and namely for 
the distribution parameter δ and for the substitution parameter ρ.  
Obviously, this procedure was also carried out for all the branches analyzed.  
More precisely: 
i) a set of 5 discrete points, 1( ,..., ,..., )i i im iMt t t ′=t , was introduced for the 
distribution parameter δ, where i refers to the specific analyzed branch and m 
refers to the dimension of the support space (M≥2) which is equal to 5. The vector 
of corresponding unknown weights is also introduced as follows: 

( )1 ,,..., ,...,i i i m iMb b b ′=b  under the already mentioned normalization constraints, so 

that ,
1

1
M

i m
m

b
=

=∑ and , 0i mb ≥ . In this way, it is possible to re-write the distribution 

parameter δ as 
1

M

im im i
m

t b δ
=

=∑ ;  

ii) the substitution parameter ρ has been re-parameterized by introducing a set of 5 
discrete points, 1( ,..., ,..., )i i id iDz z z ′=z  where i refers to the specific analyzed 
branch and d refers to the dimension D≥2 and equal to D=5 of the support space. 
The vector of corresponding unknown weights is also introduced as follows: 

( )1 ,,..., ,...,i i i d iDq q q ′=q  under the already known normalization constraints, that 

,
1

1
D

i d
d

q
=

=∑ and , 0i mq ≥ . In such a way, it is possible to re-write the substitution 

parameter ρ as 
1

D

id id i
d

z q ρ
=

=∑ .  

Similarly, in order to re-parameterize the error component εi we went on to obtain 
a transformation by specifying a vector of H≥2 discrete 
points 1( ,..., ,..., )i i ih iHv v v ′=v , distributed uniformly around zero, where i refers to 
the analyzed branch.  

A vector of proper unknown weights ( )1,..., ,...,i ih iHw w w ′=iw is associated to the 

support space, so that
1

H

ih ih i
h

v w ε
=

=∑ . As recommended by Golan et al. (1996a) the 

number of the points of the error support space was fixed at H=3, while the three 
sigma rule (where sigma is empirical – from the data -  standard deviation of the 
dependent variable) and the symmetry around zero was used for the support space 
of the error term3.  

                                                 
3 It is worth noting that for the Construction branch we used a symmetric support [-1;1] according 
to Ferrari and Manca (2008).  
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As stated by Golan et al. (2001) and Nganou (2004) there is no need to assume 
any subjective information on the distribution of the probabilities with the GME.  
The re-parameterized coefficients lead to the following expression for the CES 
production function, which will enter in the GME optimization problem: 
 

1 1

1 1 1 1

1
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D D
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  [4.3] 

 
The related optimization problem is based on the following objective function:  
 

{ }, , ,
( ) ln( ) ln( ) ln ln

p q b w
Max H ′ ′ ′ ′= − − − −p,q,b,w p p q q b b w w    [4.4] 

 
subject to the data constraint (described by the [4.3]) and the adding-up 
constraints (for each i) for the probabilities attached to the parameters and the 
noise terms, that are:  

1 1 1
1;

;1

S M D

is im id
s m d

ih
h

p b q

w
= = =

= = =

=

∑ ∑ ∑

∑
    [4.5] 

The solution to this maximization problem is unique. Forming the Lagrangean and 
solving for the first-order conditions yields the optimal solution for the proper 
probabilities. The point estimates for the unknown parameters are recovered from 
the estimated probabilities and the specified support points, as 

follows:
1

ˆˆ; ;
M

i iis i im im idis id
s m d

a p t b z qα δ ρ
=

= = =∑ ∑ ∑ . 

4.2.2  The choice of the support spaces  
Bearing in mind that estimation results may be sensitive to support specification4 
and also considering the type of data available, the first step of the estimation 
strategy used, will specify wide and equal supports for all the parameters5.  
In order to evaluate how the various support spaces affect the resulting estimates, 
five different models for each branch were specified.  
Each model differs from the others in the support space bounds specified for the 
unknown parameters6. More precisely, as already proved by Golan et al (2001), a 
moderately large change in these support vectors was made while keeping the 

                                                 
4 As underlined by Fraser (2000) the estimated parameter values could change sign and increase in 
magnitude. 
5 To perform the estimation GAMS, using the MINOS/PATHNLP solvers, was employed.  
6 For example the model named GME 1 specifies a wide support, between -100 and 100 both for 
alpha, delta and rho and centred on zero. The model GME2 defines the support bounds between -
50 and 50 and it is always centred on zero. 
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centre of the support unchanged, in order to evaluate the effects on the estimated 
coefficients both in terms of their estimated sign and in terms of magnitude.  
At the same time, the magnitude of the obtained coefficient values could represent 
a good starting point to define more informative supports for the parameters, 
which will be discussed later and will be the aim of the second step of the 
estimation strategy used.  
The choice to include also negative values for all the three parameters, even 
though the economic theory could give us some “guiding principles”, has been 
done in this first estimation step in agreement with the GME theory, that suggest 
to define a symmetric support centred on zero, so that if the data does not add 
information the estimated values converge to zero. Therefore, by examining the 
results shown in Tables 4.1-4.6 it is possible to evaluate to what extent the 
obtained estimates are sensitive and robust to the change of the supports. As 
underlined by Nganou (2004), this procedure represents a simple way to evaluate 
and to interpret the estimated coefficients, since it is possible to compare the 
obtained parameter values with the expectations of the economic theory in terms 
of their signs and magnitude. 
By examining the results concerning the Agriculture, Animal Husbandry and 
Fishing branch (Table 4.1), the first point to note is the relative robustness of the 
estimates for the parameters α and ρ. In particular, both the α and the ρ parameters 
have the right sign in agreement with the economic theory. The estimated values 
for the δ parameter are robust and correct in terms of sign, but they also seem to 
be relatively variable in terms of their magnitude. Although they are of the correct 
magnitude in almost all the models, in the runs 3 and 4 the estimated values are 
greater than one and this is not acceptable according to the theory.  
 
Table 4.1 – Sensitivity Analysis of GME Estimates of the CES function for Agriculture, 
Animal Husbandry and Fishing 

 
 GME 1 GME 2 GME 3 GME 4 GME 5 

α  1.969 
(0.9997) 

1.837 
(0.9991) 

1.499 
(0.9965) 

1.252 
(0.9902) 

1.052 
(0.9722) 

δ  0.857 
(0.9999) 

0.919 
(0.9997) 

1.088 
(0.9982) 

1.148 
(0.9918) 

0.951 
(0.99773) 

ρ  0.0702 
(0.9999) 

0.025 
(0.9999) 

0.018 
(0.9999) 

0.08 
(0.9999) 

-0.0002 
(0.9999) 

Entropy value 7.025 7.023 7.016 6.99 6.92 

NE  0.9999 0.9996 0.9982 0.9940 0.9831 

The normalized entropy measure for each parameter is provided in the parentheses. 
Parameter supports: 
GME1:  [-100;100] for α, δ, and ρ; [-3stdev;3stdev] for the error, here we used [-4.27;4.27] 
GME2:  [-50;50] for α, δ, and ρ; [-3stdev;3stdev] for the error, here we used [-4.27;4.27] 
GME3:  [-20;20] for α, δ, and ρ; [-3stdev;3stdev] for the error, here we used [-4.27;4.27] 
GME4:  [-10;10] for α, δ, and ρ; [-3stdev;3stdev] for the error, here we used [-4.27;4.27] 
GME5:  [-5;5] for α, δ, and ρ; [-3stdev;3stdev] for the error;  
Source: our elaboration on the RSAM for Sardinia (2001) 
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Table 4.2 - Sensitivity Analysis of GME Estimates of the CES function for Energy and 
Mining products 
 

 GME 1 GME 2 GME 3 GME 4 GME 5 

α  13.520 
(0.9886) 

13.768 
(0.9521) 

10.031 
(0.8340) 

6.924 
(0.6613) 

4.22 
(0.4266) 

δ  2.402 
(0.9996) 

2.722 
(0.9981) 

2.052 
(0.9934) 

1.181 
(0.9913) 

1.603 
(0.9107) 

ρ  0.177 
(0.9999) 

0.712 
(0.9999) 

0.018 
(0.9992) 

1.271 
(0.9899) 

-0.083 
(0.9998) 

Entropy value 7.006 6.619 7.016 6.99 5.58 

NE  0.9961 0.9834 0.9422 0.88089 0.7791 

The normalized entropy value for each parameter is provided in the parentheses. 
Parameter supports: 
GME1:  [-100;100] for α, δ, and ρ; [-3stdev;3stdev] for the error, here we used [-0.56;0.56] 
GME2:  [-50;50] for α, δ, and ρ; [-3stdev;3stdev] for the error, here we used [-0.56;0.56] 
GME3:  [-20;20] for α, δ, and ρ; [-3stdev;3stdev] for the error, here we used [-0.56;0.56] 
GME4:  [-10;10] for α, δ, and ρ; [-3stdev;3stdev] for the error, here we used [-0.56;0.56] 
GME5:  [-5;5] for α, δ, and ρ; [-3stdev;3stdev] for the error, here we used [-0.56;0.56] 
Source: our elaboration on the RSAM for Sardinia (2001) 
 
 
 
 
 
Table 4.3 - Sensitivity Analysis of GME Estimates of the CES function for Industrial 
products 
 

 
 GME 1 GME 2 GME 3 GME 4 GME 5 

α  3.831 
(0.9990) 

5.099 
(0.9935) 

2.696 
(0.9887) 

3.588 
(0.9176) 

2.561 
(0.8263) 

δ  -0.012 
(1.000) 

0.354 
(0.9999) 

-1.408 
(0.9969) 

0.037 
(0.9999) 

-0.223 
(0.9988) 

ρ  -1.667 
(0.9998) 

-0.027 
(0.9999) 

-2.07 
(0.9933) 

0.847 
(0.9955) 

1.649 
(0.9306) 

Entropy value 14.259 14.280 14.231 14.122 13.852 

NE 0.9996 0.9978 0.9930 0.9710 0.9186 

*The normalized entropy measures for each parameter is provided in the parentheses. 
Parameter supports: 
GME1:  [-100;100] for α, δ, and ρ; [-3stdev;3stdev] for the error, here we used [-2.59;2.59] 
GME2:  [-50;50] for α, δ, and ρ; [-3stdev;3stdev] for the error, here we used [-2.59;2.59] 
GME3:  [-20;20] for α, δ, and ρ; [-3stdev;3stdev] for the error, here we used [-2.59;2.59] 
GME4:  [-10;10] for α, δ, and ρ; [-3stdev;3stdev] for the error, here we used [-2.59;2.59] 
GME5:  [-5;5] for α, δ, and ρ; [-3stdev;3stdev] for the error, here we used [-2.59;2.59] 
Source: our elaboration on the RSAM for Sardinia (2001) 
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Table 4.4 - Sensitivity Analysis of GME Estimates  of the CES function for Construction  
 

 
 GME 1 GME 2 GME 3 GME 4 GME 5 

α  1.448 
(0.9998) 

1.447 
(0.9994) 

1.441 
(0.9968) 

1.423 
(0.9873) 

1.353 
(0.9537) 

δ  -0.726 
(0.9999) 

-0.725 
(0.9999) 

-0.719 
(0.9992) 

-0.701 
(0.9969) 

-0.638 
(0.9898) 

ρ  0.151 
(0.9999) 

0.151 
(0.9999) 

0.148 
(0.9999) 

0.139 
(0.9999) 

0.111 
(0.9997) 

Entropy value 5.927 5.926 5.920 5.901 5.828 

NE 0.9999 0.9998 0.9986 0.9947 0.9811 

The normalized entropy value for each parameter is provided in the parentheses. 
Parameter supports: 
GME1:  [-100;100] for α, δ, and ρ; [-1;1] for the error 
GME2:  [-50;50] for α, δ, and ρ; [-1;1] for the error 
GME3:  [-20;20] for α, δ, and ρ; [-1;1] for the error 
GME4:  [-10;10] for α, δ, and ρ; [-1;1] for the error 
GME5:  [-5;5] for α, δ, and ρ; [-1;1] for the error 
Source: our elaboration on the RSAM for Sardinia (2001) 
 
 
 
 
 
Table 4.5 - Sensitivity Analysis of GME Estimates of the CES function for Market services 
 

 
 GME 1 GME 2 GME 3 GME 4 GME 5 

α  2.357 
(0.9996) 

2.354 
(0.9986) 

2.348 
(0.9914) 

2.262 
(0.9678) 

2.031 
(0.8934) 

δ  0.241 
(0.9999) 

0.307 
(0.9999) 

0.432 
(0.9997) 

0.476 
(0.9986) 

0.581 
(0.9916) 

ρ  -2.596 
(0.9996) 

-1.613 
(0.9993) 

0.027 
(0.9999) 

0.042 
(0.9999) 

0.050 
(0.9999) 

Entropy value 10.319 10.316 10.302 10.260 10.107 

NE 0.9997 0.9993 0.9970 0.9888 0.9616 

The normalized entropy value for each parameter is provided in the parentheses.  
Parameter supports: 
GME1:  [-100;100] for α, δ, and ρ; [-3stdev;3stdev] for the error, here we used [-1.5;1.5] 
GME2:  [-50;50] for α, δ, and ρ; [-3stdev;3stdev] for the error, here we used [-1.5;1.5] 
GME3:  [-20;20] for α, δ, and ρ; [-3stdev;3stdev] for the error, here we used [-1.5;1.5] 
GME4:  [-10;10] for α, δ, and ρ; [-3stdev;3stdev] for the error, here we used [-1.5;1.5] 
GME5:  [-5;5] for α, δ, and ρ; [-3stdev;3stdev] for the error, here we used [-1.5;1.5] 
Source: our elaboration on the RSAM for Sardinia (2001) 
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Table 4.6 - Sensitivity Analysis of GME Estimates of the CES function for Non Market 
services 
 

 
 GME 1 GME 2 GME 3 GME 4 GME 5 

α  5.842 
(0.9978) 

2.549 
(0.9983) 

2.069 
(0.9933) 

2.048 
(0.9737) 

1.905 
(0.9067) 

δ  0.670 
(0.9999) 

0.905 
(0.9998) 

0.680 
(0.9993) 

0.701 
(0.9969) 

0.747 
(0.9861) 

ρ  0.00007 
(1.000) 

1.474 
(0.9995) 

-0.008 
(0.9999) 

0.030 
(0.9999) 

0.051 
(0.9999) 

Entropy value 
9.216 9.217 9.196 9.160 9.022 

Normalized Entropy Ratio 
0.9997 0.9992 0.9975 0.9902 0.9642 

The normalized entropy value for each parameter is provided in the parentheses. 
Parameter supports: 
GME1:  [-100;100] for α, δ, and ρ; [-3stdev;3stdev] for the error, here we used [-0.77;0.77] 
GME2:  [-50;50] for α, δ, and ρ; [-3stdev;3stdev] for the error, here we used [-0.77;0.77] 
GME3:  [-20;20] for α, δ, and ρ; [-3stdev;3stdev] for the error, here we used [-0.77;0.77] 
GME4:  [-10;10] for α, δ, and ρ; [-3stdev;3stdev] for the error, here we used [-0.77;0.77] 
GME5:  [-5;5] for α, δ, and ρ; [-3stdev;3stdev] for the error, here we used [-0.77;0.77] 
Source: our elaboration on the RSAM for Sardinia (2001) 
 
The first point to note in Table 4.2, concerning Energy and Mining products is 
that α increases significantly as the support is widened, obviously this may have 
an impact on the other estimated values. In this respect, it is important to note that 
the estimates for δ even though they appear robust in terms of the estimated signs, 
they are always greater than one. The estimated values of the substitution 
parameter ρ present both admissible sign and magnitude, but they appear to be 
relatively variable to the support specification. 
With regards to the Industrial product branch, the estimates for α are correct both 
in sign and the magnitude, although they seem to be quite variable to the support 
specification. The situation for the obtained values concerning the δ and the ρ is 
more difficult since the estimates appear to be rather unstable both in sign and 
magnitude in the different models. 
On examining Table 4.4, the estimates derived for the Construction branch do not 
appear to be sensitive to the choice of the support values for all the parameters. 
The only “weak point” is represented by the sign of the share parameter δ, since it 
appears negative compared to the economic theory.  
The results for the Market service branch are presented in Table 4.5 that shows 
the robustness of the α and δ parameters both in their magnitude and sign. On the 
contrary, the obtained estimates for the substitution parameter ρ seem to be quite 
sensible to the support choice even if they present the correct sign. 
Finally, Table 4.6 shows the estimates for the Non Market service branch. Also in 
this case the estimates for all three parameters are correct both in sign and 
magnitude, even if they appear relatively sensitive to the support specification.  
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In short, it is possible to state that the obtained results are almost entirely coherent 
with the “guidelines” taken from the economic theory of the CES production 
function. Moreover, these estimates appear to be quite robust both in terms of sign 
and magnitude to the support specification even if they are relatively variable for 
some branches.  
It is worth mentioning that in our determination of the final estimates which 
emerge from this first estimation step, shown in Table 4.7, we preferred those 
with results in keeping with the economic expectation and the widest support 
space. It is important to underline that in this case the economic theory could be  
considered a “diagnostic tool” in order to evaluate the validity of the GME 
estimation method, since any “a priori” information was not introduced in the 
estimation process.  
This choice is in agreement with our logic, which does not take into consideration 
any “a priori” information and does not bias the estimates with a too tight support 
space.  
On this issue, Golan et al. (1996a) underline that wide bounds may be used 
without extreme risks or consequences if our knowledge is minimal and we want 
to ensure that the support space contains the true values of the unknown 
parameters.  
 
Table 4.7 – GME Estimates of the CES function (first estimation step ) 
 

 α  δ  ρ  

Agriculture, animal husbandry and fishingA 1.969 
(0.9997) 

0.857 
(0.9997) 

0.0702 
(0.9997) 

Energy and mining productsB 13.520 
(0.9886) 

2.402 
(0.9996) 

0.177 
(0.9999) 

Industrial productsC 5.099 
(0.9935) 

0.354 
(0.9999) 

-0.027 
(0.9999) 

ConstructionD 1.448 
(0.9998) 

-0.726 
(0.9999) 

0.151 
(0.9999) 

Market servicesE 2.348 
(0.9914) 

0.432 
(0.9997) 

0.027 
(0.9999) 

Non Market servicesF 5.842 
(0.9978) 

0.670 
(0.9999) 

0.00007 
(1.0000) 

The normalized entropy value for each parameter is provided in the parentheses. 
Parameter supports: 
A: [-100;100] for α, δ, and ρ; [-4.27; 4.27] for the error 
B: [-100;100] for α, δ, and ρ; [-0.56;0.56] for the error  
C: [-50;50] for α, δ, and ρ; [-2.59;2.59] for the error 
D: [-100;100] for α, δ, and ρ; [-1;1] for the error 
E: [-20;20] for α, δ, and ρ; [-1.5;1.5] for the error 
F: [-100;100] for α, δ, and ρ; [-0.77;0.77] for the error 
Source: our elaboration on the RSAM for Sardinia (2001) 
 
As shown in Table 4.7 the obtained results are almost entirely coherent with the 
expectations taken from the economic theory. This is completely true for the 
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Agriculture, animal husbandry and fishing branch, the Industrial product, the 
Market service and the Non Market service branches. For these production 
branches the CES estimated parameters range between the “admissible” economic 
values. However, the magnitude of the estimated parameters could be improved 
by specifying “aimed” support spaces for the unknown parameters of each branch. 
At this point of the research, several aspects would be worth noting regarding the 
choice of support values. In particular, in the light of results obtained a second 
step of the estimation strategy is implemented, by gradually adding some “a 
priori” information about the unknown parameters.  

4.3 The Second Estimation Step: a Bounded GME (B-GME) 
Approach 

4.3.1 The reasons underlying a B-GME approach  

In the previous paragraph, GME estimates of the CES parameters describing the 
relationship between value added and intermediate consumption of the Sardinia’s 
production system were carried out. This could be considered a “good” result 
since the estimation process was based on a very small amount of data. Therefore 
it is worth emphasizing the potentiality of the GME method since it enables us to 
model the production functions and to obtain the estimates in a situation 
characterized by minimal (or even negative) degrees of freedom. In fact, as 
stressed by several authors such as Tonini and Jongeneel (2008), this is only one 
of the main advantage of the GME estimators. 
However, as shown in Table 4.7 some estimated coefficients do not agree with the 
expectation in terms of magnitude or sign suggested by the economic production 
theory.  
These motivations represent the “fulcrum” which encouraged and motivated us to 
introduce a second estimation step, which was called B-GME. In particular, we 
maintained the methodological aspects of the estimator introduced by Golan et al 
(1996a) but, at the same time, a restriction on the “a priori complete uncertainty” 
was carried out. In fact, according to the GME methodological assumptions 
introduced in Chapter 2 it is clear that this method does not require “a priori” 
information either concerning the bounds of the unknown parameters or the 
probability distribution specified on the data, as stressed by Mittelhammer et al. 
(2000). On this subject, Golan (2008) stated that the GME minimizes the joint 
entropy distance between the data and the state of complete uncertainty 
(described, as well known, by a uniform distribution).  
The proposed estimation step aims to gradually introduce some “a priori 
information” in the estimation process without “jeopardizing” the classical 
assumptions of the GME approach.  
To be precise and referring to the econometric problem in question, a more 
informative supports on the efficiency and the distribution parameters were 
introduced, starting from the evidence of the previous step and some available “a 
priori” information.  
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By observing the results in Table 4.1- 4.6 we decided to introduce a restriction on 
the efficiency support spaces while maintaining the underlying uniform 
probability distribution. In particular, for the definition of the support the CES 
economic theory together with the information extracted from the RSAM were 
used.  
Regarding the CES economic theory, the α parameter has the same meaning of the 
α parameter in the CD functional form. Specifically this parameter indicates the 
“state of technology” characterizing the production process and is called the 
neutral efficiency parameter . So, for its meaning and economic nature this 
parameter cannot be negative. This information was the first piece of information 
used to define the support space and specifically to establish the lowest bound of 
the support space.  
Concerning the RSAM “aid” it is possible to determine from the matrix a 
calibrated value of the efficiency parameter which could guide us in the definition 
of the estimated expected size and magnitude of the α, as better explained in the 
following paragraph where the available information and the support specification 
will be formally introduced.  
The second point to note concerns the support specification for the share 
parameter δ for which a support space ranging between 0 and 1 was introduced  
according to the CES economic theory.  
Concerning the substitution parameter ρ the situation is quite different because a 
greater variability was found, above all in the estimated sign of the parameters, 
when the support space was changed. For this reason, we maintained a complete 
uncertainty on the support space bounds in this estimation step as well. This 
choice was made by considering that the support space for the other two 
parameters was “under control” in this second estimation step. Therefore, the 
sensitivity analysis carried out on the substitution parameter actually achieved a 
double objective. On one hand, it could be considered a “diagnostic tool” to 
understand how much information the estimated values of the substitution 
parameters add to the estimation process. On the other hand, by taking advantage 
of the sensitivity analysis, the support space which added most information to the 
estimated model was included in the third estimation step, ceteris paribus (the 
economic theory principles and the peculiarity of the studied context). 

4.3.2 The available a priori information  
In the definition of support regarding the efficiency parameter α, we took 
advantage of the calibrated efficiency measure from the available RSAM.  
This value allowed us to get information on the degree of efficiency and the “state 
of the technology” concerning the production process, prior to the estimation 
procedure, on the basis of the underlying economic theory characterizing the 
SAM and without considering the underlying production functional form chosen 
for the RCGE studied framework (which in this study is represented by CES 
functional forms). In order to obtain this measure, characterizing every single 
branch, we used the macroeconomic information available within the RSAM. In 
particular, the amount of value added and intermediate consumption of each 
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branch - which represented the inputs of our production function- were used and 
we carried out a calculation of the ratio of the two economic quantities. According 
to the National Accounting theory, the results obtained represent the calibrated 
degree of efficiency of a branch7.  
 

Value added
Intermediate Consumption

Calibrated i
i

i

α =    [4.6] 

 
where, the index i (i=1,…,6) refers to the studied branches. The table including 
the single branch values (Table 4.8) can be seen below. 

 
 

Table 4.8 - Calibrated efficiency parameters from the RSAM 
 

 Calibrated α 

Agriculture, animal husbandry and fishing 2.54 

Energy and mining products 0.68 

Industrial products 0.47 

Construction 0.72 

Market services 1.44 

Non market services 3.09 

Source: our elaboration on the RSAM for Sardinia (2001) 
 
The “a priori” information regarding the distribution parameter δ was obtained by 
following a quite similar procedure to the one mentioned above for α. 
More specifically, from the RSAM it is possible to determine a calibrated share 
parameter by calculating the ratio between the value of each input and the total 
amount of the inputs.  

                                                 
7 It is important to note that the determined measure refers to the framework underlying the 
construction of the RSAM. Specifically concerning the production side and therefore the structure 
of an I/O Table, it is assumed that the two inputs enter the production process in fixed proportions; 
in this way no substitution degree is allowed for them. The production structure chosen in this 
study refers to a CES production function. This functional form, as stressed in chapter 3 allows for 
different substitution levels. Therefore, if the estimated substitution is different from zero, we can 
plausibly assume that the efficiency parameters will be different from those calibrated from the 
RSAM. This evidence represents another reason for underlining the importance of the estimation 
process and the estimated parameter values within the computation process of a RCGE model.  
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Table 4.9 shows the obtained values for the top-level relationship between the 
regional output and the two inputs, namely added value and intermediate 
consumption. 
 
 
Table 4.9 - Calibrated distribution parameter from the RSAM  
 

 Calibrated δ 

Agriculture, animal husbandry and fishing 0.7028 

Energy and mining products 0.3925 

Industrial products 0.3074 

Construction 0.4190 

Market services 0.5744 

Non Market Services 0.6727 

Source: our elaboration on the RSAM for Sardinia (2001) 

4.3.3 The choice of the support spaces and the B-GME estimation results 
On the basis of the calibrated values for the efficiency and distribution parameters 
a focused and “informative” support was defined.  
Concerning the efficiency parameter α, the lowest bound was fixed at zero as 
required by the economic theory8. The highest bound was chosen by considering 
the obtained calibrated efficiency parameter. Bearing this in mind, our choice was, 
at this stage, to fix an highest bound for all the branches which was wide enough 
to not bind the estimation process, taking also into consideration the peculiarity of 
each of the studied branch and the aggregation criteria9. By doing so, in the 
support space we clearly included the values calibrated from the RSAM.  
Our choice concerning the definition of the support spaces of the distribution 
parameter δ, depended solely on the economic theory. In actual fact, this 
                                                 
8 In this case the support space is symmetrically constructed but not centred on zero, since negative 
values are not admissible values for the economic theory. 
9 For the Agriculture, Animal Husbandry and Fishing the support was fixed at [0; 5.08]; for  
Energy and Mining products at [0;1.36]; for Industrial products at [0; 1.41]; for the Construction 
at [0;1.44]; for the Market Services at [0;2.88]; for the Non Market Services [0;6.18]. The general 
rule proposed could be to fix the highest bound of the efficiency parameter at a value equal to 
twice the calibrated parameter. This rule is considered valid unless the specified support includes 
the value 1 for the efficiency parameter. Recalling that a change in the parameter α changes the 
output in the same proportion for any given set of inputs, it is reasonable to hypothesize that the 
support for each branch includes values both lower and higher than one, to allow different neutral 
efficiency degree for each branch. For this reason we will include in all the supports the value 1 for 
the efficiency parameters 
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parameter represents the share of each input employed in the production process 
and therefore it must range between 0 and 1. The calibrated values, shown in 
Table 4.9, clearly confirm the theory and they will be used to define the prior 
probability distribution (see paragraph 4.4.2). 
We have no prior knowledge either from the RSAM or other studies on the 
specific economic context of Sardinia concerning the substitution parameter ρ. 
Moreover most of the existing studies concerning CGE models, both at regional 
and national level, define the degree of substitution between these two inputs (i.e. 
value added and intermediate consumption) according to a Leontief technology, 
meaning that no level of  substitution is allowed for them. 
However, we can take advantage of the economic theory since it is well-known 
that the admissible values are all equal or greater than -1. In the choice of the 
supports, it has been preferred to define wide supports in order to have less impact 
on the estimates. To be precise, the sensitivity analysis is conducted considering 
four type of support spaces, which are greater than 50 times, 10 times, 5 times and 
2.5 times of the minimal admissible value for ρ10, and therefore it has been 
defined as [-50;50], [-10;10], [-5;5] and [-2.5;2.5] respectively. These supports are 
centred on zero and symmetrically constructed. The choice to include also 
negative values lower than -1, even though the economic theory states that σ 
should be greater than zero, has been done in agreement with the GME theory, 
that suggest to define a symmetric support centred on zero, so that if the data does 
not add information the estimated values converge to zero. It is worth to note that, 
for this parameter, also a value equal to zero takes an important meaning. 
Recalling the already known relation between the ρ and the substitution elasticity 
σ, a value of ρ equal to zero leads to a unitary elasticity of substitution and 
therefore the isoquants of the CES production function take the forms of those of 
the CD production function; this means that there is a unitary elasticity of 
substitution between the two inputs.  
Our specification choice is also confirmed by the results presented by 
Mittelhammer and Cardell (1996) which have argued that for wider support 
spaces, GME results were quite similar to OLS results for moderate to large 
sample sizes and provided some degree of improvement over OLS for small 
samples.  
The chosen support space for ρ might be different across the branches, also 
reflecting the different economic nature of each of them. It is worthwhile to note 
that in the choice of the final models, summarized in Table 4.10, for this 
estimation step, the adopted criteria consist of both considering the expected 
values, the admissible theoretical values and the observed sensitivity of the 
estimates to the support changes.  
The results of this step of the estimation approach are shown in detail for each 
branch, in the Appendix 1. Along with the value of estimated parameters, each 

                                                 
10 In a similar way, Golan et al (2001) decided to choose the support spaces of the unknown 
parameters in their AIDS demand system for Mexico. Based on a literature review on applied 
AIDS demand functions they found that the estimated coefficients on log prices were within the 
interval (-0.2;0.2) and that the intercepts and coefficients on log expenditure were within the 
interval of (-1;1). 
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model includes some diagnostic measures. More specifically, it has been 
determined the NE both for the entire model and for each of the estimated 
parameters.  
The measure for each parameters can be used to evaluate the information in each 
of the variables, since it reflects, as argued by Golan (2008) the relative 
contribution (of explaining the dependent variable) of each one of the independent 
variables. In addition, according to Fraser (2000), values of the NE near to one 
mean that the solution is nearly uniform and that the data agree with the prior11. 
As shown in the tables 4.10, the obtained values of the NE for each model 
validate the support spaces choices.  
To summarize, it is possible to state that for the Energy and Mining products the 
estimated value of the substitution parameter are not sensitive to the support 
specification. In these case the chosen supports was this with the lowest NE for 
this specific parameter. A quite similar logic was followed for the Agriculture, 
Animal Husbandry and Fishing. The estimated values of the substitution 
parameter were robust in magnitude to the change of the supports even if the 
estimated signs changed. In this case, the choices carried out agree with the 
support space which was at the same time the widest and with the lowest NE for 
the substitution parameter. 
For the Industrial product and the Market service branches the estimated 
substitution parameters although they show the correct signs they express an 
estimated magnitude quite sensitive to the support specification. In these cases, 
the choice carried out lean towards those with both wider support space, lower 
associated NE and whose estimated results agree with the economic theory . This 
accounts for our lack of prior knowledge about the parameter values as mentioned 
before, as well as our efforts to let the data speak.  
It is worth mentioning that for the Construction branch a more carefully choice 
was carried out. By following the already mentioned guidelines and the specified 
diagnostic tool the [-10;10] support would be chosen. However, with this support 
the related values of the elasticity of substitution would be a “non plausible” 
value. For this reason it was decided to choose the support [-5;5] whose diagnostic 
measure were almost identical with those of the [-10;10]. In this case it is 
important to emphasize the property of the GME estimation approach since, by 
taking advantage of its principles it makes possible to obtain the estimates also 
with one piece of information only. The sensitivity analysis for the Non Market 
Services branch was carried out until the support [-1;3], which is the chosen 
support, since the estimation process did not “take out” any information about the 
substitution parameter from the data.  
 
 
 
 

                                                 
11 This diagnostic measure, as stressed by Golan et al (1996a) can be also used in the selection of 
the variables in a regression model. That is, a variable is extraneous in a regression model if its 
normalized entropy statistics is greater than 0.99. In this case the variables with a greater value of 
the NE are excluded from the regression model. 
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Table 4.10 – B-GME Estimates for the CES production function 
 

 
 

α  δ  ρ  σ  NE 

Agriculture, animal husbandry and 
fishingA 

2.546 
(0.9999) 

0.502 
(0.9999) 

-0.009 
(0.99996) 1.009 0.9999 

Energy and mining productsB 0.736 
(0.9951) 

0.728 
(0.8638) 

-0.346 
(0.9880) 1.531 0.9490 

Industrial productsC 1.354 
(0.2857) 

0.118 
(0.5707) 

-0.456 
(0.9791) 1.840 0.6118 

ConstructionD 1.039 
(0.8721) 

0.443 
(0.9920) 

-0.228 
(0.9987) 1.295 0.9543 

Market servicesE 1.837 
(0.9519) 

0.521 
(0.9988) 

-0.210 
(0.9989) 1.266 0.9832 

Non market servicesF 2.480 
(0.9755) 

0.611 
(0.9688) 

0.501 
(0.9608) 0.666 0.9683 

The normalized entropy value for each parameter is provided in the parentheses. Parameter supports: 
A: α [0; 2times the value of the calibrated parameter]; δ [0;1] ρ[-10;10]; [-4.27;4.27] for the error  
B: α [0; 2times the value of the calibrated parameter]; δ [0;1] ρ[-2.5;2.5]; [-0.56;0.56] for the error 
C: [0; 2times the value of the calibrated parameter]; δ [0;1] ρ[-2.5;2.5]; [-2.59;2.59] for the error 
D: α [0; 2times the value of the calibrated parameter]; δ [0;1] ρ[-5;5]; [-1;1] for the error 
E: [0; 2times the value of the calibrated parameter]; δ [0;1] ρ[-5;5]; [-1.5;1.5] for the error 
F: [0; 2times the value of the calibrated parameter]; δ [0;1] ρ[-1;3]; [-0.77;0.77] for the error 
Source: our elaboration on the RSAM for Sardinia (2001) 
 
Table 4.10 summarizes the estimated parameters as well as the obtained 
substitution elasticities between value added and intermediate consumption.  
Some interesting comments arise from the results reported in Table 4.10. This 
second estimation step, characterized by adding a little more prior information on 
the unknown parameters, leads to estimates that are of the right signs (which is 
imposed for the efficiency and the share parameter) and whose magnitude 
(restricted between zero and one only for the distribution parameter δ) is in 
keeping with the economic theory. It is worth to note that the support for the α 
was constructed bearing in mind the Leontief fashion which is the “natural” 
underlying assumption of a RSAM. However, the results obtained were not 
considered the final results since different remarks could be underlined.   
 
First of all, the estimated values for the elasticity of substitution confirm for all 
the sectors and explain well the existence of a CES relationship between the two 
factors of production.  
Secondly, concerning the efficiency parameters, the estimated values highlight a 
good technology level for all the production branches (the “state of technology” in 
this case refers to the two input value added and intermediate consumption). 
However some estimates, namely for the Industrial products, Construction and 
Market services branches are relatively shift towards the upper specified bounds 
and relatively far away the “calibrated” values. This evidence could be the “clue” 
of a greater efficiency than those expected by considering only the RSAM 
structure. At the same time it might be necessary to consider a wider support 
space for the efficiency parameter in order to avoid that the estimated values of 
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the other parameters could be bias from a “wrong” specification of the α supports. 
This choice has been carried out also bearing in mind that a wrong specification of 
the supports might influence the values of the other estimated parameters. On this 
issue, Fraser (2000) highlights the need to be aware of the trade-off between 
imposing a priori information on the calculation process and simply letting the 
data speak. However, the same author underlines that this is not an easy task 
especially when estimating non-standard problems for which there is little 
information or knowledge to guide the estimation process. 
The NE values for each parameter give also rise to some interesting 
considerations. For all the branches, the parameter that contributes more to 
explain the regional output (which is the dependent variable in this case) is the 
efficiency parameter α. On this issue, the best contribute is recorded for the 
Industrial products branch, for which the value of the α is equal to 1.354 and the 
associated NE is equal to 0.2857.  
 
The chosen supports for the substitution parameter will directly enter the 
following estimation step, namely the third estimation step represented by the 
GCE estimation. 
This following third estimation step aims to extend and improve the results 
obtained in this second step. In particular, the GCE estimation process will 
consider a wider support for the efficiency parameter and a support for the 
substitution parameter which coincide with the support space which fit better with 
the data in this estimation step.  
The third estimation step is required in order to test again and in a more general 
framework (which is not necessary strictly related to the RSAM structure) the 
relationship between intermediate consumptions and value added. This is done, 
considering the key role recovered by the substitution elasticity in the RCGE 
computation process and in the related economic simulation procedures.  

4.4 The Third Estimation Step: a GCE Estimation  

4.4.1 The optimization problem 

Considering the extremely “limited” amount of information at our disposal and in 
order to improve the previous obtained estimates, the GCE estimator was used in 
order to formally introduce some “a priori” information on the unknown 
parameters in the optimization problem, both in terms of bounds of the economic 
admissible value for each of them, and in terms of their size of magnitude too. On 
this issue, regarding the definition of the support spaces and the prior probability 
distribution, we will take advantage both of the economic principles and the 
results obtained in the GME and B-GME estimation steps.  
In particular, the previously obtained results, namely the results obtained in the 
first estimation step for the efficiency and the distribution parameters and the 
results obtained in the second estimation step for the substitution parameter, 
represent a good starting point for the evaluation of the magnitude of the unknown 
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parameters. Therefore, this information together with the results obtained in the 
previous estimation step where a sensitivity analysis was carried out enabled us to 
define a “more informative” support. 
In this third estimation step, a more informative set of bounds will be used for 
each of the unknown parameters together with “a priori” information which will 
appear explicitly in the objective function in the form of a distribution probability.  
Specifically concerning the support spaces for the three unknown parameters we 
proceeded in the following way.  
 
Concerning the efficiency parameter α, the lowest bound was fixed at zero as 
required by the economic theory12. The highest bound was chosen by considering 
the obtained calibrated efficiency parameter and the results obtained at the end of 
the second stage of the estimation process.  
Bearing this in mind, our choice was to fix the highest bound for all the branches 
equal to a value 10 times greater than the calibrated value. By doing so, in the 
support space we included the values obtained and chosen as the final results in 
the second step as well.  
The choice to expand the support space from the observed values was carried out 
in alignment with other existing papers such as in Golan et al. (2001) and Rezek 
and Campbell (2007) who fixed support spaces which were wide enough to be 
non-binding.  
A similar approach has been carried out by Howitt and Msangi (2006)  who used 
values from a calibrated optimization model to ensure that the supports are 
centred on values that are feasible solution to the data constraints, and consistent 
with prior parameter values13. Moreover, by expanding the support space up to ten 
times the calibrated values we insert the estimation problem in a more general 
RCGE framework and which could mean to have different efficiency degree of 
each branch with respect to those calibrated from the RSAM. 
 
Our choice concerning the definition of the support spaces of the distribution 
parameter δ, depended solely on the economic theory. In actual fact, this 
parameter represents the share of each input over the output and therefore it must 
range between 0 and 1. The calibrated values, shown in Table 4.9 will be used to 
define the prior probability distribution as well. 
Concerning the substitution parameter support spaces, we introduced in the 
estimation process the support space which allows us to “extract” the greatest 
amount of information from the data, with refers to the second estimation step. 

                                                 
12 In this case, the support space is not constructed symmetrically 
13 Howitt and Msangi (2006) stress that this specification of support values differentiates their 
approach with other GME production analysis used in the literature. In fact, the empirical GME 
literature says very little about how a set of feasible and consistent support values are defined for 
several interdependent parameters.  



 88

The chosen supports, which are different among the branches, are constructed 
considering the minimal admitted value for this parameter14.  

4.4.2 The prior probability distribution: a ME estimation 
In this estimation step, it is our intention to use the calibrated information 
introduced in paragraph 4.3.2, in order to obtain a prior probability distribution on 
the “focused” defined support spaces for each branch. 
However, there is a clearly ill-posed problem with the available data since we 
have only one piece of information (i.e. the calibrated parameter value) and we 
want to determine the related probability distribution which is the most likely set 
of relative frequencies which could have been generated in the greatest number of 
ways and  is consistent with “what we know” (Golan et al, 1996a). 
As this observed value was taken from the RSAM, we consider this information 
as a pure moment and specifically, due to the structure of the aggregate RSAM, as 
the first observed moment of the defined random variable whose realizations are 
the specified support points. When choosing the support space, first we 
considered the guidelines coming from the economic theory and the evidence 
resulting from the RSAM. Then, we decided to specify a support space, which 
only included plausible values for the studied parameters.  
In particular, for the α parameter the different specified support spaces had a 
lowest bound equal to zero (the lowest bound was identical for all the branches) 
and a highest bound equal to a value ten times greater than the calibrated 
parameter. Once the support spaces were defined for each branch, we estimated 
the most likely probability distribution that could have generated the observed 
value with the ME estimator. 
In order to find the M-dimensional (with M equal to 5) unknown probability 
distribution (which enables us to obtain the observed value as the expected value 
of the random variable), we used the ME estimator, firstly introduced by Jaynes 
(1957a; 1957b), according to which the entropy is maximized subject to the 
constraints represented by the data and the normalization requirement.  
In the aim of explaining the applied procedure, a short description of the 
optimization problem will be carried out for the ME estimated probability 
distribution concerning the efficiency parameter of the Agriculture, animal 
husbandry and fishing branch.  
From the RSAM, we calibrated the efficiency parameter and we obtained a value 
equal to 2.54, as shown in paragraph 4.3.2. This value represents the sole 
information used and the related optimization problem may lead us to modify the 
distribution of probabilities defined on a space of five points.  
Therefore, we applied the ME estimation method in order to determine the 
probability distribution which generated the observed value. It is worth noting that 
by applying this estimator we will choose the probability distribution which is 
consistent with the data.  
                                                 
14 Considering the relationship between substitution elasticity and ρ, our hypothesis is extremely 
valid since a value of the substitution parameter close to the highest bound leads us to a value of 
substitution elasticity close to zero, which corresponds to a Leontief substitution type. 
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The obtained probability distribution then entered the GCE estimation process as 
“the prior probability distribution”. Clearly, the “prior” expected values of the 
random values, defined for each unknown parameter, give back the calibrated 
value obtained from the RSAM, thanks to this probability distribution. Whenever 
this happens even after the estimation process has been completed it would mean 
that the chosen production technology and the chosen functional form describing 
the production system agree with the RSAM framework. 
Proceeding in this way, the following step, namely the GCE estimation process, is 
aimed at minimizing the entropy distance between the data in the form of p and 
the estimated prior probability distribution in the form of q. 
As stressed by Golan et al. (1996a) this is the underlying principle of the 
probabilistic distance or divergence. According to Good (1963), the optimization 
problem minimizes the cross-entropy between the probabilities that are consistent 
with the information in the data and the prior information q. 
 
Below, Tables 4.11 and 4.12 showing the estimated probability distribution for α 
and δ are reported, respectively.  
 
Table 4.11 - Estimated prior probability distribution for the efficiency parameter 
 
 

Prior probability distribution for α 

Agriculture, animal husbandry and fishing [0.710;0.208;0.061;0.018;0.005] 

Energy and mining products [0.712;0.206;0.060;0.017;0.005] 

Industrial products [0.713;0.207;0.058;0.018;0.005] 

Construction [0.710;0.207;0.060;0.018;0.005] 

Market services [0.711;0.207;0.060;0.017;0.005] 

Non Market services [0.710;0.207;0.060;0.018;0.005] 

Source: our elaboration on the RSAM for Sardinia (2001) 
 
As argued by Fraser (2000) “a priori” information alters the uniform distribution 
and replaces it with another distribution which describes the given parameter 
better.  
In Table 4.11 we can see that the specified distribution for the efficiency 
parameters is an asymmetric distribution that places less probabilistic mass on the 
right tail. For the distribution parameters, whose support bounds are the same for 
all the branches, the specified distribution reflects the prior value of each specific 
branch.  
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Table 4.12 - Estimated prior probability distribution for the distribution parameter 
 

 Prior probability distribution for δ 

Agriculture, animal husbandry and fishing [0.069;0.107;0.166;0.258;0.400] 

Energy and mining products [0.296;0.237;0.191;0.153;0.123] 

Industrial products [0.387;0.256;0.170;0.112;0.074] 

Construction [0.270;0.229;0.195;0.165;0.140] 

Market services [0.145;0.168;0.196;0.227;0.264] 

Non Market services [0.085;0.122;0.176;0.253;0.365] 

Source: our elaboration on the RSAM for Sardinia (2001) 
 
 

4.4.3  The estimated values and the elasticity of substitution 

As already mentioned, this third estimation step was characterized by the 
introduction of “a priori” information both in terms of a “restrictive” set of bounds 
for the unknown parameters and in terms of ME estimated prior probability 
distribution for the efficiency and the distribution parameters. In this way, the 
prior information appears explicitly in the objective function.  
Referring to the substitution parameters ρ it is important to note that although the 
supports introduced come from the previous estimation step, they combine with 
an underlying uniform probability distribution that places equal mass to each part 
of the distribution.  
The results obtained, which can be considered the final results of our estimation 
problem, confirm the validity of our choices both concerning the three-step 
estimation procedure and the functional form selected to describe the production 
relationships.  
In particular, the results of this three-step estimation process (shown in Table 4.13 
below) improved the already “good” results. Figure 4.1 shows the isoquants 
which describe the estimated CES production function for each branch in 
question. 
From an economic point of view, the parameter estimates comply with our  
expectations and appear to be consistent with the Sardinian economic context.  
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Table 4.13 - GCE Estimates for the CES production function 
 

GCE Model α  β  ρ  σ  NE 

Agriculture, animal husbandry 
and fishingA 

2.617 
(0.5274) 

0.704 
(0.8923) 

0.274 
(0.9985) 0.785 0.806 

Energy and mining productsB 2.383 
(0.9704) 

0.552 
(0.9930) 

0.298 
(0.9911) 0.770 0.9849 

Industrial productsC 2.068 
(0.9904) 

0.178 
(0.7132) 

0.189 
(0.8015) 0.840 0.8350 

ConstructionD 1.667 
(0.8079) 

0.397 
(0.9733) 

-0.089 
(0.9998) 1.097 0.9270 

Market ServicesE 2.149 
(0.6507) 

0.574 
(0.9865) 

0.046 
(0.9999) 0.956 0.8790 

Non Market ServicesF 2.287 
(0.4324) 

0.722 
(0.8717) 

0.758 
(0.9909) 0.569 0.765 

A: α [0;10 times the calibrated value]; δ [0;1] ρ[-10;10]; [-4.27;4.27] for the error component 
B: α [0;10 times the calibrated value]; δ [0;1] ρ[-2.5;2.5]; [-0.56;0.56] for the error component 
C: α [0;10 times the calibrated value]; δ [0;1] ρ[-2.5;2.5]; [-2.59;2.59] for the error component 
D: α [0;10 times the calibrated value]; δ [0;1] ρ[-5;5]; [-1;1] for the error component 
E: α [0;10 times the calibrated value]; δ [0;1] ρ[-5;5]; [-1.5;1.5] for the error component 
F: α [0;10 times the calibrated value]; δ [0;1] ρ[-1;3]; [-0.77;0.77] for the error component 
Source: our elaboration on the RSAM for Sardinia (2001) 
 
Concerning the efficiency parameter, the Agricultural, animal husbandry and 
fishing branch appears to be the most efficient branch with an estimated 
coefficient equal to 2.617. However, efficiency parameters higher than one, as 
stressed by Ferrari and Manca (2008) seem to adequately reflect the technological 
structure of the Sardinian production system, characterized by small-medium 
enterprises, with a significant degree of technical flexibility. 
Concerning the relative importance of the two aggregate inputs, namely value 
added and intermediate consumption, there is evidence for almost all sectors of 
the prevalence of value added over intermediate consumption due to the capital-
intensive orientated type of activity of the island. Moreover, the results obtained   
confirm the calibrated measure introduced as “a priori” information concerning 
the distribution parameters.  
Agriculture, Animal Husbandry and Fishing and Non Market Services represent 
the two branches with the highest value of distribution parameters. Thus, to say 
that the value added in these branches make up over seventy per cent of the total 
input; with the two estimated values equal to 0.704 and 0.722, respectively. On 
the other hand, the Industrial product branch represents the branch with the 
lowest value of the distribution parameter, that is to say in this branch there is the 
highest percentage of the intermediate consumption. For this reason, it is 
important to emphasize that this branch includes the Food product, beverage and 
tobacco industries, as stated in Chapter 3. These industries are usually 
characterized by a very high level of intermediate consumption (mostly coming 
from the agricultural activities). In fact, in this case the Food product, beverage 
and tobacco industries show an intermediate consumption coming from the 



 92

Agricultural, animal husbandry and fishing branch which represents over 35 per 
cent of the Sardinian total intermediate consumption. 
 
Figure 4.1 – CES production functions for the six branches 
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Source: our elaboration on the RSAM for Sardinia (2001) 
 
The obtained values for substitution elasticities concerning each branch illustrate 
and confirm the existence of a CES relationship between the two factors of 
production, value added and intermediate consumption15. This relationship is 

                                                 
15 It is important to note that according to the seminal work of Arrow et al. (1961) the Sardinian 
CES function was implemented by considering aggregate quantities, namely value added and 
intermediate consumption, and therefore the elasticities endogenously obtained were aggregate 
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established for every sector, but it has a peculiarity which is important to note for 
the Construction branch whose isoquant appears quite similar to a Cobb-Douglas 
production function. For this branch, a 1 per cent change in the MRTS leads to a 
1.097 per cent change in the input mix in order to keep the output at the same 
level.   
For all the other branches, the substitution elasticities are lower than one. The 
lowest value is reached by the branch of Non Market services with a value equal 
to 0.569. This value being close to the lowest admissible value for the substitution 
elasticity highlights that for the Non Market services there is a low degree of 
substitution between value added and intermediate consumption, close to the 
Leontief functional form. This can be also seen by observing the actual share of 
the value added over the intermediate consumption.  This value of the substitution 
elasticity makes it possible to state that a 1 per cent change in the MTRS leads to 
a 0.569 per cent change in the input mix, with the aim of maintaining the output 
constant. This is the confirmation of a quite high rigidity of the substitution degree 
between value added and intermediate consumption in the Non Market Service 
branch.  

4.5 Some remarks on the proposed three-step estimation approach 

The three-step Entropy estimation approach proposed in this study allows us to 
obtain estimates of the CES unknown parameter production functions for the 
region of Sardinia. The final obtained estimated parameters confirm the sign and 
magnitude required by the economic theory.  
Figure 4.2 shows in detail the main aspects of the proposed three-step estimation 
approach. 
However, several improvements could be introduced concerning both a “better” 
specification of the support spaces for all the unknown parameters and additional 
diagnostic tools. 
At this stage of the research, it is our intention to give an important more general 
to this estimation approach, in the context of RCGE or CGE models. As stressed 
in Chapter 1, the determination of the behavioural parameter values, concerning 
both the production and the demand functions, represents one of the most 
important obstacles for a correct and coherent computation of a CGE model, since 
not all the unknown parameters can be calibrated from the RSAM.  
The proposed three-step approach might be used by RCGE or CGE modellers to 
merge two types of information which i) is taken directly from the RSAM/SAM 
and ii) which could be “extracted” from the RSAM/SAM. In agreement with the 
related economic theory, this could be done in order to reduce the complete 
uncertainty concerning the unknown parameters of the chosen functional form16. 

                                                                                                                                      
measures as well. Miyagiwa and Papageorgiou (2007) provide an interesting study concerning the 
endogenous aggregate elasticity of substitution.  
16 In this way, by taking advantage of the GME/GCE potentiality, it could be possible to obtain the 
value of the unknown parameters, by using the macro-information contained in the RSAM/SAM 
only. 
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Figure 4.2 - Three step entropy approach: main characteristics 
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To be clear, in order to completely specify the CES production function in a 
RCGE model framework, we need to know the values of the efficiency, 
distribution and substitution parameters. On one hand, the α and δ parameters can 
be calibrated from the RSAM, so that the model reproduces the benchmark 
dataset as an equilibrium solution. On the other hand, it is not possible to calibrate 
the value of the substitution parameter ρ from the same matrix. Therefore, we 
would need to obtain this parameter values through an imputation or an “external 
source” estimation procedure which has been the common practice up to now. 
Our idea is to obtain all the unknown parameter values through a simultaneous 
estimation process based on the RSAM information only. In actual fact, the 
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proposed estimation procedure enables us to introduce “what we know” from the 
RSAM (specifically concerning the efficiency and the distribution parameters) 
and at the same time to use this information to reduce the “complete uncertainty” 
which characterizes the substitution parameters.  
The obtained results, although lacking in asymptotic statistics, confirm our efforts 
in translating an “ill-posed” estimation problem into a “well-behaved” problem.   
It is worth noting that neither asymptotic nor finite sample inference on model 
parameters is provided here. As stated by Tonini and Jongeneel (2008), the main 
reason for this lack is the extremely small sample size (in some cases equal to one 
or two observations) which makes it unlikely that the sampling distribution of the 
estimator is similar to the asymptotic distribution. A possible solution, which 
could represent the natural development of this research, would be to use 
bootstrapping techniques to provide estimates of the finite sample distributions of 
parameters.  
In view of this, when discussing the results we focused on evaluating the 
information content of the parameter estimates using the NE measure for both the 
signal and the whole system17. In particular, as already shown the NE measure 
helps us to assess the three different steps of our estimation strategy, by 
determining the change in information due to the change of support spaces. 
Concerning  the production side and particularly the important role played by the 
substitution elasticity in the RCGE context, the proposed approach achieves an 
important result since it allows the modellers to obtain the substitution elasticity 
by using the RSAM information and therefore in a “self-contained” approach. 
Traditionally, as stressed in Chapter 1, this solution has not been adopted up to 
now, due to data limitation and to econometric problems that usually lead to an 
“ill-posed” situation. 

                                                 
17 As underlined by Lansink (1999) it is not uncommon to find high values of the NE.  
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Chapter 5  

GME Approach for the Estimation of the 

Working-Leser Demand Functions  

5.1 Specified Functional Form and Estimation Strategy 

In order to analyze the household consumption trends, coming from the 
Sardinian RSAM, we estimated Engel curves using the functional form proposed 
by Working (1943) and Leser (1963), introduced in a general version by the [3.8] 
and [3.10]. 
It is important to note that the assumption of log-linearity in the relationship 
between budget shares and household expenditure, which underlies this functional 
form, agree with the specific studied context since a RSAM provides  
comprehensive information on variables regarding a particular year.  
Concerning the consumption sphere, the RSAM describes the distribution of total 
household expenditure among the different branches in the specific period for 
which the matrix has been constructed. The benchmark year in the RSAM for 
Sardinia is the year 2001.  
Therefore, it is absolutely plausible to pay no attention to any variations in the 
price level. For this reason, prices are considered constants and the only variables 
that could influence the consumption is the income, usually represented by the 
total expenditure.  
The same evidence was noted by VanDriel, Nadall and Zeelenber (1997) and 
Beneito (2003) who stated that in this type of analysis it is unnecessary to 
introduce price variables in the equation system.  
 
Generally, the main interest in the study of a demand system and furthermore in a 
demand system within a RCGE framework is represented by obtaining 
expenditure elasticity related to the different household groups in question 
(Balcombe et al., 2003; Browne, Ortman and Hendrick, 2007; Castaldo and 
Reilly, 2007).  
In actual fact, consumer expenditure patterns and above all the estimates of 
expenditure elasticity can be a valid indicator of the “responsiveness” of the 
demand and therefore of the structure of the economy examined. 
Bearing these considerations in mind, the main objective of this phase of our 
research was to estimate expenditure elasticity, concerning the demand of the 
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Sardinian households directed towards the branches included in the RSAM, which 
were suitable for the RCGE model equations. 
Once again, we estimated expenditure elasticity in a “self-contained” approach, 
that is to say by using the RSAM information only. To our knowledge there are no 
other existing studies which have used the same approach. 
For the estimation procedure, we took advantage of the GME estimation method 
in order to solve the problems caused by an “ill-posed” situation.  
We estimated a demand equation system, for each of the six household income 
groups and for the branches of the Sardinia RSAM, without assuming any “a 
priori information”. 
The estimation process is based on a demand relationship equation system in 
agreement with the constraints imposed both by the consumer-theory and by the 
GME approach. 
The aggregate RSAM matrix (see Table 3.4) proposed in this research illustrates 
branches, which are used here in order to analyze the distribution of the household 
consumption among different types of producer goods and services.  
The available RSAM information allows us to differentiate estimates for different 
income groups and aggregate branches. As discussed in Chapter 3, the aggregate 
RSAM for Sardinia includes 6 income groups (or categories) of households.  
It is useful to remember that households are classified on the basis of their annual 
income level, as follows:  
 

i) Household income group A: disposable annual income lower than 
9,300 Euro;  

ii) Household income group B: disposable annual income from 9,300 to 
12,400 Euro;  

iii) Household income group C: disposable annual income from 12,400 to 
15,500 Euro; 

iv) Household income group D: disposable annual income from 15,500 to 
24,800 Euro;  

v) Household income group E: disposable annual income from 24,800 to 
31,000 Euro; 

vi) Household income group F: disposable annual income higher than 
31,000 Euro; 

 
The original structure of the RSAM where the production sphere is split into 23 
branches (coming from the I/O table) was used as a basis for the estimation 
process, as already carried out for the applied production analysis. In actual fact, 
the branches shown in the original structure of the RSAM functioned as statistical 
units pertaining to each aggregate branch (see Table 3.1 for further details)1.  
Concerning the purposes of our analysis, the following branches were considered: 
i) Agriculture, Animal Husbandry and Fishing; ii) Energy and mining products; 
iii) Industrial products; iv) Market services; v) Non Market services.  
                                                 
1 For example the branch of Agriculture, animal husbandry and Fishing is composed of the 
following two economic activities i) Agriculture, hunting and forestry and ii) Fishing and related 
services. 
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To be precise, our demand analysis is production branch orientated, according to 
the RSAM economic meaning and the RCGE framework. 
 
A general specification of the Working-Leser equation system, for the problem in 
question, takes the form of a set of budget share equations, specified as:  
 

ln( )
ji ji ji j jiw Xα β ε= + +     [5.1] 

 
where wji is the share of household j and branch i which is obtained as the ratio of 
the total expenditure on a particular branch i of the household group j to the total 
expenditure of the household group j analyzed. Xj indicates the total expenditure 
of the specific jth household group studied.  
The αji and βji are unknown parameters corresponding to the jth household group 
and the ith branch, while εji is the error term that captures the unknown variation in 
the ith share for the jth household and for which standard econometric assumptions 
were made. 
The index j will range from 1 to 6 while the index i from 1 to 5, reflecting the 
different household groups and branches, respectively.  
 
Without loss of generality, it is possible to split the general expression which 
identifies the Working Leser demand system for the jth household group. 
Obviously, the specified model, will be repeated for each of the six income 
groups.  
The model for our particular purposes was composed of 5 equations, each one 
describing the ith branch:  
  

1 1 1 1ln( )j j j j jw Xα β ε= + +     [5.2] 

2 2 2 2ln( )j j j j jw Xα β ε= + +     [5.3] 

3 3 3 3ln( )j j j j jw Xα β ε= + +     [5.4] 

4 4 4 4ln( )j j j j jw Xα β ε= + +     [5.5] 

5 5 5 5ln( )j j j j jw Xα β ε= + +     [5.6] 
 
The model is also subject to the restriction that the sum of the shares must be 
equal to one, described as: 

1;ji
i

w =∑      [5.7] 

 
Moreover, the economic theory requires the following adding-up constraints, such 
that:  

1;   ji
i
α =∑      [5.8] 
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0;ji
i
β =∑      [5.9] 

 
Clearly, the level of the expenditure elasticity in the Working-Leser functional 
form depends on the sign and magnitude of the estimated β coefficients, ceteris 
paribus. On this issue, the implemented model assumes that the weighted sum of 
elasticity for each group of households is equal to 1, as proved by Skorodova 
(1999) and Gradzewicz, Griffin and Zolkiewski (2006)  

5.2 The GME Re-parameterization 

In order to estimate the system of demand equations introduced by the equations 
from [5.2] to [5.5], we used the GME approach.  
It is possible to state that the computational problem of this estimation process 
appears to be “complementary” to the one we had to deal with in the production 
context.  
On one hand, it was necessary to deal with an economic problem where any “a 
priori” information on the parameter values was available from the RSAM. While 
it was not necessary to restrict the support bounds on particular admissible values, 
namely greater or lower than zero, since the economic theory states that both 
positive and negative values are possible for the two unknown Working-Leser 
parameters.  
Concerning the magnitude of the parameters to be estimated, there are not to our 
knowledge, other existing studies which tried to estimate a complete demand 
system establishing the estimation process on the RSAM data only and within a 
RCGE context.  
On the other hand, the consumer theory requires additional specific constraints 
such as the adding-up requirements over the unknown parameters, which must be 
verified for the entire demand system.  
Having constructed the equation system and introduced the consumer-theory 
adding up constraints, the GME re-parameterization must be carried out.  
It is worth noting that the estimation process was carried out in an extremely 
limited information approach. In spite of this, the GME approach properties allow 
us to obtain statistical estimates of the expenditure elasticity which agree with the 
approach proposed in this research and the economic context in question. 
As stressed in Chapter 2, the GME objective maximizes the joint entropy of the 
parameters and the error terms. In order to write these two combined entropy 
measures which represent our “all-in-one” objective function it is necessary to 
express all the unknown coefficients and the error terms described in the general 
expression [5.1] in terms of proper probabilities which are defined over some 
specified support spaces.  
For example, to transform the coefficient αji, we started by choosing a support 

space which is a set of discrete points ( )1 2, ,...,ji ji ji jiSa a a ′=a for j=1,2,…J, and 
i=1,2,…I, where S≥2 identifies the number of support points which are uniformly 
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spaced out and which span the possible range of the unknown coefficients 
represented by the interval 1[ , ]ji jiSa a .  
Since we have no knowledge regarding the coefficients from the economic theory, 
we specified the supports to be symmetric around zero with “large” negative and 
positive bounds. This choice was made in agreement with the suggestion brought 
forward by Golan et al. (1996a), Golan (2008) and many existing studies such as 
Fraser (2000), Shen and Perloff (2001) and Nganou (2004).  
The number of support points of the support spaces for each αji was fixed at S=5. 

Subsequently a vector of unknown weights ( )1 2,, ...,ji ji ji jiSp p p ′=p  where S=5 

and such that 
1

1
S

jis
s

p
=

=∑  was introduced. By proceeding in this way, each 

unknown αji  was re-written as jis jis ji
s

a p α=∑  for all j and i.  

 
Similarly, the unknown parameter βji was re-parameterized using the same 

approach and therefore defining a set of discrete points ( )1 2, ,...,ji ji jiMb b b ′=jib and 

a vector of unknown weights ( )1 2,, ...,ji ji jiMc c c ′=jic for each βji, with M equal to 5 
representing the number of points defined on the support space. In this 
way, ji jim jim

m
c bβ =∑ for all j and i. 

 
The error term εji was treated as unknown and re-parameterized following a 
similar procedure to the one introduced for the unknown parameters, so that 

1

Z

ji jiz jiz
z

v rε
=

=∑ . The transformation is done by specifying a vector of Z≥2 discrete 

points ( )1 2, ,...,ji ji jiZv v v ′=jiv distributed uniformly around zero and an associated 

vector of proper unknown weights ( )1 2, ,...,ji ji jiZr r r ′=jir where 
1

1
Z

jiz
z

r
=

=∑ . 

With GME as stressed by Golan et al. (2001) there is no need to assume any 
subjective information on the distribution of the probabilities .  
According to the GME theory, each support space and the associated probability 
distribution can be of different dimension.  
In this study we used the same specification for all the α and the β parameters and 
more specifically for all the α and the β parameters pertaining to each branch and 
for all the household income groups.  
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5.3 The Optimization Problem and the Choice of the Support 
Spaces 

The re-parameterized coefficients and error terms allow us to re-write (for the jth 
household group) the Working-Leser function described by the [5.1] as:  
 

ln( )
ji jis jis jim jim j jiz ji z

s m z
w a p b c X v r= + +∑ ∑ ∑  for i=1,2,...  [5.10] 

 
The objective function of the related optimization problem is given by:  
 

( ) ( ) ( )
1 1 1 1 1 1

( , , ) ln( ) ln( ) ln( )

                ln ln ln
I S I M I Z

jis jis jim jim jiz jiz
i s i m i z

H

p p b b r r
= = = = = =

′ ′ ′= − − − =

= − − −∑∑ ∑∑ ∑∑

p b w p p b b r r
 [5.11] 

 
subject to the data constraint represented (for each i) by the general expression 
[5.10] and the GME adding up conditions, such that: 
 

1jis
s

p =∑  for i=1,…,5;    [5.12] 

1jim
m

b =∑  for i=1,…,5 ;    [5.13] 

1jiz
z

r =∑  for i=1,…,5;    [5.14] 

 
Precisely, the GME estimator maximizes the [5.11] subject to the data constraints, 
represented by the general equation [5.10], the adding up GME requirements as 
expressed by [5.12], [5.13] and [5.14], the restriction for the shares to add to one 
and the consumer-theory restrictions described by [5.7], [5.8] and [5.9] 
respectively. 
The solution to this maximization problem is unique. Forming the Lagrangean and 
solving for the first order conditions yields the optimal solution from which the 
following point estimates for our demand system are obtained, for each i: 
 

1

ˆ ;
S

ji jis jis
s

a pα
=

=∑  for i=1,…,5    [5.15] 

1

ˆ ;
M

jimji jim
m

c bβ
=

=∑  for i=1,…,5    [5.16] 

1

ˆ ;
Z

ji jiz jiz
z

v rε
=

=∑  for i=1,…,5     [5.17] 

 



 103

As already mentioned, the GME estimator uses all the data points and does not 
require restrictive moment or distributional error assumptions. Therefore, the 
GME is robust for a general class of error distributions unlike the ML estimator, 
as stressed by Golan et al. (2001). In fact, the GME estimates as stated by these 
authors may be used when the sample is small, as in our estimation situation.  
Without assuming any “external” information on the parameters, the intuition 
behind the GME approach, as stressed by Shen and Perloff (2001) is that the 
frequency that maximizes entropy is a reasonable estimate of the true distribution 
when we lack other information. 
 
We will obtain the expenditure elasticities from the estimated parameters as 
described by [5.16], through the following expression: 
 

( ) 1
ˆ1ˆ 1 1

M

jimjim
ji m

ji ji ji
ji ji ji

c b
w

w w w
β

η β == + = + = +
∑

; for i=1,…,5  [5.18] 

 
Since the values of the estimated α and β parameters have not a direct economic 
meaning, we will give more emphasis to the elasticity that are obtained from the 
parameters in our explanation of the results.  
 
Concerning the support spaces, since no “a priori” information on the parameter 
values was available, the support vectors for both the α and β parameters must be 
wide enough to include all the possible outcomes, as already proved by Nganou 
(2004). Moreover, by doing so the impact of the support space on the parameters 
is reduced while that of the data is increased, as stressed by Golan et al. (1996a).  
The specific support chosen for each household income group is the result of a 
sensitivity analysis that we performed by making a moderately large change in the 
support spaces while maintaining the same center of the support.  
We also carried out this procedure in order to verify the sensitivity of the 
estimated coefficients on the support changes. 
The change of the support space has a negligible effect on the estimated 
coefficients, which appeared to be extremely robust both in terms of sign and 
magnitude.  
This stability also had a stabilizing effect on the expenditure elasticities, which 
were obtained from the expression [5.18]. 
In order to avoid repetition and as an example Table 5.1 shows the change in the 
value of the expenditure elasticity to the change of the support space2 concerning 
the five different branches for the household group with the highest level of 
annual income. 
When choosing the final models from which we obtained the expenditure 
elasticity values for the entire household system, we tended towards those with 
                                                 
2 The estimated parameters appear to be extremely robust in terms of signs; the magnitude is 
extremely stable from the run 1 to the run 4 and relatively changes in the run 5 when a different 
support space between the α and the β are specified. 
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the lowest associated normalized entropy ratio, since by observing the results of 
the sensitivity test we observed that the estimates are highly robust to the support 
change. Therefore, among all the supports, we finally chose the one that 
“extracted” most of the information and suited the data better. 
 
 
 
Table 5.1 - Expenditure elasticity for Household group F 
 
 
 GME 1 GME 2 GME 3 GME 4 GME 5 

Agriculture, animal husbandry 
and fishing 1.5268 1.5268 1.5267 1.5240 1.1970 

Energy and Mining products 2.7768 2.7768 2.7765 2.7680 1.6645 

Industrial products 0.9570 0.9570 0.9570 0.9571 0.9839 

Market services 1.0055 1.0055 1.0055 1.0055 1.0020 

Non Market services 0.8963 0.8964 0.8964 0.8972 0.9613 

Normalized Entropy Ratio 0.99999 0.99999 0.99987 0.98743 0.99986 

Parameter supports: 
GME 1 [-100;100] for α and β; [-1;1]for the error terms; 
GME 2 [-50;50] for α and β; [-1;1]for the error terms; 
GME 3 [-10;10] for α and β; [-1;1]for the error terms; 
GME 4 [-1;1] for α and β; [-1;1]for the error terms 
GME 5 [-10;10] for the α and [-1;1]; [-1;1]for the error terms  
Source: our elaboration on the RSAM for Sardinia (2001) 
 
The support space that added most information to the estimation process is 
represented by the support [-1;1] for the α and β parameters. These values 
appeared to be highly plausible in this specific case, since we dealt with the 
logarithmic transformation of the expenditure and the share of the total 
expenditure.  
Therefore, for all the branches the chosen support was [-1;1] for both the α and β 
parameters, 3 while the support for the error terms was naturally bounded between 
-1 and 1 because all the dependent variables were relative shares lying between 0 
and 1.   
The relatively large support spaces specified for the re-parameterized parameters 
implied the absence of strong prior information from the supports on the 
parameters. The parameter estimates and their change to the change of support 
spaces are reported in Appendix 2, while the more interesting values of the 
expenditure elasticity will be discussed in the next paragraph. 

                                                 
3 Golan et al. (2001) stressed that in a variety of AIDS which represent the natural “extension” of 
the Working Leser models both the estimated intercept and the estimated coefficients on log 
expenditure were within the interval of (-1;1).  
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5.4 GME Estimation Results: the Obtained Expenditure Elasticity 

The Working-Leser model does not give a direct interpretation of the expenditure 
elasticity, since it is specified in the log-linear form. Therefore, the relevant 
elasticity cannot be directly accessed in the parameter estimates. For this reason, it 
is necessary to introduce the expression [5.18].  
De Mello, Pack and Sinclair (2002) underlined the same evidence for the AIDS, 
which represents the natural extension of the Working Leser model. 
From the results obtained in the previous steps, we obtained the final expenditure 
elasticity. These measures, as stressed by several authors such as Akbay Boz and 
Chern (2007) are used to approximate corresponding unconditional income 
elasticities.  
Table 5.2 shows our estimated expenditure elasticity, which refer to the five 
aggregate branches.  
It is important to emphasize that the computed expenditure elasticity reflect the 
elasticity of demand towards “production branches” and are not directed towards 
“consumer goods” as they usually are. This evidence generated deep reflection 
concerning their economic meaning and their interpretation.  
 
 
Table 5.2 - Expenditure elasticity for the six household groups of the Sardinian RSAM  
 
 
 

Household 
A 

Household 
B 

Household 
C 

Household 
D 

Household 
E 

Household 
F 

Agriculture, 
animal husbandry 
and fishing 

1.3289 1.3569 1.4412 1.4133 1.5859 1.5240 

Energy and 
Mining products 3.5535 2.6142 2.9765 3.0417 2.4443 2.7680 

Industrial 
products 0.9614 0.9627 0.9592 0.9633 0.9523 0.9571 

Market services 1.0035 1.0024 1.0047 1.0044 1.0066 1.0055 

Non Market 
services 0.9280 0.9590 0.9166 0.9195 0.9075 0.8972 

GME parameter supports: [-1;1] for α and β; [-1;1]for the error terms:  
Households are divided as follows: Household income group A: disposable annual income lower than 9,300 Euro; 
Household income group B: disposable annual income from 9300 to 12400 Euro; iii)Household income group C: 
disposable annual income from 12,400 to 15,500 Euro; Household income group D: disposable annual income from 15,500 
to 24,800 Euro; Household income group E: disposable annual income from 24,800 to 31,000 Euro; Household income 
group F: disposable annual income higher than 31,000 Euro; 
Source: our elaboration on the RSAM for Sardinia (2001) 
 
As shown in Table 5.2 the models provide information on the tendency of 
households at different income levels to adjust their demand over the branches in 
relation to their income.  
Expenditure elasticity for the Agriculture, Animal Husbandry and Fishing branch 
are quite high suggesting that the demand for this branch is expenditure elastic to 
the change in consumer expenditure. Moreover, the responsiveness to changes in 
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consumer expenditure grows with the level of income thus suggesting the 
incidence of some “luxury” products inside the branch, which would appear with 
the rise in income.  
The products of the Energy and Mining branch seem to be expenditure elastic to 
the change of the total expenditure too. For example, concerning the household 
group C, a 1 per cent change in the total expenditure generates a 2.9765 per cent 
change in the expenditure towards this branch.  
A lower degree of expenditure elasticity, close to one for all the branches, can be 
seen for the Market services which include economic activities such as Transport 
and communication, Banking and financial services.  
The values of the expenditure elasticity suggest that Market services represent 
“necessary” services for all the households. Within this branch, the lowest 
expenditure elasticity is recorded for the household group with an annual 
disposable income level between 24,800 and 31,000 Euro. For this specific group 
a 1 per cent increase in total expenditure would increase the demand for Industrial 
products by 0.9523 per cent. 
The tendency of the Non Market service elasticity is much more interesting, 
because the elasticity in all the studied income levels, which are less than one, 
tends to decrease with the rise in income. This suggests that for households with a 
higher income level, the percent change in the quantity of Non Market services 
requested is less than the percent change in the consumer expenditure, probably 
because they “substitute” some of these services with other services in the Market 
service branch.    
It is important to note that the estimated magnitude of the expenditure elasticity 
for Industrial products agrees with our expectations due to the fact that the Food, 
tobacco and beverage industries are included in this branch and they have an 
important incidence on the expenditure share of the Industrial product branch. The 
value of expenditure elasticity lower than unity proves that these products are 
“necessary” goods for all the household income groups in question.  
For example, a 1 per cent increase in the total Industrial Product expenditure for 
Household group F would increase the demand towards the Industrial product 
branch by 0.9571 per cent.  
It is worth noting that all these estimates, imply that as the household’s total 
expenditure increases (resulting from an income increase), the demand towards 
the analyzed branches will also increase proportionally, more than proportionally 
or less than proportionally. 
 
The obtained results represent a first attempt to estimate the expenditure elasticity 
in a RSAM context and within a RCGE model framework without considering 
any external information. 
The estimates were obtained by using the GME estimation tool. Clearly, a 
different aggregation of the branches more focused on different types of 
“consumer goods” could be more attractive in a classical demand analysis 
framework. However, our research focuses on the aim of estimating behavioural 
parameters in a situation characterized by lack of data, which is a regional context.  
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The chief contribution of this research would be to show that it is also possible to 
estimate expenditure elasticities from a set of budget shares in a context where 
price information is assumed to be constant and where, statistically speaking, the 
lack of data usually leads to an “ill-posed” situation. 
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Concluding Remarks 

The main objective of this research was to develop an estimation strategy 
which allows us to obtain production and demand function parameter estimates in 
a RCGE context where the available dataset is represented by the information 
contained in a RSAM only.  
Without loss of generality, this estimation problem can be described as an “ill-
posed” situation, since a RSAM does not provide sufficient information to enable 
us to achieve a consistent estimation process and consequently valid and 
significant estimates. In actual fact, working with a RSAM, or with a SAM at a 
national level, means to deal with a situation characterized by insufficient (even 
negative) degrees of freedom to be analyzed by using a conventional econometric 
approach. 
Ill-posed problems are likely to occur in applied economics and in particular in 
the case of RCGE and CGE models where the benchmark dataset is represented 
by the SAM at regional or national level, respectively. 
The role and the importance of CGE models are generally recognized, since they 
represent an efficient tool which is able to combine the theoretical general 
equilibrium with economic data, in order to provide statistical and economic 
institutions and governments with useful simulation instruments for policy 
evaluation.  
Despite the widespread use of RCGE and CGE models, - due to the fact that they 
have been considered as an ideal bridge between economic theory and applied 
policy research (Bergman and Henrekson, 2003) – they have often been doubted 
for the weak econometric foundations upon which they are typically based 
(Jorgenson 1984; Shoven and Whalley 1992; McKitrick 1998). In particular, they 
are criticized for the selection of the parameters describing the behaviour of 
economic agents and consequently their validity, with particular regard to those 
related to production and demand spheres. 
The implementation of a RCGE or CGE model requires different and 
interdependent phases whose results join together to achieve the main aims for 
which the model is constructed, usually represented by policy simulations, as 
above mentioned.  
The phase that has frequently been questioned concerns those parameters whose 
values cannot be “calibrated” from the SAM, such as elasticity in both production 
and demand contexts, but for which additional external information is required. 
Weak points found in literature concerning the two main approaches (namely 
imputation procedure and econometric approach) suggested to overcome the 
difficulties related to this phase, were the main motivation of our research and 
stimulated us to introduce a “self-contained” RSAM-based estimation approach, 
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in order to obtain the behavioural parameter values characterizing the production 
and demand spheres of the Sardinian RCGE model. 
Estimates were carried out by using the RSAM for the Italian region Sardinia for 
the year 2001.  
Firstly, starting from the 23-branch RSAM version we obtained an aggregate 
consistent version of the RSAM production system detailed into 6 branches.  
Secondly, we chose the functional forms describing producer and household 
behaviours by studying the parameterizations which better fit the available data 
and agreed with the analyzed framework.  
For the production sphere, according to the RCGE literature, a two-stage 
production process was modelled by using the CES functional form for both the 
specified levels, where the top-level refers to the value added and intermediate 
consumption which combine to obtain regional output, while the second level 
refers to capital and labour incomes which join together to obtain value added. 
The selected model gave more flexibility to the specified relationships since the 
CES function includes the Leontief (in an imputation context generally used to 
model the top-level relationships) and the CD specifications (in an imputation 
context generally used to model the second level relationships) as special cases.  
In order to analyze the demand of Sardinian households for consumption we 
specified a system of equations based on the Working Leser functional form, 
according to the economic meaning of the RSAM which provides comprehensive 
information on variables regarding a particular year and therefore does not 
consider any variations in the price-level. By using this specification, we related 
the share of expenditure for consumption (pertaining to a certain branch) to the 
logarithm of the total household expenditure.  
 
The proposed estimation approach, which was differently structured for 
production and demand functions, enabled us to obtain the values of the 
parameters for the CES production functions and the values of the elasticity 
related to the Working-Leser system – describing the demand responsiveness of 
Sardinian households regarding consumption – in a completely RSAM-based 
approach. Since no external information or already existing parameter values were 
used, the obtained values can be incorporated into the computation process of the 
RCGE model for Sardinia without any risk of biasing the results of policy 
simulations. 
For the production side, the estimation strategy was constructed by using the 
GME and GCE estimators, since for all the analyzed branches we had negative or 
very limited degrees of freedom. 
The most interesting aspect of our estimation procedure was that it enabled us to 
merge the phases of calibration and estimation. In actual fact, we simultaneously 
obtained estimates of the efficiency, distribution and substitution parameters of 
the CES function by using a procedure based on three steps, each of them 
characterized by a different degree of prior information.   
In the first step, we did not assume any “a priori” information concerning the 
unknown parameters of the CES function. The obtained estimates confirmed the 
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existence of a CES relationship between the value added and the intermediate 
consumption for the branches in question.  
However, we introduced a second estimation step in order to improve the 
estimates and by taking into account the information calibrated from the RSAM 
and from the production theory. This step, which we called a “B-GME”, 
introduced the values for the efficiency and the distribution parameters obtained 
as results of the calibration phase into the estimation process. In agreement with 
the GME framework, we specified this information in terms of support bounds. 
The interesting estimated results were further improved by adding an “a priori” 
probability distribution to the parameter support (obtained by using the classical 
ME estimator and whose expected value was the calibrated parameter). This final 
step, characterized by the GCE method, enabled us to find estimates for all 
parameters which completely agree with the economic theory requirements and 
the Sardinian context.  
Concerning the estimated values of the substitution parameters, from which we 
obtained the values of the elasticity of substitution - which specify the degree of 
substitutability between the two inputs, value added and intermediate 
consumption, considered in the production process – it is worth noting that they 
gave us the opportunity of highlighting some peculiarities of the Sardinian 
economic context. In particular, all the branches, except for the Construction 
branch, have substitution elasticity values lower than one. The branch of 
Construction has an elasticity of substitution close to one, which characterizes the 
CD production function. The branch which reaches the lowest value of elasticity 
and therefore a greater rigidity in value added/intermediate consumption 
substitution is the branch of the Non Market Services.  
Referring to the elasticity of substitution between capital and labour incomes it is 
worth emphasizing that we obtained substitution elasticity lower than unity, which 
confirm that all the branches agree with the specified CES relationship. This 
relationship has a specificity for Energy and Mining product and Non Market 
service branches, whose elasticity values highlight a greater rigidity in 
capital/labour substitution than the other studied branches. 
Concerning demand, an interesting aspect of the available RSAM was the 
subdivision of the households into six groups based on their annual disposable 
income level. This subdivision enabled us to estimate different Working Leser 
demand systems and therefore to obtain different interesting information for each 
household group.  
An innovative issue of the demand system implemented was the analysis of the 
expenditure of the households for production branches. The results obtained in 
term of expenditure elasticity illustrate the different degrees of responsiveness of 
the household demand for consumption, on the basis of their annual disposable 
income level.  
In particular, it should be noted that the products coming from the Agriculture, 
animal husbandry and fishing branch together with those produced by the Energy 
and mining branch recorded high expenditure elasticity values underlining that the 
demand is expenditure elastic.  
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On the other hand, products from the Industry branch and services pertaining to 
the Non Market service branch appear to be “necessary goods”; moreover, the 
responsiveness of the demand for these products decreases with the increase in 
income.   
 
The obtained results gratify our efforts in transforming an “ill-posed” estimation 
problem into a “well-behaved” problem. Moreover, the proposed estimation 
strategies allowed us to obtain estimated parameter values which agree with the 
economic context in question and above all reflect the level of aggregation of the 
benchmark dataset.  
To sum up, the proposed estimation procedures demonstrate that it is possible to 
completely parameterize the production and demand spheres of a RCGE model 
without using any external information.  
Specifically concerning the production context, the obtained estimates are the 
results of a three-step procedure which is based on the inter-connection between 
the phases of calibration and estimation.  
 
However, concerning the proposed strategy several plausible improvements can 
be made.  
Firstly, some further diagnostic tools and inference procedures to assess the 
validity of the obtained estimates could be carried out. For example, bootstrapping 
techniques could be use to obtain confidence intervals for the parameter estimates.  
Secondly, an interesting point to be developed and improved may concern the 
estimation process for the production side. In this study we performed estimates 
for the Sardinian production system separately for the top and the second level 
relationships. It might be interesting to carry out the estimation processes 
simultaneously by introducing the GME Instrumental Variable (IV) method, thus 
increasing the powerful of the estimates.  
Furthermore, the performance of the three-step estimation approach might be 
analyzed for the demand side as well, if “ex-ante” consistent information was 
available or could be “extracted” from the RSAM.  
In addition, a further development on this issue may concern a more 
comprehensive definition of the parameter support spaces which could be 
combined with the sensitivity analysis carried out by following the three-step 
estimation procedure proposed. 
Finally, it would be interesting to extend the analysis to the sphere of commerce 
and to the other transactions of the economic agents. 
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Appendix 1 

Table A1.1 - Sensitivity Analysis of B-GME estimates for Agriculture, Animal Husbandry and 
Fishing 

 
 B-GME 1 B-GME 2 B-GME 3 B-GME 4 

α  2.546 
(0.9999) 

2.546 
(0.9999) 

2.546 
(0.9999) 

2.549 
(0.9999) 

δ  0.501 
(0.9999) 

0.502 
(0.9999) 

0.502 
(0.9999) 

0.502 
(0.9999) 

ρ  -0.009 
(1.000) 

-0.009 
(0.99996) 

0.009 
(0.9999) 

0.008 
(0.9999) 

Entropy value 7.024 7.024 7.024 7.024 

NE 0.9999 0.9999 0.9999 0.9999 

*The normalized entropy value for each parameter is provided in the parentheses.  
Parameter supports: 
α:[0; 2times the value of the calibrated parameter] from B-.GME1 to B-GME4;  
δ[0;1] from B-GME1 to B-GME4; 
ρ: GME1 [-50;50]; GME2:  [-10;10]; GME3:  [-5;5] GME4:  [-2.5;2.5]; for the error term: [-4.27;4.27]; 
Source: our elaboration on the RSAM for Sardinia (2001) 
 
 
Table A1.2 - Sensitivity Analysis of B-GME estimates for Energy and Mining products 

 
 B-GME 1 B-GME 2 B-GME 3 B-GME4 

α  0.739 
(0.9945) 

0.739 
(0.9946) 

0.738 
(0.9947) 

0.736 
(0.9951) 

δ  0.728 
(0.8648) 

0.728 
(0.8648) 

0.728 
(0.8646) 

0.728 
(0.8638) 

ρ  -0.347 
(0.9999) 

-0.346 
(0.9992) 

-0.347 
(0.9970) 

-0.346 
(0.9880) 

Entropy value 5.683 5.681 5.678 5.664 

NE 0.9531 0.9528 0.9521 0.9490 

*The normalized entropy value for each parameter is provided in the parentheses.  
Parameter supports: 
α:[0; 2times the value of the calibrated parameter] from B-.GME1 to B-GME4;  
δ[0;1] from B-GME1 to B-GME4; 
ρ: GME1 [-50;50]; GME2:  [-10;10]; GME3:  [-5;5] GME4:  [-2.5;2.5]; for the error term: [-0.56;0.56]; 
Source: our elaboration on the RSAM for Sardinia (2001) 
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Table A1.3 - Sensitivity Analysis of B-GME estimates for Industrial Products 

 
 B-GME 1 B-GME 2 B-GME3 B GME 4 

α  1.318 
(0.6400) 

1.356 
(0.4506) 

1.359 
(0.2703) 

1.354 
(0.2857) 

δ  0.420 
(0.9840) 

0.252 
(0.8389) 

0.162 
(0.6794) 

0.118 
(0.5707) 

ρ  -15.568 
(0.9384) 

-4.173 
(0.8873) 

-1.620 
(0.9332) 

-0.456 
(0.9791) 

Entropy value 11.669 11.160 10.945 10.851 

NE 0.7733 0.6687 0.6276 0.6118 

The normalized entropy value for each parameter is provided in the parentheses.  
Parameter supports: 
α:[0; 2times the value of the calibrated parameter] from B-.GME1 to B-GME4;  
δ[0;1] from B-GME1 to B-GME4; 
ρ: GME1 [-50;50]; GME2:  [-10;10]; GME3:  [-5;5] GME4:  [-2.5;2.5]; for the error term: [-2.59;2.59]; 
Source: our elaboration on the RSAM for Sardinia (2001) 
 
 
 
 
 
 
 
Table A1.4 - Sensitivity Analysis of B-GME estimates for Construction 

 
 B-GME 1 B-GME 2 B-GME 3 B-GME 4 

α  1.014 
(0.8921) 

1.036 
(0.8744) 

1.039 
(0.8721) 

1.039 
(0.8716) 

δ  0.470 
(0.9978) 

0.445 
(0.9925) 

0.443 
(0.9920) 

0.443 
(0.9919) 

ρ  -8.840 
(0.9804) 

-0.878 
(0.9952) 

-0.228 
(0.9987) 

-0.0575 
(0.9997) 

Entropy value 5.346 5.273 5.267 5.266 

NE 0.9567 0.9541 0.9543 0.9544 

The normalized entropy value for each parameter is provided in the parentheses.  
Parameter supports: 
α:[0; 2times the value of the calibrated parameter] from B-.GME1 to B-GME4;  
δ[0;1] from B-GME1 to B-GME4; 
ρ: GME1 [-50;50]; GME2:  [-10;10]; GME3:  [-5;5] GME4:  [-2.5;2.5]; for the error term: [-1;1]; 
Source: our elaboration on the RSAM for Sardinia (2001) 
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Table A1.5 - Sensitivity Analysis of B-GME estimates for Market Services 

 
 B-GME 1 B-GME 2 B-GME 3 B-GME 4 

α  1.766 
(0.9678) 

1.827 
(0.9543) 

1.837 
(0.9519) 

1.844 
(0.9502) 

δ  0.504 
(0.9999) 

0.519 
(0.9991) 

0.521 
(0.9988) 

0.523 
(0.9986) 

ρ  -5.231 
(0.9932) 

-0.761 
(0.9964) 

-0.210 
(0.9989) 

0.041 
(0.9998) 

Entropy value 10.190 10.159 10.154 10.150 

NE 0.9996 0.9833 0.9832 0.9830 

The normalized entropy value for each parameter is provided in the parentheses.  
Parameter supports: 
α:[0; 2times the value of the calibrated parameter] from B-.GME1 to B-GME4;  
δ[0;1] from B-GME1 to B-GME4; 
ρ: GME1 [-50;50]; GME2:  [-10;10]; GME3:  [-5;5] GME4:  [-2.5;2.5]; for the error term: [-1.5;1.5]; 
Source: our elaboration on the RSAM for Sardinia (2001) 
 
 
 
 
 
 
 
Table A1.6 Sensitivity Analysis of B-GME estimates for Non Market Services 

 
 

B-GME 
1 

B-GME 
2 

B-GME 
3 

B-GME 
4 

B-GME 
5 

α  3.146 
(0.9998) 

3.146 
(0.9998) 

3.146 
(0.9998) 

3.146 
(0.9998) 

2.480 
(0.9755) 

δ  0.572 
(0.9869) 

0.572 
(0.9869) 

0.572 
(0.9869) 

0.572 
(0.9869) 

0.611 
(0.9688) 

ρ  0.0002 
(1.000) 

0.0002 
(1.000) 

0.0002 
(1.000) 

0.0002 
(1.000) 

0.501 
(0.9608) 

Entropy value 9.156 9.156 9.156 9.156 8.922 

Normalized Entropy Ratio 0.9956 0.9956 0.9956 0.9956 0.9683 

The normalized entropy value for each parameter is provided in the parentheses.  
Parameter supports: 
α:[0; 2times the value of the calibrated parameter] from B-.GME1 to B-GME5; 
 δ[0;1] from B-GME1 to B-GME5; 
ρ: GME1 [-50;50]; GME2:  [-10;10]; GME3:  [-5;5] GME4:  [-2.5;2.5]; GME5: [-1;3] for the error term: [-0.77;0.77]; 
Source: our elaboration on the RSAM for Sardinia (2001) 
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Sardinia production system: production function described by the expression [3.7] 
 
Results of the three-step entropy approach: 
 
Table A1.7 - GCE estimates for CES production function (third estimation step) 

GCE Model α  β  ρ  σ  

Agriculture, animal husbandry 
and fishingA 

1.682 
(0.5640) 

0.490 
(0.9997) 

0.0095 
(0.9990) 0.990 

Energy and mining productsB 1.839 
(0.8324) 

0.395 
(0.9724) 

0.196 
(0.9962) 0.836 

Industrial productsC 1.766 
(0.6320) 

0.523 
(0.9986) 

0.034 
(0.9983) 0.968 

ConstructionD 1.732 
(0.6731) 

0.524 
(0.9986) 

0.028 
(0.9999) 0.973 

Market ServicesE 2.052 
(0.5326) 

0.603 
(0.9731) 

0.011 
(0.9983) 0.989 

Non Market ServicesF 1.393 
(0.9415) 

0.194 
(0.7458) 

0.206 
(0.9996) 0.829 

A: α [0;10 times the calibrated value]; δ [0;1] ρ[-10;10]; [-4.098;4.098] for the error component 
B: α [0;10 times the calibrated value]; δ [0;1] ρ[-2.5;2.5]; [-0.667;0.667] for the error component 
C: α [0;10 times the calibrated value]; δ [0;1] ρ[-10;10]; [-3.819;3.819] for the error component 
D: α [0;10 times the calibrated value]; δ [0;1] ρ[-2.5;2.5]; [-1;1] for the error component 
E: α [0;10 times the calibrated value]; δ [0;1] ρ[-5;5]; [-1.798;1.798] for the error component 
F: α [0;10 times the calibrated value]; δ [0;1] ρ[-2.5;2.5]; [-1.126;1.126] for the error component 
Source: our elaboration on the RSAM for Sardinia (2001) 
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Appendix 2 

Table A2.1 - Expenditure elasticity (GME estimates Household group A)1  
 
 GME 1 GME 2 GME 3 GME 4 GME 5 

Agriculture, animal 
husbandry and fishing 1.3306 1.3306 1.3306 1.3289 1.1256 

Energy and Mining products 3.5650 3.5650 3.5649 3.5535 1.9749 

Industrial products 0.9614 0.9614 0.9614 0.9614 0.9853 

Market services 1.0034 1.0034 1.0034 1.0035 1.0013 

Non Market services 0.9275 0.9275 0.9275 0.9280 0.9725 

Normalized Entropy Ratio 0.99999 0.99999 0.99987 0.98744 0.99986 

Source: our elaboration on the RSAM for Sardinia (2001) 
 
Table A2.2 – Expenditure elasticity (GME estimates Household group B) 

 
 GME 1 GME 2 GME 3 GME 4 GME 5 

Agriculture, animal 
husbandry and fishing 1.3586 1.3586 1.3586 1.3569 1.1466 

Energy and Mining products 2.6207 2.6207 2.6207 2.6142 1.6626 

Industrial products 0.9626 0.9626 0.9626 0.9627 0.9847 

Market services 1.0024 1.0024 1.0024 1.0024 1.0001 

Non Market services 0.9587 0.9587 0.9587 0.9590 0.9831 

Normalized Entropy Ratio 0.99999 0.99999 0.99987 0.98744 0.99986 

Source: our elaboration on the RSAM for Sardinia (2001) 

                                                 
1 All the tables reported in this Appendix, refer to the following parameter supports: 
Parameter supports:  
GME 1 [-100;100] for α and β; [-1;1]for the error terms;  
GME 2 [-50;50] for α and β; [-1;1]for the error terms;  
GME 3 [-10;10] for α and β; [-1;1]for the error terms;  
GME 4 [-1;1] for α and β; [-1;1]for the error terms;  
GME 5 [-10;10] for the α and [-1;1] for the β; [-1;1]for the error terms;  
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Table A2.3 - Expenditure elasticity (GME estimates Household group C) 
 
 GME 1 GME 2 GME 3 GME 4 GME 5 

Agriculture, animal 
husbandry and fishing 1.4434 1.4434 1.4434 1.4412 1.1714 

Energy and Mining products 2.9854 2.9854 2.9853 2.9765 1.7676 

Industrial products 0.9591 0.9591 0.9591 0.9592 0.9842 

Market services 1.0047 1.0047 1.0047 1.0047 1.0018 

Non Market services 0.9160 0.9160 0.9160 0.9166 0.9676 

Normalized Entropy Ratio 0.99999 0.99999 0.99987 0.98744 0.99986 

Source: our elaboration on the RSAM for Sardinia (2001) 
 
 
 
 
Table A2.4 - Expenditure elasticity (GME estimates Household group D) 

 
 GME 1 GME 2 GME 3 GME 4 GME 5 

Agriculture, animal 
husbandry and fishing 1.4151 1.4150 1.4150 1.4133 1.1805 

Energy and Mining products 3.0499 3.0508 3.0492 3.0417 1.8916 

Industrial products 0.9632 0.9632 0.9632 0.9633 0.9840 

Market services 1.0044 1.0044 1.0044 1.0044 1.0019 

Non Market services 0.9190 0.9190 0.9190 0.9195 0.9648 

Normalized Entropy Ratio 0.99999 0.99999 0.99987 0.98744 0.99986 

Source: our elaboration on the RSAM for Sardinia (2001) 
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Table A2.5 - Expenditure elasticity (GME estimates Household group E) 
 
 GME 1 GME 2 GME 3 GME 4 GME 5 

Agriculture, animal 
husbandry and fishing 1.5891 1.5891 1.5891 1.5859 1.2107 

Energy and Mining products 2.4519 2.4518 2.4518 2.4443 1.5194 

Industrial products 0.9522 0.9522 0.9522 0.9523 0.9829 

Market services 1.0066 1.0066 1.0066 1.0066 1.0024 

Non Market services 0.9067 0.9067 0.9067 0.9075 0.9667 

Normalized Entropy Ratio 0.99999 0.99999 0.99987 0.98743 0.99986 

Source: our elaboration on the RSAM for Sardinia (2001) 
 
 
 
 
Table A2.6 - Expenditure elasticity (GME estimates for Household group F) 

 
 GME 1 GME 2 GME 3 GME 4 GME 5 

Agriculture, animal 
husbandry and fishing 1.5268 1.5268 1.5267 1.5240 1.1970 

Energy and Mining products 2.7768 2.7768 2.7765 2.7680 1.6645 

Industrial products 0.9570 0.9570 0.9570 0.9571 0.9839 

Market services 1.0055 1.0055 1.0055 1.0055 1.0020 

Non Market services 0.8963 0.8964 0.8964 0.8972 0.9613 

Normalized Entropy Ratio 0.99999 0.99999 0.99987 0.98743 0.99986 

Source: our elaboration on the RSAM for Sardinia (2001) 
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Table A2.7 - Sensitivity Analysis of GME estimates for the β parameters – Household A 
 
 GME 1 GME 2 GME 3 GME 4 GME 5 

Agriculture, animal 
husbandry and fishing 

0.0094 
 (0.9999) 

0.0094 
 (0.9999) 

0.0094 
 (0.9997) 

0.0094 
 (0.9746) 

0.0036 
 (0.9996) 

Energy and Mining products 0.0078 
 (0.9999) 

0.0078 
 (0.9999) 

0.0078 
 (0.9997) 

0.0078 
 (0.9747) 

0.0030 
 (0.9996) 

Industrial products -0.0131 
 (0.9999) 

-0.0131 
 (0.9999) 

-0.0131 
 (0.9999) 

-0.0131 
 (0.9753) 

-0.0050 
 (0.9999) 

Market services 0.0019 
 (0.9999) 

0.0019 
 (0.9999) 

0.0019 
 (0.9997) 

0.0019 
 (0.9749) 

0.0007 
 (0.9997) 

Non Market services -0.0060 
 (0.9999) 

0.1992 
(0.9999) 

-0.0060 
 (0.9997) 

-0.0059 
 (0.9751) 

-0.0023 
 (0.9998) 

Source: our elaboration on the RSAM for Sardinia (2001) 
 
Table A2.8 - Sensitivity Analysis of GME estimates for the α parameters – Household A 

 
 GME 1 GME 2 GME 3 GME 4 GME 5 

Agriculture, animal 
husbandry and fishing 

0.2012 
(0.9999) 

0.2012 
(0.9999) 

0.2012 
(0.9999) 

0.2011 
(0.9999) 

0.2462 
(0.9999) 

Energy and Mining products 0.2010 
(1.000) 

0.2010 
(0.9999) 

0.2010 
(0.9999) 

0.2009 
(0.9999) 

0.2383 
(0.9999) 

Industrial products 0.1983 
(0.9999) 

0.1983 
(0.9999) 

0.1983 
(0.9999) 

0.1984 
(0.9999) 

0.1355 
(0.9999) 

Market services 0.2002 
(1.000) 

0.2002 
(1.000) 

0.2002 
(0.9999) 

0.2002 
(0.9999) 

0.2093 
(0.9999) 

Non Market services 0.1993 
(1.000) 

0.1992 
(0.9999) 

0.1992 
(0.9999) 

0.1993 
(0.9999) 

0.1707 
(0.9998) 

Source: our elaboration on the RSAM for Sardinia (2001) 
 
Table A2.9 - Sensitivity Analysis of GME estimates for the β parameters – Household B 

 
 GME 1 GME 2 GME 3 GME 4 GME 5 

Agriculture, animal 
husbandry and fishing 

0.0085 
 (0.9999) 

0.0085 
(0.9999) 

0.0085 
(0.9997) 

0.0085 
(0.9747) 

0.0035 
(0.9996) 

Energy and Mining products 0.0074 
(0.9999) 

0.0074 
(0.9999) 

0.0074 
(0.9997) 

0.0073 
(0.9747) 

0.0030 
(0.9996) 

Industrial products -0.0124 
(0.9999) 

-0.0124 
(0.9999) 

-0.0124 
(0.9997) 

-0.0124 
 (0.9753) 

-0.0051 
(0.9998) 

Market services 0.0012 
(0.9999) 

0.0012 
(0.9999) 

0.0012 
(0.9997) 

0.0012 
(0.9749) 

0.0005 
(0.9997) 

Non Market services -0.0047 
(0.9999) 

-0.0047 
(0.9999) 

-0.0047 
(0.9997) 

-0.0047 
(0.9751) 

-0.0019 
(0.9998) 

Source: our elaboration on the RSAM for Sardinia (2001) 
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Table A2.10 - Sensitivity Analysis of GME estimates for the α parameters – Household B 
 
 GME 1 GME 2 GME 3 GME 4 GME 5 

Agriculture, animal 
husbandry and fishing 

0.2010 
(1.0000) 

0.2010 
(0.9999) 

0.2010 
(0.9999) 

0.2010 
(0.9999) 

0.2424 
(0.9999) 

Energy and Mining products 0.2009 
(1.0000) 

0.2009 
(0.9999) 

0.2009 
(0.9999) 

0.2008 
(0.9999) 

0.2367 
(0.9999) 

Industrial products 0.1985 
(0.9999) 

 0.1985 
(0.9999) 

 0.1985 
(0.9999) 

0.1986 
(0.9999) 

0.1381 
(0.9999) 

Market services 0.2001 
(1.0000) 

0.2001 
(1.0000) 

0.2001 
(0.9999) 

0.2001 
(0.9999) 

0.2062 
(0.9999) 

Non Market services  0.1994 
(1.0000) 

 0.1994 
(0.9999) 

 0.1994 
(0.9999) 

 0.1995 
(0.9999) 

 0.1766 
(0.9999) 

Source: our elaboration on the RSAM for Sardinia (2001) 
 
Table A2.11 - Sensitivity Analysis of GME estimates for the β parameters – Household C 

 
 GME 1 GME 2 GME 3 GME 4 GME 5 

Agriculture, animal 
husbandry and fishing 

0.0088 
(0.9999) 

0.0088 
(0.9999) 

0.0088 
(0.9997) 

0.0087 
(0.9746) 

0.0034 
(0.9996) 

Energy and Mining products 0.0078 
(0.9999) 

0.0078 
(0.9999) 

0.0078 
(0.9997) 

0.0077 
(0.9747) 

0.0030 
(0.9996) 

Industrial products -0.0132 
(0.9999) 

-0.0131 
(0.9999) 

-0.0132 
(0.9997) 

-0.0131 
(0.9753) 

-0.0051 
(0.9999) 

Market services 0.0027 
(0.9999) 

0.0027 
(0.9999) 

0.0027 
(0.9997) 

0.0027 
(0.9748) 

0.0011 
(0.9997) 

Non Market services -0.0061 
(0.9999) 

-0.0061 
(0.9999) 

-0.0061 
(0.9997) 

-0.0061 
(0.9751) 

-0.0024 
(0.9998) 

Source: our elaboration on the RSAM for Sardinia (2001) 
 
Table A2.12 - Sensitivity Analysis of GME estimates for the α parameters – Household C 
 
 GME 1 GME 2 GME 3 GME 4 GME 5 

Agriculture, animal 
husbandry and fishing 

0.2011 
(1.0000) 

0.2011 
(0.9999) 

0.2011 
(0.9999) 

0.2010 
(0.9999) 

0.2432 
(0.9999) 

Energy and Mining products 0.2010 
(1.0000) 

0.2010 
(0.9999) 

0.2010 
(0.9999) 

0.2009 
(0.9999) 

0.2383 
(0.9999) 

Industrial products 0.1983 
(0.9999) 

0.1983 
(0.9999) 

0.1983 
(0.9999) 

0.1984 
(0.9999) 

0.1351 
(0.9998) 

Market services 0.2003 
(1.0000) 

0.2003 
(1.0000) 

0.2003 
(0.9999) 

0.2003 
(0.9999) 

0.2136 
(0.9999) 

Non Market services 0.1992 
(1.0000) 

0.1992 
(0.9999) 

0.1992 
(0.9999) 

0.1993 
(0.9999) 

0.1697 
(0.9999) 

Source: our elaboration on the RSAM for Sardinia (2001) 
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Table A2.13 - Sensitivity Analysis of GME estimates for the β parameters – Household D 
 
 GME 1 GME 2 GME 3 GME 4 GME 5 

Agriculture, animal 
husbandry and fishing 

0.0079 
(0.9999) 

0.0079 
(0.9999) 

0.0079 
(0.9997) 

0.0079 
(0.9747) 

0.0034 
(0.9996) 

Energy and Mining products 0.0070 
(0.9999) 

0.0070 
(0.9999) 

0.0070 
(0.9997) 

0.0070 
(0.9747) 

0.0031 
(0.9996) 

Industrial products -0.0119 
(0.9999) 

-0.0119 
(0.9999) 

-0.0119 
(0.9997) 

-0.0119 
(0.9752) 

-0.0052 
(0.9999) 

Market services 0.0026 
(0.9999) 

0.0026 
(0.9999) 

0.0026 
(0.9997) 

0.0026 
(0.9748) 

0.0011 
(0.9997) 

Non Market services -0.0056 
(0.9999) 

-0.0057 
(0.9999) 

-0.0056 
(0.9997) 

-0.0056 
(0.9751) 

-0.0024 
(0.9998) 

Source: our elaboration on the RSAM for Sardinia (2001) 
 
Table A2.14 - Sensitivity Analysis of GME estimates for the α parameters – Household D 
 
 GME 1 GME 2 GME 3 GME 4 GME 5 

Agriculture, animal 
husbandry and fishing 

0.2009 
(1.0000) 

0.2009 
(0.9999) 

0.2009 
(0.9999) 

0.2008 
(0.9999) 

0.2397 
(0.9999) 

Energy and Mining products 0.2008 
(1.0000) 

0.2008 
(0.9999) 

0.2008 
(0.9999) 

0.2008 
(0.9999) 

0.2353 
(0.9999) 

Industrial products 0.1986 
(0.9999) 

0.1986 
(0.9999) 

0.1986 
(0.9999) 

0.1987 
(0.9999) 

0.1404 
(0.9999) 

Market services 0.2003 
(1.0000) 

0.2003 
(1.0000) 

0.2003 
(0.9999) 

0.2003 
(0.9999) 

0.2129 
(0.9999) 

Non Market services 0.1993 
(1.0000) 

0.1994 
(0.9999) 

0.1993 
(0.9999) 

0.1994 
(0.9999) 

0.1717 
(0.9999) 

Source: our elaboration on the RSAM for Sardinia (2001) 
 
Table A2.15 - Sensitivity Analysis of GME estimates for the β parameters – Household E 
 
 GME 1 GME 2 GME 3 GME 4 GME 5 

Agriculture, animal 
husbandry and fishing 

0.0087 
(0.9999) 

0.0087 
(0.9999) 

0.0087 
(0.9997) 

0.0087 
(0.9746) 

0.0031 
(0.9996) 

Energy and Mining products 0.0081 
(0.9999) 

0.0081 
(0.9999) 

0.0081 
(0.9997) 

0.0081 
(0.9747) 

0.0029 
(0.9996) 

Industrial products -0.0144 
(0.9999) 

-0.0144 
(0.9999) 

-0.0144 
(0.9997) 

-0.0143 
(0.9754) 

-0.0051 
(0.9999) 

Market services 0.0042 
(0.9999) 

0.0042 
(0.9999) 

0.0042 
(0.9997) 

0.0042 
(0.9748) 

0.0015 
(0.9997) 

Non Market services -0.0067 
(0.9999) 

-0.0067 
(0.9999) 

-0.0067 
(0.9997) 

-0.0067 
(0.9751) 

-0.0024 
(0.9998) 

Source: our elaboration on the RSAM for Sardinia (2001) 
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Table A2.16 - Sensitivity Analysis of GME estimates for the α parameters – Household E 
 
 GME 1 GME 2 GME 3 GME 4 GME 5 

Agriculture, animal 
husbandry and fishing 

0.2012 
(1.0000) 

0.2012 
(0.9999) 

0.2012 
(0.9999) 

0.2011 
(0.9999) 

0.2424 
(0.9999) 

Energy and Mining products 0.2011 
(1.0000) 

0.2011 
(0.9999) 

0.2011 
(0.9999) 

0.2010 
(0.9999) 

0.2394 
(0.9999) 

Industrial products 0.1980 
(0.9999) 

0.1980 
(0.9999) 

0.1980 
(0.9999) 

0.1981 
(0.9999) 

0.1302 
(0.9999) 

Market services 0.2006 
(1.0000) 

0.2006 
(1.0000) 

0.2006 
(0.9999) 

0.2005 
(0.9999) 

0.2204 
(0.9999) 

Non Market services 0.1991 
(1.0000) 

0.1991 
(0.9999) 

0.1991 
(0.9999) 

0.1991 
(0.9999) 

0.1674 
(0.9999) 

Source: our elaboration on the RSAM for Sardinia (2001) 
 
Table A2.17 - Sensitivity Analysis of GME estimates for the β parameters – Household F 
 
 GME 1 GME 2 GME 3 GME 4 GME 5 

Agriculture, animal 
husbandry and fishing 

0.0088 
(0.9999) 

0.0088 
(0.9999) 

0.0088 
(0.9997) 

0.0088 
(0.9746) 

0.0033 
(0.9996) 

Energy and Mining products 0.0081 
(0.9999) 

0.0080 
(0.9999) 

0.0080 
(0.9997) 

0.0080 
(0.9747) 

0.0030 
(0.9996) 

Industrial products -0.0136 
(0.9999) 

-0.0136 
(0.9999) 

-0.0136 
(0.9997) 

-0.0136 
(0.9753) 

-0.0051 
(0.9999) 

Market services 0.0033 
(0.9999) 

0.0033 
(0.9999) 

0.0033 
(0.9997) 

0.0033 
(0.9748) 

0.0012 
(0.9997) 

Non Market services -0.0066 
(0.9999) 

-0.0066 
(0.9999) 

-0.0066 
(0.9997) 

-0.0065 
(0.9751) 

-0.0025 
(0.9998) 

Source: our elaboration on the RSAM for Sardinia (2001) 
 
Table A2.18 - Sensitivity Analysis of GME estimates for the α parameters – Household F 
 
 GME 1 GME 2 GME 3 GME 4 GME 5 

Agriculture, animal 
husbandry and fishing 

0.2011 
(1.0000) 

0.2011 
(0.9999) 

0.2011 
(0.9999) 

0.2011 
(0.9999) 

0.2433 
(0.9999) 

Energy and Mining products 0.2010 
(1.0000) 

0.2010 
(0.9999) 

0.2010 
(0.9999) 

0.2010 
(0.9999) 

0.2494 
(0.9999) 

Industrial products 0.1982 
(0.9999) 

0.1982 
(0.9999) 

0.1982 
(0.9999) 

0.1983 
(0.9999) 

0.1334 
(0.9999) 

Market services 0.2004 
(1.0000) 

0.2004 
(1.0000) 

0.2004 
(0.9999) 

0.2004 
(0.9999) 

0.2162 
(0.9999) 

Non Market services 0.1992 
(1.0000) 

0.1991 
(0.9999) 

0.1991 
(0.9999) 

0.1992 
(0.9999) 

0.1677 
(0.9999) 

Source: our elaboration on the RSAM for Sardinia (2001) 
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