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CHAPTER ONE 

Introduction to Carbonic Anhydrase 

 

1.1 Introduction 

Carbonic anhydrases (CAs, also known as Carbonate Dehydratases) are 

metalloenzymes which catalyze CO2 hydration to bicarbonate and protons. As CO2, 

bicarbonate and protons are essential molecules/ions in many important physiologic 

processes in all life kingdoms (Bacteria, Archaea, and Eukarya), throughout the 

phylogenetic tree, relatively high amounts of them are present in different tissues/cell 

compartments of all such organisms. CAs evolved independently at least five times, with 

five genetically distinct enzyme families known to date: the α-CAs (present in vertebrates, 

Bacteria, algae and cytoplasm of green plants), the β-CAs (predominantly found in 

Bacteria, algae and chloroplasts of both mono- as well as dicotyledons), the γ-(mainly 

present in Archaea and some Bacteria), the δ-CAs present in some marine diatoms and ζ-

CAs.1-6 All of them are metalloenzymes, where α-, β- and δ-CAs use Zn(II) ions at the 

active site1-4 the γ-CAs are probably Fe(II) enzymes (but they are active also with bound 

Zn(II) or Co(II) ions),5 whereas the ζ-class uses Cd(II) or Zn(II) to perform the physiologic 

reaction catalysis.6 The active site centers of the five families of CAs are shown 

schematically in Figure 1.1.  
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Figure 1.1. Metal ion coordination in CAs: A. α-, γ- and δ-CAs (for the γ-class the metal ion can also be 
Co(II) or Fe(II)); B. β-CAs, open active site; C. β-CAs, closed active site; D. ζ-CAs (Cd(II) can be also 
substituted by Zn(II), without loss of activity). 
 

The 3D fold of the five enzyme classes is also very different from each other, as it is their 

oligomerization state: α-CAs are normally monomers and rarely dimers (e.g., CA IX and 

XII); β-CAs are dimers, tetramers or octamers; γ-CAs are trimers,1-4 whereas the δ- and ζ-

CAs are probably monomers but in the case of the last family, three slightly different 

active sites are present on the same protein backbone which is in fact a pseudotrimer, at 

least for the best studied such enzyme, from the marine diatom Thalassiosira weissflogii).1-

6 Many representatives of all these enzyme classes have been crystallized and characterized 

in detail, except the δ-CAs.1-9 

In many organisms these enzymes are involved in crucial physiological processes 

connected with respiration and transport of CO2/bicarbonate, pH and CO2 homeostasis, 

electrolyte secretion in a variety of tissues/organs, biosynthetic reactions (such as 

gluconeogenesis, lipogenesis and ureagenesis), bone resorption, calcification, 

tumorigenicity, and many other physiologic or pathologic processes (thoroughly studied in 

vertebrates).1-3,7-10 Whereas, in algae, plants and some bacteria they play an important role 

in photosynthesis and other biosynthetic reactions.1,4,5,11 In diatoms δ- and ζ-CAs play a 

crucial role in carbon dioxide fixation.6 
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The 16 different α-CA isoforms isolated and characterized so far in mammals (where they 

play important physiological roles, as briefly outlined above) are cytosolic (CA I, CA II, 

CA III, CA VII, CA XIII), membrane-bound (CA IV, CA IX, CA XII, CA XIV and CA 

XV), mitochondrial (CA VA and CA VB) or secreted (CA VI) proteins.1-3 Three acatalytic 

forms are also known, the CA related proteins (CARP), CARP VIII, CARP X and CARP 

XI, which are also cytosolic proteins too.1 The mammalian CAs were the first such 

enzymes isolated and studied in detail, and many of them are established therapeutic 

targets with the potential to be inhibited or activated to treat a wide range of disorders.1-3,7-

10,12-15 Indeed, diuretics, antiglaucoma, antiepileptic, antiobesity and anticancer drugs based 

on CAIs are presently known, and they target various mammalian (human) α-CA 

isoforms.1  

In addition to the physiological reaction, the reversible hydration of CO2 to bicarbonate 

(reaction 1.1, Chart 1.1), α-CAs catalyze a variety of other reactions, such as: the hydration 

of cyanate to carbamic acid, or of cyanamide to urea (reactions 1.2 and 1.3); the aldehyde 

hydration to gem-diols (reaction 1.4); the hydrolysis of carboxylic esters, or sulfonic acid 

esters (reactions 1.5 and 1.6), as well as other less investigated hydrolytic processes, such 

as those described by Eqs. 1.7–1.10 in Chart 1.1.16-18 

 

(1.1)O=C=O + H2O HCO3
- + H+

(1.2)O=C=NH + H2O H2NCOOH

(1.3)

(1.4)RCHO + H2O RCH(OH)2

H2NCONH2

(1.5)RCOOAr + H2O RCOOH + ArOH

(1.6)RSO3Ar + H2O RSO3H + ArOH

(1.7)ArF + H2O HF + ArOH

(Ar = 2,4-dinitrophenyl)

(1.8)PhCH2OCOCl + H2O PhCH2OH + CO2 + HCl

(1.9)RSO2Cl + H2O RSO3H + HCl

(R = Me, Ph)

N C NH2 + H2O

ROP=O(OH)2 + H2O ROH + H3PO4 (1.10)
 

Chart 1.1. Reactions catalyzed by α-CAs. 

 

It is unclear at this moment whether other α-CA catalyzed reactions than the CO2 hydration 

have physiological significance. The X-ray crystal structure has been determined for nine 

α-CAs at this moment (isozymes CA I–VA, CA IX, CA XII and XIII and CA XIV)2,8,19-26 

as well as for representatives of the β- and γ-CA families.27-32 
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1.2 Catalytic and inhibition mechanisms of Carbonic Anhydrases 

1.2.1 α-CAs 

The metal ion (which is Zn(II) in all α-CAs investigated up to now) is essential for 

catalysis.2,19-23,33,34 X-ray crystallographic data showed that the metal ion is situated at the 

bottom of a 15 Å deep active site cleft (Figure 1.2), being coordinated by three histidine 

residues (His94, His96 and His119) and a water molecule/ hydroxide ion.2,19-23,33,34  

Zn

OH

His96His94
His119

O

N
H

O
H

Thr199

O

O

Glu106

 
Figure 1.2. The Zn(II) ion coordination in the hCA II active site, with the three histidine ligands (His94, 
His96 and His119, isozyme I numbering) and the gate-keeping residues (Thr199 and Glu106) shown. 
 

The zinc-bound water is also engaged in hydrogen bond interactions with the hydroxyl 

moiety of Thr199, which in turn is bridged to the carboxylate moiety of Glu 106; these 

interactions enhance the nucleophilicity of the zinc-bound water molecule, and orient the 

substrate (CO2) in a favourable location for the nucleophilic attack (Figure 1.3).2,19-23,33,34 

The active form of the enzyme is the basic one, with hydroxide bound to Zn(II) (Figure 

1.3A). This strong nucleophile attacks the CO2 molecule bound in a hydrophobic pocket in 

its neighbourhood (the substrate-binding site comprises residues Val121, Val143 and 

Leu198 in the case of the human isozyme CA II) (Figure 1.3B), leading to the formation of 

bicarbonate coordinated to Zn(II) (Figure 1.3C). The bicarbonate ion is then displaced by a 

water molecule and liberated into solution, leading to the acid form of the enzyme, with 

water coordinated to Zn(II) (Figure 1.3D), which is catalytically inactive.2,19-23,33,34 
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Figure 1.3. Schematic representation of the catalytic mechanism for the α-CA catalyzed CO2 hydration. The 
hydrophobic pocket for the binding of substrate(s) is shown schematically at step (B). 
 

In order to regenerate the basic form A, a proton transfer reaction from the active site to the 

environment takes place, which may be assisted either by active site residues (such as 

His64—the proton shuttle in isozymes I, II, IV, VI, VII, IX and XII–XIV among others) or 

by buffers present in the medium. The process may be schematically represented by Eqs. 

1.11 and 1.12 below: 

E-Zn2+-OH- + CO2 E-Zn2+-HCO3
-

(1.11)E-Zn2+-OH2 + HCO3
-

H2O

(1.12)E-Zn2+-OH2 E-Zn2+-OH- + H+
 

The rate limiting step in catalysis is the second reaction, that is, the proton transfer that 

regenerates the zinc-hydroxide species of the enzyme.2,19-23,33-35 In the catalytically very 

active isozymes, such as CA II, CA IV, CA VII and CA IX, the process is assisted by a 

histidine residue placed at the entrance of the active site (His64), as well as by a cluster of 

histidines, which protrudes from the rim of the active site to the surface of the enzyme, 

assuring thus a very efficient proton transfer process for the most efficient CA isozyme, 

CA II.35 This also explains why CA II is one of the most active enzymes known (with a 

Kcat/KM = 1.5 x 108 M-1 s-1), approaching the limit of diffusion control, and also has 

important consequences for the design of inhibitors with clinical applications.2,19-23,33-35  
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Different classes of CA inhibitors (CAIs) are known. The oldest and most studied two are: 

the metal complexing anions, and the unsubstituted sulfonamides, which bind to the Zn(II) 

ion of the enzyme either by substituting the non-protein zinc ligand (Eq. 1.13 in Figure 1.4) 

or add to the metal coordination sphere (Eq. 1.14 in Figure 1.4), generating trigonal–

bipyramidal species.2,19-23,33,34,36 Sulfonamides, which are the most important CAIs (such as 

the clinically used derivatives acetazolamide AAZ , methazolamide MZA , ethoxzolamide 

EZA , dichlorophenamide DCP, dorzolamide DZA  and brinzolamide BRZ, Chart 1.2),19 

bind in a tetrahedral geometry of the Zn(II) ion (Figure 1.4), in deprotonated state, with the 

nitrogen atom of the sulfonamide moiety coordinated to Zn(II) and an extended network of 

hydrogen bonds, involving residues Thr199 and Glu106, also participating to the anchoring 

of the inhibitor molecule to the metal ion. 

 

Zn

His96His94
His119

O
NH

O
H

Thr199

O

O

Glu106

S
N

O O
R

hydrophilic part
of active site

hydrophobic part
of active site

Tetrahedral adduct
(sulfonamide)

A

Zn

His96His94
His119

OH2C
S

N

Trigonal-bipyramidal adduct
(thiocyanate)

B

E-Zn2+-OH2 + I E-Zn2+-I + H2O (substitution)

Tetrahedral adduct

(1.13)

E-Zn2+-OH2 + I E-Zn2+-OH2(I) (addition)

Trigonal-bipyramidal adduct

(1.14)

H

 
Figure 1.4. α-CA inhibition mechanism by sulfonamide (A) and anionic (B) inhibitors. In the case of 
sulfonamides, in addition to the Zn(II) coordination, an extended network of hydrogen bonds ensues, 
involving residues Thr199 and Glu106, whereas the organic part of the inhibitor (R) interacts with 
hydrophilic and hydrophobic residues of the cavity. For anionic inhibitors such as thiocyanate (B) the 
interactions between inhibitor and enzyme are much simpler. 
 

The aromatic/heterocyclic part of the inhibitor (R) interacts with hydrophilic and 

hydrophobic residues of the cavity. Anions may bind either in tetrahedral geometry of the 

metal ion or as trigonal–bipyramidal adducts, such as for instance the thiocyanate adduct 

shown in Figure 1.4B.1,36 
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Chart 1.2. Sulfonamidic CAs inhibitors AAZ-BRZ and the sulfamate TPM . 
 

X-ray crystallographic structures are available for many adducts of 

sulfonamide/sulfamate/sulfamide inhibitors with isozymes CA I, II and IV.36-42 In all these 

adducts, the deprotonated sulfonamide/sulfamate/sulfamide is coordinated to the Zn(II) ion 

of the enzyme, and its NH moiety participates in a hydrogen bond with the Oγ of Thr199, 

which in turn is engaged in another hydrogen bond to the carboxylate group of Glu106.36-

39,43,42,40,41 One of the oxygen atoms of the sulfonamidic moiety also participates in a 

hydrogen bond with the backbone NH moiety of Thr199. Examples of various adducts of 

such inhibitors with CA II are provided in Figures 1.5 and 1.6. 
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Figure 1.5. Schematic representation of the pentafluorobenzoyl analogue of methazolamide (PFMZ) bound 
within the hCA II active site (figures represent distances in Å ).37 
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Figure 1.6. Binding of the sulfamate CA inhibitor EMATE  to hCA II.38 

 

The different types of interactions for a sulfonamidic inhibitor to have very high affinity 

(in the low nanomolar range) for the CA active site, are illustrated in Figures 1.5 and 1.6; 

in particular two examples are the fluorocontaining sulfonamide inhibitor, PFMZ ,37 

(Figure 1.5) and the steroid sulfamate EMATE 38 (Figure 1.6). It can be observed that for 

the sulfonamide compound PFMZ , the ionized sulfonamide moiety has replaced the 

hydroxyl ion coordinated to Zn(II) in the native enzyme (Zn–N distance of 1.95 Å), with 

the metal ion remaining in its stable tetrahedral geometry, being coordinated in addition to 

the sulfonamidate nitrogen, by the imidazolic nitrogens of His94, His96 and His119. The 

proton of the coordinated sulfonamidate nitrogen atom also makes a hydrogen bond with 

the hydroxyl group of Thr 199, which in turn accepts a hydrogen bond from the 

carboxylate of Glu106. One of the oxygen atoms of the sulfonamide moiety makes a 

hydrogen bond with the backbone amide of Thr199, whereas the other one is semi-

coordinated to the catalytic Zn(II) ion (O–Zn distance of 3.0 Å). The thiadiazoline ring of 

the inhibitor lies in the hydrophobic part of the active site cleft, where its ring atoms make 

van der Waals interactions with the side chains of Leu204, Pro202, Leu198 and Val135 

(Figure 1.5). The amidic oxygen of PFMZ  makes a strong hydrogen bond with the 
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backbone amide nitrogen of Gln92 (of 2.9 Å), an interaction also evidenced for the 

acetazolamide–hCA II adduct. Besides Gln92, two other residues situated in the 

hydrophilic half of the CA active site, that is, Glu 69 and Asn67, make van der Waals 

contacts with the PFMZ  molecule complexed to hCA II. But the most notable and 

unprecedented interactions evidenced in this complex, regard the hydrogen bond network 

involving the exocyclic nitrogen atom of the inhibitor, two water molecules (Wat1194 and 

Wat1199) and a fluorine atom in meta belonging to the perfluorobenzoyl tail of PFMZ  

(Figure 1.5). Thus, a strong hydrogen bond (of 2.9 Å) is evidenced between the imino 

nitrogen of PFMZ  and Wat1194, which in turn makes a hydrogen bond with a second 

water molecule of the active site, Wat1199 (with a distance of 2.7 Å). The second 

hydrogen of Wat1194 also participates in a weaker hydrogen bond (3.3 Å) with the 

carbonyl oxygen of PFMZ . The other hydrogen atom of Wat1199 makes a weak hydrogen 

bond with the fluorine atom in position 3 of the perfluorobenzoyl tail of PFMZ  (Figure 

1.5). Finally, a very interesting interaction has been observed between the perfluorophenyl 

ring of the inhibitor and the phenyl moiety of Phe131, a residue critical for the binding of 

inhibitors with long tails to hCA II.2,19,20 Indeed, these two rings are almost perfectly 

parallel, being situated at a distance of 3.4–4.7 Å. This type of stacking interactions has 

never been observed in a hCA II–sulfonamide adduct. Similar interactions are also 

observed for the sulfamates (EMATE ) type of CA inhibitors (Figure 1.6).38  

Among the chemotypes diverse of sulfonamides and their bioisosteres investigated in great 

detail ultimately, are the phenols and polyphenols.44-49 Initially, simple mono- or 

polysubstituted phenols/naphthols have been investigated for their interaction with all 13 

catalytically active mammalian isozymes, with many low micromolar inhibitors being 

detected.44,45 Further studies evidenced better inhibitors, among various salicylic acid 

derivatives, antioxidant phenols/biphenyl phenols, phenolic acids and other natural 

products, some of which were nanomolar inhibitors of several isoforms, such as the 

mitochondrial ones CA VA and VB.46-49 Phenols and their derivatives, constitute thus a 

class of scarcely investigated CAIs with great promise. Unfortunately, there are very few 

structural information regarding how this class of CAIs bind to the enzyme active site, 

since only the X-ray structure of the adduct of simple phenol (PhOH) with CA II has been 

reported by Christianson’s group.50 The schematic representation of phenol inhibition 

mechanism is reported in Figure 1.7. 
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Figure 1.7. Binding of Phenol to hCA II.50 

 

Another class of CAIs, only recently emerged, is represented by the Coumarins.51 This 

chemotype shows a totally different inhibition approach towards CAs, I’ll talk about later, 

as it’s one of the main themes of this thesis. 

 

1.2.2 β-CAs 

Many species belonging to Bacteria, some Archaea (such as Methanobacterium 

thermoautotrophicum), algae and the chloroplasts of superior plants contain CAs 

belonging to the β-class.21,27,28,30 The principal difference between these enzymes and the 

α-CAs discussed above consists in the fact that usually the β-CAs are oligomers, generally 

formed of 2–6 monomers of molecular weight of 25–30 kDa. The first reported β-CA X-

ray structure was that of P. purpureum, a red alga, in 2000.32 This was quickly followed by 

structures for a plant (P. sativum) 30and a bacterial (E. coli) β-CA.27 to date, 6 additional β-

CA X-ray crystal structures are known, including in order of appearance, an archaeal β-CA 

(M. thermoautotrophicum),52 two enzymes (mtCA 1 and mtCA 2) from M. tuberculosis,29 

the second crystallizing in two different active site and oligomerization structures,13 a 

carboxysomal β-CA (H. neapolitanus),53 and Haemophilus influenzae β-CA.54 
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Figure 1.8. Schematic representation of the Zn(II) coordination sphere in β-CAs: (A) Porphyridium 
purpureum32 and Escherichia coli27 enzymes; (B) Pisum sativum chloroplast and Methanobacterium 
thermoautotrophicum enzyme,28 as determined by X-ray crystallography. 
 

The Po. purpureum CA monomer is composed of two internally repeating structures, being 

folded as a pair of fundamentally equivalent motifs of an α/β domain and three projecting 

α-helices. The motif is very distinct from that of either α- or γ-CAs. This homodimeric CA 

appeared like a tetramer with a pseudo 2-2-2 symmetry.32 β-CAs are thus very different 

from the α-class enzymes. The Zn(II) ion is essential for catalysis in both families of 

enzymes, but its coordination is different and rather variable for the β-CAs: thus, in the 

prokaryotic β-CAs the Zn(II) ion is coordinated by two cysteinate residues, an imidazole 

from a His residue and a carboxylate belonging to an Asp residue (Figure 1.8A), whereas 

the chloroplast enzyme has the Zn(II) ion coordinated by the two cysteinates, the imidazole 

belonging to a His residue and a water molecule (Figure 1.8B).30-32 The polypeptide chain 

folding and active site architecture are obviously very different from those of the CAs 

belonging to the α-class. Since no water is directly coordinated to Zn(II) for some members 

of the β-CAs (Figure 1.8A), the main problem is whether the zinc-hydroxide mechanism 

presented in this chapter for the α-CAs is valid also for enzymes belonging to the β-family. 

A response to this question has been given by Mitsuhashi et al.32 who have proposed the 

catalytic mechanism shown below in Figure 1.9. 
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Figure 1.9. Proposed catalytic mechanism for prokaryotic β-CAs (Porphyridium purpureum enzyme 
numbering). 
 

As there are two symmetrical structural motifs in one monomer of the Po. purpureum 

enzyme, resulting from two homologous repeats which are related to each other by a 

pseudo twofold axis, there are two Zn(II) ions coordinated by the four amino acids 

mentioned above. In this case these pairs are: Cys149/Cys403, His205/His459, 

Cys208/Cys462 and Asp151/Asp405.32 A water molecule is also present in the 

neighbourhood of each metal ion, but it is not directly coordinated to it, forming a 

hydrogen bond with an oxygen belonging to the zinc ligand Asp151/Asp405 (Figure 1.9A). 

It is hypothesized that a proton transfer reaction may occur from this water molecule to the 

coordinated carboxylate moiety of the aspartate residue, with generation of a hydroxide ion 

which may be then coordinated to Zn(II), which acquires a trigonal–bipyramidal geometry 

(Figure 1.9B). Thus, the strong nucleophile which may attack CO2 bound within a 

hydrophobic pocket of the enzyme is formed (Figure 1.9C), with generation of bicarbonate 

bound to Zn(II) (Figure 1.9D). This intermediate is rather similar to the reaction 

intermediate proposed for the α-CA catalytic cycle (Figure 1.3C), except that for the β-
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class enzyme, the aspartic acid residue, originally coordinated to zinc, is proposed here to 

participate in a hydrogen bond with the coordinated bicarbonate (Figure 1.9D). In the last 

step, the coordinated bicarbonate is released in solution, together with a proton (no details 

regarding this proton transfer process are available), the generated aspartate re-coordinates 

the Zn(II) ion, and the accompanying water molecule forms a hydrogen bond with it. The 

enzyme is thus ready for another cycle of catalysis.  

The structure of the β-CA from the dicotyledonous plant Pi. sativum at 1.93 Å resolution 

has also been reported.30 The molecule assembles as an octamer with a novel dimer of 

dimers arrangement. The active site is located at the interface between two monomers, 

with Cys160, His220 and Cys223 binding the catalytic zinc ion and residues Asp162 

(oriented by Arg164), Gly224, Gln151, Val184, Phe179 and Tyr205 interacting with acetic 

acid. The substrate-binding groups have a one to one correspondence with the functional 

groups in the α-CA active site, with the corresponding residues being closely 

superimposable by a mirror plane. Therefore, despite differing folds, α- and β-CAs have 

converged upon a very similar active site design and are likely to share a common 

mechanism of action.30 Cab exists as a dimer with a subunit fold similar to that observed in 

plant-type β-CAs. The active site zinc ion was shown to be coordinated by the amino acid 

residues Cys32, His87, and Cys90, with the tetrahedral coordination completed by a water 

molecule.55 The major difference between plant- and cab-type β-CAs is in the organization 

of the hydrophobic pocket (except for the zinc coordination mentioned above). The 

structure also revealed a Hepes buffer molecule bound 8 Å away from the active site zinc, 

which suggests a possible proton transfer pathway from the active site to the solvent.55 No 

structural data are available at this moment regarding the binding of inhibitors to this type 

of CAs, except for the fact that acetate coordinates to the Zn(II) ion of the Pi. sativum 

enzyme.52 

β-CAs from Mycobacterium tuberculosis have recently been cloned by Covarrubias et 

al.;29 among them I’ll talk about the kinetic and inhibition profile of the most active mtCA 

2, encoded by gene Rv-3588c. 

 

1.2.3 γ-CAs 

The prototype of the γ-class CAs, ‘Cam’, has been isolated from the methanogenic 

archaeon Methanosarcina thermophila.56 The crystal structures of zinc-containing and 

cobalt-substituted Cam were reported in the unbound form and co-crystallized with sulfate 

or bicarbonate. Cam has several features that differentiate it from the α- and β-CAs. Thus, 
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the protein fold is composed of a left-handed β-helix motif interrupted by three protruding 

loops and followed by short and long α-helixes. The Cam monomer self-associates in a 

homotrimer with the approximate molecular weight of 70 kDa.56 The Zn(II) ion within the 

active site is coordinated by three histidine residues, as in α-CAs, but relative to the 

tetrahedral coordination geometry seen at the active site of α-CAs, the active site of this γ-

CA contains additional metal-bound water ligands, so that the overall coordination 

geometry is trigonal–bipyramidal for the zinc-containing Cam and octahedral for the 

cobaltsubstituted enzyme. Two of the His residues coordinating the metal ion belong to 

one monomer (monomer A), whereas the third one is from the adjacent monomer 

(monomer B). Thus, the three active sites are located at the interface between pairs of 

monomers.56 The catalytic mechanism of γ-CAs was proposed to be similar to the one 

presented for the α-class enzymes (Figure 1.10). 
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Figure 1.10. Proposed reaction mechanism for Cam. The reaction mechanism is drawn using Zn-Cam as the 
template. Co-Cam should have a similar reaction mechanism with an additional water molecule as an active 
site ligand. (A) Zn2+ is coordinated to one water molecule and one hydroxide ion at the beginning of the first 
half-reaction. (B) Carbon dioxide enters the active site along the hydrophobic pocket. (C) Carbon dioxide is 
attacked by the hydroxide bound to the zinc. (D) The bicarbonate may have several stable binding modes. 
This bidentate binding mode, which requires loss of a metal ligand water molecule, is similar to that seen in 
the structure of Zn-Cam in complex with HCO3

-. (E) The first half-reaction ends with exchange of 
bicarbonate and a water molecule from the solvent. This state is crystallographically indistinguishable from 
that shown in state A, and may be represented by the structures of Zn-Cam or Co-Cam. (F) The second half-
reaction begins with the deprotonation of one zinc-bound water molecule, with the proton transferred to 
Glu62. During this process, the side chain of Glu84 swings in so that it may accept the proton. This step is 
represented by the structure of water-liganded Zn-Cam with the Glu84 side chain. (G) The proton is passed 
from Glu62 to Glu84. With the transfer of proton to the solvent, the second half-reaction is complete and 
state A is regenerated. 
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Still, the finding that Zn(II) is not tetracoordinated as originally reported but 

pentacoordinated, with two water molecules bound to the metal ion, demonstrates that 

much is still to be understood regarding these enzymes. At this moment, the zinc hydroxide 

mechanism is accepted as being valid for γ-CAs, as it is probable that an equilibrium exists 

between the trigonal–bipyramidal and the tetrahedral species of the metal ion from the 

active site of the enzyme.56 Ligands bound to the active site were shown to make contacts 

with the side chain of Glu62 in a manner that suggests this side chain to be probably 

protonated. In the uncomplexed zinc-containing Cam, the side chains of Glu62 and Glu84 

appear to share a proton; additionally, Glu84 exhibits multiple conformations. This 

suggests that Glu84 may act as a proton shuttle, which is an important aspect of the 

reaction mechanism of α- CAs, for which a histidine active site residue generally plays this 

function, usually His64. Anions and sulfonamides were shown to bind to Cam.57,58 

 

1.2.4 δ-CAs 

X-ray absorption spectroscopy at the Zn K-edge indicates that the active site of the 

marine diatom Thalassiosira weissflogii CA (TWCA1) is strikingly similar to that of 

mammalian α-CAs. The zinc has three histidine ligands and a single water molecule, being 

quite different from the β-CAs of higher plants in which zinc is coordinated by two 

cysteine thiolates, one histidine and a water molecule.28 The diatom carbonic anhydrase 

shows no significant sequence similarity with other carbonic anhydrases and may represent 

an example of convergent evolution at the molecular level. In the same diatom a rather 

perplexing discovery has been then made: the first cadmium-containing enzyme, which is a 

CA-type protein.34 The marine diatom T. weissflogii growing under conditions of low zinc, 

typical of the marine environment, and in the presence of cadmium salts, led to increased 

levels of cellular CA activity, although the levels of TWCA1, the major intracellular Zn-

requiring isoform of CA in T. weissflogii, remained low.34 109Cd labelling comigrates with 

a protein band that showed this CA activity to be distinct from TWCA1 on native PAGE of 

radiolabelled T. weissflogii cell lysates. The levels of the Cd protein were modulated by 

CO2 in a manner that was shown to be consistent with a role for this enzyme in carbon 

acquisition. Purification of the CA-active fraction leads to the isolation of a Cd-containing 

protein of 43 kDa being clear that T. weissflogii expresses a Cd-specific CA, which, 

particularly under conditions of Zn limitation, can replace the Zn enzyme TWCA1 in its 

carbon-concentrating mechanism.34 
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CHAPTER TWO 

Introduction to experimental data 

 

2.1 Physiological functions of CAs, their inhibition and medicinal 

chemistry applications 

It is not clear whether other reactions catalyzed by CAs (Figure 1.2), except for 

CO2 hydration/bicarbonate dehydration, have physiological relevance.2,20 Thus, presently, 

only reaction 1.1 is considered to be the physiological one in which these enzymes are 

involved. 

In prokaryotes, as shown also in the preceding sections, CAs possess two general 

functions: (i) transport of CO2/ bicarbonate between different tissues of the organism; (ii) 

provision of CO2/bicarbonate for enzymatic reactions.21 In aquatic photosynthetic 

organisms, an additional role is that of a CO2-concentrating mechanism, which helps 

overcome CO2 limitation in the environment.22,59 For example, in Chlamydomonas 

reinhardtii this CO2-concentrating mechanism is maintained by the pH gradient created 

across the chloroplast thylakoid membranes by photosystem II-mediated electron transport 

processes.59 A large number of non-photosynthetic prokaryotes catalyze reactions for 

which CA could be expected to provide CO2/bicarbonate in the nearby of the active site, or 

to remove such compounds in order to improve the energetics of the reaction.21  

In vertebrates, including Homo sapiens, the physiological functions of CAs have widely 

been investigated over the last 70 years, but much is still to be learnt about this large 

family of metalloenzymes.19,23,28,60 Thus, isozymes I, II and IV are involved in respiration 

and regulation of the acid/base homeostasis.19 These complex processes involve both the 

transport of CO2/bicarbonate between metabolizing tissues and excretion sites (lungs, 

kidneys), facilitated CO2 elimination in capillaries and pulmonary microvasculature, 

elimination of protons in the renal tubules and collecting ducts, as well as reabsorption of 

bicarbonate in the brush border and thick ascending Henle loop in kidneys.19 Usually, 

isozymes I, II and IV are involved in these processes. By producing the bicarbonate-rich 

aqueous humor secretion (mediated by ciliary processes isozymes CA II, CA IV and CA 

XII) within the eye, CAs are involved in vision, and their misfunctioning leads to high 

intraocular pressure, and glaucoma.19 CA II is also involved in the bone development and 

function, such as the differentiation of osteoclasts, or the provision of acid for bone 
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resorption in osteoclasts. CAs are involved in the secretion of electrolytes in many other 

tissues/organs, such as: CSF formation, by providing bicarbonate and regulating the pH in 

the choroid plexus; saliva production in acinar and ductal cells; gastric acid production in 

the stomach parietal cells; bile production, pancreatic juice production, intestinal ion 

transport.19,61 CAs are also involved in gestation and olfaction, protection of gastro-

intestinal tract from extreme pH conditions (too acidic or too basic), regulation of pH and 

bicarbonate concentration in the seminal fluid, muscle functions and adaptation to cellular 

stress. Some isozymes, such as CA V, are involved in molecular signalling processes, such 

as insulin secretion signalling in pancreas β cells.19,61 Isozymes II and VA are involved in 

important metabolic processes, as they provide bicarbonate for gluconeogenesis, fatty acids 

ex novo biosynthesis or pyrimidine base synthesis.19 Finally, some isozymes (such as CA 

IX, CA XII, CARP VIII) are highly abundant in tumours, being involved in oncogenesis 

and tumour progression.60,62,63  

 

2.2 Carbonic Anhydrase inhibitors (CAIs) 

CAIs include the classical inhibitors acetazolamide (AAZ ), methazolamide (MZA ), 

ethoxzolamide (EZA ), sulthiame (SLT) and dichlorophenamide (DCP). Further, they also 

include more recent drugs/investigational agents such as dorzolamide (DZA ), brinzolamide 

(BRZ), indisulam (IND ), topiramate (TPM ), zonisamide (ZNS), sulpiride (SLP), 

COUMATE (CMT ), EMATE (EMT ), celecoxib (CLX ), valdecoxib (VLX ) and 

saccharin (SAC) (Chart 2.1; Table 2.1). Derivatives A and B are investigational agents for 

targeting the tumour-associated isoform CA IX. Many of these compounds were initially 

developed years ago in the search for diuretics; among them the thiazides, compounds C1-

5, as well as derivatives D-I  are still widely clinically used (Chart 2.1).2,19 However, some 

of these enzyme inhibitors could also be used for the systemic treatment of glaucoma, and 

more recently, newer derivatives have been discovered showing the potential as topical 

antiglaucoma agents, as well as antitumour, anti-obesity or anti-infective drugs.2,19,62-72,39,73-

76,43,77-79  

The inhibitory effects of some of these clinically used drugs against the mammalian 

isoforms CA I–XIV, of human or mouse origin, are shown in Table 2.1.  
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Table 2.1. Inhibition data with selected sulfonamides/sulfamates against isozymes I–XIV* 

Isozyme (h = human, m = mouse)  K I 

(nM )             

 hCAI‡ hCAII ‡ hCAIII ‡ hCAIV‡ hCAVA‡ hCAVB‡ hCAVI‡ hCAVII ‡ hCAIX§ hCAXII § mCAXIII ‡ hCAXIV‡ 

AAZ 250 12 2x105 74 63 54 11 2.5 25 5.7 17 41 

MZA 50 14 7x105 6.20 65 62 10 2.1 27 3.4 19 43 

EZA 25 8 1x106 93 25 19 43 0.8 34 22 50 2.5 

SLT 374 9 6.3x105 95 81 91 134 6 43 56 1450 1540 

DCP 1200 38 6.8x105 15000 630 21 79 26 50 50 23 345 

DZA 50000 9 7.7x105 8500 42 33 10 3.5 52 3.5 18 27 

BRZ 45000 3 1.1x105 3950 50 30 0.9 2.8 37 3.0 10 24 

IND 31 15 10400 65 79 23 14 122 24 3.4 11 106 

TPM 250 10 7.8x105 4900 63 30 45 0.9 58|| 3.8 47 1460 

ZNS 56 35 2.2x106 8590 20 6033 89 117 5.1 11000 430 5250 

SLP 12000 40 10600 6.5x105 174 18 0.8 3.630 46 3.9 295 110 

CMT 3450 21 7.0x105 24 765 720 653 23 34 12 1050 755 

EMT 37 10 6.5x105 NT NT NT NT NT 30 7.5 NT NT 

CLX 50000 21 7.4x104 880 794 93 94 2170 16 18 98 689 

VLX 54000 43 7.8x104 1340 912 88 572 3900 27 13 425 107 

SAC 18540 5950 1.0x106 7920 10060 7210 935 10 103 633 12100 773 

A 1300 45 1.3x106 650 134 76 145 18 24 5 76 33 

B 4000 21 3.1x105 60 88 70 65 15 14 7 21 13 

C 328 290 7.9x105 427 4225 603 3655 5010 367 355 3885 4105 

D 35000 1260 NT NT NT NT NT NT NT NT NT NT 

E 54000 2000 6.1x105 216 750 312 1714 2.1 320 5.4 15 5432 

F 348 138 1.1x104 196 917 9 1347 2.8 23 4.5 15 4130 

G 51900 2520 2.3x105 213 890 274 1606 0.23 36 10 13 4950 

H 62 65 3.2x106 564 499 322 245 513 420 261 550 52 

I  4930 6980 3.4x106 303 700 NT NT NT 25.8 21.2 2570 250 

 
*The isoforms CA VIII, X and XI are devoid of catalytic activity and probably do not bind sulfonamides as 
they do not contain Zn2+ ions. ‡Full-length enzyme. §Catalytic domain. ||The data against the full-length 
enzyme is of 1,590 nM. NT, not tested, data not available. 
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Chart 2.1. Structures of Carbonic Anhydrase inhibitors. 
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As specific isozymes are responsible for different biological responses, the diverse 

inhibition profiles of the various isozymes may explain the various actual and potential 

clinical applications of the CAIs, which range from diuretics and antiglaucoma agents, to 

anticancer, anti-obesity and anti-epileptic drugs. However, a crucial problem in CAI design 

is related to the high number of isoforms, their diffuse localization in many tissues and 

organs, and the lack of isozyme selectivity of the presently available inhibitors. It can be 

observed that there are sulfonamide- and sulfamate-avid isoforms, such as CA II, VI, VII, 

IX, XII and XIII, which generally show low nanomolar affinity for most of these 

inhibitors. Other isozymes, however, such as CA I, IV, VA, VB and XIV show less 

propensity to be inhibited by these compounds, with inhibition constants in the nanomolar 

to micromolar range. This leaves CA III as the only isoform that is not susceptible to 

inhibition by sulfonamides or sulfamates.  

Few of the derivatives AAZ-SAC  (Chart 2.1; Table 2.1) show selectivity for a specific 

isoform: the classical inhibitors, such as compounds AAZ-DCP , and the topically acting 

antiglaucoma sulfonamides DZA  and BRZ together with indisulam, are promiscuous 

CAIs, with strong affinities for isoforms II, VA, VB, VI, VII, IX, XII, XIII and XIV. 62,65-

72,39,80 Topiramate (TPM ) is a subnanomolar CA VII inhibitor but it also effectively 

inhibits isoforms II, VB and XII.62,65-72,39,80 Zonisamide (ZNS) shows a good affinity for 

CA IX but appreciably inhibits also CA II and VA, while having lower affinities for the 

other isoforms. Sulpiride (SLP) is a potent CA VI and CA XII inhibitor and shows lower 

affinity for other isoforms. Valdecoxib (VLX ) is a strong CA XII inhibitor,62,65-72,39,80 

whereas Saccharin (SAC) is a CA VII-specific inhibitor (KI of 10 nM against this isoform 

and much higher for the other CAs).73 

Progress in the design of CA‑selective and isozyme-specific CAIs has recently been made. 

Owing to the extracellular location of some CA isozymes, such as CA IV, IX, XII and XIV 

(Table 2.1), it is possible to design membrane-impermeant CAIs, which would therefore 

specifically inhibit membrane-associated CAs without interacting with the cytosolic or 

mitochondrial isoforms. This possibility has been explored through the design of positively 

charged sulphonamides that generally incorporate pyridinium moieties, compound B is a 

representative.74-76 The inhibitors obtained in this way showed nanomolar affinities for CA 

II as well as CA IV and CA IX, and, more importantly, they were unable to cross the 

plasma membranes in vivo.74-76 This new class of potent, positively charged CAIs, was able 

to discriminate between the membrane-bound and the cytosolic isozymes, selectively 

inhibiting only CA IV, in two model systems.74-76 Another approach for the design of 
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isoform-selective CAIs exploited the presence of an Ala65 amino-acid residue, which is 

present only in the ubiquitous CA II mammalian isoform.43 Compared with Topiramate, its 

sulfamide analogue is a 210-times less potent inhibitor of isozyme CA II, but effectively 

inhibits isozymes CA VA, VB, VII, XIII and XIV (KIs in the range of 21–35 nM). The 

weak binding of the sulfamide analogue to CA II was shown to be due to a clash between 

one methyl group of the inhibitor with the Ala65 amino-acid residue, which might 

therefore be exploited for the design of compounds with lower affinity for this isoform.43 

A further approach for selectively inhibiting the tumour-associated isoforms CA IX (and 

XII) present in hypoxic tumour tissues envisaged bioreductive prodrugs that are activated 

by hypoxia.77,78 The chosen strategy was to use the disulfide bond as a bioreducible 

function. The reducing conditions present in hypoxic tumours, in combination with the 

presence of the redox protein thioredoxin 1, mediates the reduction of the disulfide bond 

with the formation of thiols.77,78 The reduced compounds (thiols) are less bulky and show 

excellent CA inhibitory activity (in the low nanomolar range) compared with the 

corresponding sterically hindered disulfides, which have difficulty entering the limited 

space of the enzyme active site.77,78 Later in the text I’ll talk about the coumarins, a 

chemotype with inhibitory activity towards CAs, able to develop selectivity for precise 

isoforms, exploiting their excellent ability to arrange in the active site. 

 

2.3 Aim of the work 

The body of my work is composed by manifold, heterogenous projects regarding 

various fields of Carbonic Anhydrase application. The main theme of this thesis concerns 

the study of coumarins as novel class of CAs inhibitors. This old and well-known chemical 

class recently emerged as potential inhibitor for CAs, showing the ability to exert, in some 

cases, interesting features of selectivity towards specific isoforms. As there is a desperate 

need to find out selective scaffolds, able to interact with desired enzymes, avoiding the 

rising of complications and side effects, the behaviour showed by the first coumarin 

studied as CA inhibitor (6-(1S-hydroxy-3-methylbutyl)-7-methoxy-2H-chromen-2-one, 

compound 1, see below), prompted me to develop studies in this regard. In particular, I 

proceeded in three parallel ways: testing, with a stopped flow analyser, a library of 

variously substituted coumarins in order to increase SAR informations; synthesizing a 

series of coumarin derivatives, designed from considerations about compound 1; 

synthesizing a series of coumarins, obtained with a “clik chemistry” strategic approach. 

From this work emerged a series of 8-acethoxy-7-ether-coumarins (compounds 34, 42-47), 
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showing an interesting selectivity profile towards the membrane-bound CAXII, acting, on 

the other hand, as nanomolar range inhibitors (Chart 2.2).  
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Chart 2.2. Selective coumarin scaffolds. 

 

The synthesized coumarin derivatives have been tested on the two human tumor-associated 

CA isoforms hCA IX and XII, in comparison with the two dominant offtarget hCA I and 

II. Concerning in vitro biological assays, a stopped flow technique has been used. for all 

the tested compounds of this thesis. This is a useful method for following the kinetics of 

reactions in solution (usually in the millisecond time range), allowing to work with the 

physiological substrate of the enzyme.  

In second place, I considered the development of a new emerging field in Carbonic 

Anhydrase field: inhibition studies of β-CAs from Mycobacterium tuberculosis as novel 

topic in the research of new anti-tuberculosis leads with different mechanism of action. In 

particular, my work was to characterize, at the beginning, from a kinetic and an inhibitory 

point of view, mtCA 2, the most active CA isoform, expressed by this bacteria, whose 

chrystallographic structure recently emerged. The study of such inhibitory activity was 

conducted using clinical sulfonamides and sulfamates, some 

diazenylbenzenesulfonamides, as well as other common sulfonamidic scaffolds, largely 

used by our group to develop new derivatives. The enzyme showed the greatest catalytic 

activity (Kcat of 9.8 x 105 s-1, and Kcat/KM of 9.3 x 107 M-1 s-1) among the three β-CAs 

encoded in the genome of M. tuberculosis. Several low nanomolar mtCA 2 inhibitors have 

been detected among which acetazolamide, ethoxzolamide and some 4-

diazenylbenzenesulfonamides (KIs of 9–59 nM). Further I went on studying the inhibitory 

profile of a new kind of sulfonamidic scaffold over the β-CAs mtCA 1 and 3 from M. 

tuberculosis, Can2 from C. neoformans and CaNce103 from C. albicans. This scaffold, 

synthesized by one of our collaborators emerged for its excellent inhibitory profile even 

towards the 13 catalytically active α-CAs. 
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Finally, I considered one of the most interesting applications for CA inhibitors: the 

design of sulfonamidic derivatives as selective CA VA and VB (located in mitochondria) 

inhibitors, as antiobesity agents. The considered strategy for this synthesis was the so 

called “tail approach” which consists in coupling an aromatic/heterocyclic sulfonamidic 

scaffold with a particularly substituted portion. In this case I used, the two enantiomers of 

(±)-10-camphorsulfonyl chloride, in order: to increase the intrinsic lypophilicity of such 

derivatives (allowing them to pass through the cellular membrane); to equip such scaffolds 

with a mobile carbonic frame, able to rearrange itself inside the cavity of the active site to 

interact eventually with allosteric side portions; to study how the different geometries of 

the stereogenic centers could modulate the affinity and the activity of such molecules 

towards the different CAs isoforms. The new sulfonamides selectively inhibited the 

mitochondrial isoenzymes, over the two offtarget hCA I and II, with inhibition constants in 

the low nanomolar range. The nature, the chirality and position of the substituting groups 

greatly influenced CA inhibitory properties. 
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CHAPTER THREE 

Coumarins: a novel chemotype for CA inhibition 

 

3.1 Discovery and initial screenings 

In 2008, through a screening of natural product extracts using electrospray 

ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS), 

Vu et al. discovered81 that compound 1 was able to bind in a non-covalent mode bovine 

CA II. Derivative 1, named 6-(1S-hydroxy-3-methylbutyl)-7-methoxy-2H-chromen-2-one 

(Chart 3.1), was a natural product isolated from the plant Leionema ellipticum, typical of 

the eastern Australia. The relevance of this study and the possibility to find new CAs-

affine substrates, other than sulfonamides or their bioisosteres, prompted me to confirm the 

effective inhibitory activity of 1, assaying it on the 13 catalytically active mammalian 

isoforms of CA, in comparison with other two commercially available coumarins: the 

unsubstituted coumarin 2 and its 7-methoxy derivative 3 (Chart 3.1).  

 

O O O O O OOO
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Chart 3.1. Structures of compounds 1-3. 

 

Working with all other types of CAIs (sulfonamides, phenols, complexing inorganic 

anions), a period of 15 minutes is enough to form the enzyme-inhibitor complex and test 

the effective inhibitory activity.82-84,50,85 In the same conditions, working with coumarins, I 

was not able to detect any significant decrease in enzyme activity, but only a weak 

micromolar to millimolar inhibition profile (data not shown). However I hypothesized that 

the incubation time was able to modulate the inhibition profile of such derivatives and I 

decided to extend it, measuring the inhibition constants (KI), after 30 min, 1 h, 4 h, 6 h and 

24 h of incubation. For all investigated CA isoforms a progressive decrease, in terms of 

inhibition constants, was observed as the incubation time increased up to 6 h; while from 6 

to 24 h of incubation no further changes of KI were evidenced. Table 3.1 shows the KI 

values (µM) for compounds 1-3 following 6 h of incubation with the α-CA I-XV.  
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Table 3.1. Inhibition of Mammalian Isozymes CA I-XV with Coumarins 1-3 by a Stopped-Flow, CO2   
Hydration Assay Method 82 
 

K I (µM) c 
isozymea  1d 2d 3d 
hCA I 0.08 3.1 5.9  
hCA II 0.06 9.2 0.07  
hCA III >1000 >1000 161  
hCA IV 3.8 62.3 7. 8  
hCA VA 96.0 >1000 645  
hCA VB 17.7 578 48.6  
hCA VI 35.7 >1000 61.2  
hCA VII 27.9 >1000 9.1  
hCA IXb 54.5 >1000 767  
hCA XII b 48.6 >1000 167.4  
mCA XIII 7.9 >1000 6.0  
hCA XIV 7.8 >1000 9.7  
mCA XV 93.1 >1000 >1000  

 
a h ) human; m ) murine isozyme; nt ) not tested. b Catalytic domain. c Errors in the range of ±5% of the 
reported data from three different assays. d Preincubation of 6 h between enzyme and inhibitor. 
 

Against isoforms I and II (ubiquitous, cytosolic CAs)1 1-3 show effective inhibition, with 

K Is in the range 80 nM-5.9 µM (hCA I) and 60 nM-9.2 µM (hCA II), respectively. The 

best hCA I and II inhibitor was always the natural product 1. The remaining CA isoforms 

were typically inhibited only weakly by the simple coumarin derivatives 2 and 3 (many of 

them showed KIs > 1000 µM) with few exceptions: notably compound 3 against CA IV, 

VII, XIII, and XIV (K Is in the range 6.0-9.1 µM). The natural product 1 was an effective 

inhibitor of all CAs investigated here (except CA III, K I > 1000 µM), with inhibition 

constants in the range 3.8-93.1 µM against isoforms CA IV-XV (Table 3.1). The results 

observed with this panel of coumarin derivatives showed that there was a wide distribution 

of inhibition constants for the same compound against the various CA isoforms (e.g., 1 

showed inhibition constants in the range 59 nM-1000 µM). The inhibitory properties of 1-3 

were also dependent on the substitution pattern of the coumarin ring, with the number of 

these groups influencing inhibitory activity. The least active coumarin 2 lacked substitution 

on the aromatic coumarin scaffold and coumarin 1 had two substituents (in the 6 and 7 

positions), while coumarin 3 had a single substituent (7 position). For all these 

considerations, this chemotype immediately emerged as a promising opportunity to obtain 

potent and potentially isozyme-selective inhibitors for CAs. To understand the inhibitory 

mechanism with this new class of CAI, one of our collaborators resolved the X-ray crystal 

structure (at a resolution of 2.0 Å) of the most novel and potent of these inhibitors, 

coumarin 1, in adduct with the physiologically dominant CA isoform, hCA II.1,51 
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Inspection of the electron density maps (Figure 3.1) at various stages of the refinement 

showed features compatible with the presence of one molecule of inhibitor bound within 

the active site, but compound 1 could not be fitted in the observed electron density. 

Instead, its hydrolysis product, the cis-2-hydroxy-4- (1S-3-methylbutyl)-3-methoxy-

cinnamic acid 4Z (Scheme 1), perfectly fitted within this electron density (Figure 3.1).  

 

 
 

Figure 3.1. Omit map corresponding to the hydrolyzed coumarin 1 (i.e., the cis-2-hydroxy-cinnamic acid 
derivative 4Z), of some relevant CA II active site residues and the Zn(II) ion (violet sphere). 
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Scheme 3.1. Hydrolysis of Coumarins 1 and 2 to the corresponding hydroxy-cinnamic acid derivatives 4Z 

and 5Z/5E. 

 

The zinc bound hydroxide anion of the CA enzyme, responsible for the various catalytic 

activities of CAs,1,86 including the esterase activity,87 appeared likely to have hydrolyzed 

the lactone ring of 1 leading to the formation of 4Z. The inhibitor 4Z was found bound at 

the entrance of the active site cavity (Figure 3.2) with the two bulky arms in an extended 
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conformation effectively plugging this entrance. The hydroxypentyl arm oriented toward 

the hydrophilic half of the active site, while the cis-carboxyethylene arm pointed toward 

the hydrophobic half. In particular, the 1S-OH moiety of the hydroxypentyl arm exerted a 

strong dipole-dipole interaction with the carbonyl oxygen of the side chain of Asn67; an 

edge-to-face (CH-π)88,89 stacking between the aromatic ring of 4Z and the phenyl group of 

Phe131 was also evidenced (with a distance of ∼3.5 Å between them), while three active 

site water molecules further stabilized the interaction of 4Z with the enzyme (Figure 3.2). 

This binding mode was totally different, compared to the other CAIs classes mechanism, 

characterized by the total absence of any direct interaction with the catalytic metal ion. 

 

 
Figure 3.2. A) The hCA II-4Z adduct. B) Detailed interactions between CA II and inhibitor 4Z when bound 
to the enzyme. The catalytic Zn(II) ion is shown as violet sphere, with its three His ligands (His94, 96, and 
119) and coordinated water molecule (red smaller sphere) also evidenced. The inhibitor molecule (gold) 
interacts with three active site ordered water molecules (red spheres), with Phe131 and Asn67 (CPK colors) 
from the active site as well as with Glu238sym (yellow) from a symmetry related enzyme molecule. The 
proton shuttle residue His64 is also shown (CPK colors). 
 

Another important consideration emerged from the crystallographic studies: looking at the 

superposition90 of compounds 1 and 2 (Figure 3.3), complexed with hCAII, was evident 

that the first one, in its hydrolized form 4Z, was bound within the cavity of the active site, 

as the cis isomer, while the second one, always in its 2-hydroxy-cinnamic acid derivative 

5E, was bound in its trans isomer, more stable in thermodynamic terms. We tried to 

explain this unusual bound geometry in terms of steric hindrance: the cinnamic derivative 

of 1, in its trans isomer derivative, would be too bulky in the restricted space of the active 

site, that was able to promote even the less stable cis form.  

This evidence prompted me to consider the substitution pattern on the benzopyrone ring as 

the key element to modulate the orientation of the molecule within the active site, in a zone 
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that, all over the α-CAs, is very diversified; with the possibility to develop selectivity 

towards particular CA isoforms.  

To resume, the unusual binding mode, the time dependent inhibitory activity and the 

variation on the inhibition profile related to little modifications on the substitution pattern, 

introduced the coumarin chemotype as a very interesting research field in the Carbonic 

Anhydrase inhibition. The next step in my study, was to gain other structure-activity 

relationship data; so I tested some variously substituted coumarin and thiocoumarin 

derivatives, to bring novel insights regarding the inhibition mechanism as well as the 

structural requirements for such heterocyclic compounds to show pronounced affinity 

towards the various CA isoforms. 

 

Figure 3.3. Binding of the coumarin 2 hydrolysis product (trans-2-hydroxy-cinnamic acid 5E in yellow) and 
coumarin 1 hydrolysis product (cis- 2-hydroxycinnamic acid 4Z, magenta) to the hCA II active site.90 
 

With the one of our collaborating groups, I included in this new study a series of diversely 

substituted coumarins and thiocoumarins, of type 6-23 (Chart 3.2). Such derivatives 

incorporated different moieties, in the 3-, 6-, 7-, 3,6-, 4,7-, and 3,8- positions of the 

(thio)coumarin ring; they were considered in order to delineate the initial SAR features for 

this class of CAI, considering that the side chains present in the natural product coumarin 

1, were shown to interact extensively with the enzyme active site when bound (in 

hydrolyzed form) within it.51 The 7-monosubstituted coumarins, 6-10 possessed various 7-

alkoxy moieties, such as the aliphatic C2-C4 groups, together with the benzyl- and 

phenethyl- moieties. They were chosen to be investigated as the 7-methoxy group was 

present in the lead 1, and X-ray crystal data for the hCA II-1 adduct, showed the methoxy 
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group to participate in hydrogen bonds with ordered water molecules present within the 

CA active site, stabilizing thus the enzyme-inhibitor complex.51 Thus, observing the way 

the length and nature of this moiety could influence inhibitory activity, seemed to 

constitute an important aspect of the SAR.  
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Chart 3.2. (Thio)coumarin derivatives 6-23 for SAR study. 

 

Disubstituted coumarins 11-16,91-93 possessing a carboxylic acid as well as methyl-, 

methoxy-, and hydroxymethyl moieties in various positions of the ring, were also included 

in the study. Thiocoumarin 1794 was the only compound incorporating this ring system in 

our study and was chosen to understand whether substitution of oxygen by sulphur in the 

coumarin ring leaded to CA inhibitory properties for this class of compounds never 

investigated before, but also because the corresponding carboxy-substituted coumarin 12 

was present among the investigated derivatives. Disubstituted coumarins 18-2091-93 

incorporated ester moieties instead of the corresponding carboxylic acid present in the 

parent compound 15, whereas 20 was an ester analogue of the simple lead 3, investigated 

earlier.51 Because the lead 1 possessed a bulky moiety in position 6 of the coumarin ring, 

derivatives 21-2391-93 were included in the study due to the presence of both smaller, 

simpler such moieties (hydroxymethyl and aminomethyl), which can be easily derivatized, 
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and also of the much bulkier hexamethylene-tetramine one, present in 23. Compounds 6-10 

were prepared from the commercially available 7-hydroxy-coumarin (umbelliferone), by 

alkylation in Williamson conditions, with alkyl/arylalkyl halides, in presence of sodium 

hydride, as described in the literature (Scheme 3.2).95  

Compounds 11-23 were reported earlier in the search of serine protease inhibitors by 

Delarge’s and Masereel’s groups.91-94  

 

Scheme 3.2. Synthesis of derivatives 6-10.95 

 

O OHO
R

Br

O OO
Ri

Umbelliferone R = Et
       n-Pr
       n-Bu
       Bn
       2-(Ph)-Et

6: RII = Et
7: RII = n-Pr
8: RII = n-Bu
9: RII = Bn
10: RII= 2-(Ph)-Et

i: dry DMF, NaH 60%, r.t, 16h  
 

Inhibition data for compounds 6-23 against all 13 catalytically active mammalian (h = 

human, m = murine) CA isoforms, CA I-IV, VA, VB, VI, VII, IX, and XII-XV, are 

presented in Table 3.2. 

 
Table 3.2. Inhibition of Mammalian Isozymes CAI-XV(h=Human,m=Murine Isoform) with 
Coumarins/Thiocoumarins 6-23, by a Stopped-Flow, CO2 Hydration Assay Method (6 h Incubation Time 
between Enzyme and (Thio)coumarin).82 
 

K I (µM) c 
 

 isozymea 6 7 8 9 10 11 12 13 14 
hCA I 31.4 23.1 37.0 26.9 31.4 3.72 9.3 6.8 6.6 

hCA II 12.4 145 213 224 243 0.099 44.7 42.5 15.3 

hCA III 29.0 38.6 50.3 40.2 49.5 >500 9.1 13.4 14.5 

hCA IV 22.7 24.6 24.9 19.2 18.5 72.3 3.8 5.6 4.9 

hCA VA 7.3 8.1 9.0 7.6 6.6 >500 9.0 8.6 8.7 

hCA VB 6.09 71.7 76.4 65.1 69.4 >500 6.8 8.3 7.6 

hCA VI 5.8 37.4 26.8 9.7 8.5 >500 31.3 31.7 10.5 

hCA VII 7.2 7.7 15.0 11.8 15.9 9.4 5.1 29.6 4.9 

hCA IXb 1.6 3.3 4.5 1.7 3.9 >500 4.7 7.7 6.6 

hCA XII b 4.7 8.6 8.5 8.3 5.2 >500 9.0 8.6 9.0 

mCA XIII 27.4 34.3 8.2 9.6 9.8 31.7 7.3 7.4 3.8 

hCA XIV 4.7 5.0 4.3 2.0 5.5 82.3 7.4 13.0 39.6 

mCA XV 76.3 54.7 65.2 43.1 44.5 >500 5.6 6.7 7.2 



                                                                       Chapter Three.Coumarins: a novel chemotype for CA inhibitions 

 34 

K I (µM) c 
 

 isozymea 15 16 17 18 19 20 21 22 23 
hCA I 9.3 1.3 0.100 0.098 3.3 2.4 7.8 7.1 4.1 

hCA II 44.5 30.1 6.2 0.032 50.5 31.4 32.4 3.7 3.2 

hCA III 9.7 17.1 9.0 8.9 9.6 9.1 9.8 9.6 8.1 

hCA IV 4.3 5.8 4.1 6.5 0.048 5.7 5.1 5.4 6.2 

hCA VA 6.2 9.4 8.4 8.4 3.0 9.5 8.9 9.7 8.2 

hCA VB 8.6 6.5 7.5 7.1 2.9 8.0 6.8 6.2 5.6 

hCA VI 15.6 25.6 8.8 9.5 1.5 42.0 9.9 9.2 8.9 

hCA VII 6.6 6.1 7.3 7.3 0.045 20.3 6.9 8.1 3.1 

hCA IXb 5.6 7.4 0.047 0.045 0.047 6.5 0.093 6.7 0.048 

hCA XII b 8.9 8.6 8.7 5.6 8.4 8.8 8.2 8.6 3.2 

mCA XIII 0.048 7.8 0.042 0.041 6.1 6.2 0.046 0.040 3.8 

hCA XIV 8.4 1.0 7.4 7.3 4.6 9.6 9.5 8.8 7.7 

mCA  XV 8.6 6.4 4.8 7.4 0.046 6.6 7.4 7.1 8.2 

 
a h ) human; m ) murine isozyme. b Catalytic domain. c Errors in the range of ± 5% of the reported data from 
three different assays. 
 

From Table 3.2 the following considerations emerged as interesting: 

1. Isoform hCA I was inhibited by all coumarins/thiocoumarin 6-23, with inhibition 

constants in the range of 78 nM-37.0 µM. The best inhibitors were the 

thiocoumarin 17, as well as the hydroxy-methyl-substituted ester 18 (KIs of 78-100 

nM). Substitution patterns leading to reduced hCA I inhibitory activity were those 

present in 6-10 (longer aliphatic/arylalkyl chains in position 7 are thus detrimental 

to the inhibitory activity of these compounds compared to the unsubstituted 2 or 

methoxysubstituted compound 5) and 11 (possessing a 4-carboxy moiety) because 

these derivatives showed KIs > 9.3 µM. The remaining coumarins investigated here 

were medium potency hCA I inhibitors, with inhibition constants in the range of 

1.3-9.3 µM 

2. The physiologically dominant cytosolic isozyme hCA II was also inhibited by all 

these derivatives, with inhibition constants in the range of 32 nM-243 µM. The best 

inhibitor was again the methyl ester 18 (KI of 32 nM) the carboxylic acid 11 (KI of 

99 nM). Again, the monosubstituted derivatives 6-10 incorporating bulky chains in 

position 7 of the coumarin ring showed reduced inhibitory activity compared to the 

lead 3 (KIs of 12.4-243 µM), proving that substituents other than methoxy are not 

tolerated in that position for effective binding to hCA II. Not very effective hCA II 

inhibitors were also derivatives 12-16, possessing the free COOH moiety in 

position 3. The thiocoumarin 17 was on the other hand a more effective inhibitor 
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(K I of 6.2 µM). It is, however, worth noting that there is a very large difference of 

activity between the carboxylic acid 15 and the corresponding esters 18 and 19, 

with the methyl ester 18 being a very potent, nanomolar inhibitor (KI of 32 nM), 

whereas the free acid 15 and the ethyl ester 19 were 1390-1578 times less effective 

hCA II inhibitors. Such a sharp SAR for minimal structural changes (i.e., a CH2 

group) was never before evidenced for other classes of CAIs, such as the 

sulfonamides or the sulfamates,19 and constitutes a valuable feature for this type of 

inhibitor. 

3. The muscle isoform hCA III, which is not easily inhibited by sulfonamides,80 was 

weakly or not at all inhibited by coumarins 11 (KIs of 161 f 500 µM), whereas 

coumarins 6-10 and 13, 14 showed more efficient inhibitory activity, with KIs in 

the range of 13.4-50.3 µM. Even better activity was observed for the thiocoumarin 

17 and coumarins 12, 15, 18-23, with KIs in the range of 8.1-9.8 µM. 

4. The coumarin ester 19 was a nanomolar inhibitor of the extracellular isoform hCA 

IV (K I of 48 nM), whereas most other such derivatives (e.g., 12-18 and 20-23) 

showed effective inhibition, in the low micromolar range, with KIs of 3.8-7.8 µM. 

Compounds with bulky groups in position 7 of the coumarin ring such as 6-10 

showed also weak inhibition (KIs of 18.5- 24.9 µM) compared to the methoxy-

substituted coumarin 3. 

5. The mitochondrial isoform hCA VA was not inhibited by 11 (KI > 500 µM) but all 

other coumarins investigated here and the thiocoumarin 17 were, on the other hand, 

effective low micromolar hCA VA inhibitors (KIs < 10 µM), with the best inhibitor 

being the ester 19 (KI of 3.0 µM). Thus, in the case of this isozyme, even the bulky 

derivatives 6-10 act as efficient CAIs. 

6. The second mitochondrial isoform, hCA VB, showed a very different inhibition 

profile with compounds 6-23 compared to hCA VA. Thus, 11 showed no inhibitory 

activity (KI > 500 µM), the monosubstituted derivatives 6-10 were weak inhibitors 

(K Is in the range of 60.9-76.4 µM), whereas the remaining coumarins 12-16 and 

18-23, as well as the thiocoumarin 17, were effective hCA VB inhibitors, with 

inhibition constants in the range of 2.9-8.6 µM. Even in this case, minimal 

structural changes in the coumarin scaffold influenced very much the inhibitory 

activity.  

7. The secreted (saliva, milk) isoform hCA VI was not inhibited by 11 (KI>500 µM), 

and was weakly inhibited by the following coumarins: 7, 8, 12, 13, 15, 16, and 20 
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(K Is in the range of 15.6-61.2 µM). Thus, SAR is less defined here compared to 

other CA isoforms discussed above (e.g., for the bulky-substituted compounds 6-

10, there is no linear correlation between the length of the substituent present in the 

7 position and the hCA VI inhibitory activity). Effective hCA VI inhibitory activity 

(K Is in the range of 1.5-10.5 µM) was observed for derivatives 6, 9, 10, 14, 17 

(thiocoumarin), 18, 19, and 21-23. The best inhibitor was the ester 19 (KI of 1.5 

µM). 

8. The cytosolic isoform hCA VII was inhibited by all compounds 6-23 investigated 

here, with KIs in the range of 45 nM-29.6 µM. The only nanomolar inhibitor was 

the ester 19 (KI of 45 nM), whereas most of these derivatives were low micromolar 

inhibitors. The least effective inhibitors were 1, 13, and 20 (KIs in the range 20.3-

29.6 µM). Again, small structural variations in the coumarin scaffold led to 

important differences of activity (e.g., the comparison between 12 and 13, differing 

by a methylene unit but by a factor of almost 6 in their CA VII inhibitory activity). 

9. A large number of derivatives showed effective or very effective inhibitory activity 

against hCA IX, which represents a new drug target for developing antitumor 

therapies or diagnostic agents.7,9,63 Thus, thiocoumarin 17 and several coumarins 

(18, 19, 21, and 23) showed low nanomolar affinity for this enzyme, with inhibition 

constants in the range of 45-98 nM. These coumarins incorporated the 6-

hydroxymethyl- and 3-ester moieties (18 and 19), with no important differences of 

activity between the methyl and ethyl esters in this case. The monosubstituted 

derivatives 21 and 23 on the other hand contained either a compact (CH2OH) or a 

rather bulky (hexamethylenetetramine) group in position 6 of the coumarin ring, 

which render these findings quite important, as it was clear that for effective CA IX 

inhibition, a large variations of structural motifs were allowed in the 3- and 6-

positions of the (thio)coumarin ring. It was interesting to note that the isostructural 

(to 21) amine 22, was 72 times less potent than the alcohol 21. It was not 

improbable that the enhanced basicity of the amine 22, compared to the alcohol 21, 

resulted detrimental to binding within the enzyme active site, due to a different 

pattern hydrogen bonds between the two moieties and amino acid residues at the 

entrance of the cavity, where presumably these moieties are found. However this 

hypothesis has to be checked by X-ray crystallography, which will raise new 

understandings regarding the way of various substituents on the coumarin ring to 

interact with amino acid residues within the enzyme active site. The remaining 
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coumarins, e.g., 6-10, 12-16, 20, and 21, showed efficient, low micromolar 

inhibition of CA IX, with inhibition constants in the range of 1.6-7.7 µM. It may be 

seen that many substitution patterns on the (thio)coumarin ring led to effective 

nanomolar-low micromolar CA IX inhibitors, affording for drug design campaigns 

for this important drug target.1  

10. Most of the investigated (thio)coumarins were effective, low micromolar inhibitors 

on hCA XII, another transmembrane isoform present in tumors, with KIs in the 

range of 3.2-9.0 µM. Thus, a lot of substitution patterns present in compounds 6-23 

investigated here showed effective inhibition, although compounds with nanomolar 

affinity for this isozyme were not evidenced so far.  

11. Several low nanomolar mCA XIII inhibitors were observed among the investigated 

compounds, such as the thiocoumarin 17 and the coumarins 15, 18, 21, and 22, 

possessing inhibition constants of 40-48 nM. Together with CA IX, CA XIII is thus 

the isoform leading to the highest number of nanomolar inhibitors in this class of 

derivatives. Unlike other isoforms, CA XIII was equally inhibited by the free 

carboxylic acid 15 and its methyl ester 18 (KIs of 41-48 nM), whereas the longer 

ethyl ester 19 was 127-148 times less inhibitory than 15-18. Moderate inhibitory 

activity against CA XIII was observed with the coumarins 6, 7, and 11, whereas 

compounds 8-10, 12-14, 16, 19, 20, and 23 were medium potency, low micromolar 

inhibitors (KIs of 3.8-9.6 µM). 

12. The transmembrane isoforms hCA XIV showed an inhibition profile with the 

investigated derivatives rather similar to that of hCA XII, with which it shares some 

relevant sequence homology.8 Thus 11 and 14 were ineffective inhibitors (KIs of 

39.6 and 82.3 µM), whereas all other coumarins and the thiocoumarin investigated 

here showed effective, low micromolar inhibitory activity (K Is of 1.0-13.0 µM). 

The best hCA XIV inhibitor was the 3,8-disubstituted coumarin 16 (KI of 1.0 µM), 

which urges to investigate also this substitution pattern represented here only by 

this unique compound. 

13. mCA XV, the latest mammalian CA isoform described so far,96 was not inhibited 

by 2, 5 and 11and was weakly inhibited by derivatives 1 and 6-11, (KIs of 43.1-

>500µM). The ester 19 was, on the other hand, a low nanomolar mCA XV inhibitor 

(K I of 46 nM), whereas the remaining coumarins and the thiocoumarin 17 showed 

effective, low micromolar inhibitory activity (KIs of 4.8-8.6 µM). 
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All these data showed the potential of the coumarin/ thiocoumarin motif to selectively and 

potently inhibit some CA isoforms among the 13 catalytically active ones described in 

mammals. For example, 23 was a low nanomolar inhibitor of only CA IX (KI of 48 nM), 

whereas it inhibited in the micromolar range all other 12 CAs, a feature never evidenced 

before for a sulfonamide CAI.1,19 The same for 15 and 22, which acted as nanomolar 

inhibitors against mCA XIII (KIs of 40-48 nM), whereas the remaining 12 isoforms were 

inhibited in the micromolar range by these compounds.  

This studies confirmed our original consideration, it was possible for this kind of structures 

to develop selectivity towards one or few isoforms. Working with a mini-library of 

hydroxyl-substituted coumarins type 24-27 (comprehending 6-hydroxy and 7-

hydroxycoumarins), I observed that this kind of derivatives had a greater affinity for the 

two tumor-associated isoenzymes hCA IX and XII, emerging as therapeutic target and 

diagnostic tools, over the two dominant hCA I and II.97,98 Results of these assaya are 

represented in Table 3.3.  

 

Table 3.3. Inhibition of Mammalian Isozymes CA I, II, IX and XII with Coumarins 24-27 by a Stopped-
Flow, CO2 Hydration Assay Method.82 
 

O O

26

O O O OHOO O

25 2724

OH
OH

HO

 
 

K I (µM) c 
 
Compound hCA Ia hCA IIa hCA IXa,b hCA XIIa,b 
24d 79.4 >100 0.508 9..60 
25d 95.0 >100 0.418 6.30 
26d >100 >100 0.198 0.683 
27d 58.4 >100 0.482 0.754 
 
a h ) human. b Catalytic domain. c Errors in the range of ±5% of the reported data from three different assays. 
d Preincubation of 6 h between enzyme and inhibitor. 
 

The following structure–activity relationship (SAR) observations can be drawn from data 

of Table 3.3: 

1. The slow cytosolic isoform hCA I was weakly inhibited by coumarins 24-27, with 

inhibition constants in the range of 58.4 to >100 µM, unlike the natural product 1 

which was a very effective inhibitor (KI of 0.078 µM). The ‘best’ hCA I inhibitor 
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among the newly investigated derivatives was 7-hydroxy-coumarin 27 (KI of 58.4 

µM) which was anyhow 748 times weaker than 1. Thus, irrespective of the position 

of the hydroxy moiety in the coumarin ring, in the 3-, 4-, or 6-position, these 

compounds were very weak or totally ineffective hCA I inhibitors. 

2. The second offtarget isoform, hCA II, was not inhibited at all by coumarins 24-27 

investigated here (KIs >100 lM). This is a very significant result, especially 

considering the fact that 1 was an effective hCA II inhibitor (KI of 0.059 µM).  

3. Although the tumor-associated hCA IX is not significantly inhibited by coumarins 

1 (Table 3.1), derivatives 24-27 investigated here showed effective inhibition, with 

K Is in the range of 0.198–0.508 µM. The most effective hCA IX inhibitors were 6-

hydroxycoumarin, with KI of 0.198 µM. 

4. The same behavior as that observed for hCA IX was also detected for the inhibition 

of the second tumor-associated isoform, hCA XII; with the coumarins investigated 

here. Thus, the leads 1 was ineffective as hCA XII inhibitors (KIs >48.6 µM) 

(Table 3.1), whereas 24-27 behaved as much more effective inhibitors, with KIs in 

the range of 0.683–9.60 µM. Coumarins 26 and 27 showed submicromolar hCA 

XII inhibition (K Is of 0.683–0.754 µM) whereas the remaining ones were low 

micromolar inhibitors (KIs of 6.30–9.60 µM). 

In conclusion such derivatives showed to be interesting leads for the design of novel CAIs 

and I further proceeded developing a new series of compounds starting from these 

consideration (see further).  
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3.2 Synthesis of “compound 1-related” coumarins 

As shown in Table 3.1, compound 1 presented good selectivity towards the two 

dominant isoforms hCA I and II. This prompted me to consider more in detail the chemical 

pattern of this scaffold, characterized by: the absence of any substituent in positions 3 and 

4 (a feature that distinguished it from the majority of compounds presented until now); a 

saturated alkyl, hydroxyl substituted, chain in position 6 and a methoxy group in position 7 

of the ring. The interactions such moieties have been described above.51 At the beginning 

my purpose was to insert different groups on the scaffold to check eventual variations in 

activity. Looking back at Figure 3.3, the superposition of compound 1 and coumarin 2 

adducts within the hCA II active site revealed that the molecules could bind, in their 

hydrolized forms, within the active site in the same zone, which is very diversified among 

the α-CAs, with different geometries of the propenoic acid arm, that could be present in 

each E and Z isomers, and with different orientations, depending on the substitution 

pattern on the heterocycle. These behaviours could be translated in the development of 

selectivity towards specific isoforms. So I considered to synthesise a new series of 

structures “type A” (Chart 3.3), presenting: no substituents in positions 3 and 4; the 

replacement of the hydroxyl moiety of 1 with a carbonyl group, altering the length of 

chains in position 6, to modulate the interactions of that zone with the active site; ether 

moieties in position 7 with various lengths and no insaturations to have the maximum 

mobility. 

 

Chart 3.3. Type A structures emerging from compound 1. RI and RII are alkyl substituents reported below. 

 

O O O OO

OH

1

RI

O

O
RII

A  

For the design of these novel CAIs “type A“ 36-50, I started from the commercial 

derivative umbelliferone as shown in Scheme 3.3. 
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Scheme 3.3. Synthesis of derivatives 30-50.99,100 

 

O OHO R' OH

O

O OORI

O

O OHO

O RI

O OHO

RI

O

O ORIIO

RI

O

O ORIIO

O RI

28: RI = Me
29: RI = Et

30: RI = Me
31: RI = Et

i

ii

32: RI = Me
33: RI = Et

34: RI= Me
35: RI = Et

iii iii

RI = Me 36: RII = Me
37: RII = Et
38: RII = n-Pr
39: RII = n-Bu
40: RII = Bn
41: RII =

Umbelliferone

RI = Me 42: RII = Me
43: RII = Et
44: RII = n-Pr
45: RII = n-Bu
46: RII = Bn
47: RII =

RI = Et 48:RII = Me
49: RII = Et
50: RII = n-Pr

i: dry DMF, DMAP, DCC, r.t, 16h; ii: AlCl3, 180°, 4h; iii:R II-OH, dry THF, PPh3, DIAD, r.t, 16h.
 

umbelliferone has been converted to the corresponding acetyl and propionyl esters 30 and 

31, by reaction with carboxylic acids 28 and 29 in the presence of carbodiimides (DCC, 

dicyclohexyl carbodiimide and DMAP, dimethylaminopyridine), as shown in Scheme 3. 

Ester derivatives 30, 31 were subjected to the Fries rearrangement,99 in the presence of 

AlCl 3 at 180°, to give the mixture key intermediates isomeric acyl-umbelliferones 32, 33 

and 34, 35. These have been separated by flash-chromatography. The ratio of desired 6,7- 

disubstituted versus not yet considered 7,8-disubstituted coumarins, obtained after the 

rearrangement, was generally of 1:9. Compounds 36-50 were the obtained in Mitsunobu 

conditions,100 using the appropriate aliphatic alcohol and the purified key intermediates 32-

35 mentioned above, in presence of DIAD and triphenylphosphine. 2-(1-adamantyl)-
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ethanol 53 was synthesized starting from 1-adamantane acetic acid 51 converted in its 

methyl ester derivative 52, with anhydrous methanol in presence of thionyl chloride. Such 

intermediate was reduced to primary alcohol 53 using LiAlH4 in THF (Scheme 3.4).101 

 

Scheme 3.4. Synthesis of derivative 53. 

O

OH
i

O

O
ii

OH

i: SOCl2, MeOH, r.t, 1h; ii: LiAlH4, dry THF, r.t, 3h.

51 52 53

 

My initial aim was to isolate only 6,7 disubstituted derivatives, but I decided to go on even 

with their regioisomers to implement the SAR data. Inhibition data with umbelliferone and 

32-50 against four CA isozymes, i.e., hCA I, II, IX and XII, 82 are shown in Table 3.4. 

 

Table 3.4. Inhibition of Mammalian Isozymes CA I, II, IX and XII with Coumarins 32-50 by a Stopped-
Flow, CO2 Hydration Assay Method.82 
 

K I 
c 

 
Cpd hCA Ia (µM) hCA II a (µM) hCA IXa,b (nM) hCA XII a,b (nM) 
umbelliferoned 58.4 >100 482 754 
32d >100 >100 8030 >100000 
33d >100 >100 8015 >100000 
34d >100 >100 73.0 61.9 
35d >100 >100 58.2 61.7 
36d >100 >100 7800 6540 
37d >100 >100 7400 >100000 
38d >100 >100 7580 >100000 
39d >100 >100 >100000 >100000 
40d >100 >100 >100000 >100000 
41d >100 >100 >100000 77700 
42d >100 >100 78.3 60.9 
43d >100 >100 70.8 1.0 
44d >100 >100 56.7 0.98 
45d >100 >100 61.2 8.8 
46d >100 >100 72.3 22.4 
47d >100 >100 63.9 31.5 
48d >100 >100 37.8 26.3 
49d >100 >100 46.7 33.2 
50d >100 >100 50.2 38.4 
 
a h ) human. b Catalytic domain. c Errors in the range of ±5% of the reported data from three different assays. 
d Preincubation of 6 h between enzyme and inhibitor. 
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The following structure-activity relationship (SAR) observations could be drawn from data 

in Table 3.4. 

1. The coumarins possessing 6,7-disubstituted moieties, of types 32-33 and 36-41, 

showed very weak or total lack of CA inhibitory activity against all investigated 

isoforms. Thus, only 32 and 33 were micromolar hCA IX inhibitors; 36 was a 

micromolar inhibitor of hCA IX and XII, whereas all other compounds generally 

showed inhibition constants > 100 µM against all investigated isoforms. Definitely, 

this substitution pattern leads to a total loss of CA inhibitory properties to the 

compounds incorporating it. 

2. Compounds 34,35 as well as 42-50, isomeric to the previously discussed ones, but 

possessing the substitutents in the 7,8 positions of the coumarin ring, showed a 

totally different inhibition profile. Thus, all these compounds were ineffective as 

hCA I and II inhibitors, with KIs > 100 µM, similar to the lead molecule 

umbelliferone. This was a desirable feature for CAI, in order to target isoforms 

involved in pathological processes, and not hCA I and especially hCA II (which is 

the physiologically dominant isoform), whose inhibition may be deleterious and 

lead to side effects of such a drug.1,19  

3. The tumor-associated hCA IX was inhibited by umbelliferone in the submicromolar 

range (KI of 482 nM), as discussed above, but most of its derivatives 34,35 and 42-

50 were much better inhibitors, with KIs in the range of 37.8 – 78.3 nM. Thus, for 

the compounds obtained after the Fries rearrangement, the activity increased from 

the acetyl 34 to the propionyl 35 derivatives. In the case of the ethers 42-47, 

activity increased from the C1 to the C3 derivative (the n-propyl derivative 44 was 

the best hCA IX inhibitor for ther acetyl subseries), to decrease then again for the 

benzyl and adamantylethyl derivatives 46 and 47. However the ethyl and 

adamantylethyl derivatives had quite similar derivatives, proving that SAR (which 

generally for this class of CAIs is very much sensitive to small modifications in the 

scaffold of the inhibitor) was less sharp for these two derivatives differing quite a 

lot by the presence of such a bulky group in 47 (compared to 43). However, for the 

other derivatives investigated here the reverse was true, with small modifications 

leading to a sharp increase or decrease of activity (compare 34 and 35, 43 and 44, 

44 and 45, respectively). For the propionyl derivatives 48-50, activity was even 

more increased compared to the corresponding acetyl derivatives 42-44, with 
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inhibition constants in the range of 37.8 – 50.2 nM. The best hCA IX inhibitor was 

48, with a KI of 37.8 nM. 

4. The same behavior as that observed for hCA IX was also detected for the inhibition 

of the second tumor-associated isoform, hCA XII with coumarins 34,35 and 42-50 

investigated here. Thus, the lead umbelliferone was a moderate hCA XII inhibitor, 

with a KI of 754 nM, whereas the new compounds reported here possessing the 7,8-

disubstitution pattern, behaved as much more effective inhibitors, with KIs in the 

range of 0.98 – 61.9 nM. It was the first detection of subnanomolar inhibition with 

a coumarin derivative a very interesting finding (many sulfonamides with 

subnanomolar inhibition of various CA isozymes are known).1,102 The following 

SAR was evidenced for these new hCA XII inhibitors. The two key intermediates 

34 and 35 had the same potency as hCA XII inhibitors (KIs of 61.7 –61.9 nM), 

irrespective whether an acetyl or propionyl moiety was present in the 8 position of 

the coumarin ring. This behavior is different from that observed with these two 

compounds against hCA IX, as discussed above. The ethers 42-50 showed on the 

other hand enhanced inhibitory properties compared to the parent phenols from 

which they were prepared. Thus, the methoxy derivatives 42 and 48 were better 

inhibitors than the parent phenols 34 and 35, but the increase in activity was not 

highly significant (KIs of 60.9 nM for 42 and of 26.3 nM for 48 have been 

measured). However for the acetyl series, the increase of the aliphatic chain in the 

ether moiety from one (in compound 42) to two and three carbon atoms led to an 

impressive increase in the hCA XII inhibitory activity, the compounds 43 and 44 

having inhibition constants of 1 nM and of 0.98 nM, respectively. Further 

increasing the length of the aliphatic chain, as in 45, or introduction of the benzyl 

or adamantylethyl moieties, as in 46 and 47, led to a decrease in activity, but these 

compounds were still among the best hCA XII coumarin CAIs reported so far, with 

K Is of 8.8 – 341.5 nM. For the propionyl series, the activity remained good enough 

but the compounds 49 and 50 were less active compared to the corresponding 

acetyl derivatives 43 and 44. 

SAR for the inhibition of hCA IX and XII was complex but the main features associated 

with low nanomolar inhibitors have been delineated. So, starting from consideration on 

natural compound 1, synthesis of 7,8 disubstituted derivatives type 42-50, led to the 

discovery of inhibitors acting in the low nanomolar range, with fivefold selectivity towards 

hCA XII compared to the off-target hCA I and II. 
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3.3 Assaying heterogenous coumarinic compounds 

In order to increase SAR data on this class of compounds, in particular towards 

hCA IX and hCA XII isoforms, I evaluated the inhibitory activity of very different 

coumarinic patterns, synthesized by Trapencieris’ groups. To gain an easier approach to 

the data analysis I divided such compounds in six classes comprehending: 

sulfonamido/sulfonate derived coumarins, hydroxamate derived coumarins, methoxy 

substituted coumarins, pyrrolecoumarins, coumarins showing one or more hydroxyl 

moiety, heterocyclic analogs of coumarins.  

In Table 3.5 are shown inhibition data for sulfonamido/sulfonate derivatives 54-57 against 

mammalian isoforms hCAIX and hCA XII, compared to the two housekeeping, offtarget 

isoforms hCA I and II. 

 

Table 3.5. Inhibition of Mammalian Isozymes CA I, II, IX and XII with Coumarins 54-57 by a Stopped-
Flow, CO2 Hydration Assay Method.82 
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H2N O
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HO O O
S

HO O
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O O
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H2N O
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24 55 5756
 

K I (nM)c 
 
Compound hCA Ia hCA IIa hCA IXa,b hCA XIIa,b 
54d 485 372 370 80.2 
55d 754 821 608 81.9 
56d 8.7 7.3 43.5 8.2 
57d 9.5 8.0 34.7 64.1 
 
a h ) human. b Catalytic domain. c Errors in the range of ±5% of the reported data from three different assays. 
d Preincubation of 6 h between enzyme and inhibitor. 
 

In particular, the aim of this first study was to confirm the need to avoid the presence of the 

sulfonamido moiety or its bioisosteres, in order to develop isoform selectivity for this kind 

of scaffold; indeed all reported compounds acted as effective inhibitors all over the four 

isoforms, with a loss in selectivity towards them. As expected, the sulfonamido/sulfonate 

moiety exerted an inhibitory activity much more potent than the one showed by the 

coumarin moiety itself, lowering the KIs values to the range of nM (from 7.3 to 821 nM). 

In a recent elegant X-Ray chrystallographic study, Wagner et al. described some adducts 
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of sulfonamido-coumarinyl derivatives within hCA II active site.103 It was shown the 

expected direct interaction between the sulfonamido moiety and the metal ion, whereas the 

coumarinyl tail was not hydrolyzed, but interacted with other residues of the active site, in 

particular Phe131. This was in accordance with these first results: the loss in selectivity of 

derivatives 54-57 was related to the sulfonamido moiety coordination on the catalytic zinc; 

the inhibitory activity of such molecules could not be ascribed to the not hydrolyzed 

coumarin ring, 

In Table 3.6 are shown KI values for hydroxamic derivatives 58-62. In particular 

compounds 58, 59 presented a methyl-hydroxamic moiety in position 4 of the heterocycle, 

while compounds 60-62, N-substituted pyrrolecoumarins, presented an hydroxamic portion 

in position 8. 

 

Table 3.6. Inhibition of Mammalian Isozymes CA I, II, IX and XII with Coumarins 58-62 by a Stopped-

Flow, CO2 Hydration Assay Method.82 

 

O O

N
H

O
OH

MeO

58: 7-OMe
59: 6-OMe

O O

N
R

O
N
H

OH

60: R = n-Pr
61: R = Ph
62: R = (2-Ph)-Et  

 

K I (µM) c 
 
Compound hCA Ia hCA IIa hCA IXa,b hCA XIIa,b 
58d 43.7 >100 0.93 0.226 
59d 80.1 >100 0.965 0.156 
60d 91.5 >100 9.21 43.7 
61d 66.0 >100 9.20 50.4 
62d 59.4 >100 7.34 9.60 
 
a h ) human. b Catalytic domain. c Errors in the range of ±5% of the reported data from three different assays. 
d Preincubation of 6 h between enzyme and inhibitor. 
 

In this case I tested scaffold presenting an hydroxamate moiety as zinc-binding 

group. With the elimination of the sulfonamido moiety there was a relevant decrease in 

inhibitory activity of these compounds, with KI values in the range of µM. Thus, 

hydroxamic acids, even if capable to bind directly to the catalytic zinc, do not represented 

so effective substituent in inhibiting CAs, assembled on these cumarinic scaffolds. In 
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general compounds 58 and 59 showed a better activity profile, compared to tricyclic 

derivatives 60-62, quite poor inhibitors of hCA IX and XII; indeed they showed KI values 

in high nM range, with an important decrease in activity towards hCA I and II. 

From this point we focused on type 58, 59 scaffolds: 6- or 7-methoxy, 4-substituted 

coumarins 63-70. From the early studies on compounds 1-3, methoxy group emerged as an 

important tool for coumarins regarding CAs inhibition; it appeared of some relevance to 

investigate how the postion of this substituent, on the heterocycle, could modulate the 

inhibitory activity itself.,In this case, assys have been conducted on scaffold presenting 

methyl, trifluoromethyl, acetic acid or ethyl acetate in position 4 of the ring. In Table 3.7 

are reported inhibition data for compound 63-70. 

 

Table 3.7. Inhibition of Mammalian Isozymes CA I, II, IX and XII with Coumarins 63-70 by a Stopped-

Flow, CO2 Hydration Assay Method.82 

 

O O

R

O O O

R

O

63: R = Me
64: R = CF3
65: R = CH2COOH
66: R = CH2COOEt

67: R = Me
68: R = CF3
69: R = CH2COOH
70: R = CH2COOEt  

 

K I (µM) c 
 
Compound hCA Ia hCA IIa hCA IXa,b hCA XIIa,b 
63d 3.34 0.103 0.126 0.309 
64d 4.15 10.23 0.260 0.367 
65d 13.6 >100 0.759 0.315 
66d 77.1 >100 0.930 0.226 
67d 40.6 >50 0.261 0.323 
68d >50 >50 0.423 0.274 
69d 43.5 >50 0.235 0.278 
70d 4.38 >100 0.481 0.845 
 
a h ) human. b Catalytic domain. c Errors in the range of ±5% of the reported data from three different assays. 
d Preincubation of 6 h between enzyme and inhibitor. 
 

7-methoxy-substituted compounds showed a better profile in activity all over the four 

isoforms, except for 66; in particular derivatives 63 and 64 manteined activity even 

towards hCAII, that was coherent with data shown in Table 3.2 for compound 3; the only 

difference was a threefold activity increase towards the two tumor-associated isoforms, 
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dued to the presence of methyl or trifluoromethyl moiety in position 4. An enlargement in 

size of this group led to a decrease, or to total loss, in activity versus hCAII, keeping KI 

values for hCA IX and XII in the range of high µM. Despite of this increment in activity, 

compared to compound 3, the selectivity profile of derivatives 63-66 did not meet our 

requirements to be ascribed as interesting lead. The same arguments for compounds 67-70 

which showed a lower, but always comparable, activity towards the four isoforms. To 

summarize the only interesting considerations, raising from this study, are the following: 

1. Not elaborated, 6- or 7- methoxy-substituted coumarinic scaffolds were able to 

preserve activity towards hCAII. 

2. Little changes in substitution pattern, like the addition of methyl or trifluoromethyl 

moieties, in certain positions, can dramatically increase the activity towards certain 

CA isoforms for this kind of derivatives. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                                                                       Chapter Three.Coumarins: a novel chemotype for CA inhibitions 

 49 

Table 3.8. Inhibition of Mammalian Isozymes CA I, II, IX and XII with Coumarins 71-85 by a Stopped-
Flow, CO2 Hydration Assay Method.82 
 

O O

HO

O O

HO

O OHO

RI

OH

71: RI = 4-Ph; RII = H
72: RI = 3-4-Cy; RII = H
73: RI = 4-Me; RII = 5-Me
74: RI = 4-Me; RII = 8-Cl

75: RI = 4-Ph
76: RI = 3-4-Cy
77: RI = 4-Me

78: RI = CF3
79: RI = Me
80: RI = CH2COOH
81: RI = CH2COOEt;

82: RI = CF3; RII = 7-Me; RIII = H 
83: RI = Me; RII = 7-Me; RIII = H 
84:RI = CF3; RII = 7-Me;RIII = 8-Me 
85: RI = Me; RII = 7-Me;RIII = 8-Me

RII

O OHO

RI

OH

RII

RI RI

RII

RIII

 
 

K I (µM) c 
 
Compound hCA Ia hCA IIa hCA IXa,b hCA XIIa,b 
71d 3.50 13.12 0.273 0.287 
72d 4.13 6.65 0.346 0.234 
73d 4.22 9.27 0.202 0.293 
74d 6.39 >100 629 908 
75d 3.93 15.6 0.204 0.280 
76d 3.96 12.45 0.138 0.297 
77d 4.21 16.60 0.215 0.269 
78d >50 >50 0.335 0.360 
79d 40.1 >50 0.203 0.287 
80d >50 >50 0.173 0.325 
81d 6.31 >100 312 816 
82d 47.1 >50 0.402 0.305 
83d >50 >50 0.220 0.291 
84d >50 >50 0.410 0.283 
85d >50 >50 0.173 0.325 
 
a h ) human. b Catalytic domain. c Errors in the range of ±5% of the reported data from three different assays. 
d Preincubation of 6 h between enzyme and inhibitor. 

 

Thus, I proceeded considering scaffolds 71-85 presenting free hydroxyl moieties on 

the heterocycle. In particular such molecules possessed one or more hydroxyl groups in 

various position of the ring (position6, 7 or 7 and 8 of the ring), a subsituent in position 4 

and one or more different moieties, not always present, in other positions, like 5, 7 or 8 of 

the ring. In Table 3.8 are shown inhibition data for compound 71-85. 
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This series of compounds did not show an increment in selectivity towards the two tumor-

associated hCA isoforms; maybe emerged a little decrease, from this point of view, 

comparing such derivatives with the profile of compounds 73-80 shown above. In general 

all these compounds maintained a certain activity towards all the four considered isoforms; 

K I values towards hCA I remained in the range of medium µM, except for compounds 78-

79 and 82-85; hCA II was inhibited in the range of medium µM by compounds 71-73 and 

75-77, all other derivatives did not show interesting affinity for such enzyme; the inhibition 

profiles towards hCA IX and XII were comparable with the ones of compounds 63-70 

showing methoxy , but not free hydroxyl, moieties; this except for compounds 74 and 81 

(K I values of 629 µM and 312 µM respectively for hCA IX; 908 and 816 µM respectively 

for hCA XII).  

Considering 6-hydroxyl substituted derivatives 78-85, insertion of various moieties on the 

heterocycle did not modulate the activity profile of such derivatives; the one and only 

exception was for compound 81 which presented ethyl acetate moiety in position 4 leading 

to a better inhibitory activity towards hCA I (KI of 6.31 µM) but to a total loss in activity 

towards the other three considered isoforms (KIs > 100 µM). The same argument for 7-

substituted compounds 71-77: maybe they showed a little enhanced activity towards hCA 

II, but not relevant differences arose, among these derivatives, in hCA IX and XII 

inhibition; the only consideration was for compound 74 showing a chlorine moiety in 

position 8, presenting a 81-like inhibition profile.  

In Table 3.9 are presented KI values for other N-substituted pyrrolecoumarins 86-93. Such 

derivatives were related to compounds 60-62 shown above, differing from these by the 

lack of hydroxamic moiety in position 8 of the heterocycle, replaced by carboxylic or ethyl 

carboxylate groups.  
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Table 3.9. Inhibition of Mammalian Isozymes CA I, II, IX and XII with Coumarins 86-93 by a Stopped-
Flow, CO2 Hydration Assay Method.82 
 

O O

N
R

O
OH

O O

N
R

O
O

86: R =Et
87: R = Ph
88: R = Bn
89: R = (2-Ph)-Et

90: R =Et
91: R = Ph
92: R = Bn
93: R = (2-Ph)-Et  

 

K I (µM) c 
 
Compound hCA Ia hCA IIa hCA IXa,b hCA XIIa,b 
86d 93.8 >100 15.0 12.7 
87d 81.2 >100 0.959 5.70 
88d 46.5 >100 0.923 0.145 
89d 79.2 >100 11.3 15.2 
90d >100 >100 8.36 9.35 
91d 89.7 >100 9.60 58.1 
92d 56.3 >100 0.934 0.285 
63d 59.5 >100 0.749 0.287 
 
a h ) human. b Catalytic domain. c Errors in the range of ±5% of the reported data from three different assays. 
d Preincubation of 6 h between enzyme and inhibitor. 
 

In general, 8-carboxy-substitited compounds 86-89 and 8-ethyl carboxylate-

substituted derivatives 90-93, presented analog inhibitory profile over the considered 

hCAs, with poor activity towards hCAI and II and KI values for hCA IX and XII variable 

from low to high micromolar range. However it was worth noting that, in comparison with 

their hydroxamic analogs 60-62, derivatives 86-93 showed a better selectivity profile 

towards the two targeted isoforms hCA IX and XII. Here, once more, the proof that the 

replacement of a suitable zinc coordinating group like the hydroxamic acid, with milder 

functions (carboxylic acids or esters), arose the possibility to meet our aim. 
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Table 3.10. Inhibition of Mammalian Isozymes CA I, II, IX and XII with Coumarins 94-115 by a Stopped-
Flow, CO2 Hydration Assay Method.82 a h ) human. b Catalytic domain. c Errors in the range of ±5% of the 
reported data from three different assays. d Preincubation of 6 h between enzyme and inhibitor. 
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95: RI = CH2COOEt; RII = H
96: RI = CF3; RII = H
97: RI = CH2COOH; RII = H
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99: RI = Me
100: RI = CH2COOEt
101: RI = CF3
102: RI = CH2COOH

N O O

RI
RII

RIII

103: RI = H; RII = OH; RIII = H
104: RI = 4-Me; RII = OH; RIII = H
105: RI = 4-CF3; RII = OH; RIII = H
106: RI = 3-Ph; RII = H; RIII = 7-OMe
107: RI = 3-o-To; RII = H; RIII = 7-OMe

N O O

RI

RII

108: RI = H; RII = 7-OH
109: RI = Me; RII = 7-OH
110: RI = CF3; RII = 7-OH
111: RI = CH2COOMe; RII = 7-OH
112: RI = Me; RII = 5-OH
113: RI = CF3; RII = 5-OH

N O O

114

N
O O

115

HO

 
 

K I (µM) c 
 
Compound hCA Ia hCA IIa hCA IXa,b hCA XIIa,b 
94d >100 >100 0.388 0.796 
95d >100 >100 0.314 0.589 
96d >100 >100 0.256 0.611 
97d >100 >100 0.292 0.759 
98d 81.8 >100 0.959 5.70 
99d >100 >100 0.202 0.388 
100d >100 >100 0.173 0.510 
101d >100 >100 0.298 0.722 
102d >100 >100 0.365 0.384 
103d >100 >100 0.749 0.657 
104d >100 45.2 0.490 6.14 
105d 60.7 28.4 0.208 3.19 
106d >100 >100 7.23 8.52 
107d >100 >100 6.95 9.58 
108d 9.37 35.9 0.174 0.478 
109d 42.7 33.9 0.113 3.67 
110d 60.7 28.4 0.208 3.19 
111d 9.22 61.3 0.367 5.91 
112d >100 >100 0.731 0.683 
113d >100 >100 0.760 0.601 
114d >100 25.4 0.495 7.78 
115d 30.4 76.5 0.243 7.35 
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At the end of this intial screening, I considered coumarin-like scaffolds 94-115. 

These compounds differed from the series described until now for the variation in the 

heterocycle ring: the benzenic ring of benzopyrone was substituted by thiophene, quinoline 

or pyridine heterocycles. The reason to test these derivatives was to verify if changes in the 

intimate heterocycle structure, correlated with various substitution patterns, were 

responsible for a relevant modulation in selectivity profile towards the same four CA 

isoforms. In Table 3.10 are presented KI values for “coumarin-like” structures 94-115. 

The trend of this series reflected the ones of other compounds shown earlier: poor activity 

towards the offtarget hCA I and II, KI values in the range of µM towards the tumor-

associated hCA IX and XII. More in detail, hCA I was not so relevantly affected by 

derivatives 94-115 (KI values in the high µM range), except for 108 and 111, two pyrano-

pyridine-2-one derivatives showing a free hydroxyl moiety (KI of 9.37 µM and 9.22 µM 

respectively). The same inhibition profile for the dominant isoform hCA II: just three 

compounds 105, 110 and 114 presented KIs of 28.4 µM, 28.4, 25.4 µM respectively; the 

other compounds did not show affinity for such isoform. Activity towards hCA IX and XII 

remained in the low micromolar range for all the series, except for 106 and 107 which 

showed a lower activity (KI of 7.23 µM and 6.95 µM respectively for CA IX and 8.52 µM 

and 9.58 µM respectively for CA XII). Even in this case no particular selective scaffold 

arose from the series, but it was possible to summarize results from this initial screening as 

follows: 

1. Insertion of zinc binding groups on coumarinic scaffolds leads to a loss in 

selectivity towards the various isoforms. In particular, in presence of a sulfonamido 

moiety, the responsible for inhibition activity is not the hydrolysis product of the 

coumarinic scaffold but the sulfonamide itself.103 This resolves in a nanomolar 

range inhibition profile characterized by a poor or absent selectivity attitude. 

2. On the other hand, the hydroxamic moiety, another common zinc binding group,104 

was not so effective towards CAs, built on these kind of compounds. The effect 

was to decrease the inhibition to micromolar range and, nevertheless, despite this 

decrease in activity, no particular increase in selectivity could be observed. 

3. With coumarinic scaffolds it is possible to develop selectivity on particular 

isoforms, with no activity towards the two housekeeping off-target hCA I and hCA 

II. This is a very important peculiarity that distinguishes this class of compounds 

from the more studied and common sulfonamides, making it an promising 

“weapon” to exploit towards particular CA isoforms. However, this important 
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selectivity profile has not been shown by the totality of the studied compounds: 

there is also for coumarins the possibility to maintain activity towards hCA II (e. g. 

compound 63). 

4. Little variations on the coumarinic substitution pattern can lead to changes in the 

activity profile (e. g., compounds 2 and 3); this fact could be explained in terms of 

substrate arrangement inside the enzyme. As shown by chrystallographic studies,51 

coumarins do not interact directly with the catalytic zinc ion, but exert their action 

interacting only with allosteric zones. Thus, even not relevant variations in terms of 

ring substitution can modulate the approach of the substrate and the way it “moves” 

inside the enzyme cavity. 

5. The replacement of benzene ring with an heterocycle moiety did not affect in terms 

of variations, the activity profile in comparison with the one showed by usual 

coumarins. 

At the end of this screening, however, several compounds showing interesting selectivity 

towards the two tumor-associated CA isoforms were found out. However such derivatives 

were not satisfactory in terms of inhibitory activity, showing KI values for these two 

enzymes in the range of submicromolar, such results didn’t prompt me to continue in this 

research line. 
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3.4 “Click Chemistry” coumarins 

Finally, I synthesized a series of 6- and 7-triazolylphenyl halogeno substituted 

coumarins, 123-132, using a “click chemistry” approach. This kind of strategy has been 

already used for other types of CAs inhibitors, like sulfonamides, sulfamates and it arose 

derivatives with interesting inhibitory profiles. Further, this approach, cause of reactions 

properties, allows to synthesize very diversified libraries of compounds. In particular I 

considered structures type B and C, shown in Chart 3.4. 

 

O OON
N

N

R

O O

O

N
N

N

R

123: R = H
125: R = Cl
127: R = F
129: R = Br
131: R = I

124: R = H
126: R = Cl
128: R = F
130: R = Br
132: R = I

Type B Type C
 

Chart 3.4. Structures type B and C of “click chemistry” compounds 123-132. 

 

For the synthesis of such derivatives (Scheme 3.5) I started from 6- and 7-hydroxy 

coumarins reacted under sonication with propargyl alcohol, in Mitsunobu conditions, to 

give ether compounds 116 and 117. These were converted to triazolylphenyl derivatives 

123-132 reacting with freshly prepared phenylazides 118-122 through a Huisgen’s 1,3 

dipolar cycloaddition Cu(0) nanosized catalyzed, in presence of tetramethylammonium 

chloride. Phenylazides were obtained starting from the correspondent anilines with a 

diazotization/azidation process using sodium nitrite and sodium azide in a mixture of acetic 

acid/water. 
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i: Propargyl alcohol, PPh3, DIAD, dry THF, sonication; ii: Cu0 nanosized, TMACl, H2O/tBuOH, r.t.
iii 1) NaNO2, AcOH/H2O 2) NaN3.

O O

HO

6-hydroxycoumarin
7-hydroxycoumarin

O O

O

116: 6-OH
117: 7-OH

118: R = H
119: R = Cl
120: R = F
121: R = Br
122: R = I

N3

R

O O

O

N
N

N

R

6-OH 123: R = H
         125: R = Cl
         127: R = F
         129: R = Br
         131: R = I

7-OH 124: R = H
          126: R = Cl
          128: R = F
          130: R = Br
          132: R = I

NH2

R

R: H, Cl, F, Br, I

i

ii

iii

 

Scheme 3.5. Synthesis of derivatives 116-132. 

 

Compounds 125, 128, 130 and 131 have been chosen from this series for in vitro assay, 

together with other three derivatives, shown in Chart 3.5, synthesized by Carta.  
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Chart 3.5. Structures of derivatives 133-135. 
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In Table 3.11 are presented KI values for derivatives 125, 128, 130, 131, 133-135 over the 

four isoforms usually considerated so far. 

 

Table 3.11. Inhibition of Mammalian Isozymes CA I, II, IX and XII with Coumarins 94-115 by a Stopped-
Flow, CO2 Hydration Assay Method.82 
 

K I (µM) c 
 
Compound hCA Ia hCA II a hCA IXa,b hCA XII a,b 
125d >100000 >100000 7.5 48.6 
128d 117 >100000 7.5 18.7 
130d 40.6 >100000 6.8 27.0 
131d 57.6 >100000 6.4 40.8 
133d 87.8 913 9.3 49.9 
134d 15400 >100000 8.6 46.5 
135d >100000 >100000 9.1 70.4 

 
a h ) human. b Catalytic domain. c Errors in the range of ±5% of the reported data from three different assays. 
d Preincubation of 6 h between enzyme and inhibitor. 
 

Considered compounds showed no activity over hCA II, except for compound 133; they 

presented a nice profile over the two tumor-associated isoforms, but many of them 

conserved affinity towards hCA I. In particular the most interesting considerations arose 

from derivatives 125 and 135, which exerted a micromolar range activity towards hCA IX 

and XII (KIs from 6.4 to 70.4 µM), with lower activity over the offtarget isoenzymes. Is 

not easy to explain such behaviour, probably dued to the dimension of halogen atom and to 

its electronegativity. Compound 133 showed the best activity profile towards all the four 

considered isoforms, with a loss in selectivity. 

 

3.5 Conclusions 

Coumarins showed to be an interesting chemotype to develop selectivity towards particular 

CA isoforms. The time-dependant mechanism of action, with no interactions on the 

catalytic zinc and dtheir capacity to orientate in several conformations within the active 

site are features showed, to far, only by this class, among all CAIs. From compound 1 has 

been synthesized a series of 8-acyl, 7 ether-substituted coumarins showing impressive 

ability in selective inhibition. From the “click chemistry” approach emerged interesting 

derivatives acting as selective inhibiting substrates, exerting their activity in the 

micromolar range. Further developments urge to be realized using this approach that could 

reveal new synthetic derivatizations, useful to increase selectivity towards precise 

isoforms. 
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CHAPTER FOUR 

Studies on β-Carbonic Anhydrases 

 

4.1 Kinetic characterization and inhibition studies of the most active β-

Carbonic Anhydrase from Mycobacterium tuberculosis, mtCA 2 

4.1.1 Introduction 

The widely spread human pathogen Mycobacterium tuberculosis contains three β-

carbonic anhydrase genes in its genome, that is, Rv1284 (encoding for a protein we named 

mtCA 1), Rv3588c, shown to be essential for bacteria growth in vivo,105 (encoding for 

mtCA 2) and Rv3273 (encoding for a third enzyme, mtCA 3).13,29,106 The catalytic activity 

and inhibition studies with a range of sulfonamides and one sulfamate of two of these 

enzymes, that is, mtCA 1 and mtCA 3 have been recently reported,107,108,106 whereas 

Covarrubias et al. reported the X-ray crystal structure of mtCA 1 and mtCA2.13,29 CAs 

belonging to the β-class1 are indeed found in many pathogenic organisms such as fungi 

(Candida albicans, Candida glabrata and Cryptococcus neoformans among others)109-114 

and bacteria (Helicobacter pylori, Arthrobacter aurescens, Leptospira borgpetersenii, 

Legionella pneumophila and Haemophilus influenzae)4,115,116,54,117 but they lack from 

mammals, in which only α-CAs are present.1 Thus, inhibition of such β-CAs started to be 

considered4,106-116 as a new possible approach for designing anti-infectives (antifungal or 

antibacterial agents) possessing a different mechanism of action compared to the classical 

pharmacological agents in clinical use for a long period, for which pathogenic fungi and 

bacteria developed various degrees of resistance.118-121 The drug resistance problem of 

antifungals and antibiotics represents a serious medical problem.122 In this context, M. 

tuberculosis infection is one of the worst example, as multi-drug resistant and extensively 

multi-drug resistant tuberculosis (TB) is present in many countries.123 Such drug-resistant 

mycobacteria show a continuously reduced susceptibility to the clinically used drugs, all of 

which were developed 30–40 years ago.124,125 There is actually a huge interest for novel 

anti-TB drugs, possessing alternative mechanisms of action compared to the clinically used 

antibiotics.124,125 

 

4.1.2 Structure and function of mtCA 2 

The fundamental structure unit in Rv3588c is a dimer29 composed by the interaction 

of two single subunits around a crystallographic 2-fold axis;29 each subunit consists of a 



                                                                                               Chapter Four. Studies on β-Carbonic Anhydrases 

 60 

five stranded β-sheet, in which strands 1–4 are parallel and ordered 2-1-3-4. The fifth 

strand is anti-parallel and connected to the fourth by a short reverse turn. The β1-β2 loop is 

short and irregular, the β2-β3 connection includes a regular α-helix (α2) packing on the 

surface of the sheet, the β3-β4 loop is much longer, containing four helices in Rv3588c. 

One of these helices packs on the sheet near β4 in both proteins. The remaining portion of 

the loop stretches across the surface of the dimer to interact with the 2-fold related helix 

linking β2 and β3. Figure 4.1 represents the structures of Rv3588c single subunit (A) and 

its dimeric form (B).29 

 

 

 
Figure 4.1. Overall structures of Rv3588c. Ribbon diagrams illustrate the single subunit structure (A) and the 
dimeric form (B). 
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Surprisingly, the thiocyanate complex of the same enzyme crystallizes as a dimer of 

dimers13 in the asymmetric unit with classic 2-2-2 symmetry. The tetramerization interface 

of Rv3588c is stabilized by a large network of salt bridges in which positively charged 

residues (mostly Arg) outnumber negatively charged residues (Asp and Glu). Dynamic 

light scattering studies13 show that the tetrameric form of the enzyme dissociates into 

dimers as the pH is lowered from pH 8.4 to 7.5, and that this quaternary structure change is 

associated with changes in zinc ligation sphere. It is possible that Rv3588 requires high pH 

for tetramerization in order tomaximize the neutralization of excess positive charge in the 

tetramerization interface.13 The active site of a β-CA lies near a switch point at the C-

terminal edge of its parallel β-sheet, as has been observed for other α/β proteins.126 

Considering the coordination sphere around the catalytic ion and the orientation of the 

nearby aminoacidic residues, Rv3588c adopts, in its monomeric form, a type II β-CA 

structure.5 Such frame presents a pseudo-tetrahedral coordination shell composed entirely 

of protein ligands: Cys51, Asp53, His104 and Cys107. In particular, the active site residue 

Asp53 displaces the water molecule and coordinates directly to the zinc ion, thus breaking 

a potential salt link to Arg55 (Figure 4.2).  

In complex with thiocyanate, so in its tetrameric form, the enzyme adopts an alternate type 

I β-CA structure. The nitrogen atom of thiocyanate bonds to the zinc ion and displaces 

Asp53, which in turn interacts with Arg55 to form the Asp-Arg dyad that is characteristic 

of type I β-CAs. This condition renders one of the zinc coordination positions available for 

coordination by exogenous ligands, in this case the hydroxide form of a water molecule, 

deputated for the CO2 hydration. The carboxylate shift of Asp53 is accompanied by major 

backbone changes mainly of residues Ser54 and Val56. The side chain of Ser54 flips to 

point in the opposite direction with atomic shifts of up to 8 Å. In concert, Val56 undergoes 

an equally dramatic change, whereas the side chain of Arg55 undergoes relatively small 

shifts. The result of these molecular gymnastics is the creation of a salt link between Asp53 

and Arg55. 

To sum up, the real significance of the two Rv3588 structures is that they suggest that type 

II β-CAs are able to adopt two different conformations in solution, mediated by a 

reorientation, called “carboxylate shift” of the active site Asp from acting as a zinc ligand 

to forming a dyad with the active site Arg residue. At pH 7.5 the protein is in its dimeric 

inactive form, with the zinc coordination shell totally occupied by aminoacidic ligands 

(one of them is Asp53); at pH 8.4 the protein rearranges in its tetrameric, catalytically 
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active form, with Asp53 shifted towards interaction with Arg55, leaving one zinc 

coordination position free for exogenous ligands. 

 
 

Figure 4.2. Active site of Rv3588c. Residues involved in metal coordination are shown with ball-and-stick 
models, with the hydrogen bonds mentioned in the text indicated by black dotted lines.  

 

4.1.3 Kinetic investigation and inhibition studies 

Covarrubias et al.29 reported that mtCA 2 has catalytic activity as CO2 hydrase, so, 

considering the interest in β-CAs as possible new drug targets, I proceeded here with the 

characterization and inhibition studies, with a panel of sulfonamides/sulfamates, of mtCA 

2. This enzyme has been reported and characterized crystallographically by Covarrubias et 

al.13,29 but its kinetic parameters, as well as inhibition, has not been investigated for the 

moment. I performed a kinetic investigation of purified mtCA 2, prepared as described 

earlier by one of our groups,29 comparing its kinetic parameters (Kcat and Kcat/KM) with 

those of thoroughly investigated α-CAs, such as the cytosolic, ubiquitous human isozymes 

hCA I and II,1 as well the other two mycobacterial enzymes, mtCA 1 and mtCA 3106,108 

investigated earlier (Table 4.1). As CAs are susceptible to be inhibited by 

sulfonamides,19,82,127,128,106 data of Table 4.1 also present the inhibition constant of these 

enzymes with acetazolamide (AAZ ), a clinically used drug.1  
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Table 4.1. Kinetic parameters for the CO2 hydration82 reaction catalyzed by the α-hCA isozymes I, II at 20 
°C and pH 7.5 in 10 mM HEPES buffer, and the three Mycobacterium tuberculosis enzymes Rv1284 (mtCA 
1), Rv3273 (mtCA 3) and Rv3588c (mtCA 2) at 20 °C, pH 8.3 in 20 mM Tris–HCl buffer and 20 mM NaCl 
and their inhibition data with acetazolamide AAZ. 
 

Isoenzyme Activity level Kcat (s
-1) Kcat/KM (M -1 s-1) K I (AAZ) (nM) 

hCA II Moderate 2.0 x 105 5.0 x 107 250 
hCA II Very high 1.4 x 106 1.5 x 108 12 
mtCA 1 Moderate 3.9 x 105 3.7 x 107 480 
mtCA 3 Moderate 4.3 x 105 4.0 x 107 104 
mtCA 2 High 9.8 x 105 9.3 x 107 9.8 
 

Data of Table 4.1 show that mtCA 2 has the highest catalytic activity for the physiologic 

reaction among the three mycobacterial enzymes mtCA 1–3, with kinetic parameters in the 

same range as those for α- or β-CAs investigated earlier, such as hCA I and 

II.4,19,67,70,129,130,127,128 Indeed, mtCA 2 has a kcat of 9.8 x 105 s-1, and Kcat/KM of 9.3 x 107 

M-1 s-1, being thus 2.5 times more active than mtCA 1, and 2.3 times more active than 

mtCA 3 as a catalyst for the physiological reaction. Only the human isoforms hCA II was 

slightly more active (1.6 times) a catalysts for CO2 hydration compared to mtCA 2 among 

the enzymes shown in Table 4.1, 

Tables 4.2 and 4.3 show mtCA2 inhibition data with a panel of sulfonamides and one 

sulfamate (obtained for the CO2 hydration reaction catalyzed by CAs),82 some of which are 

clinically used drugs,1 such as acetazolamide AAZ , methazolamide MZA , ethoxzolamide 

EZA , dichorophenamide DCP, dorzolamide DZA , brinzolamide BRZ, benzolamide BZA , 

topiramate TPM , sulpiride SLP, indisulam IND , zonisamide ZNS, celecoxib CLX , 

valdecoxib VLX , sulthiame SLT and saccharin SAC. The simpler derivatives 136-157 

were also included in the study as they represent the most extensively used scaffolds for 

designing potent or isoform-selective CAIs (Chart 4.1).131-134,106  
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Chart 4.1. Sulfonamidic scaffolds for biological assays. 
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Table 4.2. Inhibition of hCA II, and M. tuberculosis enzymes mtCA 1–3 with sulfonamides 136-157 and 15 
clinically used derivatives AAZ–SAC. 
 

K I 
* 

 
Compound hCA IIa (nM) mtCA 1b (µM) mtCA 3c (µM) mtCA 2d (µM) 
136 295 9.23 6.24 33.7 
137 240 9.84 7.11 29.6 
138 495 7.93 7.83 28.4 
139 320 4.92 7.02 38.9 
140 170 8.69 7.33 30.7 
141 160 9.56 3.42 29.1 
142 60 8.74 7.90 28.9 
143 110 7.52 1.51 27.7 
144 40 0.186 7.32 31.6 
145 70 7.71 5.81 32.4 
146 63 8.10 2.35 29.6 
147 75 1.72 21.7 32.5 
148 60 11.54 7.63 2.09 
149 19 12.65 7.92 2.38 
150 2 0.905 3.10 0.978 
151 46 0.612 2.21 3.21 
152 50 0.853 0.170 2.29 
153 33 0.750 0.091 2.63 
154 12 7.48 7.60 45.2 
155 80 9.56 7.82 38.3 
156 125 5.51 2.51 34.5 
157 133 8.21 7.40 39.2 
AAZ 12 0.481 0.104 0.009 
MZA 14 0.781 0.562 0.66 
EZA 8 1.03 0.594 0.027 
DCP 38 0.872 0.611 2.01 
DZA 9 0.744 0.137 0.099 
BRZ 3 0.839 0.201 0.127 
BZA 9 0.810 0.338 0.467 
TPM 10 0.612 3.02 0.474 
SLP 40 2.30 7.92 0.266 
IND 15 0.097 7.84 0.717 
ZNS 35 28.68 0.208 0.876 
CLX 21 10.35 7.76 0.713 
VLX 43 12.97 7.81 0.682 
SLT 9 5.16 6.72 0.664 
SAC 5950 7.96 7.15 0.792 
 
a Human recombinant isozyme, stopped-flow CO2 hydrase assay method, pH 7.5, 20 mM Tris–HCl buffer.82 
b,c Bacterial recombinant enzymes, at 20 °C, pH 8.3 in 20 mM Tris–HCl buffer and 20 mM NaCl, from Refs. 
106,108. Data of isoform II are from Ref. 67 whereas data of mtCA 1 and 3 from Refs. 106,108. 
d Bacterial recombinant enzyme, at 20 °C, pH 8.3 in 20 mM Tris–HCl buffer and 20 mM NaCl, this work. 
* Errors in the range of 5–10% of the shown data, from three different assays. 
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Data for the inhibition of the dominant human isoform hCA II1 as well as those of the other 

two M. tuberculosis enzymes, mtCA 1 and mtCA 3,106,108, are also included, in Table 4.2, 

with these compounds for comparison reasons. 

The following SAR can be observed from data of Table 4.2: 

1. A number of the investigated derivatives, such as 136-147 and 154-157 showed 

modest mtCA 2 inhibitory activity, with activity in the micromolar range, and 

inhibition constants of 27.7–45.2 µM. It may be observed that these compounds are 

either simple 2- or 4-substituted benzenesulfonamides incorporating amino, 

alkylamino, carboxyalkyl, carboxyl or hydroalkyl moieties (136-141 and 155-157), 

halogeno-substituted sulfanilamides (142-145) or benzene-1,3-disulfonamide 

derivatives (146 and 147). Generally, all these compounds were more effective 

mtCA 1 and mtCA 2 inhibitors (KIs in the low micromolar or even submicromolar 

range, Table 4.2). 

2. Activity in the low micromolar range has been observed for six of the investigated 

derivatives: 148, 149, 151-153 and DCP, with KIs in the range of 2.01–3.21 µM. 

These compounds are either heterocyclic derivatives (148 and 149, the 

acetazolamide and methazolamide precursors), sulfanilyl- sulfonamides 151 and 

152, as well as the pyrimidyl-substituted benzenesulfonamide 153. 

Dichlorophenamide DCP is the only disulfonamide having this interesting and 

rather effective mtCA 2 inhibitory activity (compared to the structurally related 146 

and 147 discussed above, which showed a much weaker inhibitory activity). It may 

be observed that the elongation of the inhibitor molecule 140 and 141 by means of 

a sulfanilyl moiety, such as in 151 and 152, leads to a roughly 10 times increase of 

the inhibitory power of the corresponding sulfonamide against mtCA 2. 

3. Submicromolar mtCA 2 inhibitory activity has been observed for a rather large 

number of derivatives, such as 150, MZA  and BRZ–SAC, which showed KIs in the 

range of 127–978 nM. Compound 150 is structurally related to 151 and 152 

discussed above, but it has the acetazolamide head, whereas most other compounds 

are heterocyclic sulfonamides in clinical use, except TPM  which is a sulfamate. 

These data clearly show that many chemotypes lead to effective, submicromolar 

mtCA 2 inhibitors. Many of these compounds also effectively inhibit the other two 

mycobacterial CAs as well as hCA II. 

4. Very effective mtCA 2 inhibitors were acetazolamide AAZ  (KI of 9 nM), 

etoxzolamide EZA  (KI of 27 nM) and dorzolamide DZA  (KI of 99 nM). These are 
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very encouraging data, as we detected CAIs with an affinity <100 nM for mtCA 2, 

but on the other hand, all these compounds are very potent inhibitors of most 

mammalian (host) CA isoforms,1 which make them less appropriate for developing 

inhibitors targeting specifically β-CAs.  

Thus, my purpose was to detect compounds which may have better affinity for mtCA 2 but 

at the same time behave as weaker hCA II inhibitors than the clinically used drugs AAZ , 

EZA  or DZA  discussed above. In a recent study by Carta et al. it was demonstrated that 

several diazenylbenzenesulfonamides act as weak-moderate inhibitors of the ubiquitous, 

house-keeping human isoforms hCA I and II.135 Thus, by using this observation and data 

reported in Table 4.2, showing that compounds with an elongated tail geometry such as 

150-152 possess good (low micromolar) mtCA 2 inhibitory activity, I decided to 

investigate a series of recently reported136 diazenylbenzenesulfonamides 158 and 159, as 

well as their precursors 160 and 161, derived from sulfanilamide or metanilamide, 

prepared by Carta.135 The mtCA 2 data with the new compounds were indeed quite 

interesting, as the following SAR was observed.  
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Table 4.3. Inhibition of CAs of human (hCA II) and mycobacterial CAs mtCA 1–3 with sulfonamides 
158and 159, the sulfonates 160 and 161, by a stopped-flow CO2 hydrase assay.82 
 

SO2NH2

N

158

N

R

N

159

N

R

SO2NH2

HN

SO3Na

N

SO3Na

160 161  
 

K I (µM)* 
 
Cpd R hCA IIa  mtCA 1b mtCA 3b mtCA 2c 
158a OH 0.665 9.27 12.40 0.678 
158b NH2 0.106 7.20 8.78 0.955 
158c NHMe 0.093 7.69 9.18 0.346 
158d NMe2 0.638 6.86 30.7 5.48 
158e NHCH2SO3Na 0.105 6.78 8.90 0.059 
158f N(Me)CH2SO3Na 0.104 8.71 9.03 0.045 
159a OH 0.106 8.97 9.23 6.48 
159b NH2 0.088 7.00 8.68 1.98 
159d NMe2 0.105 7.54 9.36 2.13 
159e NHCH2SO3Na 0.107 7.51 9.45 6.56 
159f N(Me)CH2SO3Na 0.109 63 7.4 6.90 
160 - 58.3 8.67 8.90 42.9 
161 - 63.6 7.86 9.11 54.0 
 
a Human recombinant isozyme, stopped-flow CO2 hydrase assay method, pH 7.5, 20 mM Tris–HCl buffer.82 
b Bacterial recombinant enzymes, at 20 °C, pH 8.3 in 20 mM Tris–HCl buffer and 20 mM NaCl, from Ref. 
134. 
c Bacterial recombinant enzyme, at 20 °C, pH 8.3 in 20 mM Tris–HCl buffer and 20 mM NaCl, this work. 
* Errors in the range of 5–10% of the shown data, from three different assays. 
 

First, all the para-substituted azo dyes 158 were much more effective mtCA 2 inhibitors 

compared to the corresponding meta-substituted derivatives 159. Thus, the metanilamide 

derivatives are less effective than the sulfanilamide ones. For the sulfanilamide derivatives 

159, the dimethylamino-substituted compound was the least effective mtCA 2 inhibitor (KI 

of 5.48 µM), whereas the compounds possessing OH, NHMe and NH2 moieties as 

substituents to the benzenediazenium system were better inhibitors, with KIs of 346– 955 

nM. Thus, a very small structural change in the molecule of these compounds (e.g., an 

additional methyl moiety in the amino, methylamino or dimethylamino compounds 158b–
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d, leads to drastic changes of inhibitory activity). But the best activity has been observed 

for the aminomethylene sodium sulfonate derivative 158e and the corresponding N-

methylated analogue 158f, which showed inhibition constants in the low nanomolar range 

(K Is of 45–59 nM). The precursors sulfonates 160 and 161 were on the other hand very 

weak mtCA 2 inhibitors. It is also important to note that these two compounds show some 

selectivity as mtCA 2 versus hCA II inhibitors, with selectivity ratios for inhibiting the 

parasite over the host enzyme of 1.8–2.2. Thus, this drug design strategy may be 

considered a good one (for the para-substituted derivatives) in obtaining effective (low 

nanomolar) and selective mtCA 2 inhibitors. The meta-substituted compounds 159a, 159b, 

159d-f were less effective mtCA 2 inhibitors, with KIs of 1.98–6.90 µM.  

 

4.1.4 Conclusions 

In conclusion, is reported here the kinetic characterization and the first inhibition studies of 

the third CA from the widespread human pathogen M. tuberculosis, mtCA 2, encoded by 

the gene Rv3588c, which has been shown to possess the highest catalytic activity for CO2 

hydration (Kcat of 9.8 x 105 s-1, and Kcat/KM of 9.3 x 107 M-1 s-1) among the three CAs 

encoded in the genome of this pathogen. A series of sulfonamides/sulfamates was assayed 

for their interaction with mtCA 2, whereas some diazenylbenzenesulfonamides were newly 

synthesized from sulfanilamide/metanilamide by diazotization followed by coupling with 

amines or phenols. Several low nanomolar mtCA 2 inhibitors have been detected among 

which acetazolamide, ethoxzolamide and some 4- diazenylbenzenesulfonamides (KIs of 9–

59 nM). As this gene is essential for the growth of M. tuberculosis, inhibition of this 

enzyme may be relevant for the design of anti-TB drugs possessing a novel mechanism of 

action. 
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4.2 Substituted phenyl-1H-indole-5-sulfonamides: new β-CAs strong 

inhibitors  

4.2.1 Studies on mtCA 1 and mtCA 3 

In preliminary works106-108 have been reported the cloning and kinetic 

characterizations of two of M. tuberculosis β-CAs: Rv1284108 (mtCA 1, essential for the 

growth/virulence of this bacteria) and Rv3273106 (mtCA 3, not essential). Molecular 

biology data, based on mutagenesis studies in strain H37Rv137 and up-regulation of the 

encoding genes under the starvation conditions used to model persistent bacteria,138 

suggested that inhibition of mycobacterial β-CAs may be used for drug design campaigns 

aiming to find antimycobacterial agents. 

Although it was showed that Rv1284108 and Rv3273106 can be inhibited by many types of 

sulfonamides or sulfamates, the best inhibitors detected so far showed only medium 

potency, with the best Rv1284 inhibitors possessing KIs in the range of 100-200 nM and 

the best Rv3273 inhibitors having KIs in the range of 90-500 nM, as shown above in Table 

4.2. Furthemore, the best such compounds possessed simple scaffolds (e.g., 3-

bromosulfanilamide 144 and indisulam IND were the most effective Rv1284 inhibitors, 

whereas acetazolamide AAZ and 2-amino-pyrimidin-4-yl-sulfanilamide 153 were the best 

Rv3273 inhibitors, Chart 4.2), which are not easily amenable to derivatization. Thus, I 

decided to explore different scaffolds incorporating the sulfamoyl zinc-binding groups 

(ZBGs) for the design of β-CA inhibitors targeting these mycobacterial enzymes.  
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Chart 4.2. Sulfonamidic β–Cas inhibitors. 
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Recently has been reported the excellent inhibitory activity against various mammalian CA 

isozymes (belonging to the α-CA genetic family)1 of a series of of 2-(hydrazinocarbonyl)- 

3-aryl-1H-indole-5-sulfonamides, synthesized by Guzel.139,140 Considering this X-ray 

crystal structure of the hCA II–162 adduct as starting point140 and the good inhibitory 

activity of this class of sulfonamides against many α-CA isoforms,2,140,139 I decided to 

investigate whether this scaffold may also lead to effective β-CA inhibitors targeting the 

mycobacterial enzymes. 

Inhibition data of the two β-CAs of M. tuberculosis, encoded by the genes Rv1284 and 

Rv3273, are shown in Table 4.4. Data of Table 4.4 also present the inhibitory activity 

against two physiologically relevant host CA isozymes (hCA I and II) of the new 

compounds 162-177 reported here (Chart 4.2), as the search of pathogen-selective CAIs is 

an important aspect in the design of new applications for this class of pharmacological 

agents. Inhibition data with the best mycobacterial CAIs detected so far,106,108 i.e., 

compounds 144, IND, AAZ, 153 are also shown in Table 4.4 for comparison reasons. 

 

Table 4.4. Inhibition of CA Human Isoforms hCA I, II, and Mycobacterial Enzymes Rv1284 and Rv3273 
with Sulfonamides 162-177, and 144, IND, AAZ, 153 as standards. a Errors in the range of 5-10% of the 
shown data, from three different assays, by a CO2 hydration stopped flow assay. b Human, recombinant 
isozymes, pH 7.5, 20 mM TRIS-HCl buffer. c Bacterial recombinant enzyme, at 20 °C, pH 8.3 in 20 mM 
TRIS-HCl buffer and 20 mM NaCl. 
 

K I (nM)a 
 
Cpd R hCA Ib  hCA IIb mtCA 1c mtCA 3c 
162  7.5 7.2 48 31 
163 H 9.0 71 6.5 7.0 
164 2-F 8.5 91 9.3 6.9 
165 3-F 11.3 3380 7.6 6.0 
166 4-F 7.6 65 9.7 6.5 
167 2-Cl 25.1 100 35.3 6.7 
168 3-Cl 113 1800 31.8 6.6 
169 4-Cl 3.2 77 20.9 0.96 
170 2-Br 43.4 38 25.1 1.01 
171 3-Br 30.8 74 3.2 0.97 
172 4-Br 12.3 85 5.2 0.96 
173 2-Me 10.5 106 0.98 6.8 
174 3-Me 110 104 1.5 7.8 
175 4-Me 5.1 68 0.97 3.6 
176 3-OMe 8.6 2840 0.92 1.8 
177 F5 9.7 0.93 0.93 0.88 
144  6500 40 186 7320 
IND  31 15 97 7840 
AAZ  250 12 481 104 
153  109 33 750 91 
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The following should be noted regarding the inhibition data of Table 4.4: 

1. Rv1284 was effectively inhibited by the lead molecule 162 possessing a new 

indolesulfonamide scaffold, with a KI of 48 Nm, thus already two times a better 

Rv1284 CAI as compared to the best such compound detected so far, indisulam 

IND (K I of 97 nM). Probably this new scaffold fitted better within the Rv1284 

active site compared to the scaffolds of derivatives investigated earlier for the 

inhibition of this enzyme. However, the pyridinium derivatives 163-177, were 

much more effective CAIs as compared to 162 or any other sulfonamide/sulfamate 

investigated earlier.108 Thus, the new class of sulfonamides reported here showed 

inhibition constants in the range of 0.92-35.3 nM against Rv1284. The least 

effective derivatives were 167-170, which, presenting KIs in the range of 20.9-35.3 

nM, were anyhow much more effective Rv1284 CAIs compared to compounds 144 

and IND investigated previously (KIs of 97-186 nM). These least effective CAIs 

incorporate 2-, 3-, 4-chloroand 2-bromophenyl moieties in position 3 of the 

indolesulfonamide scaffold. Another group of the new derivatives, among which 

163-166, 171, 172, and 174, showed an enhanced inhibitory activity toward 

Rv1284, with KIs in the range of 1.5-9.7 nM. These compounds incorporated the 

following substitution patterns at the 3-phenyl moiety of the indolesulfonamide 

scaffold: unsubstituted phenyl; 2-, 3-, and 4-fluorophenyl, 3-bromo- and 4-

bromophenyl and 3-tolyl. The remaining derivatives 173 and 175-177 were 

subnanomolar inhibitors of Rv1284, with KIs of 0.92-0.98 nM. They incorporate 2- 

and 4-tolyl, 3-methoxyphenyl, and perfluorophenyl moieties in the 3 position of the 

indolesulfonamide scaffold. Thus, not only the 2-(hydrazinocarbonyl)-3-

substituted-phenyl-1H-indole-5-sulfonamide derivatives led to highly effective 

Rv1284 CAIs but the pyridinium derivatives obtained from this lead molecule 

showed a very interesting SAR, with the nature of the group substituting the 3-

phenyl ring strongly influencing the enzyme inhibitory activity.  

2. Rv3273 was also highly inhibited by 162 and its pyridinium derivatives 163-177 

investigated here, with KIs in the range of 0.88-31 nM. 162 was the least effective 

such CAI (KI of 31 nM) although being at least a 3 times better inhibitor compared 

to compounds AAZ and 153 investigated earlier106 and found to be the most 

effective inhibitors of this mycobacterial CA. All substitution patterns presented in 

the pyridinium derivatives 163-177 were highly effective in inducing excellent 

Rv3273 inhibitory properties, as the entire class of compounds showed a compact 
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behavior of very potent CAIs, with inhibition constants <8 nM. Thus, the 

unsubstituted compound 163, its 2-, 3-, 4-fluoro, 2- and 3-chloro, 2-, 3-, and 4-

methyl, as well as 3-methoxy derivatives, showed KIs of 1.8-8.0 nM, whereas the 

remaining compounds were even better CAIs, with inhibition constants in the range 

of 0.88-1.01 nM. These last derivatives incorporated 4-chlorophenyl, 2-, 3-, and 4-

bromophenyl, and perfluorophenyl moieties in position 3 of the indolesulfonamide 

scaffold. It should be noted that the simple sulfonamides 144, IND, AAZ, 153 

investigated earlier,106 as Rv3273 inhibitors are several orders of magnitude weaker 

CAIs as compared to the compounds investigated here. 

3. Compounds 163-117 were also investigated as inhibitors of two human CAs, the 

cytosolic isoforms hCA I and II. Against the cytosolic isoform hCA I, the new 

pyridinium sulfonamides 163-177 generally showed good inhibitory activity, with 

K Is in the range of 3.2-113 nM, being thus more active than the clinically used 

sulfonamide acetazolamide AAZ and having a similar activity to indisulam IND , a 

compound in clinical development as an anticancer agent.1 Most of the new 

derivatives 163-177, similarly to the lead 162, were in fact low nanomolar hCA I 

inhibitors (KIs in the range 3.2-30.8 nM), except for 168, 170, and 174, which were 

less active (KIs in the range 43.4-113 nM). SAR was thus rather flat except for the 

three less active compounds mentioned earlier, proving that most of the substitution 

patterns present in the phenyl ring in position 3 were beneficial for the hCA I 

inhibitory properties of these compounds. 

4. Although the lead 162 showed excellent hCA II inhibitory activity (KI of 7.2 nM), 

the derivatives 163-177 reported here were generally much less effective inhibitors 

of this ubiquitous isoform, with KIs in the range of 38-3380 nM, except for the 

pentafluorophenyl derivative 177, which was a subnanomolar hCA II inhibitor (KI 

of 0.93 nM). These data were indeed very interesting, as they proved that the 

substitution pattern of the phenyl moiety in the pyridinium salts 163-177 was 

crucial for their hCA II inhibitory activity. Thus, a very active compound has been 

detected (177), together with moderate inhibitors (such as 163, 164, 166, 167, 169-

175, KIs in the range 38-106 nM), as well as three very ineffective inhibitors (5, 8, 

and 16, possessing KIs in the range 1800-3380 nM). It should be noted that all these 

ineffective hCA II inhibitors had the substituent of the phenyl moiety in the meta-

position, probably provoking a clash with some amino acid residues present in the 

hCA II active site, as already documented earlier in literature.43 However, in the 
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absence of detailed structural data for this class of inhibitors this remains a 

hypothesis to be checked. The pentafluorophenyl derivative 177 on the other hand, 

was 7.7 times more effective as a hCA II inhibitor as compared to the lead 162, and 

it would be also of great interest to resolve its high resolution X-ray crystal 

structure in adduct with hCA II for understanding the elements leading to this 

excellent inhibitory activity. 

5. Many of the new sulfonamides reported here showed a much better inhibition of 

the mycobacterial β-CAs Rv1284 and Rv3273 than for the host enzymes hCA I and 

II. Furthermore, many of these compounds showed appreciable inhibition of only 

hCA I, an enzyme whose physiologic function is not well understood but seems to 

be marginal,1 whereas the physiologically dominant hCA II showed a weak 

inhibition with these compounds (except one of them, 177). Thus, these finding 

was important not only for detecting low nanomolar and subnanomolar inhibitors 

of the two mycobacterial CAs but also because these compounds showed a much 

higher affinity for these β-CAs than for hCA II. Thus, the selectivity ratios for the 

inhibition of the pathogen over the host enzymes were indeed very favorable for the 

potential use of these compounds for in vivo antimycobacterial studies.  

In conclusion, the β-CAs encoded by the genes Rv1284 and Rv3273 of Mycobacterium 

tuberculosis, which show appreciable catalytic activity for the physiological reaction, were 

inhibited by sulfonamides; in particular among the variously substituted series of 2-

(hydrazinocarbonyl)-3-aryl-1H-indole-5-sulfonamides, compounds 162-177 were highly 

effective, low nanomolar or subnanomolar inhibitors of the two mycobacterial enzymes, 

having a good affinity for the host enzyme hCA I but much lower inhibitory properties 

against the major, physiologically dominant isoform hCA II. These new compounds were 

several orders of magnitude better mycobacterial CAIs compared to 

sulfonamides/sulfamates investigated earlier. 
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4.2.2 Studies on β–CAs from Cryptococcus neoformans and Candida albicans 

In the search for antiinfectives possessing a different mechanism of action, 

compared to the classical antibiotic/antifungal drugs,106-111,114,115,141,131 I considered β-CAs 

from the fungal pathogens Cryptococcus neoformans (Can 2)142,143 and Candida albicans 

(CaNce103)113 that can be inhibited by sulfonamides, as recently emerged.111 Up to now 

only simple sulfonamide scaffolds have been investigated as well as the 20 clinically used 

sulfonamides, among which acetazolamide AZA  and ethoxzolamide EZA , for the 

inhibition of these enzymes, finding very few effective inhibitors against the fungal 

enzymes.111 Indeed, AZA  was a good Can2 inhibitor (with a KI of 10 nM) whereas it had a 

more modest activity against CaNce103 (with a KI of 132 nM).111 EZA  was even less 

effective, with KIs of 87 nM against Can2 and 1070 nM against CaNce103, respectively. 

Thus, in the search for more effective sulfonamide compounds targeting the fungal 

pathogenic enzymes Can2 and CaNce103, I considered the series, synthesized by Guzel, of 

compounds shown earlier, presenting excellent activity towards β-CAs from M. 

tuberculosis, enlarged in this study, with other derivatives; in particular I considered the 

phenyl-1H-indole-5-sulfonamides 162, 178-191 and their trimethylpyridinium salts 

analogs 163-177 shown in Table 4.5. Inhibition data with such derivatives, as well as the 

standard drugs AZA  and EZA  against Can2 and CaNce103, as well as the offtarget hCA I 

and II are presented in Table 4.5. 

 

Table 4.5. Inhibition of human α-CA (hCA) isozymes I and II and fungal β-CAs from C. neoformans (Can2) 
and C. albicans (CaNce103) with sulfonamides 162, 178-191 and 163-177, acetazolamide (AZA ) and 
ethoxzolamide (EZA ) as standards.82 
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K I (nM) * 
 
Cpd R hCA Ia  hCA IIa Can2b CaNce103b 
162 H 7.5 7.2 72 85 
178 2-Me 107 11.6 9.2 78 
179 3-Me 730 48.4 9.1 43 
180 4-Me 104 60.5 10.5 52 
181 2-F 621 36.0 7.9 47 
182 3-F 116 8.6 7.2 54 
183 4-F 108 15.5 8.6 61 
184 2-Cl 640 38.8 8.0 45 
185 3-Cl 311 9.2 7.4 52 
186 4-Cl 112 11.6 70 55 
187 2-Br 110 48.5 62 81 
188 3-Br 510 54.1 93 87 
189 4-Br 659 40.8 118 94 
190 3-OMe 342 7.4 12.0 128 
191 F5 110 7.0 103 7.5 
163 H 9.0 71 16.5 42 
164 2-F 8.5 91 16.2 19 
165 3-F 11.3 3380 8.3 24 
166 4-F 7.6 65 8.7 21 
167 2-Cl 25.1 100 15.4 33 
168 3-Cl 113 1800 4.4 31 
169 4-Cl 3.2 77 3.1 29 
170 2-Br 43.4 38 12.1 45 
171 3-Br 30.8 74 14.3 48 
172 4-Br 12.3 85 10.9 53 
173 2-Me 10.5 106 6.5 62 
174 3-Me 110 104 6.1 64 
175 4-Me 5.1 68 5.9 41 
176 3-OMe 8.6 2840 8.3 119 
177 F5 9.7 0.93 60.1 5.1 
AAZ - 250 12 10 132 
EZA - 25 8 87 1070 
 

* Errors in the range of ±5% of the reported data from three different assays by a stopped-flow CO2 
hydration method.82 
 

The following SAR can be drawn by considering data of Table 4.5: 

1. Against Can2, the indolesulfonamides 162 and 178-191 showed good inhibitory 

activity, with KIs in the range of 7.2–118 nM, making this entire sulfonamide class 

among the best sulphonamide Can2 inhibitors detected so far. Thus, the lead 

compound 162, and derivatives 186-189 and 191 showed medium- high potency as 

Can2 inhibitors, with inhibition constants in the range of 62–118 nM. These 

derivatives incorporateD the 4-chloro, 2-, 3- and 4-bromo as well as 



                                                                                               Chapter Four. Studies on β-Carbonic Anhydrases 

 77 

pentafluorophenyl moieties (together with the lead 162). In contrast, the remaining 

derivatives, incorporating methyl-, fluoro-, 2-/3-chloro- and methoxy-substituted 

phenyl moieties in the position 3 of the indole ring, of types 178-185, and 190, 

showed a much stronger Can2 inhibitory effect, with KIs in the range of 7.2–10.5 

nM. Thus, the nature of the group substituting the 3-phenyl ring present in 

compounds 1 and 2 strongly influences the Can2 inhibitory activity, with the 

methyl-, methoxy-, fluoro- and chloro-substituted derivatives showing a better 

activity (around 10-fold) compared to the lead 162 or the bromosubstituted 

compounds 187-189. The position of the substituent of the phenyl ring was 

somehow less influential on the inhibitory activity (except for the chloro-

derivatives 184-186, case in which the 4-chlorosubstituted compound 186 was 

around 8.7–9.4 times a weaker inhibitor compared to the 2- or 3-chlorosubstituted 

isomers 184 and 185). Indeed, the 2-, 3- or 4-methyl-substituted compounds 178-

180, or the 2-, 3- or 4-fluoro-substituted compounds 181-183, respectively, showed 

comparable Can2 inhibitory activities. The pyridinium-substituted sulfonamides 

163-177 showed similar activity with the corresponding series of sulfonamides just 

described. However they were better Can2 inhibitors compared to the 

corresponding carbohydrazides 162, 178-191, with inhibition constants in the range 

of 4.4–60.1 nM. Again the best Can2 inhibitor was a chlorine-substituted 

derivative, 168, whereas the least effective one the pentafluorophenyl derivative 

177. Overall, this subseries of positively-charged sulfonamides showed excellent 

inhibitory capacity against the fungal enzyme Can2. It should be also mentioned 

that the most active compounds among the indolesulfonamides investigated here 

showed a better activity than acetazolamide AZA , the most effective Can2 inhibitor 

detected before this study.111  

2. CaNce103 was slightly less susceptible to be inhibited by the tested 

indolesulfonamides, compared to Can2, a situation already observed with other 

classes of sulfonamides.111 Thus, derivatives 162, 178-191 showed KIs of 7.5–128 

nM for the inhibition of CaNce103, being more effective CAIs compared to AZA  

(K I of 132 nM, the best sulfonamide inhibitor detected before this study) or EZA  

(K I of 1070 nM). The 3-methoxysubstituted derivative 190 was the least effective 

CaNce103 inhibitor in this series, with a KI of 128 nM, whereas the 

pentafluorophenyl- substituted one, 191, the most effective inhibitor (KI of 7.5 

nM). This is one of the best CaNce103 inhibitors detected so far, with efficiency 
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17.6 times better than that of AZA , and also possessing a quite hydrophobic 

character due to the presence of the pentafluorophenyl moiety. This was a positive 

feature indeed, as sulfonamides are normally insufficiently lipophilic to penetrate 

the cell walls and membranes of some bacteria or fungi,141 a fact which is attributed 

to the highly polar nature of the sulfonamidic group. The remaining derivatives, of 

types 162 and 178-189, showed a rather flat SAR, and were only moderately 

inhibitory against CaNce103, with inhibition constants of 43–94 nM. Both the 

substitution pattern and the nature of the 3-substituted phenyl moieties influence 

the CaNce103 inhibitory activity of this series of indolesulfonamides. Thus, the 

lead 162 was moderately active (KI of 85 nM) and all substitution patterns at the 3-

phenyl moiety (except the bromophenyl ones, present in 187-189) led to an 

increase of the CaNce103 inhibitory power. Actually, the bromophenyl derivatives 

187-189 showed similar (187 and 188) or slightly diminished (189) CaNce103 

inhibitory activity compared to 162. For the halogenosubstituted compounds, the 2-

halogeno derivative was a better CaNce103 inhibitor compared to the 

corresponding 3-halogeno substituted compound, which in turn was a better 

inhibitor compared to the 4-halogeno substituted derivative. For the methyl 

substituted compounds, the best CaNce103 inhibitor was the 3-substituted 

compound 179. Thus, minor structural changes in the scaffold of compounds 2 

strongly influence the CaNce103 inhibitory activity for this series of derivatives. 

The compounds 163-177, bearing the trimethylpyridinium moiety instead of the 

terminal amino one present in 178--191, were also effective CaNce103 inhibitors, 

with inhibition constants in the range of 5.1–119 nM. SAR for these positively-

charged derivatives was rather similar to the corresponding carbohydrazides from 

which they were prepared, with the pentafluorophenyl derivative 177 being the 

most effective CaNce103 inhibitor reported so far (K I of 5.1 nM) and the 3-

methoxy-substituted one 176 the least effective (KI of 119 nM). Generally, all the 

positively charged, trimethylpyridinium derivatives 163-177 were better CaNce103 

inhibitors compared to the corresponding noncharged derivatives analogs. 

3. The investigated sulfonamides were generally less effective hCA I inhibitors (KIs 

of 110–730 nM) except for the lead 162, which was a very potent hCA I inhibitor 

(K I of 7.5 nM), but most of them were highly effective hCA II inhibitors (KIs of 

7.2–60.5 nM). However, some interesting selectivity ratios for the inhibition of the 

fungal over the host enzymes have been observed for some of the investigated 
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sulfonamides. Thus, compound 179 had a selectivity ratio of 5.1 for inhibiting 

Can2 over hCA II, and of 80.2 for inhibiting Can2 over hCA I. This is the first 

example of a fungal pathogenic CA-selective inhibitor (over the off-target hCA II). 

Similar features were also observed for 184, with selectivity ratios of 4.8 (Can2 

over hCA II) and 80 (Can2 over hCA I). However, no CaNce103 selective 

inhibitors (over hCA II) have been detected so far, in this as in other studies.111 

 

4.3 Conclusions 

In conclusion, the β-CAs encoded by the genes Rv1284 and Rv3273 of 

Mycobacterium tuberculosis, showing appreciable catalytic activity for the physiological 

reaction, were inhibited by sulfonamides; in particular among the variously substituted 

series of 2-(hydrazinocarbonyl)-3-aryl-1H-indole-5-sulfonamides, compounds 162-177 

were highly effective, low nanomolar or subnanomolar inhibitors of the two mycobacterial 

enzymes, having a good affinity for the host enzyme hCA I but much lower inhibitory 

properties against the major, physiologically dominant isoform hCA II. These new 

compounds were several orders of magnitude better mycobacterial CAIs compared to 

sulfonamides/sulfamates investigated earlier. 

Both β-CAs from the fungal pathogens C. neoformans (Can 2) and C. albicans 

(CaNce103), were potently inhibited by these sulfonamides, with inhibition constants in 

the range of 4.4–118 nM against Can2, and of 5.1–128 against CaNce103, respectively. 

SAR was rather well defined, with minor structural changes in the 3-substituted phenyl 

moiety being the main contributors to the enzyme inhibitory activity. Some of the 

investigated sulfonamides also showed acceptable selectivity ratios for inhibiting Can2 

over the host, human enzymes hCA I and II. 
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CHAPTER FIVE 

Inhibition studies on mitochondrial CA VA and VB with 

sulfonamides 

 

5.1 CAIs as potential anti-obesity drugs 

Among the α‑CA isoforms found in animals, two CA isozymes, VA and VB, are 

present in mitochondria.66,144 These isozymes are involved in several biosynthetic 

processes, such as ureagenesis,144 gluconeogenesis145 and lipogenesis, in vertebrates (for 

example, rodents) and in invertebrates (for example, the locust).146-149 The provision of 

enough substrate bicarbonate, in several biosynthetic processes involving pyruvate 

carboxylase (PC), acetyl-CoA carboxylase (ACC) and carbamoyl phosphate synthetases I 

and II, is assured mainly by the catalytic reaction involving the mitochondrial isozymes 

CA VA and VB, probably assisted by the high activity cytosolic isozyme CA II (Figure 

5.1).150  

 
Figure 5.1. Fatty-acid biosynthesis and the role of carbonic anhydrase isozymes. 
Mitochondrial pyruvate carboxylase (PC) is needed for the efflux of acetyl groups from the mitochondria to 
the cytosol where fatty-acid biosynthesis takes place.64,150 Pyruvate is carboxylated to oxaloacetate in the 
presence of bicarbonate under the catalytic influence of the mitochondrial isozymes CA VA and/or CA VB. 
The mitochondrial membrane is impermeable to acetyl-CoA, which reacts with oxaloacetate, leading to the 
formation of citrate, which is then translocated to the cytoplasm by means of the tricarboxylic acid 
transporter. As oxaloacetate is unable to cross the mitochondrial membrane, its decarboxylation regenerates 
pyruvate, which can then be transported into the mitochondria by means of the pyruvate transporter. The 
acetyl-CoA thus generated in the cytosol is in fact used for de novo lipogenesis, by carboxylation in the 
presence of acetyl-CoA carboxylase (ACC) and bicarbonate, with formation of malonyl-CoA, the conversion 
between CO2 and bicarbonate being assisted by CA II. Subsequent steps involving the sequential transfer of 
acetyl groups lead to longer-chain fatty acids. Therefore, CA isozymes are critical to the entire process of 
fatty-acid biosynthesis: VA and/or VB within the mitochondria (to provide enough substrate to PC), and CA 
II within the cytosol (for providing sufficient substrate to ACC). 
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Several studies have provided evidence that CAIs have potential as anti-obesity drugs, 

which might be due to their effects on CA isozymes. Topiramate (TPM ) is an anti-

epileptic drug possessing potent anticonvulsant effects due to a multifactorial mechanism 

of action: blockade of sodium channels and kainate/AMPA (α-amino-3-hydroxy-5-methyl-

4-isoxazole propionic acid) receptors, CO2 retention secondary to inhibition of the red 

blood cell and brain CA isozymes, as well as enhancement of GABA (γ-aminobutyric 

acid)-ergic transmission.40 A side effect of this drug observed in obese patients was the 

loss of body weight, although no pharmacological explanation of this phenomenon has 

been provided.151 Furthermore, Topiramate was shown to reduce energy and fat gain in 

lean (Fa/?) and obese (fa/fa) Zucker rats.151 It was recently demonstrated that Topiramate 

is also a potent inhibitor of several CA isozymes, such as II, VA, VB, VI, VII, XII and 

XIII, and the X‑ray crystal structure of its complex with human CA II has been 

determined, revealing the molecular interactions that explain the high affinity of this 

compound for the CA active site.40  

Zonisamide (ZNS) is another anti-epileptic drug used as adjunctive therapy for refractory 

partial seizures.64,41,152 It has multiple mechanisms of action, and exhibits a broad spectrum 

of anticonvulsant activity. Similar to Topiramate, recent clinical studies have demonstrated 

additional potential for therapeutic use for neuropathic pain, bipolar disorder, migraine, 

obesity, eating disorders and Parkinson’s disease.64 Zonisamide is an aliphatic 

sulfonamide, which also potently inhibits cytosolic and mitochondrial CAs involved in 

lipogenesis.41 Furthermore, Zonisamide in conjunction with a reduced-calorie diet (deficit 

of 500 kcal per day), resulted in an additional mean 5 kg (11-pound) weight loss compared 

with diet alone in obese female patients.152 Thus, inhibition of mitochondrial isoforms CA 

VA and VB, probably in conjunction with that of the ubiquitous cytosolic isoform CA II, 

may represent targets for novel anti-obesity drugs that reduce lipogenesis by inhibiting 

CAs.150 

 

5.2 (R)-/(S)-10-Camphorsulfonyl-substituted aromatic/heterocyclic 

sulfonamides selectively inhibit mitochondrial over cytosolic carbonic 

anhydrases 

Sulfonamides1,7,19,153,154,98,130 and sulfamates1,19,155,156,40 are among the most potent 

CAIs reported up to now against all the physiologically relevant CA isozymes, including 

the mitochondrial ones CA VA and VB.1,19,66,144 Thus, I decided to explore new series of 

aromatic as well as heterocyclic sulfonamides which should also incorporate lipophilic 
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moieties, in order to endow them with good membrane permeability and thus access to 

mitochondria, where these isoforms are located. I have considered the reactions of (1R)-(-)-

10-camphorsulfonyl chloride 192 and (1S)-(+)-10-camphorsulfonyl chloride 193 with 

aromatic/heterocyclic sulfonamides incorporating amino or imino moieties, as a facile way 

to generate such new compounds (Scheme 5.1). 
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Scheme 5.1: Synthesis of sulfonamide derivatives 195-204. 
 

Indeed, reaction of sulfonyl chlorides 192 and 193 with amino/imono-sulfonamides 137, 

140, 141, 194 afforded a series of chiral new sulfonamides of type 195-204, which 

incorporated the highly lipophilic camphorsulfonyl moieties. Such derivatizations (the “tail 

approach”) have been investigated earlier extensively by my research group,74,157,158 being 

shown that they may lead to effective CAIs. 

The new sulfonamides reported here, of types 195-204, as well as the classical CAIs in 

clinical use AAZ-ZNS , have been assayed82 for the inhibition of four physiologically 

relevant CA isoforms, the cytosolic, off-target hCA I and II, as well as the mitochondrial 

hCA VA and hCA VB (Table 5.1).  
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Table 5.1. hCA I, II, VA and VB inhibition data with sulfonamides 195-204 and the standard inhibitors 
AAZ- ZNS, by a stopped-flow, CO2 hydration assay method.82 Data for the standard inhibitors are from ref.1 
 

K I (nM) * 
 
Compound hCA Ia hCA IIa hCA VAb hCA VBb 
195 1241 1207 17.1 26.4 
196 3130 1165 68.6 30.0 
197 920 1563 16.6 40.3 
198 1042 2459 27.5 67.3 
199 4964 963 64.5 36.2 
200 5513 2254 33.2 54.1 
201 9711 78.9 35.3 38.4 
202 81.5 2304 48.7 44.3 
203 5246 1773 5.9 7.8 
204 4382 398 21.0 7.3 
AAZ 250 12 63 54 
MZA 50 14 65 62 
EZA 25 8 25 19 
DCP 1200 38 630 21 
TPM 250 10 63 30 
ZNS 56 35 20 6033 
 
a Full length, cytosolic recombinant isoform; b Full length, mitochondrial recombinant enzyme. 
* Errors in the range of ± 5-10 % of the reported value, from 3 different assays. 
 

The following should be observed regarding CA inhibition data with these compounds: 

1. Sulfonamides 195-204 incorporating the lipophilic moieties of the R- and S-10-

camphorsulfonyl type, behaved as weak inhibitors of the cytosolic, slow isoform 

hCA I, with inhibition constants in the micromolar range (KIs of 0.92–9.71 µM). 

Only one of these derivatives, 202, showed more efficient inhibition of this 

isoform, with KI of 81.5 nM. It was interesting to note the huge difference in 

inhibitory power between the two enantiomers 201 and 202, with the last one being 

approximately 120 times a better hCA I inhibitor compared to the other. Thus, the 

nature of the moiety on which the sulfonamide group was grafted (aromatic or 

heterocyclic) as well as the spacer between this moiety and the camphorsulfonyl 

group, did not influence markedly the activity of these compounds. It was however 

difficult to explain the rather good inhibitory activity of 202, but a recent work 

showed a very variable binding pattern within the enzyme active site even for 

structurally very similar congeners belonging to the sulfonamides.159 It may be 

observed, on the other hand, that the clinically used derivatives AAZ-ZNS  showed 
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more potent inhibitory activities against these isoforms, with inhibition constants in 

the range of 25 nM-1.2 µM. 

2. A rather similar inhibition pattern with compounds 195-204 (as for hCA I) has been 

also observed against isoform hCA II. Thus, weak inhibition, in the micromolar 

range (KIs of 0.96–2.45 µM) was observed for all these compounds except 201 and 

204, more effective hCA II inhibitors (KIs of 78.9–398 nM). Again, important 

differences of activity have been observed for diverse enantiomers of the same 

sulfonamide (e.g., 201 versus 202, or 203 versus 204), and this has been 

documented by crystallographic work on different classes of chiral 

sulfonamides.160,140 The clinically used derivatives were on the other hand low 

nanomolar inhibitors of this isoform, with KIs in the range of 8-38 nM. 

3. The mitochondrial isoform hCA VA was much more susceptible to inhibition by 

compounds 195-204 compared to the cytosolic ones discussed above. Indeed, KIs 

in the range of 5.9 – 68.6 nM have been measured for these derivatives. SAR was 

here more intriguing compared to the inhibition of the cytsolic isoforms. Thus, 

generally the R enantiomer was more effective as a hCA VA inhibitor compared to 

the corresponding S-enantiomer (except for the pair 199-200 where the reverse was 

true). The most effective inhibitor was thus the heterocyclic derivative 203 (KI of 

5.9 nM), which is the most effective hCA VA inhibitor reported to far. Its 

enantiomer, 204, was a 3.5 times weaker inhibitor, being anyhow equipotent to 

ZNS, one of the best hCA VA inhibitors among the clinically used drugs.  

4. The second mitochondrial isoform, hCA VB was also significantly inhibited by 

sulfonamides 195-204, with inhibition constants in the range of 7.3–67.3 nM, two 

orders of magnitude better than the inhibition of the cytosolic isoforms hCA I and 

II discussed above. Again the best inhibitors were the heterocyclic sulfonamides 

203 and 204, and generally the R enantiomer was more active compared to the 

corresponding S one, as for the inhibition of hCA VA discussed above (the only 

exception is the pair 203-204). 

5. The selectivity ratios for the inhibition of the mitochondrial over the cytosolic 

isoforms, for the new compounds reported here, were very good. For example, 203, 

a low nanomolar hCA VA and VB inhibitor, had a selectivity ratio of 889 for the 

inhibition of hCA VA over hCA I, and of 300.5 for the inhibition of hCA VA over 

hCA II. The selectivity ratios for the inhibition of hCA VB over hCA I and of hCA 

VB over hCA II were of 672 and 227, respectively. For ethoxzolamide EZA , one 
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of the best classical mitochondrial CA inhibitors, these parameters were of 1 (hCA 

VA over hCA I), 0.32 (hCA VA over hCA II); 1.31 (hCA VB over hCA I) and 0.42 

(hCA VB over hCA II), respectively. Thus, most of the classical 

sulfonamides/sulfamates were much better hCA I/II inhiibtors than hCA VA/VB 

inhibitors, whereas exactly the reverse was true for the new sulfonamides 195-204 

reported here. 

In conclusion, the new derivatives, synthesized by reaction of the sulfonyl chlorides with 

amino/imino-containing sulfonamides, were investigated for the inhibition of CA I, II, VA 

and VB. The new sulfonamides selectively inhibited the mitochondrial isozymes hCA VA 

and VB over the cytosolic, offtarget ones hCA I and II, with inhibition constants in the low 

nanomolar range (5.9–68.6 nM). The nature, chirality and position of the groups 

substituting the sulfonamide greatly influenced the CA inhibitory properties. 
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CHAPTER SIX 

Experimental section 

 

6.1 Chemistry 

Nuclear magnetic (1H, 13C, 19F, COSY, DEPT, HSQC and HMBC) spectra 

determined in DMSO-d6 and CDCl3-d and were recorded using a Bruker Advance III 400 

MHz instrument. The chemical shifts (δ scale) are reported in parts per million (ppm) and 

the coupling constants (J) are expressed in hertz (Hz). Splitting patterns are designated as 

follows: s, singlet; d, doublet; t, triplet; q, quadruplet; m, multiplet; dd, doubledoublet. For 

all new compounds DEPT, COSY, HSQC and HMBC were routinely used to definitely 

assign the signals of 1H and 13C. Infrared (IR) spectra were recorded on a Perkin–Elmer 

Spectrum R XI spectrometer as solids on KBr plates and are  expressed in ν (cm-1). 

Melting points (mp) were measured in open capillary tubes, unless otherwise stated, using 

a Büchi Melting Point B-540 melting point apparatus and are uncorrected. Polarimetric 

measurements were performed on a Perkin-Elmer 343 polarimeter at 20°C in 0.1 N NaOH 

(λ=589 nm) solutions. Electron ionization mass spectra (30eV) were recorded in positive 

or negative mode on a Water MicroMass ZQ spectrometer. Thin layer chromatography 

(TLC) was carried out on Merck Silica Gel 60 F254 aluminum backed plates. Elution of 

the plates was carried out using ethyl acetate/n-Hexane or MeOH/DCM systems. 

Visualization was achieved with UV light at 254 nm, by dipping into a 0.5% aqueous 

potassium permanganate solution, by Hanessian’s stain solution and heating with a hot air 

gun or by exposure to iodine. Flash column chromatography was carried out using Merck 

SilicaGel 60Å, 230-400 mesh, (obtained from Aldrich Chemical Co.) as stationary phase. 

The crude product was introduced into the column as a solution in the same elution solvent 

system, alternatively as a powder obtained by mixing the crude product with the same 

weight of silica gel in acetone and then removing the solvent in vacuo at room temperature, 

or dissolved into a minimum amount of DCM or carbon tetrachloride. All moisture or air 

sensitive reactions were carried out in oven-dried glassware under a positive pressure of 

nitrogen or argon using standard syringe/septa techniques to transfer solutions. All the inert 

gases used (nitrogen and argon) were passed through jacket columns fitted with activated 

silica gel containing cobalt(II) chloride adsorbed as humidity indicator. umbelliferone, 

aliphatic acids 28, 29, 51, sulfanyl chlorides 192,193 and all the sulfonamides used for 

synthesis are commercially available from Sigma–Aldrich (Milan, Italy), and were used 



                                                                                                                        Chapter Six. Experimental section 

 89 

without further purification. All other solvents and chemicals were used as supplied from 

Aldrich Chemical Co., Acros, Fisher, Alfa Aesar or Lancaster Synthesis. All CA isozymes 

were recombinant ones produced and purified in our laboratory as described 

earlier.7,130,154,98  

 

6.2 CA Inhibition Assays 

An SX.18MV-R Applied Photophysics stopped-flow instrument has been used for 

assaying the CA catalyzed CO2 hydration activity.82 Phenol red (at a concentration of 0.2 

mM) has been used as indicator, working at the absorbance maximum of 557 nm, with 10-

20 mM Hepes (pH 7.5, for α-CAs) or Tris (pH 8.3 for β-CAs) as buffers, and 20 mM 

Na2SO4 (for α-CAs) or 20 mM NaCl for β-CAs (for maintaining constant the ionic 

strength), following the initial rates of the CA-catalyzed CO2 hydration reaction for a 

period of 10-100 s. The CO2 concentrations ranged from 1.7 to 17 mM for the 

determination of the kinetic parameters and inhibition constants. For each inhibitor, at least 

six traces of the initial 5-10% of the reaction have been used for determining the initial 

velocity. The uncatalyzed rates were determined in the same manner and subtracted from 

the total observed rates. Stock solutions of inhibitor (0.1 mM) were prepared in distilled-

deionized water and dilutions up to 0.01 nM were done thereafter with distilled-deionized 

water. Inhibitors and enzyme solutions were preincubated together for 15 min in case of 

sulfonamidic/sulfamatic inhibitors, or for 15 min to 72 h at room temperature (15 min) or 4 

°C (all other incubation times), in case of (thio)coumarinic inhibitors, prior to assay in 

order to allow for the formation of the E-I complex or for the eventual active site mediated 

hydrolysis of the inhibitor. Data reported for (thio)coumarins show the inhibition after 6 h 

incubation, which led to the completion of the in situ hydrolysis of the (thio)coumarin and 

formation of the hydroxy/mercapto-cinnamic acid.51 

The inhibition constants were obtained by nonlinear leastsquares methods using PRISM 3, 

as reported earlier4,9,51,73,132 and represent the mean from at least three different 

determinations. 
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6.3 Synthesis 

6.3.1 General procedure for preparation of ether derivatives 6-1095 
Reaction of umbelliferone (7-hydroxycoumarin) with alkyl halides was done in 
Williamson conditions. In a round bottom flask, at 0°C and under nitrogen atmosphere, to 
a suspension in dry DMF (2 ml) of sodium hydride (60% mineral oil dispersion) (1.2 
mmol), previously washed with n-Hexane, umbelliferone (1.0 mmol) was carefully added. 
After five minutes a solution of the appropriate alkyl halide (1.0 mmol) in dry DMF (1.0 
ml) was added dropwise. The mixture was left stirring at r.t until it was complete 
(monitoring by TLC); then it was quenched with crushed ice (2 g) extracted with ethyl 
acetate (5 ml), washed with brine (5 x 5 ml). The collected organic phase was dried on 
anhydrous Na2SO4, filtered and evaporated under vacuum. The crude was purified by silica 
gel column chromatography using n-Hexane/ethyl acetate mixture as eluent, affording 
compounds 6-10 as white solids in medium yields. 
 
7-ethoxy-2H-chromen-2-one (6) 
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Compound 6 was synthesized by reacting umbelliferone (0.2 g, 1.0 eq) with bromoethane 
(0.09 ml, 1.0 eq.), in presence of sodium hydride 60% mineral oil dispersion following the 
general procedure mentioned above. The crude was purified by silica gel column 
chromatography eluting with 20% AcOEt in n-Hexane to afford compound 6 as white solid 
in 45% yield. m.p: 90.5-92.5 °C; silica gel TLC Rf 0.29 (AcOEt/n-Hex 20%, v/v); ν max 
(KBr) cm-1, 2918 (C-H), 1721 (C=O), 1609 (C=C), 1522 (aromatic), 1226 (C-O); δH 
(400MHz, DMSO-d6) 1.37 (3H, t, J 7.2, 2’-H3), 4.15 (2H, q J 7.2, 1’-H2), 6.30 (1H, d J 
9.6, 3-H), 6.95 (1H, dd J 8.8, 2.2, 6-H), 6.98 (1H, d J 2.2, 8-H), 7.63 (1H, d J 8.8, 5-H), 
8.00 (1H, d J 9.6, 4-H); δC (100 MHz, DMSO-d6) 162.6 (C-7), 161.2 (C-2), 159.2 (C-9), 
145.2 (C-4), 130.3 (C-5), 113.5 (C-6), 113.2 (C-3), 113.1 (C-10), 101.9 (C-8), 64.9 (C-1’), 
15.3 (C-2’); m/z (ESI+) 191.18 ([M+H]+ 12%), 213.15 ([M+Na]+ 25%), 403.17 
([2M+Na]+ 100%). 
 
7-propoxy-2H-chromen-2-one (7) 
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Compound 7 was synthesized by reacting umbelliferone (0.2 g, 1.0 eq) with 1-
bromopropane (0.11 ml, 1.0 eq.), in presence of sodium hydride 60% mineral oil 
dispersion (0.06 g, 1.2 eq.) following the general procedure mentioned above. The crude 
was purified by silica gel column chromatography eluting with 20% AcOEt in n-Hexane to 
afford compound 7 as white solid in 40% yield. m.p: 66-68 °C; silica gel TLC Rf 0.55 
(AcOEt/n-Hex 20%, v/v); ν max (KBr) cm-1, 2927 (C-H), 1718 (C=O), 1611 (C=C), 1525 
(aromatic), 1218 (C-O); δH (400MHz, DMSO-d6) 0.99 (3H, t J 6.8, 3’-H3), 1.75 (2H, m, 
2’-H2), 4.04 (2H, t J 6.8, 1’-H2), 6.28 (1H, d J 9.4, 3-H), 6.94 (1H, dd J 8.4, 2.2, 6-H), 6.97 
(1H, d J 2.2, 8-H), 7.62 (1H, d J 8.4, 5-H), 7.99 (1H, d, J 9.4, 4-H); δC (100 MHz, DMSO-
d6) 162.7 (C-7), 161.1 (C-2), 156.3 (C-9), 145.1 (C-4), 130.3 (C-5), 113.5 (C-6), 113.2 (C-
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3), 113.1 (C-10), 101.9 (C-8), 70.6 (C-1’), 22.7 (C-2’), 11.1 (C-3’); m/z (ESI+) 205.23 
([M+H]+ 5%), 227.20 ([M+Na]+ 100%), 241.19 (4). 
 
7-butoxy-2H-chromen-2-one (8) 
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Compound 8 was synthesized by reacting umbelliferone (0.4 g, 1.0 eq) with 1-
bromobutane (0.26 ml, 1.0 eq.), in presence of sodium hydride 60% mineral oil dispersion 
(0.12 g, 1.2 eq.) following the general procedure mentioned above. The crude was purified 
by silica gel column chromatography eluting with 14% AcOEt in n-Hexane to afford 
compound 8 as white solid in 45% yield. m.p: 60-62 °C; silica gel TLC Rf 0.28 (AcOEt/n-
Hex 14%, v/v); ν max (KBr) cm-1, 2915 (C-H), 1720 (C=O), 1608 (C=C), 1523 (aromatic), 
1219 (C-O); δH (400MHz, DMSO-d6) 0.97 (3H, t J 7.0, 4’-H3), 1.47 (2H, m, 3’-H2), 1.75 
(2H, m, 2’-H2), 4.11 (2H, t J 7.0, 1’-H2), 6.31 (1H, d J 9.4, 3-H), 6.97 (1H, dd J 8.4, 2.4, 6-
H), 7.01 (1H, d J 2.4, 8-H), 7.65 (1H, d J 8.4, 5-H), 8.02 (1H, d J 9.4, 4-H); δC (100 MHz, 
DMSO-d6) 162.8 (C-7), 161.2 (C-2), 156.3 (C-9), 145.2 (C-4), 130.4 (C-5), 113.6 (C-6), 
113.3 (C-3), 113.1 (C-10), 102.0 (C-8), 68.9 (C-1’), 31.4 (C-2’), 19.5 (C-3’), 14.5 (C-4’); 
m/z (ESI+) 219.21 ([M+H]+ 7%), 241.19 ([M+Na]+ 100%), 273.22 (4), 301.26 (12), 
441.34 (5), 459.20 (.[2M+Na]+ 47%). 
 
7-(benzyloxy)-2H-chromen-2-one (9) 
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Compound 9 was synthesized by reacting umbelliferone (0.4 g, 1.0 eq) with 
(bromomethyl)benzene (0.29 ml, 1.0 eq.), in presence of sodium hydride 60% mineral oil 
dispersion (0.12 g, 1.2 eq.) following the general procedure mentioned above. The crude 
was purified by silica gel column chromatography eluting with 25% AcOEt in n-Hexane to 
afford compound 9 as white solid in 40% yield. m.p: 93.5-95.5 °C; silica gel TLC Rf 0.41 
(AcOEt/n-Hex 25%, v/v); ν max (KBr) cm-1, 2919 (C-H), 1716 (C=O), 1614 (C=C), 1531 
(aromatic), 1224 (C-O); δH (400MHz, DMSO-d6) 5.26 (2H, s, OCH2), 6.32 (1H, d J 9.6, 3-
H), 7.06 (1H, dd J 8.8 2.6, 6-H), 7.11 (1H, d J 2.6, 8-H), 7.46 (5H, m, 2’-H2, 3’-H2, 4’-H) 
7.67 (1H, d J 8.8, 5-H) 8.02 (1H, d J 9.6, 4-H); δC (100 MHz, DMSO-d6) 162.4 (C-7), 
161.2 (C-2), 156.3 (C-9), 145.2 (C-4), 137.2 (C-1’), 130.5 (C-5), 129.5 (C-3’), 129.0 (C-
4’), 128.8 (C-2’), 113.9 (C-6), 113.5 (C-3), 113.4 (C-10), 102.6 (C-8), 70.8 (OCH2); m/z 
(ESI+) 205.23 (7), 253.24 ([M+H]+ 70%), 275.22 ([M+Na]+ 92%), 307.12 (5), 493.17 
(15), 527.29 (.[2M+Na]+ 55%). 
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7-phenethoxy-2H-chromen-2-one (10) 
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Compound 10 was synthesized by reacting umbelliferone (0.4 g, 1.0 eq) with (2-
bromoethyl)benzene (0.34 ml, 1.0 eq.), in presence of sodium hydride 60% mineral oil 
dispersion (0.12 g, 1.2 eq.) following the general procedure mentioned above. The crude 
was purified by silica gel column chromatography eluting with 17% AcOEt in n-Hexane to 
afford compound 10 as white solid in 50% yield. m.p: 84-86 °C; silica gel TLC Rf 0.30 
(AcOEt/n-Hex 17%, v/v); ν max (KBr) cm-1, 2936 (C-H), 1718 (C=O), 1628 (C=C), 1540 
(aromatic), 1217 (C-O); δH (400MHz, DMSO-d6) 3.09 (2H, t J 6.8, Ar-CH2), 4.34 (2H, t J 
6.8, OCH2), 6.31 (1H, d J 9.6, 3-H), 6.96 (1H, dd J 8.4, 2.4, 6-H), 7.02 (1H, d J 2.4, 8-H), 
7.31 (5H, m, 2’-H2, 3’-H2, 4’-H), 7.63 (1H, d J 8.4, 5-H), 8.01 (1H, d J 9.6, 4-H); δC (100 
MHz, DMSO-d6) 162.5 (C-7), 161.2 (C-2), 156.3 (C-9), 145.2 (C-4), 138.9 (OCH2), 130.4 
(C-5), 129.9 (C-3’), 129.2 (Ar-CH2), 127.3 (C-4’), 113.6 (C-6), 113.4 (C-3), 113.3 (C-10), 
102.2 (C-8), 69.7 (C-1’), 35.6 (C-2’); m/z (ESI+) 267.22 ([M+H]+ 42%), 289.20 
([M+Na]+ 100%), 321.17 (4), 357.07 (4), 393.21 (10), 413.36 (35), 441.47 (5), 507.23 (8), 
555.27 (.[2M+Na]+ 55%). 
 

6.3.2 Synthesis of compounds 32-5099,100 
6.3.2.1 General procedure for preparation of ester derivatives 30,31 
To a solution of umbelliferone (1.0 mmol) and acetic acid 28 or propionic acid 29 (1.0 
mmol) in dry DMF (1.0 ml), cooled at 0° and under nitrogen atmosphere, was added 
dropwise a solution of DCC (1.2 mmol) and DMAP (0.05 mmol.) in dry DMF (1.0 ml). 
After five minutes the mixture was left stirring at room temperature. 
When complete (monitoring by TLC), the reaction was quenched with crushed ice (2 g), 
filtered on celite, extracted with ethyl acetate (5 ml), washed with brine (5 x 5 ml). The 
collected organic phase was dried on anhydrous Na2SO4, filtered and evaporated under 
vacuum. The crude was purified by silica gel column chromatography using n-
Hexane/ethyl acetate mixture as eluent. Further recrystallization in isopropilic alcohol 
afforded compounds 30,31 as white solids in high yields.  
 
2-oxo-2H-chromen-7-yl acetate (30) 
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Compound 30 was synthesized by reacting umbelliferone (3.0 g, 1.0 eq) with glacial acetic 
acid 28 (1.05 ml, 1.0 eq.) following the general procedure mentioned above. The crude was 
purified by silica gel column chromatography eluting with 20% AcOEt in n-Hexane and 
then recrystalized from isopropilic alcohol to afford compound 30 as white solid in 85% 
yield. mp 141-143 °C; silica gel TLC Rf 0.20 (AcOEt/n-Hex 20%, v/v); ν max (KBr) cm-1, 
2928 (C-H), 1724 (C=O), 1618 (C=C), 1531 (aromatic), 1130 (O-CO); δH (400 MHz, 
DMSO-d6), 2.34 (3H, s, 2’-H3), 6.52 (1H, d J 9.6, 3-H), 7.20 (1H, dd J 8.4, 2.4, 6-H), 7.32 
(1H, d J 2.4, 8-H), 7.81 (1H, d J 8.4, 5-H), 8.11 (1H, d J= 9.6, 4-H); δc (100 MHz, DMSO-
d6) 169.7 (C-1’), 160.7 (C-2), 155.0 (C-7), 153.8 (C-9), 144.8 (C-4), 130.3 (C-5), 119.6 (C-
6), 117.6 (C-3), 116.5 (C-10), 111.1 (C-8), 21.8 (C-2’). 
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2-oxo-2H-chromen-7-yl propionate (31) 
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Compound 31 was synthesized by reacting umbelliferone (3.0 g, 1.0 eq) with propionic 
acid 29 (1.38 ml, 1.0 eq.) following the general procedure mentioned above. The crude was 
purified by silica gel column chromatography eluting with 20% AcOEt in n-Hexane and 
then recrystalized from isopropilic alcohol to afford compound 31 as white solid in 85% 
yield. mp 97-99 °C; silica gel TLC Rf 0.25 (AcOEt/n-Hex 20%, v/v); ν max (KBr) cm-1, 
2926 (C-H), 1721 (C=O), 1618 (C=C), 1522 (aromatic), 1112 (O-CO); δH (400 MHz, 
DMSO-d6) 1.18 (3H, t J 7.2, 3’-H3), 2.68 (2H, q J 7.2, 2’-H2), 6.52 (1H, d J 9.6, 3-H), 7.20 
(1H, dd J 8.4, 2.4, 6-H), 7.32 (1H, d J 2.4, 8-H), 7.81 (1H, d J 8.4, 5-H), 8.11 (1H, d J 9.6, 
4-H); δc (100 MHz, DMSO-d6) 173.4 (C-1’), 160.7 (C-2), 155.0 (C-7), 153.9 (C-9), 144.8 
(C-4), 130.3 (C-5), 119.6 (C-6), 117.6 (C-3), 116.5 (C-10), 111.0 (C-8), 27.8 (C-2’), 9.6 
(C-3’). 
 
6.3.2.2 General procedure for preparation of derivatives 32-35 
In an air opened round bottomed flask, a finely powdered mixture of esters 30 or 31 (1.0 
mmol) and anhydrous aluminium chloride (4 mmol) was heated slowly in an oil bath, 
under nitrogen flow, from r.t to 180 °C. After four hours the reaction was complete 
(monitoring by TLC). The mixture was cooled and decomposed with crushed ice (20 g), 
extracted with AcOEt (20 ml), washed with brine (2 x 15 ml). The collected organic phase 
was dried on anhydrous Na2SO4, filtered and evaporated under vacuum. The crude was 
purified by silica gel column chromatography using n-Hexane/ethyl acetate mixture as 
eluent, affording compounds 32-35 as solids in low-medium yields. 
 
6-acetyl-7-hydroxy-2H-chromen-2-one (32) 
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Compound 32 was synthesized by reacting 2-oxo-2H-chromen-7-yl acetate 30 (0.3 g, 1.0 
eq) with anhydrous aluminium chloride (0.78 g, 4.0 eq.) following the general procedure 
mentioned above. The crude was purified by silica gel column chromatography eluting 
with 20% AcOEt in n-Hexane, to afford compound 32 as white solid in 35% yield. mp 
173-175 °C; silica gel TLC Rf 0.13 (AcOEt/n-Hex 20%, v/v); ν max (KBr) cm-1, 3071 (O-
H), 2927 (C-H), 1736 (C=O), 1638 (C=C),1521 (aromatic), 1192 (O-CO); δH (400 MHz, 
DMSO-d6) 2.71 (3H, s, 2’-H3), 6.38 (1H, d J 9.4, 3-H), 6.93 (1H, s, 8-H), 8.07 (1H, d J 9.4, 
4-H), 8.37 (1H, s, 5-H); δc (100 MHz, DMSO-d6) 203.7 (C-1’), 164.3 (C-7), 160.5 (C-2), 
159.2 (C-9), 145.2 (C-4), 133.9 (C-5), 119.7 (C-6), 114.2 (C-3), 112.6 (C-10), 104.7 (C-8), 
29.1 (C-2’). 
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7-hydroxy-6-propionyl-2H-chromen-2-one (33) 
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Compound 33 was synthesized by reacting 2-oxo-2H-chromen-7-yl propionate 31 (0.94 g, 
1.0 eq) with anhydrous aluminium chloride (2.30 g, 4.0 eq.) following the general 
procedure mentioned above. The crude was purified by silica gel column chromatography 
eluting with 20% AcOEt in n-Hexane to afford compound 33 as pale yellow solid in 15% 
yield. mp 168-170 °C; silica gel TLC Rf 0.15 (AcOEt/n-Hex 20%, v/v); ν max (KBr) cm-1, 
3066 (O-H), 2921 (C-H), 1744 (C=O), 1632 (C=C), 1519 (aromatic), 1187 (O-CO); δH 
(400 MHz, DMSO-d6) 1.15 (3H, t J 7.2, 3’-H3), 3.17 (2H, q J 7.2, 2’-H2), 6.39 (1H, d J 
9.6, 3-H), 6.94 (1H, s, 8-H), 8.07 (1H, d J 9.6, 4-H), 8.39 (1H, s, 5-H); δc (100 MHz, 
DMSO-d6) 206.1 (C-1’), 164.3 (C-7), 160.8 (C-2), 159.2 (C-9), 145.2 (C-4), 133.1 (C-5), 
119.5 (C-6), 114.1 (C-3), 112.6 (C-10), 104.7 (C-8), 33.6 (C-2’), 8.9 (C-3’). 
 
8-acetyl-7-hydroxy-2H-chromen-2-one (34) 
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Compound 34 was synthesized by reacting 2-oxo-2H-chromen-7-yl acetate 30 (0.3 g, 1.0 
eq) with anhydrous aluminium chloride (0.78 g, 4.0 eq.) following the general procedure 
mentioned above. The crude was purified by silica gel column chromatography eluting 
with 20% AcOEt in n-Hexane to afford compound 34 as pale green solid in 65% yield. mp 
169-171 °C; silica gel TLC Rf 0.27 (AcOEt/n-Hex 20%, v/v); ν max (KBr) cm-1, 3061 (O-
H), 2927 (C-H), 1735 (C=O), 1615 (C=C),1526 (aromatic), 1178 (O-C=O); δH (400 MHz, 
DMSO-d6) 2.65 (3H, s, 2’-H3), 6.33 (1H, d J 9.4, 3-H), 6.95 (1H, d J 8.6, 6-H), 7.70 (1H, d 
J 8.6, 5-H), 8.03 (1H, d J 9.4, 4-H); δc (100 MHz, DMSO-d6) 201.6 (C-1’), 160.8 (C-2), 
160.4 (C-7), 153.4 (C-9), 145.6 (C-4), 132.8 (C-5), 115.7 (C-8), 114.4 (C-6), 112.7 (C-3), 
112.1 (C-10), 33.4 (C-2’). 
 
7-hydroxy-8-propionyl-2H-chromen-2-one (35) 
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Compound 35 was synthesized by reacting 2-oxo-2H-chromen-7-yl propionate 31 (0.94 g, 
1.0 eq) with anhydrous aluminium chloride (2.30 g, 4.0 eq.) following the general 
procedure mentioned above. The crude was purified by silica gel column chromatography 
eluting with 20% AcOEt in n-Hexane to afford compound 35 as pale yellow solid in 45% 
yield. mp 165-167 °C; silica gel TLC Rf 0.32 (AcOEt/n-Hex 20%, v/v); ν max (KBr) cm-1, 
3067 (O-H), 2940 (C-H), 1748 (C=O), 1617 (C=C),1540 (aromatic), 1157 (O-C=O); δH 
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(400 MHz, DMSO-d6) 1.13 (3H, t J 7.2, 3’-H3), 2.94 (2H, q J 7.2, 2’H2), 6.30 (1H, d J 9.6, 
3-H), 6.93 (1H, d J 8.6, 6-H), 7.66 (1H, d J 8.6, 5-H), 8.02 (1H, d J 9.6, 4-H); δc (100 
MHz, DMSO-d6) 204.0 (C-1’), 160.5 (C-2), 159.6 (C-7), 152.8 (C-9), 145.5 (C-4), 131.8 
(C-5), 116.7 (C-8), 114.1 (C-6), 112.7 (C-3), 112.1 (C-10), 38.3 (C-2’), 8.5 (C-3’). 
 
6.3.2.3 General procedure for preparation of derivatives 36-50 
To a solution of one key intermediate 36-50 (1.0 mmol) in dry THF (5 ml), cooled at 0°C 
and under nitrogen atmosphere, was added triphenylphosphine (1.2 mmol), the appropriate 
aliphatic alcohol (1.0 mmol) and finally DIAD (1.2 mmol). The mixture was left stirring 
over night at room temperature, then quenched with crushed ice (2 g), extracted with 
AcOEt (10 ml) and washed with brine (2 x 10 ml). The collected organic phase was dried 
on anhydrous Na2SO4, filtered and evaporated under vacuum. The crude was purified by 
silica gel column chromatography using n-Hexane/ethyl acetate mixture as eluent, 
affording compounds 36-50 in medium-high yields. 
 
6-acetyl-7-methoxy-2H-chromen-2-one (36) 
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Compound 36 was synthesized by reacting 6-acetyl-7-hydroxy-2H-chromen-2-one 32 
(0.06 g, 1.0 eq) with anhydrous methanol (0.01 ml, 1.0 eq.), in presence of 
triphenylphosphine (0.09 g, 1.2 eq.) and DIAD (0.07 ml, 1.2 eq.), following the general 
procedure mentioned above. The crude was purified by silica gel column chromatography 
eluting with 14% AcOEt in n-Hexane to afford compound 36 as a white solid in 60% yield; 
mp 182-184 °C. silica gel TLC Rf 0.13 (AcOEt/n-Hex 14%, v/v); ν max (KBr) cm-1, 2928 
(C-H), 1732 (C=O), 1646 (C=C),1533 (aromatic), 1146 (O-CO); δH (400 MHz, DMSO-d6) 
2.58 (3H, s, 2’-H3), 4.02 (3H, s, 1’’-H3), 6.41 (1H, d J 9.6, 3-H), 7.24 (1H, s, 8-H), 8.06 
(1H, s, 5-H), 8.12 (1H, d J 9.6, 4-H); δc (100 MHz, DMSO-d6) 198.0 (C-1’), 162.3 (C-7), 
160.6 (C-2), 158.5 (C-9), 145.2 (C-4), 131.4 (C-5), 126.0 (C-6), 114.4 (C-3), 112.9 (C-10), 
101.3 (C-8), 57.7 (C-1’’), 32.4 (C-2’). 
 
6-acetyl-7-ethoxy-2H-chromen-2-one (37) 
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Compound 37 was synthesized by reacting 6-acetyl-7-hydroxy-2H-chromen-2-one 32 
(0.05 g, 1.0 eq) with absolute ethanol (0.01 ml, 1.0 eq.), in presence of triphenylphosphine 
(0.08 g, 1.2 eq.) and DIAD (0.076 ml, 1.2 eq.), following the general procedure mentioned 
above. The crude was purified by silica gel column chromatography eluting with 14% 
AcOEt in n-Hexane to afford compound 37 as a white solid in 60% yield. mp 164-166 °C; 
silica gel TLC Rf 0.16 (AcOEt/n-Hex 14%, v/v); ν max (KBr) cm-1, 2935 (C-H), 1732 
(C=O), 1622 (C=C), 1533 (aromatic), 1240 (C-O), 1107 (O-C=O); δH (400 MHz, DMSO-
d6) 1.47 (3H, t J 6.8, 2’’-H3), 2.60 (3H, s, 2’-H3), 4.29 (2H, q J 6.8, 1’’-H2), 6.39 (1H, d J 
9.6, 3-H), 7.20 (1H, s, 8-H), 8.04 (1H, s, 5-H), 8.11 (1H, d J 9.6, 4-H); δc (100 MHz, 
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DMSO-d6) 198.0 (C-1’), 161.6 (C-7), 160.6 (C-2), 158.4 (C-9), 145.3 (C-4), 131.4 (C-5), 
125.9 (C-6), 114.4 (C-3), 112.8 (C-10), 101.7 (C-8), 66.1 (C-1’’), 32.6 (C-2’), 15.4 (C-2’’). 
 
6-acetyl-7-propoxy-2H-chromen-2-one (38) 
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Compound 38 was synthesized by reacting 6-acetyl-7-hydroxy-2H-chromen-2-one 32 
(0.08 g, 1.0 eq) with n-propanol (0.03 ml, 1.0 eq.), in presence of triphenylphosphine (0.13 
g, 1.2 eq.) and DIAD (0.09 ml, 1.2 eq.), following the general procedure mentioned above. 
The crude was purified by silica gel column chromatography eluting with 17% AcOEt in 
n-Hexane to afford compound 38 as white solid in 70% yield. mp 131-133 °C; silica gel 
TLC Rf 0.22 (AcOEt/n-Hex 17%, v/v); ν max (KBr) cm-1, 2943 (C-H), 1728 (C=O), 1646 
(C=C), 1569 (aromatic), 1284 (C-O), 1102 (O-C=O); δH (400 MHz, DMSO-d6) 1.07 (3H, t 
J 6.8, 3’’-H3), 1.87 (2H, m, 2’’-H2), 2.61 (3H, s, 2’-H3), 4.20 (2H, t J 6.8, 1’’-H2), 6.39 
(1H, d J 9.6, 3-H), 7.20 (1H, s, 8-H), 8.05 (1H, s, 5-H), 8.11 (1H, d J 9.6, 4-H); δc (100 
MHz, DMSO-d6) 197.9 (C-1’), 161.7 (C-7), 160.7 (C-2), 158.5 (C-9), 145.3 (C-4), 131.5 
(C-5), 125.8 (C-6), 114.3 (C-3), 112.8 (C-10), 101.6 (C-8), 71.8 (C-1’’), 32.5 (C-2’), 22.7 
(C-2’’), 11.5 (C-3’’). 
 
6-acetyl-7-butoxy-2H-chromen-2-one (39) 
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Compound 39 was synthesized by reacting 6-acetyl-7-hydroxy-2H-chromen-2-one 32 
(0.05 g, 1.0 eq) with n-butanol (0.03 ml, 1.0 eq.), in presence of triphenylphosphine (0.08 
g, 1.2 eq.) and DIAD (0.06 ml, 1.2 eq.), following the general procedure mentioned above. 
The crude was purified by silica gel column chromatography eluting with 14% AcOEt in 
n-Hexane to afford compound 39 as white solid in 60% yield. mp 128-130 °C; silica gel 
TLC Rf 0.16 (AcOEt/n-Hex 14%, v/v); ν max (KBr) cm-1, 2959 (C-H), 1739 (C=O), 1653 
(C=C), 1521 (aromatic), 1284 (C-O), 1158 (O-C=O); δH (400 MHz, DMSO-d6) 0.99 (3H, t 
J 6.8, 4’’-H3), 1.52 (2H, m, 3’’-H2), 1.84 (2H, m, 2’’-H2), 2.60 (3H, s, 2’-H3), 4.24 (2H, t J 
6.8, 1’’-H2), 6.40 (1H, d J 9.6, 3-H), 7.23 (1H, s, 8-H), 8.05 (1H, s, 5-H), 8.11 (1H, d J 9.6, 
4-H); δc (100 MHz, DMSO-d6) 197.9 (C-1’), 161.7 (C-7), 160.6 (C-2), 158.5 (C-9), 145.2 
(C-4), 131.5 (C-5), 125.9 (C-6), 114.4 (C-3), 112.8 (C-10), 101.7 (C-8), 70.0 (C-1’’), 32.5 
(C-2’), 31.31 (C-2’’), 19.8 (C-3’’), 14.6 (C-4’’). 
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6-acetyl-7-(benzyloxy)-2H-chromen-2-one (40) 
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Compound 40 was synthesized by reacting 6-acetyl-7-hydroxy-2H-chromen-2-one 32 
(0.05 g, 1.0 eq) with benzylic alcohol (0.02 ml, 1.0 eq.), in presence of triphenylphosphine 
(0.08 g, 1.2 eq.) and DIAD (0.06 ml, 1.2 eq.), following the general procedure mentioned 
above. The crude was purified by silica gel column chromatography eluting with 17% 
AcOEt in n-Hexane to afford compound 40 as white solid in 70% yield. mp 166-168 °C; 
silica gel TLC Rf 0.26 (AcOEt/n-Hex 17%, v/v); ν max (KBr) cm-1, 2930 (C-H), 1734 
(C=O), 1622 (C=C), 1534 (aromatic), 1235 (C-O), 1112 (O-C=O); δH (400 MHz, DMSO-
d6), 2.56 (3H, s, 2’-H3), 5.39 (2H, s, OCH2), 6.41 (1H, d J 9.6, 3-H), 7.34 (1H, s, 8-H),7.44 
(5H, m, 2’’-H2, 3’’-H2, 4’’-H), 8.08 (1H, s, 5-H), 8.12 (1H, d J 9.6, 4-H); δc (100 MHz, 
DMSO-d6) 197.9 (C-1’), 161.2 (C-7), 160.6 (C-2), 158.3 (C-9), 145.1 (C-4), 136.6 (C-1’’), 
131.5 (C-5), 129.5 (C-3’’), 129.2 (C-4’’), 128.9 (C-2’’), 126.2 (C-6), 114.6 (C-3), 113.1 
(C-10), 102.1 (C-8), 71.8 (OCH2), 32.5 (C-2’). 
 
6-acetyl-7-(2’’-(1’’’-adamantyl)-ethoxy)-2H-chromen-2-one (41) 
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Compound 41 was synthesized by reacting 6-acetyl-7-hydroxy-2H-chromen-2-one 32 
(0.05 g, 1.0 eq) with 2-(1-adamantyl)-ethanol 53 (0.04 g, 1.0 eq.), in presence of 
triphenylphosphine (0.08 g, 1.2 eq.) and DIAD (0.06 ml, 1.2 eq.), following the general 
procedure mentioned above. The crude was purified by silica gel column chromatography 
eluting with 14% AcOEt in n-Hexane to afford compound 41 as white solid in 75% yield. 
mp 175-177 °C; silica gel TLC Rf 0.22 (AcOEt/n-Hex 14%, v/v); ν max (KBr) cm-1, 2899 
(C-H), 1739 (C=O), 1615 (C=C), 1558 (aromatic), 1209 (C-O), 1098 (O-C=O); δH (400 
MHz, CDCl3-d) 1.61 (14H, m, 4’’’-H6, 2’’’H 6, 2’’-H2), 1.99 (3H, m, 3’’’-H3), 2.64 (3H, s, 
2’-H3), 4.19 (2H, t J 7.2, OCH2), 6.28 (1H, d J 9.6, 3-H), 6.86 (1H, s, 8-H), 7.66 (1H, d J 
8.8, 4-H), 7.93 (1H, s, 5-H); δc (100 MHz, CDCl3-d) 198.0 (C-1’), 161.7 (C-7), 160.6 (C-
2), 158.4 (C-9), 143.7 (C-4), 131.2 (C-5), 125.8 (C-6), 114.4 (C-3), 112.4 (C-10), 100.8 
(C-8), 66.1 (OCH2), 43.1 (C-2’’), 42.9 (C-4’’’), 37.3 (C-2’’’), 32.4 (C-2’), 32.2 (C-1’’’) 
28.9 (C-3’’’). 
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8-acetyl-7-methoxy-2H-chromen-2-one (42) 
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Compound 42 was synthesized by reacting 8-acetyl-7-hydroxy-2H-chromen-2-one 34 
(0.46 g, 1.0 eq) with anhydrous methanol (0.09 ml, 1.0 eq.), in presence of 
triphenylphosphine (0.75 g, 1.2 eq.) and DIAD (0.53 ml, 1.2 eq.), following the general 
procedure mentioned above. The crude was purified by silica gel column chromatography 
eluting with 50% AcOEt in n-Hexane to afford compound 42 as a white solid in 88% yield. 
mp 122-124 °C; silica gel TLC Rf 0.32 (AcOEt/n-Hex 50%, v/v); ν max (KBr) cm-1, 2955 
(C-H), 1717 (C=O), 1616 (C=C),1521 (aromatic), 1265 (C-O), 1154 (O-C=O); δH (400 
MHz, DMSO-d6) 2.54 (3H, s, 2’-H3), 3.94 (3H, s, 1’’-H3), 6.37 (1H, d J 9.6, 3-H), 7.21 
(1H, d J 8.8, 6-H), 7.81 (1H, d J 8.8, 5-H), 8.06 (1H, d J 9.6, 4-H); δc (100 MHz, DMSO-
d6) 200.0 (C-1’), 160.3 (C-2), 159.0 (C-7), 151.2 (C-9), 145.2 (C-4), 131.4 (C-5), 119.3 (C-
8), 114.0 (C-3), 113.6 (C-10), 109.6 (C-6), 57.5 (C-1’’), 33.1 (C-2’). 
 
8-acetyl-7-ethoxy-2H-chromen-2-one (43) 
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Compound 43 was synthesized by reacting 8-acetyl-7-hydroxy-2H-chromen-2-one 34 (0.2 
g, 1.0 eq) with absolute ethanol (0.06 ml, 1.0 eq.), in presence of triphenylphosphine (0.31 
g, 1.2 eq.) and DIAD (0.23 ml, 1.2 eq.), following the general procedure mentioned above. 
The crude was purified by silica gel column chromatography eluting with 33% AcOEt in 
n-Hexane to afford compound 43 as a white solid in 80% yield. mp 102-104 °C; silica gel 
TLC Rf 0.22 (AcOEt/n-Hex 33%, v/v); ν max (KBr) cm-1, 2938 (C-H), 1718 (C=O), 1647 
(C=C),1522 (aromatic), 1246 (C-O), 1168 (O-C=O); δH (400 MHz, DMSO-d6) 1.37 (3H, t 
J 6.8, 2’’-H3), 2.54 (3H, s, 2’-H3), 4.24 (2H, q J 6.8, 1’’-H2), 6.36 (1H, d J 9.6, 3-H), 7.18 
(1H, d J 8.8, 6-H), 7.77 (1H, d J 8.8, 5-H), 8.05 (1H, d J 9.6, 4-H); δc (100 MHz, DMSO-
d6) 199.9 (C-1’), 160.3 (C-2), 158.4 (C-7), 151.2 (C-9), 145.1 (C-4), 131.3 (C-5), 119.6 (C-
8), 113.9 (C-3), 113.5 (C-10), 110.3 (C-6), 65.7 (C-1’’), 33.0 (C-2’), 15.3 (C-2’’). 
 
8-acetyl-7-propoxy-2H-chromen-2-one (44) 
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Compound 44 was synthesized by reacting 8-acetyl-7-hydroxy-2H-chromen-2-one 34 (0.2 
g, 1.0 eq) with n-propanol (0.07 ml, 1.0 eq.), in presence of triphenylphosphine (0.31 g, 1.2 
eq.) and DIAD (0.23 ml, 1.2 eq.), following the general procedure mentioned above. The 
crude was purified by silica gel column chromatography eluting with 33% AcOEt in n-
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Hexane to afford compound 44 as a white solid in 70% yield. mp 79-81 °C; silica gel TLC 
Rf 0.19 (AcOEt/n-Hex 33%, v/v); ν max (KBr) cm-1, 2972 (C-H), 1733 (C=O), 1635 
(C=C),1534 (aromatic), 1254 (C-O), 1165 (O-C=O); δH (400 MHz, DMSO-d6) 0.99 (3H, t 
J 7.0, 3’’-H3), 1.77 (2H, m, 2’’-H2), 2.54 (3H, s, 2’-H3), 4.21 (2H, t J 7.0, 1’’-H2), 6.36 
(1H, d J 9.6, 3-H), 7.19 (1H, d J 8.8, 6-H), 7.78 (1H, d J 8.8, 5-H), 8.05 (1H, d J 9.6, 4-H); 
δc (100 MHz, DMSO-d6) 200.9 (C-1’), 160.5 (C-2), 158.8 (C-7), 151.3 (C-9), 145.1 (C-4), 
131.3 (C-5), 114.8 (C-8), 113.8 (C-3), 113.5 (C-10), 110.2 (C-6), 71.3 (C-1’’), 33.0 (C-2’), 
22.7 (C-2’’), 11.2 (C-3’’). 
 
8-acetyl-7-butoxy-2H-chromen-2-one (45) 
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Compound 45 was synthesized by reacting 8-acetyl-7-hydroxy-2H-chromen-2-one 34 (0.2 
g, 1.0 eq) with n-butanol (0.09 ml, 1.0 eq.), in presence of triphenylphosphine (0.31 g, 1.2 
eq.) and DIAD (0.23 ml, 1.2 eq.), following the general procedure mentioned above. The 
crude was purified by silica gel column chromatography eluting with 25% AcOEt in n-
Hexane to afford compound 45 as a white solid in 50% yield. mp 74-76 °C; silica gel TLC 
Rf 0.22 (AcOEt/n-Hex 25%, v/v); ν max (KBr) cm-1, 2955 (C-H), 1720 (C=O), 1653 
(C=C),1522 (aromatic), 1270 (C-O), 1170 (O-C=O); δH (400 MHz, DMSO-d6) 0.96 (3H, t 
J 7.0, 4’’-H3), 1.44 (2H, m, 3’’-H2), 1.74 (2H, m 2’’-H2), 2.54 (3H, s, 2’-H3), 4.18 (2H, t J 
7.0, 1’’-H2), 6.36 (1H, d J 9.6, 3-H), 7.20 (1H, d J 8.8, 6-H), 7.78 (1H, d J 8.8, 5-H), 8.05 
(1H, d J 9.6, 4-H); δc (100 MHz, DMSO-d6) 199.8 (C-1’), 160.3 (C-2), 158.5 (C-7), 151.2 
(C-9), 145.1 (C-4), 131.3 (C-5), 119.4 (C-8), 113.9 (C-3), 113.5 (C-10), 110.3 (C-6), 69.6 
(C-1’’), 33.0 (C-2’), 31.4 (C-2’’), 19.5 (C-3’’), 14.5 (C-4’’). 
 
8-acetyl-7-(benzyloxy)-2H-chromen-2-one (46) 
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Compound 46 was synthesized by reacting 8-acetyl-7-hydroxy-2H-chromen-2-one 34 (0.2 
g, 1.0 eq) with benzylic alcohol (0.10 ml, 1.0 eq.), in presence of triphenylphosphine (0.31 
g, 1.2 eq.) and DIAD (0.23 ml, 1.2 eq.), following the general procedure mentioned above. 
The crude was purified by silica gel column chromatography eluting with 25% AcOEt in 
n-Hexane to afford compound 46 as a white solid in 98% yield. mp 116-118 °C; silica gel 
TLC Rf 0.19 (AcOEt/n-Hex 25%, v/v); ν max (KBr) cm-1, 2951 (C-H), 1727 (C=O), 1653 
(C=C),1521 (aromatic), 1232 (C-O), 1166 (O-C=O); δH (400 MHz, DMSO-d6) 2.55 (3H, s, 
2’-H3), 5.33 (2H, s, OCH2), 6.38 (1H, d J 9.6, 3-H), 7.29 (1H, d J 8.8, 6-H),7.40 (5H, m, 
2’’-H 2, 3’’-H2, 4’’-H) 7.78 (1H, d J 8.8, 5-H), 8.05 (1H, d J 9.6, 4-H); δc (100 MHz, 
DMSO-d6) 199.9 (C-1’), 160.2 (C-2), 158.0 (C-7), 151.2 (C-9), 145.1 (C-4), 136.9 (C-1’’), 
131.3 (C-5), 129.4 (C-3’’), 129.0 (C-4’’), 128.4 (C-2’’), 119.8 (C-8), 114.1 (C-3), 113.8 
(C-10), 110.8 (C-6), 71.2 (OCH2), 33.0 (C-2’). 
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8-acetyl-7-(2’’-(1’’’-adamantyl)-ethoxy)-2H-chromen-2-one (47) 
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Compound 47 was synthesized by reacting 8-acetyl-7-hydroxy-2H-chromen-2-one 34 
(0.07 g, 1.0 eq) with 2-(1-adamantyl)-ethanol 53 (0.06 g, 1.0 eq.), in presence of 
triphenylphosphine (0.11 g, 1.2 eq.) and DIAD (0.08 ml, 1.2 eq.), following the general 
procedure mentioned above. The crude was purified by silica gel column chromatography 
eluting with 20% AcOEt in n-Hexane to afford compound 47 as a white solid in 50% yield. 
mp 178-180 °C; silica gel TLC Rf 0.16 (AcOEt/n-Hex 20%, v/v); ν max (KBr) cm-1, 2914 
(C-H), 1728 (C=O), 1635 (C=C),1533 (aromatic), 1259 (C-O), 1140 (O-C=O); δH (400 
MHz, CDCl3-d) 1.65 (14H, m, 4’’’-H6, 2’’’H 6, 2’’-H2), 1.97 (3H, m, 3’’’-H3), 2.59 (3H, s, 
2’-H3), 4.13 (2H, t J 7.2, OCH2), 6.25 (1H, d J 9.6, 3-H), 6.86 (1H, d J 8.8, 6-H), 7.42 (1H, 
d J 8.8, 5-H), 7.61 (1H, d J 9.6, 4-H); δc (100 MHz, CDCl3-d) 199.4 (C-1’), 160.2 (C-2), 
158.6 (C-7), 151.6 (C-9), 143.4 (C-4), 129.8 (C-5), 120.0 (C-8), 114.0 (C-3), 113.0 (C-10), 
108.9 (C-6), 65.8 (OCH2), 42.9 (C-2’’), 42.8 (C-4’’’), 37.3 (C-2’’’), 32.7 (C-2’), 32.1 (C-
1’’’) 28.9 (C-3’’’). 
 
7-methoxy-8-propionyl-2H-chromen-2-one (48) 
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Compound 48 was synthesized by reacting 7-hydroxy-8-propionyl-2H-chromen-2-one 35 
(0.10 g, 1.0 eq) with anhydrous methanol (0.02 ml, 1.0 eq.), in presence of 
triphenylphosphine (0.14 g, 1.2 eq.) and DIAD (0.11 ml, 1.2 eq.), following the general 
procedure mentioned above. The crude was purified by silica gel column chromatography 
eluting with 17% AcOEt in n-Hexane to afford compound 48 as a white solid in 60% yield. 
mp 102-104 °C; silica gel TLC Rf 0.13 (AcOEt/n-Hex 17%, v/v); ν max (KBr) cm-1, 2946 
(C-H), 1717 (C=O), 1646 (C=C), 1534 (aromatic), 1293 (C-O), 1162 (O-C=O); δH (400 
MHz, DMSO-d6) 1.11 (3H, t J 7.2, 3’-H3), 2.84 (2H, q J 7.2, 2’-H2), 3.92 (3H, s, OCH3), 
6.37 (1H, d J 9.6, 3-H), 7.20 (1H, d J 8.8, 6-H), 7.80 (1H, d J 8.8, 5-H), 8.07 (1H, d J 9.6, 
4-H); δc (100 MHz, DMSO-d6) 203.0 (C-1’), 160.3 (C-2), 159.0 (C-7), 151.2 (C-9), 145.2 
(C-4), 131.3 (C-5), 119.2 (C-8), 114.0 (C-3), 113.6 (C-10), 109.5 (C-6), 57.5 (OCH3), 38.4 
(C-2’), 8.4 (C-3’). 
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7-ethoxy-8-propionyl-2H-chromen-2-one (49) 
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Compound 49 was synthesized by reacting 7-hydroxy-8-propionyl-2H-chromen-2-one 35 
(0.03 g, 1.0 eq) with absolute ethanol (0.008 ml, 1.0 eq.), in presence of 
triphenylphosphine (0.04 g, 1.2 eq.) and DIAD (0.03 ml, 1.2 eq.), following the general 
procedure mentioned above. The crude was purified by silica gel column chromatography 
eluting with 20% AcOEt in n-Hexane to afford compound 49 as a white solid in 60% yield. 
mp 105-107 °C; silica gel TLC Rf 0.13 (AcOEt/n-Hex 20%, v/v); ν max (KBr) cm-1, 2940 
(C-H), 1715 (C=O), 1646 (C=C), 1534 (aromatic), 1297 (C-O), 1165 (O-C=O); δH (400 
MHz, DMSO-d6) 1.24 (3H, t J 7.2, 3’’-H3), 1.34 (3H, t J 6.8, 2’-H3), 2.83 (2H, q J 7.2, 2’’-
H2), 4.21 (2H, q J 6.8, OCH2), 6.36 (1H, d J 9.6, 3-H), 7.18 (1H, d J 8.8, 6-H), 7.77 (1H, d 
J 8.8, 5-H), 8.05 (1H, d J 9.6, 4-H); δc (100 MHz, DMSO-d6) 203.1 (C-1’’), 160.3 (C-2), 
158.4 (C-7), 151.3 (C-9), 145.2 (C-4), 131.2 (C-5), 119.4 (C-8), 113.9 (C-3), 113.5 (C-10), 
110.3 (C-6), 65.7 (OCH2), 38.3 (C-2’’), 15.2 (C-2’), 8.5 (C-3’’). 
 
8-propionyl-7-propoxy-2H-chromen-2-one (50) 
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Compound 50 was synthesized by reacting 7-hydroxy-8-propionyl-2H-chromen-2-one 35 
(0.03 g, 1.0 eq) with n-propanol (0.01 ml, 1.0 eq.), in presence of triphenylphosphine (0.04 
g, 1.2 eq.) and DIAD (0.03 ml, 1.2 eq.), following the general procedure mentioned above. 
The crude was purified by silica gel column chromatography eluting with 20% AcOEt in 
n-Hexane to afford compound 50 as a white solid in 80% yield. mp 82-84 °C; silica gel 
TLC Rf 0.12 (AcOEt/n-Hex 20%, v/v); ν max (KBr) cm-1, 2932 (C-H), 1747 (C=O), 1635 
(C=C), 1534 (aromatic), 1287 (C-O), 1170 (O-C=O); δH (400 MHz, DMSO-d6) 0.98 (3H, t 
J 7.2, 3’’-H3), 1.13 (3H, t J 7.4, 3’-H3), 1.74 (2H, m, 2’’-H2), 2.83 (2H, q J 7.4, 2’-H2), 
4.13 (2H, t J 7.2, 1’’-H2), 6.36 (1H, d J 9.6, 3-H), 7.19 (1H, d J 8.8, 6-H), 7.77 (1H, d J 
8.8, 5-H), 8.06 (1H, d J 9.6, 4-H); δc (100 MHz, DMSO-d6) 202.9 (C-1’), 160.3 (C-2), 
158.5 (C-7), 151.3 (C-9), 145.2 (C-4), 131.2 (C-5), 119.4 (C-8), 113. (C-3), 113.5 (C-10), 
110.2 (C-6), 71.2 (C-1’’), 38.3 (C-2’), 22.7 (C-2’’), 11.1 (C3’’), 8.4 (C-3’). 
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6.3.3 Procedure for preparation of alcohol 53101 
Synthesis of 1-adamantane-acetic acid-methyl ester (52) 
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To a solution of 1-Adamantane-acetic acid 51 (0.5 g, 1.0 eq.) in dry methanol (10 ml), 
cooled at 0°C and under nitrogen atmosphere, was added dropwise thionyl chloride (0.28 
ml, 1.5 eq.). The mixture was left stirring at room temperature. After one hour, when 
complete (monitoring by TLC), the reaction was evaporated under vacuum. The crude was 
purified by silica gel column chromatography eluting with 5% AcOEt in n-Hexane 
affording compound 52 as colorless oil in 90% yield. Silica gel TLC Rf 0.67 (AcOEt/n-Hex 
5%, v/v); ν max (KBr) cm-1, 2911 (C-H), 1712 (C=O), 1122 (O-C=O); δH (400 MHz, 
CDCl3-d), 1.63 (12H, m, 2-, 4-H12), 1.97 (3H, m, 3-H3), 2.07 (2H, s, CH2CO), 3.64 (3H, s, 
OCH3); δc (100 MHz, CDCl3-d) 172.6 (C=O), 51.4 (OCH3), 49.1 (CH2CO), 42.7 (C-2), 
37.1 (C-4), 33.1 (C-1), 28.9 (C-3). 
 
Synthesis of 2-(1’-adamantyl)-ethanol (53) 
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To a sospension of lithium aluminum hydride (0.25 g, 2.8 eq.) in dry THF (10 ml), cooled 
at 0°C and under nitrogen atmosphere, was added dropwise a solution of 1-adamantane-
acetic acid-methyl ester 52 (0.48 g, 1.0 eq.) in dry THF (3 ml). The mixture was left 
stirring at room temperature. After three hour, when complete (monitoring by TLC), the 
reaction was quenched with careful addition of crushed ice and 1N KOH solution. The 
mixture was acidified with 1N HCl solution, extracted with AcOEt and washed with brine. 
The collected organic phase was dried on anhydrous Na2SO4, filtered and evaporated under 
vacuum. The crude was purified by silica gel column chromatography eluting with 9% 
AcOEt in n-Hexane affording compound 53 as white solid in 90% yield. m.p 71-73 °C; 
silica gel TLC Rf 0.22 (AcOEt/n-Hex 9%, v/v); ν max (KBr) cm-1, 3293 (O-H), 2906 (C-H); 
δH (400 MHz, CDCl3-d), 1.27 (2H, m, 2-H2), 1.50 (6H, m, 2’-H6), 1.63 (6H, m, 4’-H6), 
1.93 (3H, m, 3’-H3), 3.47 (2H, m, 1-H2), 4.22 (1H, t J 5.2, OH); δc (100 MHz, CDCl3-d) 
57.1 (C-1), 47.8 (C-2), 43.2 (C-2’), 37.6 (C-4’), 32.3 (C-1’), 28.9 (C-3’). 
 

6.3.4 General procedure for synthesis of derivatives 123-132161,162 
6.3.4.1 Preparation of ether compounds 116, 117161 
Reaction of 6-hydroxy or 7-hydroxycoumarin (1.0 g, 1.0 eq) and propargyl alcohol (1.0 eq) 
was carried out in Mitsunobu conditions at 0°C under sonication, in presence of 
triphenylphoshine (1.0 eq) and drop-wised diisopropylazadicarboxylate (1.1 eq) in dry 
THF as solvent (90 ml). The solution was sonicated at r.t. under a nitrogen atmosphere 
until starting material was consumed (TLC monitoring). Solvents were removed under 
vacuo to give a white solid that was recrystallized from MeOH to give compounds 116 and 
117 as brown and colorless solids respectively, in medium yields.  
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6-(prop-2’-ynyloxy)-2H-chromen-2-one (116) 
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Compound 116 was synthesised by reacting 6-hydroxycoumarin (0.8 g, 1.0 eq) with 
propargyl alcohol (0.28 ml, 1.0 eq.), in presence of triphenylphosphine (1.29 g, 1.0 eq.) 
and DIAD (0.97 ml, 1.0 eq.), following the general procedure mentioned above. The crude 
was recrystallized from MeOH to afford compound 116 as a brown solid in 50% yield. mp 
202-204 °C; silica gel TLC Rf 0.23 (AcOEt/n-Hex 10%, v/v); ν max (KBr) cm-1, 3302 
(C≡C-H), 2167 (C≡CH), 1755 (C=O), 1674 (C=C), 1601 (aromatic), 1328 (C-O), 1199 (O-
C=O); δH (400 MHz, DMSO-d6) 3.64 (1H, t, J 2.4, 3’-H), 4.89 (2H, d, J 2.4, 1’-H2), 6.54 
(1H, d, J 9.4, 3-H), 7.30 (1H, dd, J 9.0, 3.0, 7-H), 7.38 (1H, d, J 3.0, 5-H), 7.41 (1H, d, J 
9.0, 8-H), 8.06 (1H, d, J 9.4, 4-H); δC (100 MHz, DMSO-d6) 161.1 (C-2), 154.3 (C-9), 
149.2 (C-6), 144.8 (C-4), 120.9 (C-7), 120.0 (C-10), 118.3 (C-8), 117.7 (C-3), 113.3 (C-5), 
79.8 (C-2’), 79.4 (C-3’), 57.0 (C-1’). 
 
7-(prop-2’-ynyloxy)-2H-chromen-2-one (117) 
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Compound 117 was synthesised by reacting 7-hydroxycoumarin (0.8 g, 1.0 eq) with 
propargyl alcohol (0.28 ml, 1.0 eq.), in presence of triphenylphosphine (1.29 g, 1.0 eq.) 
and DIAD (0.97 ml, 1.0 eq.), following the general procedure mentioned above. The crude 
was recrystallized from MeOH to afford compound 117 as a white solid in 40% yield. mp 
117-119 °C; silica gel TLC Rf 0.20 (AcOEt/n-Hex 10%, v/v); ν max (KBr) cm-1, 3310 
(C≡C-H), 2160 (C≡CH), 1715 (C=O), 1642 (C=C), 1584 (aromatic), 1301 (C-O), 1175 (O-
C=O); δH (400 MHz, DMSO-d6) 3.69 (1H, t, J 2.4, 3’-H), 4.97 (2H, d, J 2.4, 1’-H2), 6.36 
(1H, d, J 9.6, 3-H), 7.03 (1H, dd, J 8.5, 2.3, 6-H), 7.09 (1H, d, J 2.3, 8-H), 7.69 (1H, d, J 
8.5, 5-H), 8.03 (1H, d, J 9.6, 4-H); δC (100 MHz, DMSO-d6) 161.1 (C-2), 161.0 (C-7), 
156.0 (C-9), 145.1 (C-4), 130.4 (C-5), 113.9 (C-3), 113.8 (C-10), 113.7 (C-6), 102.7 (C-8), 
79.8 (C-3’), 79.4 (C-2’), 57.0 (C-1’). 
 
6.3.4.2 General procedure for synthesis of phenylazides 118-122162 
Halogenoaniline (0.3g, 1.0eq) was dissolved in a solution H2O/AcOH (1/2 v/v, 10 ml) at 
0°C. NaNO2 (1.4 eq) was slowly added and the resulting solution was stirred at the same 
temperature for 1h. Then NaN3 (1.5 eq) was added portion-wise and the mixture was 
stirred at r.t. until starting material was consumed (TLC monitoring). The reaction was 
quenched with slush, extracted with ethyl acetate (2 x 20 ml) and the combined organic 
layers were washed with 5% NaHCO3 (2 x 20 ml), dried over Na2SO4, filtered off and 
solvent evaporated in vacuo to afford the corresponding phenylazide which was used 
without further purification. 
 
6.3.4.3 General procedure for synthesis of triazolyl derivatives 123-132162 
Azide (1.0 eq) and alkyne (1.0 eq) were dissolved in tert-ButOH/H2O and then 
tetramethylamonium chloride (1.0 eq) and copper nanosize (5% mol) were added. The 
mixture was vigorously stirred at r.t. until starting material was consumed (TLC 
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monitoring). Solvents were removed under vacuo (temperature has not to exceed 40 °C) 
and the brown residue was purified by silica gel column chromatography eluting with ethyl 
acetate in n-Hexane to afford compounds 123-132 as yellow solids in medium yields. 
 
6-((1’-phenyl-1’’H-1’,2’,3’-triazol-4’-yl)methoxy)-2 H-chromen-2-one (123) 
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Compound 123 was synthesized by reacting azidobenzene 118 (0.52g, 1.1 eq) with 6-
(prop-2-ynyloxy)-2H-chromen-2-one 116 (0.8g, 1.0 eq.), dissolved in tert-ButOH/H2O 
(1/1 v/v, 2.0 ml) in presence of tetramethylamonium chloride (0.04g, 1.0 eq) and copper 
nanosize (5 % mol), following the general procedure mentioned above. The crude was 
purified by silica gel column chromatography eluting with 33% ethyl acetate in n-hexane 
to afford 123 as a light brown solid in 40% yield. mp 154-156 °C; silica gel TLC Rf 0.19 
(AcOEt/n-Hex 33%, v/v); ν max (KBr) cm-1, 2935 (C-H), 1726 (C=O), 1635 (C=C),1549 
(aromatic), 1244 (C-O), 1186 (C-N), 1106 (O-C=O); δH (400 MHz, DMSO-d6) 5.34 (2H, s, 
OCH2), 6.54 (1H, d, J 9.4, 3-H), 7.36 (1H, m, 7-H), 7.42 (1H, m, 8-H), 7.51 (1H, d, J 2.8, 
5-H), 7.54 (1H, m, 4’’-H), 7.65 (1H, m, 3’’H), 7.94 (1H, m, 2’’-H), 8.06 (1H, d, J 9.4, 4-
H), 9.01 (1H, s, 5’-H); δc (100 MHz, DMSO-d6) 161.0, 155.2, 149.0, 144.9, 144.5, 137.5, 
130.8, 129.7, 123.9, 121.1, 120.9, 120.1, 118.4, 117.6, 112.9, 62.6. 
 
7-((1’-phenyl-1’’H-1’,2’,3’-triazol-4’-yl)methoxy)-2 H-chromen-2-one (124) 
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Compound 124 was synthesized by reacting azidobenzene 118 (0.52g, 1.1 eq) with 7-
(prop-2-ynyloxy)-2H-chromen-2-one 117 (0.8g, 1.0 eq.), dissolved in tert-ButOH/H2O 
(1/1 v/v, 2.0 ml) in presence of tetramethylamonium chloride (0.04g, 1.0 eq) and copper 
nanosize (5 % mol), following the general procedure mentioned above. The crude was 
purified by silica gel column chromatography eluting with 33% ethyl acetate in n-hexane 
to afford 124 as a light brown solid in 40% yield. mp 163-165 °C; silica gel TLC Rf 0.11 
(AcOEt/n-Hex 33%, v/v); ν max (KBr) cm-1, 2938 (C-H), 1719 (C=O), 1642 (C=C),1538 
(aromatic), 1243 (C-O), 1191 (C-N), 1111 (O-C=O); δH (400 MHz, DMSO-d6) 5.41 (2H, s, 
OCH2), 6.35 (1H, d, J 9.4, 3-H), 7.10 (1H, dd J 8.4, 2.4, 6-H), 7.25 (1H, d J 2.4, 8-H), 7.54 
(1H, ,m, 4’’-H), 7.65 (1H, m, 3’’-H), 7.70 (1H, m, 5-H), 7.95 (1H, m, 2’’-H), 8.05 (1H, d, 
J 9.4, 4-H), 9.04 (1H, s, 5’-H); δc (100 MHz, DMSO-d6) 161.9, 161.1, 156.2, 145.2, 144.1, 
138.9, 130.8, 130.4, 129.7, 124.1, 121.1, 113.8, 113.7, 113.6, 102.6, 62.6. 
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6-((1’-(2’’-chlorophenyl)-1’’ H-1’,2’,3’-triazol-4’-yl)methoxy)-2 H-chromen-2-one (125) 
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Compound 125 was synthesized by reacting 1-azido-2-chlorobenzene 119 (0.07g, 1.1 eq) 
with 6-(prop-2-ynyloxy)-2H-chromen-2-one 116 (0.08g, 1.0 eq.), dissolved in tert-
ButOH/H2O (1/1 v/v, 2.0 ml) in presence of tetramethylamonium chloride (0.04g, 1.0 eq) 
and copper nanosize (5 % mol), following the general procedure mentioned above. The 
crude was purified by silica gel column chromatography eluting with 33% ethyl acetate in 
n-hexane to afford 125 as a light brown solid in 45% yield. mp 164-166 °C; silica gel TLC 
Rf 0.11 (AcOEt/n-Hex 33%, v/v); ν max (KBr) cm-1, 2914 (C-H), 1761 (C=O), 1648 
(C=C),1552 (aromatic), 1266 (C-O), 1210 (C-N), 1137 (O-C=O); δH (400 MHz, DMSO-
d6) 5.35 (2H, s, OCH2), 6.54 (1H, d, J 9.6, 3-H), 7.37 (1H, m, 7-H), 7.42 (1H, m, 8-H), 
7.51 (1H, d, J 2.8, 5-H), 7.64 (1H, m, 5’’-H), 7.68 (1H, m, 4’’-H), 7.76 (1H, m, 6’’-H), 
7.82 (1H, m, 3’’-H), 8.06 (1H, d, J 9.6, 4-H), 8.77 (1H, s, 5’-H); δc (100 MHz, DMSO-d6) 
161.0 (C-2), 155.2 (C-9), 149.0 (C-6), 144.9 (C-4), 143.4 (C-4’), 135.3 (C-2’’), 132.7 (C-
4’’), 131.5 (C-3’’), 129.5 (C-1’’), 129.4 (C-5’’), 129.3 (C-6’’), 127.9 (C-5’), 121.0 (C-7), 
120.1 (C-10), 118.4 (C-8), 117.6 (C-3), 113.1 (C-5), 62.4 (OCH2). 
 
7-((1’-(2’’-chlorophenyl)-1’’ H-1’,2’,3’-triazol-4’-yl)methoxy)-2 H-chromen-2-one (126) 
 

2

3
45

6

7

8 9

10

2''

3''

1''

4''

5''

6''

5'

4'
O OON

N
N

Cl

 
 
Compound 126 was synthesized by reacting 1-azido-2-chlorobenzene 119 (0.07g, 1.1 eq) 
with 7-(prop-2-ynyloxy)-2H-chromen-2-one 117 (0.08g, 1.0 eq.), dissolved in tert-
ButOH/H2O (1/1 v/v, 2.0 ml) in presence of tetramethylamonium chloride (0.04g, 1.0 eq) 
and copper nanosize (5 % mol), following the general procedure mentioned above. The 
crude was purified by silica gel column chromatography eluting with 33% ethyl acetate in 
n-hexane to afford 126 as a light brown solid in 45% yield. mp 136-138 °C; silica gel TLC 
Rf 0.11 (AcOEt/n-Hex 33%, v/v); ν max (KBr) cm-1, 2925 (C-H), 1725 (C=O), 1653 
(C=C),1560 (aromatic), 1280 (C-O), 1208 (C-N), 1154 (O-C=O); δH (400 MHz, DMSO-
d6) 5.42 (2H, s, OCH2), 6.34 (1H, d, J 9.6, 3-H), 7.11 (1H, dd J 8.4, 2.4, 6-H), 7.24 (1H, d 
J 2.4, 8-H), 7.63 (1H, m, 6’’-H), 7.68 (1H, m, 5’’-H), 7.70 (1H, m, 5-H), 7.76 (1H, m, 4’’-
H), 7.82 (1H, m, 3’’-H), 8.04 (1H, d, J 9.6, 4-H), 8.78 (1H, s, 5’-H); δc (100 MHz, DMSO-
d6) 162.0 (C-7), 161.1 (C-2), 156.2 (C-9), 145.2 (C-4), 143.0 (C-4’), 135.3 (C-2’’), 132.7 
(C-5’’), 131.5 (C-3’’), 130.5 (C-5), 129.5 (C-1’’), 129.4 (C-6’’), 129.3 (C-4’’), 113.8 (C-
6), 113.7 (C-3), 113.6 (C-10), 102.6 (C-8), 62.4 (OCH2). 
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6-((1’-(2’’-fluorophenyl)-1’’ H-1’,2’,3’-triazol-4’-yl)methoxy)-2 H-chromen-2-one (127) 
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Compound 127 was synthesized by reacting 1-azido-2-fluorobenzene 120 (0.08g, 1.1 eq) 
with 6-(prop-2-ynyloxy)-2H-chromen-2-one 116 (0.08g, 1.0 eq.), dissolved in tert-
ButOH/H2O (1/1 v/v, 2.0 ml) in presence of tetramethylamonium chloride (0.04g, 1.0 eq) 
and copper nanosize (5 % mol), following the general procedure mentioned above. The 
crude was purified by silica gel column chromatography eluting with 33% ethyl acetate in 
n-hexane to afford 127 as a light brown solid in 40% yield. mp 156-158 °C; silica gel TLC 
Rf 0.14 (AcOEt/n-Hex 33%, v/v); ν max (KBr) cm-1, 2918 (C-H), 1721 (C=O), 1647 
(C=C),1563 (aromatic), 1274 (C-O), 1213 (C-N), 1160 (O-C=O); δH (400 MHz, DMSO-
d6) 5.42 (2H, s, OCH2), 6.54 (1H, d, J 9.6, 3-H), 7.37 (m, 1H), 7.41 (m, 1H), 7.49 (m, 1H), 
7.52 (m, 1H), 7.62 (m, 1H), 7.67 (m, 1H), 7.90 (m, 1H), 8.06 (1H, d, J 9.6, 4-H), 8.81 (1H, 
s, 5’-H); δF (376 MHz, DMSO-d6) -127.1 (s, 1F); δc (100 MHz, DMSO-d6) 161.0, 155.1, 
154.6, 149.1, 144.9, 143.9, 132.3, 127.2, 126.8, 126.5, 120.9, 120.1, 118.4, 118.1, 117.9, 
117.6, 112.9, 62.4. 
 
7-((1’-(2’’-fluorophenyl)-1’’ H-1’,2’,3’-triazol-4’-yl)methoxy)-2 H-chromen-2-one (128) 
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Compound 128 was synthesized by reacting 1-azido-2-fluorobenzene 120 (0.08g, 1.1 eq) 
with 7-(prop-2-ynyloxy)-2H-chromen-2-one 117 (0.08g, 1.0 eq.), dissolved in tert-
ButOH/H2O (1/1 v/v, 2.0 ml) in presence of tetramethylamonium chloride (0.04g, 1.0 eq) 
and copper nanosize (5 % mol), following the general procedure mentioned above. The 
crude was purified by silica gel column chromatography eluting with 25% ethyl acetate in 
n-hexane to afford 128 as a light brown solid in 30% yield. mp 161-163 °C; silica gel TLC 
Rf 0.09 (AcOEt/n-Hex 25%, v/v); ν max (KBr) cm-1, 2922 (C-H), 1730 (C=O), 1626 
(C=C),1548 (aromatic), 1271 (C-O), 1221 (C-N), 1155(O-C=O); δH (400 MHz, DMSO-d6) 
5.42 (2H, s, OCH2), 6.35 (1H, d, J 9.6, 3-H), 7.11 (m, 1H), 7.25 (m, 1H), 7.49 (m, 1H), 
7.61 (m, 1H), 7.64 (m, 1H), 7.67 (m, 1H), 7.71 (m, 1H), 7.90 (m, 1H), 8.04 (1H, d, J 9.6, 
4-H), 8.83 (1H, s, 5’-H); δF (376 MHz, DMSO-d6) -121.1 (s, 1F); δc (100 MHz, DMSO-
d6) 161.9, 161.1, 156.2, 154.0, 153.5, 145.2, 143.5, 132.4, 132.3, 130.4, 127.4, 126.9, 
126.5, 118.0, 113.8, 113.6, 102.5, 62.3. 
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6-((1’-(2’’-bromophenyl)-1’’ H-1’,2’,3’-triazol-4’-yl)methoxy)-2 H-chromen-2-one 
(129) 
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Compound 129 was synthesized by reacting 1-azido-2-bromobenzene 121 (0.09g, 1.1 eq) 
with 6-(prop-2-ynyloxy)-2H-chromen-2-one 116 (0.04g, 1.0 eq.), dissolved in tert-
ButOH/H2O (1/1 v/v, 2.0 ml) in presence of tetramethylamonium chloride (0.04g, 1.0 eq) 
and copper nanosize (5 % mol), following the general procedure mentioned above. The 
crude was purified by silica gel column chromatography eluting with 50% ethyl acetate in 
n-hexane to afford 129 as a light brown solid in 60% yield. mp 174-176 °C; silica gel TLC 
Rf 0.20 (AcOEt/n-Hex 50%, v/v); ν max (KBr) cm-1, 2927 (C-H), 1733 (C=O), 1646 
(C=C),1521 (aromatic), 1266 (C-O), 1211 (C-N), 1157 (O-C=O); δH (400 MHz, DMSO-
d6) 5.35 (2H, s, OCH2), 6.55 (1H, d, J 9.4, 3-H), 7.37 (1H, m, 7-H), 7.42 (1H, m, 8-H), 
7.51 (1H, d, J 2.8, 5-H), 7.60 (1H, m, 4’’-H), 7.66 (1H, m, 5’’H), 7.71 (1H, m, 6’’-H), 7.96 
(1H, m, 3’’-H), 8.06 (1H, d, J 9.4, 4-H), 8.75 (1H, s, 5’-H); δc (100 MHz, DMSO-d6) 
161.0 (C-2), 155.2 (C-9), 149.0 (C-6), 144.9 (C-4), 143.3 (C-4’), 137.4 (C-2’’), 134.5 (C-
3’’), 132.9 (C-4’’), 129.9 (C-5’’), 129.6 (C-6’’), 127.9 (C-5’), 121.0 (C-7), 120.1 (C-10), 
119.8 (C-1’’), 118.4 (C-8), 117.6 (C-3), 113.1 (C-5), 62.5 (OCH2). 
 
7-((1’-(2’’-bromophenyl)-1’’ H-1’,2’,3’-triazol-4’-yl)methoxy)-2 H-chromen-2-one 
(130) 
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Compound 130 was synthesized by reacting 1-azido-2-bromobenzene 121 (0.08g, 1.1 eq) 
with 7-(prop-2-ynyloxy)-2H-chromen-2-one 117 (0.09g, 1.0 eq.), dissolved in tert-
ButOH/H2O (1/1 v/v, 2.0 ml) in presence of tetramethylamonium chloride (0.04g, 1.0 eq) 
and copper nanosize (5 % mol), following the general procedure mentioned above. The 
crude was purified by silica gel column chromatography eluting with 33% ethyl acetate in 
n-hexane to afford 130 as a light brown solid in 60% yield. mp 133-135 °C; silica gel TLC 
Rf 0.16 (AcOEt/n-Hex 33%, v/v); ν max (KBr) cm-1, 2924 (C-H), 1717 (C=O), 1646 
(C=C),1540 (aromatic), 1295 (C-O), 1207 (C-N), 1126 (O-C=O); δH (400 MHz, DMSO-
d6) 5.42 (2H, s, OCH2), 6.35 (1H, d, J 9.6, 3-H), 7.11 (1H, dd J 8.4, 2.4, 6-H), 7.26 (1H, d 
J 2.4, 8-H), 7.61 (1H, m, 4’’-H), 7.67 (1H, m, 5’’-H), 7.71 (1H, m, 6’’-H), 7.72 (1H, m, 5-
H), 7.96 (1H, m, 3’’-H), 8.05 (1H, d, J 9.6, 4-H), 8.78 (1H, s, 5’-H); δc (100 MHz, DMSO-
d6) 162.0 (C-7), 161.1 (C-2), 156.2 (C-9), 145.2 (C-4), 142.9 (C-4’), 136.9 (C-2’’), 134.5 
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(C-3’’), 132.9 (C-4’’), 130.5 (C-5), 129.9 (C-6’’), 129.7 (C-5’’), 128.0 (C-5’), 119.8 (C-
1’’), 113.9 (C-6), 113.7 (C-3), 113.6 (C-10), 102.6 (C-8), 62.4 (OCH2). 
 
6-((1’-(2’’-iodophenyl)-1’’ H-1’,2’,3’-triazol-4’-yl)methoxy)-2 H-chromen-2-one (131) 
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Compound 131 was synthesized by reacting 1-azido-2-iodobenzene 122 (0.11g, 1.1 eq) 
with 6-(prop-2-ynyloxy)-2H-chromen-2-one 116 (0.08g, 1.0 eq.), dissolved in tert-
ButOH/H2O (1/1 v/v, 2.0 ml) in presence of tetramethylamonium chloride (0.04g, 1.0 eq) 
and copper nanosize (5 % mol), following the general procedure mentioned above. The 
crude was purified by silica gel column chromatography eluting with 33% ethyl acetate in 
n-hexane to afford 131 as a yellow solid. in 30% yield. mp 162-164 °C; silica gel TLC Rf 
0.13 (AcOEt/n-Hex 33%, v/v); ν max (KBr) cm-1, 2927 (C-H), 1716 (C=O), 1670 
(C=C),1540 (aromatic), 1266 (C-O), 1188 (C-N), 1121 (O-C=O); δH (400 MHz, DMSO-
d6) 5.35 (2H, s, OCH2), 6.54 (1H, d, J 9.4, 3-H), 7.37 (1H, m, 7-H), 7.42 (1H, m, 8-H), 
7.44 (1H, m, 4’’-H), 7.51 (1H, d, J 2.8, 5-H), 7.60 (1H, m, 6’’-H), 7.66 (1H, m, 5’’H), 8.06 
(1H, d J 9.4, 4-H), 8.14 (1H, dd, J 9.4, 1.2, 3’’-H), 8.69 (1H, s, 5’-H); δc (100 MHz, 
DMSO-d6) 161.0 (C-2), 155.2 (C-9), 149.0 (C-6), 144.9 (C-4), 143.3 (C-4’), 140.7 (C-1’’), 
140.6 (C-3’’), 132.9 (C-4’’), 130.4 (C-5’’), 128.9 (C-6’’), 127.6 (C-5’), 121.0 (C-7), 120.1 
(C-10), 118.3 (C-8), 117.6 (C-3), 113.1 (C-5), 96.7 (C-2’’), 62.5 (OCH2). 
 
7-((1’-(2’’-iodophenyl)-1’’ H-1’,2’,3’-triazol-4’-yl)methoxy)-2 H-chromen-2-one (132) 
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Compound 132 was synthesized by reacting 1-azido-2-iodobenzene 122 (0.11g, 1.1 eq) 
with 7-(prop-2-ynyloxy)-2H-chromen-2-one 117 (0.08g, 1.0 eq.), dissolved in tert-
ButOH/H2O (1/1 v/v, 2.0 ml) in presence of tetramethylamonium chloride (0.04g, 1.0 eq) 
and copper nanosize (5 % mol), following the general procedure mentioned above. The 
crude was purified by silica gel column chromatography eluting with 33% ethyl acetate in 
n-hexane to afford 132 as a light brown sticky oil in 30% yield; Silica gel TLC Rf 0.13 
(AcOEt/n-Hex 33%, v/v); ν max (KBr) cm-1, 2928 (C-H), 1722 (C=O), 1632 (C=C),1539 
(aromatic), 1266 (C-O), 1187 (C-N), 1141 (O-C=O); δH (400 MHz, DMSO-d6) 5.41 (2H, s, 
OCH2), 6.35 (1H, d, J 9.6, 3-H), 7.11 (1H, dd J 8.6, 2.4, 6-H), 7.26 (1H, d J 2.4, 8-H), 7.41 
(1H, m, 4’’-H), 7.61 (1H, m, 6’’-H), 7.65 (1H, m, 5’’-H), 7.70 (1H, d J 8.6, 5-H), 8.05 (1H, 
d, J 9.6, 4-H), 8.15 (1H, m, 3’’-H), 8.78 (1H, s, 5’-H); δc (100 MHz, DMSO-d6) 162.1 (C-
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7), 161.2 (C-2), 156.3 (C-9), 145.2 (C-4), 143.0 (C-4’), 140.7 (C-3’’), 140.6 (C-2’’), 132.9 
(C-4’’), 130.5 (C-5), 130.3 (C-5’’), 129.0 (C-6’’), 127.8 (C-5’), 113.9 (C-6), 113.7 (C-3), 
113.6 (C-10), 102.6 (C-8), 62.5 (OCH2). 
 

6.3.5 General procedure for preparation of sulfonamido derivatives 195-204 
Reactions of (1R)-(-)-10-Camphorsulfonyl chloride 192 and (1S)-(+)-10-Camphorsulfonyl 
chloride 193 (0.3 g, 1.0 eq.) with amino derivatives 137,140, 141, 149, 194 (1.0 eq.) were 
carried out at 0° to room temperature in Schotten-Baumann conditions under nitrogen 
atmosphere, in the presence of a stoichiometric amount of dropwised dry TEA (1.0 eq. for 
137, 141, 194 and 2.0 eq. for 140, 149), in dry DMF as solvent (2 ml). 
When complete (monitoring by TLC), reactions were quenched with crushed ice, extracted 
with ethyl acetate (20 ml), washed with 1N HCl (2 x 10 ml) and brine (2 x 10 ml). The 
collected organic phase was dried on anhydrous Na2SO4, filtered and evaporated under 
vacuum. The crude was purified by silica gel column chromatography eluting with n-
Hexane/ethyl acetate or DCM/methanol to afford compounds 195-204 as white solids in 
medium yields.    
 
4-(((1’R)-7’,7’-dimethyl-2’-oxobicyclo[2’.2’.1’]hep tan-1’-yl)methylsulfonamido) 
benzenesulfonamide (195) 
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Compound 195 was synthesized by reacting (1R)-(-)-10-Camphorsulfonyl chloride 192 
(1.19 mmol, 300 mg) with sulfanilamide 137 (1.19 mmol, 204.9 mg) following the general 
procedure mentioned above. The crude was purified by silica gel column chromatography 
eluting with 3% MeOH in DCM to afford compounds 195 as white solid in 60% yield. mp 
150-152 °C; [α]20

D -6.3; silica gel TLC Rf 0.27 (MeOH/DCM 3% v/v); ν max (KBr) cm-1, 
3263 (N-H), 2963 (C-H), 1739 (C=O), 1597 (aromatic), 1333 (SO2-NH); δH (400 MHz, 
DMSO-d6) 0.81 (3H, s, 9’-H3), 1.04 (3H, s, 8’-H3), 1.46 (1H, m, 6’-H), 1.60 (1H, m, 5’-H), 
1.96 (1H, m, 3’-H), 1.99 (1H, m, 6’-H), 2.10 (1H, m, 3’-H), 2.37 (1H, m, 5’-H), 2.38 (1H, 
m, 4’-H), 3.12 (1H, d, J 14.8, SO2CH), 3.49 (1H, d, J 14.8, SO2CH), 7.30 (2H, s, SO2NH2, 
exchange with D2O), 7.40 (2H, m, 2 x 3-H), 7.81 (2H, m, 2 x 2-H), 10.39 (1H, s, SO2NH, 
exchange with D2O); δc (100 MHz, DMSO-d6) 215.0 (C-2’), 142.5 (ipso), 139.2 (ipso), 
128.1 (C-2), 118.6 (C-3), 58.7 (C-1’), 49.1 (SO2CH2), 48.6 (C-7’), 42.9 (C-4’), 42.8 (C-3’), 
27.1 (C-6’), 25.5 (C-5’), 20.2 (C-8’), 20.1 (C-9’); m/z (ESI-) 385.1 ([M-H]- 100%), 771.2 
([2M-H]- 5%); m/z (ESI+) 387.2 ([M+H]+ 85%), 773.3 ([2M+H]+ 15%).    
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4-(((1’S)-7’,7’-dimethyl-2’-oxobicyclo[2’.2’.1’]heptan-1’-yl)methylsulfonamido) 
benzene sulfonamide (196) 
 

OS
O NHO

SO2NH2

1
2

3
4

1'
2'

3'
4'

5'

6'

7'

8'
9'

 
 
Compound 196 was synthesized by reacting (1S)-(+)-10-Camphorsulfonyl chloride 193 
(1.19 mmol, 300 mg) with sulfanilamide 137 (1.19 mmol, 204.9 mg) following the general 
procedure mentioned above. The crude was purified by silica gel column chromatography 
eluting with 3% MeOH in DCM to afford compounds 196 as white solid in 63% yield. mp 
151-153 °C; [α]20

D +6.1; silica gel TLC Rf 0.27 (MeOH/DCM 3% v/v); ν max (KBr) cm-1, 
3265 (N-H), 2959 (C-H), 1741 (C=O), 1595 (aromatic), 1336 (SO2-NH); δH (400 MHz, 
DMSO-d6) 0.81 (3H, s, 9’-H3), 1.05 (3H, s, 8’-H3), 1.46 (1H, m, 6’-H), 1.59 (1H, m, 5’-H), 
1.96 (1H, m, 3’-H), 1.98 (1H, m, 6’-H), 2.10 (1H, m, 3’-H), 2.36 (1H, m, 5’-H), 2.38 (1H, 
m, 4’-H), 3.12 (1H, d, J 14.8, SO2CH), 3.50 (1H, d, J 14.8, SO2CH), 7.31 (2H, s, SO2NH2, 
exchange with D2O), 7.40 (2H, m, 2 x 3-H), 7.81 (2H, m, 2 x 2-H), 10.4 (1H, s, SO2NH, 
exchange with D2O); δc (100 MHz, DMSO-d6) 215.0 (C-2’), 142.4 (ipso), 139.2 (ipso), 
128.0 (C-2), 118.6 (C-3), 58.7 (C-1’), 49.1 (C- SO2CH), 48.5 (C-7’), 42.9 (C-4’), 42.8 (C-
3’), 27.2 (C-6’), 25.5 (C-5’), 20.2 (C-8’), 20.1 (C-9’); m/z (ESI-) 385.1 ([M-H]- 100%), 
771.2 ([2M-H]- 5%); m/z (ESI+) 387.1 ([M+H]+ 75%), 773.1 ([2M+H]+ 25%).    
 
4-((((1’R)-7’,7’-dimethyl-2’-oxobicyclo[2’.2’.1’]heptan-1’-yl)methylsulfonamido) 
methyl) benzenesulfonamide (197) 
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Compound 197 was synthesized by reacting (1R)-(-)-10-Camphorsulfonyl chloride 192 
(1.19 mmol, 300 mg) with 4-Aminomethylbenzenesulfonamide hydrochloride 140 (1.19 
mmol, 265 mg) following the general procedure mentioned above. The crude was purified 
by silica gel column chromatography eluting with 5% MeOH in DCM to afford 
compounds 197 as white solid in 55% yield. mp 160-162 °C; [α]20

D -13.2; silica gel TLC Rf 
0.28 (MeOH/DCM 5% v/v); ν max (KBr) cm-1, 3256 (N-H), 2965 (C-H), 1730 (C=O), 1601 
(aromatic), 1324 (SO2-NH); δH (400 MHz, DMSO-d6) 0.81 (3H, s, 9’-H3), 1.04 (3H, s, 8’-
H3), 1.43 (1H, m, 6’-H), 1.59 (1H, m, 5’-H), 1.95 (1H, m, 3’-H), 1.97 (1H, m, 6’-H), 2.08 
(1H, m, 3’-H), 2.36 (1H, m, 5’-H), 2.39 (1H, m, 4’-H), 2.93 (1H, d, J 10.4, SO2CH), 3.36 
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(1H, d, J 10.4, SO2CH), 4.33 (2H, d, J 6.4, CH2NH), 7.37 (2H, s, SO2NH2, exchange with 
D2O), 7.56 (2H, m, 2 x 3-H), 7.83 (2H, m, 2 x 2-H), 9.72 (1H, t, J 6.4, SO2NH, exchange 
with D2O); δc (100 MHz, DMSO-d6) 215.6 (C-2’), 143.9 (ipso), 143.5 (ipso), 128.8 (C-3), 
126.6 (C-2), 58.7 (C-1’), 49.3 (C- SO2CH2), 48.5 (C-7’), 46.6 (CH2NH), 43.0 (C-3’), 42.9 
(C-4’), 27.2 (C-6’), 25.4 (C-5’), 20.3 (C-8’), 20.2 (C-9’); m/z (ESI-) 399.1 ([M-H]- 100%), 
799.3 ([2M-H]- 5%); m/z (ESI+) 401.2 ([M+H]+ 100%), 801.3 ([2M+H]+ 18%).    
 
4-((((1’S)-7’,7’-dimethyl-2’-oxobicyclo[2’.2’.1’]heptan-1’-yl)methylsulfonamido) 
methyl) benzenesulfonamide (198) 
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Compound 198 was syntheszed by reacting (1S)-(+)-10-Camphorsulfonyl chloride 193 
(1.19 mmol, 300 mg) with 4-Aminomethylbenzenesulfonamide hydrochloride 140 (1.19 
mmol, 265 mg) following the general procedure mentioned above. The crude was purified 
by silica gel column chromatography eluting with 5% MeOH in DCM to afford 
compounds 198 as white solid in 55% yield. mp 162-163 °C; [α]20

D -12.9; silica gel TLC Rf 
0.28 (MeOH/DCM 5% v/v); ν max (KBr) cm-1, 3259 (N-H), 2964 (C-H), 1733 (C=O), 1604 
(aromatic), 1327 (SO2-NH); δH (400 MHz, DMSO-d6) 0.81 (3H, s, 9’-H3), 1.05 (3H, s, 8’-
H3), 1.43 (1H, m, 6’-H), 1.57 (1H, m, 5’-H), 1.95 (1H, m, 3’-H), 1.97 (1H, m, 6’-H), 2.09 
(1H, m, 3’-H), 2.36 (1H, m, 5’-H), 2.40 (1H, m, 4’-H), 2.93 (1H, d, J 10.4, SO2CH), 3.35 
(1H, d, J 10.4, SO2CH), 4.33 (2H, d, J 6.4, CH2NH), 7.37 (2H, s, SO2NH2, exchange with 
D2O), 7.56 (2H, m, 2 x 3-H), 7.83 (2H, m, 2 x 2-H), 9.72 (1H, t, J 6.4, SO2NH, exchange 
with D2O); δc (100 MHz, DMSO-d6) 215.5 (C-2’), 143.8 (ipso), 143.5 (ipso), 128.6 (C-3), 
126.6 (C-2), 58.7 (C-1’), 49.3 (C- SO2CH2), 48.6 (C-7’), 46.6 (CH2NH), 43.1 (C-3’), 42.9 
(C-4’), 27.3 (C-6’), 25.5 (C-5’), 20.3 (C-8’), 20.2 (C-9’); m/z (ESI-) 399.1 ([M-H]- 100%), 
799.3 ([2M-H]- 8%); m/z (ESI+) 401.2 ([M+H]+ 100%), 801.3 ([2M+H]+ 48%).    
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4-(2’-(((1’’R)-7’’,7’’-dimethyl-2’’-oxobicyclo[2’’. 2’’.1’’]heptan-1’’-yl)methyl 
sulfonamido)ethyl) benzenesulfonamide (199) 
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Compound 199 was synthesized by reacting (1R)-(-)-10-Camphorsulfonyl chloride 193 
(1.19 mmol, 300 mg) with 4-(2-Aminoethyl)benzenesulfonamide 141 (1.19 mmol, 238.3 
mg) following the general procedure mentioned above. The crude was purified by silica gel 
column chromatography eluting with 2.5% MeOH in DCM to afford compounds 199 as 
white solid in 65% yield. mp 139-141 °C; [α]20

D -11.1; silica gel TLC Rf 0.27 
(MeOH/DCM 2.5% v/v); ν max (KBr) cm-1, 3251 (N-H), 2956 (C-H), 1745 (C=O), 1599 
(aromatic), 1326 (SO2-NH); δH (400 MHz, DMSO-d6) 0.82 (3H, s, 9’’-H3), 1.03 (3H, s, 
8’’-H 3), 1.42 (1H, m, 6’’-H), 1.53 (1H, m, 5’’-H), 1.93 (1H, m, 3’’-H), 1.96 (1H, m, 6’’-
H), 2.07 (1H, m, 3’’-H), 2.34 (1H, m, 5’’-H), 2.36 (1H, m, 4’’-H), 2.90 (3H, m, 1’-H2, 
SO2CH), 3.28 (3H, m, 2’-H2, SO2CH), 7.29 (2H, s, SO2NH2, exchange with D2O), 7.47 
(2H, m, 2 x 3-H), 7.79 (2H, m, 2 x 2-H); δc (100 MHz, DMSO-d6) 215.5 (C-2’’), 144.0 
(ipso), 143.1 (ipso), 130.2 (C-3), 126.6 (C-2), 58.7 (C-1’’), 48.5 (C- SO2CH2), 48.4 (C-
7’’), 44.5 (C-2’), 42.9 (C-3’’), 42.8 (C-4’’), 36.4 (C-1’), 27.2 (C-6’’), 25.3 (C-5’’), 20.3 
(C-8’’), 20.2 (C-9’’); m/z (ESI-) 413.2 ([M-H]- 100%), 827.3 ([2M-H]- 2%); m/z (ESI+) 
415.2 ([M+H]+ 100%), 829.4 ([2M+H]+ 28%). 
 
4-(2’-(((1’’S)-7’’,7’’-dimethyl-2’’-oxobicyclo[2’’. 2’’.1’’]heptan-1’’-yl)methyl 
sulfonamido)ethyl) benzenesulfonamide (200) 
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Compound 200 was synthesized by reacting (1S)-(+)-10-Camphorsulfonyl chloride 193 
(1.19 mmol, 300 mg) with 4-(2-Aminoethyl)benzenesulfonamide 141 (1.19 mmol, 238.3 
mg) following the general procedure mentioned above. The crude was purified by silica gel 
column chromatography eluting with 2.5% MeOH in DCM to afford compounds 200 as 
white solid in 70% yield. mp 140-142 °C; [α]20

D +11.1; silica gel TLC Rf 0.27 
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(MeOH/DCM 2.5% v/v); ν max (KBr) cm-1, 3250 (N-H), 2954 (C-H), 1741 (C=O), 1599 
(aromatic), 1328 (SO2-NH); δH (400 MHz, DMSO-d6) 0.83 (3H, s, 9’’-H3), 1.03 (3H, s, 
8’’-H 3), 1.42 (1H, m, 6’’-H), 1.51 (1H, m, 4’’-H), 1.92 (1H, m, 3’’-H), 1.97 (1H, m, 6’’-
H), 2.07 (1H, m, 3’’-H), 2.34 (1H, m, 5’’-H), 2.35 (1H, m, 4’’-H), 2.89 (3H, m, 1’-H2, 
SO2CH), 3.29 (3H, m, 2’-H2, SO2CH), 7.29 (2H, s, SO2NH2, exchange with D2O), 7.48 
(2H, m, 2 x 3-H), 7.79 (2H, m, 2 x 2-H); δc (100 MHz, DMSO-d6) 215.6 (C-2’’), 144.2 
(ipso), 143.1 (ipso), 130.3 (C-3), 126.8 (C-2), 58.7 (C-1’’), 48.5 (SO2CH2), 48.4 (C-7’’), 
44.5 (C-2’), 42.9 (C-3’’), 42.8 (C-4’’), 36.5 (C-1’), 27.2 (C-6’’), 25.3 (C-5’’), 20.3 (C-8’’), 
20.3 (C-9’’); m/z (ESI-) 413.1 ([M-H]- 100%), 827.3 ([2M-H]- 18%); m/z (ESI+) 415.2 
([M+H]+ 100%), 829.3 ([2M+H]+ 50%). 
 
3-(((1’R)-7’,7’-dimethyl-2’-oxobicyclo[2’.2’.1’]hep tan-1’-yl)methylsulfonamido) 
benzene sulfonamide (201) 
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Compound 201 was synthesized by reacting (1R)-(-)-10-Camphorsulfonyl chloride 192 
(0.08 mmol, 200 mg) with metanilamide 194 (0.08 mmol, 137.4 mg) following the general 
procedure mentioned above. The crude was purified by silica gel column chromatography 
eluting with 50% ethyl acetate in n-Hexane to afford compounds 201 as white solid in 52% 
yield. mp 148-150 °C; [α]20

D -13.3; silica gel TLC Rf 0.3 (ethyl acetate/n-Hexane 50% v/v); 
ν max (KBr) cm-1, 3263 (N-H), 2963 (C-H), 1739 (C=O), 1600 (aromatic), 1336 (SO2-NH); 
δH (400 MHz, DMSO-d6) 0.80 (3H, s, 9’-H3), 1.03 (3H, s, 8’-H3), 1.45 (1H, m, 6’-H), 1.58 
(1H, m, 5’-H), 1.97 (1H, m, 3’-H), 2.00 (1H, m, 6’-H), 2.09 (1H, m, 3’-H), 2.39 (1H, m, 
5’-H), 2.40 (1H, m, 4’-H), 3.09 (1H, d, J 15.2, SO2CH), 3.45 (1H, d, J 15.2, SO2CH), 7.45 
(2H, s, SO2NH2, exchange with D2O), 7.49 (1H, m, 5-H), 7.58 (2H, m, 6-H, 4H), 7.71 (1H, 
m, 2-H), 10.2 (1H, s, SO2NH, exchange with D2O); δc (100 MHz, DMSO-d6) 215.0 (C-2’), 
146.1 (ipso), 139.9 (ipso), 130.9 (C-6), 122.6 (C-2), 121.4 (C-4), 116.8 (C-5), 58.7 (C-1’), 
48.9 (SO2CH2), 48.5 (C-7’), 42.9 (C-4’), 42.8 (C-3’), 27.1 (C-6’), 25.5 (C-5’), 20.3 (C-8’), 
20.1 (C-9’); m/z (ESI-) 385.1 ([M-H]- 100%), 771.2 ([2M-H]- 40%); m/z (ESI+) 387.1 
([M+H]+ 100%), 773.3 ([2M+H]+ 55%).   
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3-(((1’S)-7’,7’-dimethyl-2’-oxobicyclo[2’.2’.1’]heptan-1’-yl)methylsulfonamido) 
benzene sulfonamide (202) 
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Compound 202 was synthesized by reacting (1S)-(+)-10-Camphorsulfonyl chloride 193 
(0.08 mmol, 200 mg) with metanilamide 194 (0.08 mmol, 137.4 mg) following the general 
procedure mentioned above. The crude was purified by silica gel column chromatography 
eluting with 50% ethyl acetate in n-Hexane to afford compounds 202 as white solid in 52% 
yield. mp 149-151 °C; [α]20

D +14.4; silica gel TLC Rf 0.3 (ethyl acetate/n-Hexane 50% 
v/v); ν max (KBr) cm-1, 3265 (N-H), 2962 (C-H), 1740 (C=O), 1602 (aromatic), 1332 (SO2-
NH); δH (400 MHz, DMSO-d6) 0.80 (3H, s, 9’-H3), 1.04 (3H, s, 8’-H3), 1.44 (1H, m, 6’-H), 
1.58 (1H, m, 5’-H), 1.96 (1H, m, 3’-H), 1.96 (1H, m, 6’-H), 2.09 (1H, m, 3’-H), 2.38 (1H, 
m, 5’-H), 2.40 (1H, m, 4’-H), 3.08 (1H, d, J 15.2, SO2CH), 3.46 (1H, d, J 15.2, SO2CH), 
7.43 (2H, s, SO2NH2, exchange with D2O), 7.49(1H, m, 5-H), 7.57 (2H, m, 6-H, 4-H), 7.71 
(1H, m, 2-H), 10.2 (1H, s, SO2NH, exchange with D2O); δc (100 MHz, DMSO-d6) 215.1 
(C-2’), 146.2 (ipso), 139.9 (ipso), 130.8 (C-6), 122.6 (C-2), 121.4 (C-4), 117.0 (C-5), 58.7 
(C-1’), 48.9 (SO2CH2), 48.6 (C-7’), 42.9 (C-4’), 42.9 (C-3’), 27.1 (C-6’), 25.4 (C-5’), 20.3 
(C-8’), 20.1 (C-9’); m/z (ESI-) 385.0 ([M-H]- 100%), 771.1 ([2M-H]- 5%); m/z (ESI+) 
387.2 ([M+H]+ 100%), 773.3 ([2M+H]+ 45%).    
 
5-(((1’R)-7’,7’-dimethyl-2’-oxobicyclo[2’.2’.1’]hep tan-1’-yl)methylsulfonylimino)-4-
methyl-4,5-dihydro-1,3,4-thiadiazole-2-sulfonamide (203) 
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Compound 203 was synthesized by reacting (1R)-(-)-10-Camphorsulfonyl chloride 192 
(0.08 mmol, 200 mg) with derivative 149153 (0.08 mmol, 185. mg) following the general 
procedure mentioned above. The crude was purified by silica gel column chromatography 
eluting with 3% MeOH in DCM to afford compounds 203 as white solid in 46% yield. mp 
248-250 °C; [α]20

D -47.5; silica gel TLC Rf 0.27 (MeOH/DCM 3% v/v); ν max (KBr) cm-1, 
3265 (N-H), 2962 (C-H), 1736 (C=O), 1654 (C=N), 1372 (SO2-NH); δH (400 MHz, 
DMSO-d6) 0.82 (3H, s, 9’-H3), 1.06 (3H, s, 8’-H3), 1.45 (1H, m, 6’-H), 1.52 (1H, m, 5’-H), 
1.96 (1H, m, 3’-H), 1.98 (1H, m, 6’-H), 2.09 (1H, m, 3’-H), 2.38 (1H, m, 5’-H), 2.38 (1H, 
m, 4’-H), 3.15 (1H, d, J 14.8, SO2CH), 3.45 (1H, d, J 14.8, SO2CH), 3.74 (3H, s, NCH3), 
8.60 (2H, s, SO2NH2, exchange with D2O); δc (100 MHz, DMSO-d6) 215.4 (C-2’), 165.7 
(C-2), 157.0 (C-5), 58.5 (C-1’), 50.5 (SO2CH2), 48.7 (C-7’), 42.9 (C-3’), 42.8 (C-4’), 38.6 
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(NCH3), 27.2 (C-6’), 25.2 (C-5’), 20.1 (C-8’), 20.1 (C-9’); m/z (ESI-) 407.0 ([M-H]- 
100%), 815.0 ([2M-H]- 8%); m/z (ESI+) 409.1 ([M+H]+ 100%), 817.2 ([2M+H]+ 5%).    
 
5-(((1’S)-7’,7’-dimethyl-2’-oxobicyclo[2’.2’.1’]heptan-1’-yl)methylsulfonylimino)-4-
methyl-4,5-dihydro-1,3,4-thiadiazole-2-sulfonamide (204) 
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Compound 204 was synthesized by reacting (1S)-(+)-10-Camphorsulfonyl chloride 193 
(0.08 mmol, 200 mg) with derivative 194153 (0.08 mmol, 185 mg) following the general 
procedure mentioned above. The crude was purified by silica gel column chromatography 
eluting with 3% MeOH in DCM to afford compounds 204 as white solid in 53% yield. mp 
246-248 °C; [α]20

D -45.6; silica gel TLC Rf 0.27 (MeOH/DCM 3% v/v); ν max (KBr) cm-1, 
3262 (N-H), 2965 (C-H), 1739 (C=O), 1655 (C=N), 1374 (SO2-NH); δH (400 MHz, 
DMSO-d6) 0.81 (3H, s, 9’-H3), 1.05 (3H, s, 8’-H3), 1.42-1.47 (1H, m, 6’-H), 1.63 (1H, m, 
5’-H), 1.96 (1H, m, 3’-H), 1.98 (1H, m, 6’-H), 2.07 (1H, m, 3’-H), 2.39 (1H, m, 5’-H), 
2.37 (1H, m, 4’-H), 3.15 (1H, d, J 14.8, SO2CH), 3.44 (1H, d, J 14.8, SO2CH), 3.73 (1H, s, 
NCH3), 8.59 (2H, s, SO2NH2, exchange with D2O); δc (100 MHz, DMSO-d6) 215.5 (C-2’), 
165.7 (C-2), 157.2 (C-5), 58.6 (C-1’), 50.5 (SO2CH2), 48.8 (C-7’), 42.9 (C-3’), 42.8 (C-4’), 
38.7 (NCH3), 27.2 (C-6’), 25.2 (C-5’), 20.2 (C-8’), 20.1 (C-9’); m/z (ESI-) 407.1 ([M-H]- 
100%); m/z (ESI+) 409.1 ([M+H]+ 100%), 817.2 ([2M+H]+ 10%).    
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