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Preface

In recent year, a mixture of expertise and the new technologies leads to the

availability of massive amount of data. Statisticians must face the problem

of high dimensionality, reshaping the classical statistical thinking and data

analysis (Fan & Li 2006).

In many real-world problems the number of covariates is very large and of-

ten statisticians have to tackle the challenge of treating data in which the

number of variables p is much larger than the number of observations n (i.e

when n� p). Such high dimensional settings with their many new scientific

problems create great opportunities and significant challenges for the devel-

opment of new techniques in statistics and machine learnings.

From a classical statistical point of view, many algorithms for solving the

problem of dimensional reduction and feature extraction have been conceived

in order to obtain parsimonious models that are desirable as they provide

simple and interpretable relations among scientific variables in addition to

reducing forecasting errors. But in high-dimensional systems, we work with

large size problems (from on the order of 50-100 up to thousands of variables)

and the space of all possible subset of variables is of the order of 2p. Treating

exhaustively all the possible subsets of models is not realistic because the

study of all the submodels is a NP-hard problem with computational time

increasing exponentially with the dimensionality, (Saeys et al. 2007).

Moreover, high dimensional real problems often involve costly experimenta-

tions and new techniques are needed to reduce the number of the experimen-

tal trials though guaranteeing satisfactory results. The expensive experimen-

tal and computational costs make traditional statistical procedures infeasible

for high-dimensional data analysis, and this motivates the writing of this the-

sis: we want to approach the optimization of high dimensional problems with
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variable selection and model assessment procedures combined with global

stochastic optimization algorithms and local search methods.

This research is part of an international project dedicated to “Designing In-

formative Combinatorial Experiments” (DICE) for living technology, granted

by the Fondazione di Venezia (http://www.fondazionevenezia.org/).

“DICE” project, coordinator prof. Irene Poli, is developed at the European

Center for Living Technology (ECLT, http://www.ecltech.org/), an in-

ternational research center, where methodology and experimentation are

combined to solve high combinatorial optimization problems. The “DICE”

project aims at designing evolutionary combinatorial experiments in high

dimensional and high throughput settings in order to search new biological

entities, such as new artificial proteins. The cooperation between biologists of

the laboratory of ECLT and statisticians allows to combine biological exper-

tise with new statistical methods to model and optimize complex biological

problems.

The research is a continuum of previous projects and in particular of the EU,

IST-FET Integrated Project “Programmable Artificial Cell Evolution”, co-

ordinator prof. John McCaskill, where important results are achieved in tack-

ling high dimensional biological problems (Baragona et al. 2011, De March

et al. 2008, D. De March 2009, Forlin et al. 2008, D. Slanzi 2009).

The thesis presents a new optimization algorithm (the Evolutionary Neural

Network Design) that merges the strengths of statistical model and variable

selection with stochastic optimization strategies. The method is then applied

in order to discover new “synthetic” proteins, showing its advantages in a

biological experimentation.

http://www.fondazionevenezia.org/
http://www.ecltech.org/
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Introduction

In recent years, technological innovation have had deep impact on society and

on scientific research. Last decades have shown an impressive revolutionized

way of approaching complex problems, and a strong develop of a variety of

methods to collect massive amounts of information about phenomena of in-

terest.

Real-world problems often are characterized by a growing in size, in dimen-

sions and in complexity: (i) size, for the huge number of data provided by

the great technological advances; (ii) dimensions, for the very large number

of variables that investigators consider in developing research; (iii) complex-

ity, for the high level of connectivity that characterizes these data sets. At

the same time, applications have emerged in which the number of experi-

mental units is comparatively small but the underlying dimension is mas-

sive; this is the case when collecting data on image processing, microarrays,

text-mining, astronomy, military and atmospheric science(Johnstone & Tit-

terington 2009).

It is more and more common to face situations when: (i) the number of col-

lected variables can greatly exceed the number of observations and (ii) strong

non-linearity behaviors are present and (iii) phenomena of interest, which can

be characterized by particular combinations of the variables, are rare occur-

rences when compared to the overall size of the allowed search space. Rarely

all these issues are observed together and only few approaches in literature

show that it is possible to model such kind of data. Moreover, the previous

problems are particularly challenging when the variables at hand are factors

taking possibly many categorical attributes. Under these challenging circum-

stances, the existing multivariate statistical procedures alone do not suffice to

ensure satisfactory solutions, even under strong assumptions on the marginal
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variables, such as the assumption of independence.

Older methods, such as stepwise regression, all-subsets regression and ridge

regression fall short in such scientific and applicable contexts, so that, as a

response to these new challenges, statisticians and computer scientists de-

voted remarkable effort to develop predictive procedures as well as practical

applications in this direction. One of most active statistical area that tries

to give responses to these challenges, is related to the penalized regression

models family; from the seminal paper, presenting the `1 penalized regres-

sion model, better known as LASSO model (Tibshirani 1996), subsequent or

competitive approaches have grown in importance determining a very active

area in variable and model selection (LARS model, Efron et al. (2004), Elas-

tic Net, Zou & Hastie (2005), among others).

Until now, however, no prevalent paradigm has been established for the ef-

ficient treatment of so many variables when data are scarce. In addition,

within this framework, little progress has been accomplished on rare event

prediction in a combinatorially large search space. Many of the proposed

statistical procedures in literature seem to be accompanied by an overly op-

timistic view of their performance in terms of prediction accuracy, as well as

practical applicability to very large problems.

The thesis proposes a new general approach able to take into account the

aforementioned situations in high dimensional problem, representing a bottle-

neck in the cutting-edges researches. The algorithm we present, is suited to

optimization problems in high dimensionality when categorical variables are

observed and when the response of the system is complex and non-linear.

The state of the art is to collect more and more data both in number of ob-

servations and variables. This paradigm of collecting huge data sets creates

an overall problem in modeling and variable selection that suggest to avoid

collecting huge data sets:

1. irrelevant variables may add extra noise which deteriorates the accuracy

of the model;

2. too many variables can cloud meaningful relationship between the very

important one;

3. the increasing number of parameters of the model causes consequently

unreliable estimations due to the lack of observation n in comparison
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with the number of variables p;

4. a strong risk of abusing of redundant information in the model;

5. the accuracy of the predictions are underperformed due to the overfit-

ting.

This thesis moves toward another direction: it presents a new procedure able

to capture only important information creating very small data sets through-

out the combination of methods for information extraction, global and local

search algorithms and non linear models. The proposed procedure takes the

name of Evolutionary Neural Network Design (ENN-Design) and it combines

strategies as adaptive paradigm for data collection and regularization by in-

formation entanglement measures. In order to achieved this new competitive

procedure, the proposed approach embodies the most pleasant features of

three very different fields:

• the evolutionary optimization assures about the global convergence of

the method,

• the non-linear models suffice to guarantee good fitting and prediction

capability in very complex systems,

• the regularization procedure improves the performance of raw estima-

tion by combining external information (usually by constraining the

region of potential solutions).

Moreover, progressive iterative mechanisms can be exploited to select po-

tentially useful subsets of data in subsequent rounds of experiments. Regu-

larization approach via information entanglement allows for improving the

knowledge about structures of interactions among variable attributes using

only partial information about such interaction structures. Therefore, the

“only-informative” data gathering shifts the problem of variable and model

selection in the domain of the experimental design. The decision of deriving

this new method for data gathering is related to real experimental requests:

the maximal reduction of experimental trials to be tested. This reduction

implies consequently great advantages in term of reduction of experimental

time and cost.

This thesis has an important experimental component that is used to eval-

uate the ENN-Design approach: the discovery on new “synthetic” proteins.
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The collaboration with a biological laboratory allow us to test the perfor-

mance of the proposed approach in a real experimentation, where the high

dimensionality problem plays a relevant role. Proteins are the fundaments of

everyday life activities, and about 1013 natural proteins are known. Since the

number of all the possible proteins is potentially infinite (in fact, the number

of all possible combination of 20 amino acids in a protein with length l is

20l), we are interested to know if and why the evolution has selected only a

very small number of proteins. The Darwinian process is generally accepted

as an optimal selective process and this should demonstrate that the natural

protein are “the best” protein for our life activities. But many questions arise

around the problem of the origin of life: are there other proteins (not natural)

that might be able to have some good functionalities? Did a random protein

become an existing one after the evolutionary process?

The thesis aims to present a new method, based on the evolutive paradigm

and on model and variable selections, to optimize the hugh experimental

space of “synthetic” proteins, starting from random sequences of amino acids,

in order to reproduce the Darwinian paradigm of evolution. The interest of

the research is to determine if there are other evolutive paths that can lead

to new “synthetic” proteins able to enhance catalysis.

Some biological research teams are studying procedure to derive new proteins

able to reproduce natural functionalities and two important branches have

emerged:

• the rational protein design,

• the irrational protein design.

The former approach is an expert-driven application where biologists pick

natural proteins and change some bonds among amino acids to create new

proteins. Remarkably results are obtained with this methods even if its

strongest advantage is also its main drawback: the so identified new pro-

teins are only small variations of existing ones so that the search in the space

of all the possible proteins is very limited. The latter approach is based on

the idea of “try as much as you can” by no means of what is the reason-

ing behind the amino acids selection. The great advantage of this approach

is that is a very cheap biological method, and some interesting results are

obtained in this area too. On the other hand, biologists have to face the
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problem that there’s no knowledge extraction during the selective procedure

of the new proteins with a great lack of information about the bonds among

amino acids.

The approach proposed in this thesis tries to overcome the two previous lim-

itations, adopting a methods that investigate only very informative points,

assuming only few biological information. We adopt an iterative strategy to

search new biological entities, starting with very few random experimental

trials and evolving them towards more informative regions of the experimen-

tal space. The evolutive path is driven by a new contrived algorithm that

combined variable and model selection procedures.

The principal problem encountered in this experimentation is that we are

treating an enormous amount of possible combinations of amino acids in a

not known but complex experimental space in order to construct new proteins

which have some good functionalities. Moreover, the real experimentation are

costly and time consuming and only a very small number of experimental tri-

als can be performed. The high dimensionality of the settings and the scarce

number of possible observations is not trivial to handle, and the modeling

procedure is made more difficult by the fact that we are working with cate-

gorical data. All these issues suggest to shift from the classical multivariate

approach, and all its derivations, toward a better shaped algorithm, able to

simultaneously address them.

The thesis is organized as follow: Chapter 1 describes the recent developments

in gathering huge data sets. Technological improvement and new specific

needs have brought the availability of massive data sets and the Chapter

presents some examples where this trend is evident. Moreover, we present

some high dimensional data analysis problems, currently statisticians have

to face. Chapter 2 presents classical statistical procedures to treat variable

selection and model assessment (Khalili & Chen 2007); an overview of fil-

ter, wrapper and embodied variables selection are presented and we focus

in particular on the cutting-edge methods for high dimensionality such as

LASSO (Tibshirani 1996) and Elastic Net (Zou & Hastie 2005). Chapter 3

deals with stochastic optimization approaches; we show the advantages of

this approaches in optimizing high dimensional systems and we mainly focus

on evolutionary algorithms (Eiben & Smith 2008, Forlin et al. 2008) and
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neural networks, (Fouskakis & Draper 2008, De March et al. 2009, 2008).

Chapter 4 presents the new approach in order to handle the optimization

of high dimensional problems: the Evolutionary Neural Network Design. We

introduce the theoretical aspects of the proposed method and we compare it

via some Monte Carlo simulations with benchmark methods. Eventually, we

apply the ENN-Design to a real experimentation for discovering “synthetic

proteins”.



Chapter 1

High Dimensional Data

This Chapter will be an overview of the High Dimensional (HD) problems

that currently mathematicians, statisticians and data miners are trying to

address. The approaches from these fields are often different from each other

in the way of tackling high dimensional data. However, there is one main

point that reconcile these scientific communities: something has to be done

to reshape the classical approaches to better analyze HD data.

Donoho (2000), in a talk in memory of John Wilder Tukey, during the Amer-

ican Mathematical Society conference at the Statistics Department of Stan-

ford University, wisely directed the attention of the audience to the new cen-

tury challenges in high dimensional systems. The milestone book for statis-

ticians and data miners by Hastie, Tibshirani and Friedman, the Element of

Statistical Learning (Hastie et al. 2003), devotes many pages to this topic.

In this Chapter we will mostly refer to many parts of those contributions.

The discovery of “synthetic” proteins problem, considered in this thesis,

represents the very nature of the statistical challenges of high dimensional

problems. In this real experimentation we can focus our attention on ar-

eas where active development of learning techniques demonstrates promising

performance, but where signicant gaps in the theoretical foundations are

still present. Filling those gaps will help to explain and improve upon this

performance. The problems addressed in this thesis, are high dimensional

categorical data, sparse and scarce data, supervised learning and variable

selection and model prediction. The combination of these issues is highly

biased (and therefore has high risk), but these challenging areas can benefit
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from a combination of the statistics and computer science perspectives on

learning from data.

1 The increasing interest in data collection

The current century is surely the century of data. Our society invests mas-

sively in the collection and processing of data of all kinds, on scales unimagin-

able until recently. Hyperspectral imagery, internet portals, financial tick-by-

tick data, and DNA microarrays are just a few of the better-known sources,

feeding data in torrential streams into scientific and business databases world-

wide. In traditional statistical methodology, we assumed large number of ob-

servations and small numbers of well-chosen variables. But the meaning of

“large” and “small” is time-variant; through the years the meaning of “large”

has changed. In the early 1900’s three could be considered as a large number

of variable, in the 1980’s 100 was large. Now the concept of large is becoming

more complex.

The trend today is towards more observations but even more larger number

of variables. We are seeing examples where the data collected on individual

observation are curves, or spectra, or images, or even movies, so that a single

observation has dimensions in the thousands or billions, while there are only

tens or hundreds of observations available for study. Classical methods cannot

cope with this kind of explosive growth of dimensionality of the observation

matrix. Therefore high dimensional data analysis will be a very signicant

activity in the future, and completely new methods of high dimensional data

analysis will be developed.

In this context, many interesting researches are developed and two of the most

influential principles in the high dimensionality have been originally discov-

ered and cultivated by mathematicians: the blessings of dimensionality and

the curse of dimensionality. The curse of dimensionality refers to the apparent

intractability of systematically searching through a high dimensional space,

the apparent intractability of accurately approximating a general high dimen-

sional function, the apparent intractability of integrating a high dimensional

function. The blessings of dimensionality are less widely noted and known,

but they include the concentration of measure phenomenon, which means
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that certain random fluctuations are very well controlled in high dimensions

and the success of asymptotic methods, used widely in mathematical statis-

tics and statistical physics, which suggest that statements about very high

dimensional settings may be made where moderate dimensions would be too

complicated.

1.1 Recent trends

Over the last few decades, data, data management, and data processing have

become ubiquitous factors in modern life and work. Huge investments have

been made in various data gathering and data processing mechanisms. The

information technology industry is the fastest growing and most lucrative

segment of the world economy, and much of the growth occurs in the de-

velopment, management, and warehousing of streams of data for scientific,

medical, engineering, and commercial purposes. Some recent examples in-

clude:

• Biotech Data: the fantastic progress made in the last years in gathering

data about the human genome have spread statistical concepts toward

biological fields. This is actually just the opening round in a long se-

ries of developments. The genome is only indirectly related to protein

function and protein function are only indirectly related to overall cell

function. Over time, the focus is likely to switch from genomics to pro-

teomics and beyond. In the process more and more massive databases

will be compiled.

• Financial Data: over the last decade, high frequency financial data have

become available; in the early to mid 1990s data on individual currency

trades, became available, tracking individual transactions. After the

recent economic crisis, statistical models for long and high dimension

streams of data are required to better predict trembling situations.

• Satellite Imagery: providers of satellite imagery collect vast databases

of images. There N is in the order of millions. Projects are in place to

compile databases to resolve the entire surface of the earth to 1 meter

accuracy (and already Google Earth app is a very interesting example).

Applications of such imagery include natural resource discovery and

agriculture.

http://www.google.com/earth/index.html
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• Hyper-spectral Imagery: it is now becoming common, both in airborne

photographic imagery and satellite imagery to use hyperspectral cam-

eras which record, instead of three color bands RGB, thousands of dif-

ferent spectral bands. Such imagery is presumably able to reveal subtle

information about chemical composition and is potentially helpful in

determining crop identity, spread of diseases in crops, in understand-

ing the effects of droughts and pests, and so on. In the future, we can

expect hyperspectral cameras to be useful in food inspection, medical

examination, visual retrieval and so on.

• Consumer Financial Data: many transactions are made on the web;

browsing, searching, purchasing are being recorded, correlated, com-

piled into databases, and sold and resold, as advertisers scramble to

correlate consumer actions with pockets of demand for various goods

and services.

The existing trends are likely to accelerate in the future, as each year new

sensors and sources of data are invented. A very important additional trend

is that society will more and more think of itself as a data-driven society, a

consumer of data. Data industry, firms devoted to the creation and manage-

ment of data (for example biotech or infotech companies), can be as valuable

as firms creating physical tangible objects. Moreover, consumers are becom-

ing data processors. For example, a few years ago, a 1024×1024 image was

considered quite a substantial object for handling on a modern computer,

and only computer scientists were really working with digital imagery. Now,

consumer cameras costing a few hundreds of dollars, generate 10 times more

precise images routinely. Consumers are becoming familiar with the process of

capturing images, downloading them onto their home computers, processing

them with various software tools, creating custom imagery. Such consumer

acceptance will drive massive investment and technological development in

data gathering and data analysis.

1.2 The high dimensional data analysis

Previous examples showed that we are in the era of massive automatic data

collection, systematically obtaining many measurements, not knowing which
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ones will be relevant to the phenomenon of interest. This is a big break from

the original assumptions behind many the tools being used in high dimen-

sional data analysis today. For many of those tools, it was assumed that

we are dealing with a few well-chosen variables, for example, using scientific

knowledge to measure just the right variables in advance. But in the most

recent applications, we do not know which variables to measure in advance

anymore. The number of variables p = pn grows with n in the asymptotic

analysis, possibly very fast, so that pn � n for n→∞. Crucially, one has

to assume in this setting that the data have “sparse structure”, meaning that

most of the variables are irrelevant for accurate prediction. The task is hence

to filter-out the relevant subset of variables. While high dimensionality of a

data set is evident from the start, it is usually not easy to verify structural

sparseness. Often, sparseness is an assumption one has to make in the high

dimensional case, as it is almost impossible to analyze non-sparse high di-

mensional data. In the words of Friedman et al. (2004), this is termed the

“bet on sparsity”:

“Use a method that does well in sparse problems, since no

procedure does well in dense problems”.

This “post-classical world” is different in many ways from the classical world.

The basic methodology which was used in the classical world no longer is

applicable with good results. The theory underlying previous approaches to

data analysis was based on the assumption of p < n, and n → ∞. Many

of the standard methods results concerned properties of observations which

were multivariate normal, and used extensively tools from linear algebra and

from group theory to develop some exact distributional results. These results

commonly fail if p � n. Even worse, they envision an asymptotic situation

in which n → ∞ with p fixed, and that also seems contradicted by reality,

where we might even have p → ∞ with n remaining fixed. The p � n case

is not anomalous in real problems, on the contrary is becoming a state of

the art. For many types of event we can think of, we have the potential of

a very large number of measurable quantifying that event, and a relatively

few instances of that event. In this scenario, classical assumptions fall short

when analyzing huge Data and two new principles have been theorized: The

course and the blessing of Dimensionality
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The Course of Dimensionality

According to Bellman (1961):

“In view of all that we have said in the foregoing sections, the

many obstacles we appear to have surmounted. What casts the

pall over our victory celebration? It is the curse of dimensionality,

a malediction that has plagued the scientist from earliest days?”

His interpretation: if our goal is to optimize a function over a continuous

product domain of a few dozen variables by exhaustively searching a dis-

crete search space defined by a crude discretization, we could easily be faced

with the problem of making tens of trillions of evaluations of the function.

Bellman argued that this curse precluded the use of exhaustive enumeration

strategies, and argued in favor of his method of dynamic programming. From

a statistical point of view, suppose we have a data set with p variables, and

we suppose that the first one is dependent on the others, and we call it Y ,

through a model of the form:

Yi = f(xi,1, . . . , xi,p) + εi. (1.1)

Suppose that f is unknown, as we are not willing to specify a specific model

for f , such as a linear model. Instead, we are willing to assume merely that f

is a Lipschitz function of these variables and that εi variables are in fact i.i.d.

Gaussian with mean 0 and variance 1. How does the accuracy of estimation

depend on n? The very slow rate of convergence in high dimensions is the

ugly head of the curse of dimensionality.

The Blessing of Dimensionality

The plague of the course of dimensionality sometimes hides a proactive re-

search of very small set of data which concentrates all the important feature

of data distributions. This concentration of information around very small

number of q variables, where q ⊂ p, transform the “course of dimensionality”

into the “blessing of dimensionality”. There are many factors that can make

a problem easier:

• only few of the inputs may be relevant,
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• the input data may lie on a low-dimensional subset of the input space,

• special noise conditions may be valid,

• the expansion of the target function may be sparse in a predefined

basis,

• the target function may be smooth.

We call these factors regularities of the problem. Some efforts are definitely

devoted in the statistical learning to projected high dimensional problem on

possibly much lower dimensional subspaces with the preservation of prop-

erties of high dimensional objects identifying the set of optimal variables

(for example based on concentration of measure phenomena). New statisti-

cal models are trying to face the high dimensional problem, introducing in

their estimate procedure relevant statistical aspects like:

• the prediction accuracy: the most common method in estimating coef-

ficients is the least squares estimates, that often have low bias but large

variance. Prediction accuracy can sometimes be improved by shrinking

or setting some coefficients to zero. By doing so we sacrifice a little bit

of bias to reduce the variance of the predicted values, and hence may

improve the overall prediction accuracy.

• the easy interpretation: with a large number of predictors, we often

would like to determine a smaller subset that exhibit the strongest

effects. In order to get the “big picture”, we are willing to sacrifice

some of the small details.

One possible goal of this thesis is to develop a new method for function ap-

proximation in high dimensional spaces that facilitate fast and robust learn-

ing, and to use them to devise algorithms whose computational complexities

do not grow rapidly with the dimension of the search space.

1.3 The drawbacks of standard statistical approaches

for high dimensional data

Among the most familiar theoretical results in classical statistics are the

“Laws of Large Numbers” and the “Central Limit Theorems”. The former

says that the sample mean of a random sample of size n from a population
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has as a limit, in a well-defined sense, the population mean, as n tends to∞.

The corresponding central limit theorem shows that the limiting distribution

of the sample mean about the population mean (when scaled up by
√
n ) is of

the normal or Gaussian type. In statistics, such results are useful in deriving

asymptotic properties of estimators of parameters, but their validity relies on

there being, in theory at least, many observations per parameter (Johnstone

& Titterington 2009).

Statisticians and data miners devote many efforts to reduce dimensionality

of the problems in oder to relate to classical statistical theorems. Automatic

model-building algorithms are familiar, and sometimes notorious, in the lin-

ear model literature. Variable selection and feature extraction are fundamen-

tal to dimensional reduction and knowledge discovery from massive data.

Many variable selection procedures have been proposed in statistics aiming

at creating parsimonious models that provide simple and interpretable rela-

tions among variables and that reduce forecasting errors.

But traditional statistical variable selection such as Cp (Mallows 1973), AIC

(Akaike 1973), BIC (Schwarz 1978) involves a combinatorial optimization

problem, which is NP-hard, with computational time increasing exponen-

tially with the dimension (Fan & Li 2006). Even the more raffinate techniques

of model selection, when the search space of all possible models is too large,

fail dramatically in determining models able to generalize.

Stepwise regression, the best subset selection, ridge regression, considered

very attractive approaches in the 1990’s, show very deep lacks in terms of

performance and accuracy in high dimensionality. The stepwise selection, in

all of its derivation (forward, backward or both), has to face the degree of

freedom problem. In fact, these techniques are able to identify only models

with complexity at most equal to the number of observation n, generating

model with very scarce prediction accuracy.

The best subset selection minimizes the Residual Sum of Square (RSS)1 sub-

ject to the number of non-zero coefficients equals some q, with q ≤ p; the best

subset selection produces a sparse model, that is very variable because of its

inherent discreteness. Ridge regression (Hoerl & Kennard 1970) minimizes

1Given a model, the RSS is the sum of squares of the residuals, calculated as the
difference between the observed values and the fitted values
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RSS subject to a bound on the `2 norm of the coefficients. By doing so, ridge

regression shrinks the coefficients continuously toward zero. It achieves its

better prediction performance through a bias-variance trade-off. However,

ridge regression always keeps all the predictors in the model, so it cannot

produce a parsimonious model.

Moreover, all the previous classical method have expensive computational

costs that makes them infeasible procedure for high dimensional data analy-

sis; furthermore, they are usually applied in continuous linear regression cases

and become more and more unstable when the problems are non-linear or

have a combinatorial explosion due to categorical variables. These procedure

will be presented in Chapter 2, highlighting their limits in high dimension-

ality. The real challenge in high dimensional variable and model selection is

to find out automatic procedure able to establish models with high accuracy

in prediction but with the simpler structure as possible, in computational

times constraints. To develop such kind of iterative procedure, a big deal is

the trade-off between variance and bias.

Trade-off between bias and variance

If the dimension p of the covariate matrix X is large, as stated before, it is

possible to get better predictions by shrinking some variables. Models with

many covariates have low bias but high variance; models with few covariates

have high bias but low variance. The best predictions come from balancing

these two extremes. This is called the bias-variance tradeoff. The problem of

deciding which variables to include in the model to achieve a good trade-off

refers to the problem of variable selection and model assessment.

The variance-bias trade-off is absolutely universal and shows up under differ-

ent guises in any kind of data modeling. This trade-off is the basis of many

data mining approach to define the best models, and represent a comparative

measure, useful when many different algorithms are developed. For example,

suppose the data arise from a model yi = f(xi) + ε, with E(ε) = 0 and

V ar(ε) = σ2 and that a good approximation of f(xi) is a generic model

f̂(xi). For simplicity here we assume that the values of xi in the sample are

fixed in advance (non-random). The expected prediction error (PE) at a new
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point, x0, also known as generalization error, can be decomposed in:

PE(x0) = σ2 +MSE(f̂(x0))

= σ2 + (E[f̂(x0)]− f(x0))2 + E[(f̂(x0)− E[f(x0)]]2

= σ2 +Bias2(f̂(x0)) + V ar((f̂(x0)).

(1.2)

There are three terms in this expression. The first term σ2 is the irreducible

error, the variance of the new test target, and is beyond our control, even if

we know the true f(x0). The second and third terms are under our control,

and make up the Mean Squared Error (MSE) of f̂(x0) in estimating f(x0).

It is broken down into a bias component and a variance component. The

bias term is the squared difference between the true mean f(x0) and the

expected value of the estimate, E[(f̂(x0)], where the expectation averages

the randomness in the data, used to fit the model (training data). This term

will most likely decrease with the complexity of the model. The variance term

is simply the variance of the hypotheses, determined by how the prediction

varies around its average prediction and usually increase with the complexity

of the model. So, as the complexity varies, there is a bias-variance tradeoff.

New directions in high dimensional data analysis

The statistical problems in high dimensional data analysis, presented in this

introductory overview, paved the way to a very large discussion in the sci-

entific community about the best approach to model and variable selection.

Variable selection, in fact, can efficiently reduce the space of all possible vari-

ables p by removing irrelevant, noisy and redundant features. The smaller the

variables space, the easier it is to find correct models. Irrelevant variables can

be removed without affecting learning performance (John et al. 1994). Re-

dundant varibles are variables that do not contribute to give information

about the system under study (Yu & Liu 2004). Noisy varaibles produce

not desirable effects on the model accuracy and generalization (Lashkia &

Anthony 2004). In data mining fields variable selection is commonly divided

into three classes, which are filter, wrapper, and embedded approaches. In

the filter approach, the input selection procedure is independent from the

fitting of the final prediction model; in the wrapper approach, input variable

subsets are ranked according to some estimate of generalization capability
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of the model; in the embedded approach, input selection is incorporated as

a part of the fitting process. These classes are presented extensively in the

Chapter 2, coupling for each of them the most important advantages and

drawbacks. Additionally some of the newest statistical approaches will be

presented, with particular attention of the class of `q-norm penalized model.





Chapter 2

Variable Selection and Model

Assessment

This Chapter presents a survey of variable selection and model assessment

strategies. Terms like variable selection, feature selection, or input selection,

terms deriving from computational and statistical data analysis fields, will

be used indifferently. The input selection methods can be divided into three

classes, which are filter, wrapper, and embedded approaches (Blum & Lan-

gley 1997, Guyon & Elisseeff 2003, Kohavi & John 1997). In the filter ap-

proach, the input selection procedure is independent from the fitting of the

final prediction model. In the first phase, a subset of input variables is iden-

tified according to some measure and only the best are taken into account in

the phase of modeling. This second phase, where the final prediction model

is fitted, uses only the selected input variables. The filter approach is com-

putationally tractable, since the input selection process is fast and the final

prediction model is fitted only once. On the other hand, the subset of input

variables that is found to be optimal in the first phase may not be optimal

in the second phase.

In the wrapper approach, input variable subsets are ranked according to

some estimate of generalization capability of the model; Cross-validation er-

ror (Stone 1974) and Bootstrap (Efron 1983) are often used in the estimate

of the parameters. The variable selection process is supported by a general-

purpose search algorithm that proposes promising combinations. Heuristic

methods like greedy search, forward selection and backward elimination, step-
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wise selection are the most typical search algorithms. The performance of the

final prediction model is optimized directly, which is advantageous over the

two-phase filter approach. However, the wrapper approach is computation-

ally more expensive, because the potentially time-consuming model fitting

has to be performed several times.

In the embedded approach, input selection is incorporated as a part of the

fitting process. It is highly specific to the model structure compared with the

more universal wrapper approach, where the model is treated as a black box.

Certain penalization techniques offer another more direct category of embed-

ded methods. The model fitting is penalized in such a way that the parame-

ters associated with some input variables become zero during the estimation

process. Estimated generalization capability (the predictive error is one of

the most used measure) is often used to determine the stopping condition

for the amount of penalization in direct methods. The embedded approach

is usually computationally much lighter than the wrapper approach.

This Chapter presents an overview of statistical methods related to the three

variables selection classes with a particular attention to the embedded meth-

ods in which the penalized regression has very large interests in the statistical

learning and in current applications. All the three categories of features selec-

tion can be applied both in supervised learning and in unsupervised learning.

In supervised learning, the goal is to predict the value of one or more out-

put measures, Yd, based on a number of input measures, X; in unsupervised

learning, there is no output measures, and the goal is to describe the as-

sociations and patterns among a set of input measures. This thesis refers

only to supervised learning algorithm, since the structure of data that will

be analyzed in Chapter 4 contain both input variables and output variable.

Most of the variable selection and model assessment methods make strong

assumptions on the problem, for example they often assume that the model

generating the data (called also true model) belongs to the family of linear

multiple regression models.

Usually the emphasis in the variable model selection depends on the goal of

the regression analysis. In general, one can distinguish between the following

purpose, according to Kardaun (2005):

1. estimation of the regression parameters β = {β0, β1, . . . , βp};
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2. estimation of the variance of the random errors σ2;

3. estimation of standard deviations of the estimated regression parame-

ters;

4. testing of hypotheses about the regression parameters;

5. prediction of the response variable (interpolation and extrapolation);

6. outlier detection;

7. determination of the goodness-of-fit.

In this thesis we are more interested in the model prediction accuracy and

for the problem that will be analyzed some typical assumption of the lin-

ear regression models cannot be done. The new method that is presented in

Chapter 4 of this thesis has taken inspiration on the above mentioned meth-

ods and substantially ensembles inspiring techniques both of the filter and of

the wrapper approaches. It is then presented as a new statistical procedure

to determine the best model in terms of prediction when data are qualitative

and scarce and when the dimensionality and the combinatorial complexity is

particularly high.

1 Filters methods

Many variable selection algorithms, that are considered as filters methods,

include variable ranking as a principal or auxiliary selection mechanism be-

cause of its simplicity, scalability, and good empirical success. Several papers

present variable ranking as a baseline method (see, e.g., Bekkerman et al.

(2003), Caruana et al. (2003), Forman (2003)). Variable ranking is not nec-

essarily used to build predictors. The ranking criteria hereafter are defined

for individual variables and independently of the context of others. Variable

ranking makes use of a scoring function S(Xj) computed from the values Xj

and Y . By convention, we assume that a high score is indicative of a valuable

variable and that we sort variables in decreasing order of S(Xj). To use vari-

able ranking to build predictors, nested subsets incorporating progressively

more and more variables of decreasing relevance are defined. Following the

classication of Kohavi & John (1997), variable ranking is a filter method: it

is a preprocessing step, independent of the choice of the predictor and the
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model. Still, under certain independence or orthogonality assumptions, it may

be optimal with respect to a given predictor. Even when variable ranking is

not optimal, it may be preferable to other variable subset selection methods

because of its computational and statistical scalability: computationally, it

is efficient since it requires only the computation of p scores and sorting the

scores; statistically, it is robust against overfitting because it introduces bias

but it may have considerably less variance (Hastie et al. 2003). We introduce

some additional notation: if the input matrix X = {x11, . . . , xij, . . . , xnp} can

be interpreted as the realization of a random vector drawn from an underlying

unknown distribution, we denote by Xj the random variable corresponding

to the j-th component of X. Similarly, Y will be the random variable of

which the outcome yi is a realization. We further denote by Xj the n di-

mensional vector containing all the realizations of the j-th variable, and by

yi = {y1, . . . , yn} the n dimensional vector containing all the target values.

The most common measure for ranking variables in supervised learning are

correlation criterion e information criterion.

1.1 Correlation criterion

Let us consider first the prediction of a continuous outcome Y . The Pearson

correlation coefficient is defined as:

ρ(Xj, Y ) =
cov(Xj, Y )√
var(Xj)var(Y )

, (2.1)

where cov designates the covariance and var the variance. The estimate of

ρ(Xj, Y ) is given by

r(Xj, Y ) =

∑n
i=1(xij − x̄j)(yi − ȳ)√∑n

i=1(xij − x̄j)2
∑n

i=1(yi − ȳ)2
, (2.2)

where the bar notation stands for an average over the index j. This coefficient

is also the cosine between vectors Xj and Y , after they have been centered

(their mean subtracted). Although the r(Xj, Y ) is derived from ρ(Xj, Y ) it

may be used without assuming that the input values are realizations of a

random variable. In linear regression, the coefcient of determination, which

is the square of r(Xj, Y ), represents the fraction of the total variance around

the mean value ȳ that is explained by the linear relation between Xj and Y .
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Therefore, using r2(Xj, Y ) as a variable ranking criterion enforces a ranking

according to goodness of linear fit of individual variables.

Correlation criteria such as r(Xj, Y ) can only detect linear dependencies

between input variables and output variables. A simple way of lifting this

restriction is to make a non-linear fit of the output with single variables

and rank according to the goodness of fit. Because of the risk of overfitting,

one can alternatively consider using non-linear preprocessing (e.g., squaring,

taking the square root, the log, the inverse, etc.) and then using a simple

correlation coefficient. Other measures in this category are basically varia-

tions of the above formula, such as least square regression error and maximal

information compression index (Mitra et al. 2002).

1.2 Mutual information criterion

Several approaches to the variable selection problem using information theo-

retic criteria have been proposed. Many of them rely on empirical estimates

of the mutual information between each variable and the target an it is cal-

culated as:

I(Xj, Y ) =

∫
Xj

∫
Y

p(Xj, Y )log
p(Xj, Y )

p(Xj)p(Y )
dx dy, (2.3)

where p(Xj) and p(Y ) are the probability densities of Xj and Y , and p(Xj, Y )

is the joint density. The criterion I(Xj, Y ) is a measure of dependency be-

tween the density of variable Xj and the density of the output Y . The dif-

ficulty is that the densities p(Xj), p(Y ) and p(Xj, Y ) are often all unknown

and are hard to estimate from data.

In discrete or nominal variables cases the mutual information criterion is the

density probabilities estimated as the empirical frequency counts. Mutual

information becomes:

I(Xj, Y ) =
∑
Xj

∑
Y

P (X = Xj, Y = y)log
p(X = Xj, Y = y)

p(X = Xj)p(Y = y)
. (2.4)

Several variations on mutual information have been proposed to suit vari-

ous need, but for the sake of this thesis we introduce only these two filters

criterion.
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2 Wrapper methods

Differently to the filtering approach, in the wrapper methods input variable

subsets are ranked according to some estimate of generalization capability of

the model. The wrapper methodology offers a simple and powerful way to

address the problem of variable selection, regardless of the chosen learning

machine. In fact, the learning machine is considered a perfect black box and

the method lends itself to the use of off-the-shelf machine learning software

packages. In its most general formulation, the wrapper methodology consists

in using the prediction performance of a given learning machine to assess the

relative usefulness of subsets of variables. In practice, one needs to define:

i) how to search the space of all possible variable subsets;

ii) how to assess the prediction performance of a learning machine to guide

the search and halt it;

iii) which predictors to use.

An exhaustive search can conceivably be performed, if the number of vari-

ables is not too large. But, the enumeration of all the subspaces is a NP-

hard problem and the search becomes quickly computationally intractable.

A wide range of search strategies (Kohavi & John 1997) can be used, in-

cluding greedy strategy, best-first, branch-and-bound, simulated annealing,

genetic algorithms and their performances are usually evaluated using a val-

idation set, by cross-validation or by bootstrap. Many computer algorithms

have been designed to automate the process of finding relevant subsets of

variables and good models in terms of fitting and prediction accuracy with-

out using the “brute force” method of fitting all subsets. It is important to

note that there are in fact two separate goals that we might have in mind:

• Model and variable selection: estimating the performance of different

models in order to choose the best one.

• Model assessment : having chosen a final model, estimating its predic-

tion error (generalization error) on new data.
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2.1 Model and variable selection: the search in the

space of all possible variable subsets

In order to find the (nominally) best fitting subset of explanatory variables,

theoretically the only way is to compare all possible subsets. In practice this

concept is often not realistic, since there are 2p− 1 different, non-empty sub-

sets of a given set of all candidate variables Xj with j = 1, . . . , p, which may

be inconveniently large even in a computerised environment. Furthermore,

the danger of overfitting the data is prominent in such an approach. More-

over, to evaluate search algorithms many goodness-of-fit criteria have been

defined to compare various subsets. Among them the most popular are:

- Adjusted R2: it is a suitable measure to compare models with different

number of parameters. It adjust the coefficient of determination R2

penalizing models with higher number of variables:

R2
adj = 1− MSRes

MSTot
= 1− (1−R2)(n− 1)

n− (p+ 1)
, (2.5)

which uses, in contrast to R2, respectively the mean sum of squares

of the residuals1 and the total sum of square2 of the model. R2
adj may

decrease if variables, entering the model do not add significantly to the

model fit.

- Mallows Cp statistics: it addresses the issue of overfitting, in which

model selection statistics such as the residual sum of squares always

get smaller as more variables are added to a model. This criterion is

Cp =
RSSq
s2

+M(k + 1)− n, (2.6)

where s2 is an estimator of σ2 from the model containing all p vari-

ables plus intercept, and M is a suitable constant (larger is the value

of M , smaller is the number of selected variables). If a subset contain-

ing q variables is approximately correct, then both s2 = RSSq
(n−q−1)

and

s2 = RSSp
(n−p−1)

are reasonable estimators for σ2 where RSSq and RSSp

represent the residuals sum of squared of the model respectively esti-

mated on a subset of q variables and on the complete model.

1The MSRes is calculated as RSS
n

2The MSTot is calculated as
Pn

i=1(yi−ȳ)2

n
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- Akaike Information Criterion (AIC): it proposes to choose a model that

minimizes the Kullback-Leibler (KL) divergence of the fitted model

from the true model. In linear regression, it considers the maximum

likelihood estimator (MLE) θ̂ = (θ̂1, . . . , θ̂p) of the parameter vector θ

and showed that, up to an additive constant, the estimated KL diver-

gence can be asymptotically expanded as:

AIC = −log(L(θ̂))+λdim(θ̂) = −log(L(θ̂))+λ

p∑
j=1

I(θ̂j = 0), (2.7)

where log(L(θ)) is the log-likelihood of the function, dim(θ) represent

the number of non-zero parameters in the model and λ is fixed equal

to one. The λ parameters is a regularization parameter that will be

broadly presented in the embedded methods.

- Bayesian Information Criterion (BIC): it is applicable in settings where

the fitting is carried out by maximization of a log-likelihood, like AIC.

The generic form of BIC is the same of Equation 2.7, but the parameter

λ assume the value log(n)
2

. BIC tends to penalize complex models more

heavily, giving preference to simpler models.

- The minimum description length (MDL): this approach gives a selection

criterion formally identical to the BIC approach, but motivated from

an optimal coding viewpoint.

Heuristic algorithms are usually adopted in the search of the best model. The

stepwise regression is widely used and it approaches the variable and model

selection through the above mentioned goodness-of-fit criteria as stopping

rules; it can be classified in three different classes:

• Forward Selection: this search algorithm starts with one variable. De-

fined which criterion to use, in each step of the forward selection the

variable that causes the largest decrease of the criterion value (or in-

crease for the R2
adj) is added into the model. In the first step, the vari-

able that has the highest score for the selected criteria respect to the

response variable is added; then, in following steps the variable en-

tering the model has the highest partial score respect to the response

variable, given all variables that are already included in the model. The
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sequential procedure lasts until the stopping rule is achieved, that usu-

ally correspond to a very low improvement of the model performance,

given by the new variable to include in the model.

• Backward Selection: this method starts with all candidate variables

included in the model. Defined which criteria to use, in each step of the

forward selection the variable whose elimination determines the largest

decrease of the criterion value (or increase for the R2
adj) is deleted from

the full model.

It should be noted that through addition or elimination of a variable the

“importance” of other variables can change. Therefore usually is suggested

to use a combination of forward and backward selection:

• Stepwise Selection: is an improvement of the forward selection tech-

nique, and it has been proposed as a technique that combines advan-

tages of forward and backward selection. At any point in the search, a

single predictor may be added or deleted. Commonly, the starting sub-

set is the empty set. Stepwise selection evaluates more subsets than the

other two techniques, tending to produce better subsets. The drawback

of this methods is that to find better subsets the computational speed

is reduced.

All these techniques can cause model misspecification and large variability

that can prevent the discovery of the optimal model. To overcome some

limitations of the previous methods when the search space of all possible

subspace has combinatorial explosion, new kind of search algorithms were

developed. These algorithms are better suited to optimization problems in

high dimensional systems and where traditional numerical methods cannot

be applied at all due to the discreteness (Winker 2000): these algorithms,

called “Meta-heurisitics” can better perform in situation where:

• the number of all possible models is vast,

• the number of important interactions among variables is huge,

• very high multicolinearity exists,

• the models are referred to categorical variables with many factors for

each of them,

• strong non-linearities are present in the unknown but “true” model.
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These algorithms performs “meta-heuristic search” in the whole space of

possible models. Often the term meta-heuristic is linked to algorithms mim-

icking some behavior found in nature, e.g. the principle of evolution through

selection and mutation (genetic algorithms), the annealing process of melted

iron (simulated annealing), the self organization of ant colonies (ant colony

optimization) or the fly of birds swarm (Particle swarm optimization) (Gilli

& Winker 2008).

Among these algorithms, Genetic Algorithms and Simulated annealing, are

the most used in model selection. An overview of some of these and other

meta-heuristics will be provided in Chapter 3.

2.2 Model assessment: the prediction performance of

a learning machine to guide the search and halt it

Previous automatic procedures for selecting a model are directed to find the

best possible fit of the dataset at hand. The next step toward a reliable model

is the model validation procedure. This can be carried out by checking the

model with another, independent dataset. Validation is important, above all

if one applies automated model selection, because of the danger of overtting

and selection bias on one hand and omission bias on the other.

Overfitting occurs if the response variable can be described by a submodel

with q predictors, but the data have been fitted with p � q variables. Se-

lection bias occurs if the response variable seems to be explainable by q

regressors, but in fact these q regressors have been heavily selected from a

considerably larger set of p regressors. Omission bias occurs if important re-

gression variables are not included in the model. Ideally, both types of bias

should be avoided.

To avoid these biases, if we are in a data-rich situation, the best approach for

both problems is to randomly divide the dataset into three parts as in Figure

2.1: a training set, a validation set, and a test set. The training set is used

to fit the models; the validation set is used to estimate prediction error for

model selection; the test set is used for assessment of the generalization error

of the final chosen model. In most of the recent applications, however, the

number of available data is scarce and the validation procedure used only the
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Figure 2.1: Data-split into training, validation and test set.

training and test set partition. cross-validation and bootstrap are currently

the widest applied procedure in the assessment of the models.

Cross-validation

As noticed in the early 30s by Larson (1931), training an algorithm and eval-

uating its statistical performances on the same data yields an overoptimistic

result. Cross-validation was raised to fix this issue, starting from the remark

that testing the output of the algorithm on new data would yield a good

estimate of its performance (Mosteller & Tukey 1968, Stone 1974). In most

real applications, only a limited amount of data is available, which leads to

the idea of splitting the data into 2 parts: one bigger part of the data (the

training set) is used for training the algorithm or fitting the model, and the

remaining data (the test set) are used for evaluating the performance of the

algorithm or testing the model. The test set plays the role of “new data”

where to evaluate the prediction accuracy of the models. A single data split

yields a validation estimate of the prediction accuracy, and averaging over

several splits yields a cross-validation estimate. Several splitting procedure

are developed and for a complete description we refer to Arlot & Celisse

(2010). For the sake of this thesis, we present the most applied, k-fold cross-

validation and leave-one-out cross-validiation.

• k-fold cross-validation: since data are often scarce, the validation esti-

mate cannot be usually a good estimate. To finesse the problem, k-fold

cross-validation uses part of the available data to fit the model, and

a different part to test it. In particular, the algorithm splits the data

into k roughly equal-sized parts; in Figure 2.2, for example, data are

divided into k = 4 parts. By choosing k, the initial set of experimental
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Figure 2.2: k-fold cross-validation with k=4.

points is partitioned k-folds, and each partition is used in turn exactly

once as a test set. Then, the procedure fits the model on k− 1 parts of

the data, and calculate the Root Prediction Error (RPE)

RPEk =

√∑m∗

t=1(Yt − Ŷt)2

m∗
, (2.8)

where m∗ represents the number of observation of the k -th part of the

data, for each turn of the procedure. Then the cross-validation estimate

of prediction error is then the average of the k root prediction errors.

CV RPE =
1

k

k∑
s=1

RPEs, (2.9)

providing a good estimate of the generalization of the model.

• leave-one-out cross-validation involves using a single observation (in-

stead of k in the k-fold cross-validation) from the original sample as

the test set, and the remaining observations as the training data (as

shown in Figure 2.3). This is repeated such that each observation in

the sample is used once as the test data. Formulas 2.8 and 2.9 are still
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Figure 2.3: Leave-one-out cross-validation.

valid in this type of cross-validation, noting that in this case k = n and

m∗ = 1. Leave-one-out cross-validation is usually very expensive from

a computational point of view because of the large number of times the

training process is repeated.

Even in the choice of the kind of cross-validation, the trade-off between vari-

ance and bias, presented in the previous Chapter, plays an important role. In

fact, the leave-one-out cross-validation estimate is approximately unbiased

for the prediction error, but can have high variance because the n training sets

are very similar one another. On the other hand, the k-fold cross-validation

(usually k = {5, 10}) has lower variance but the bias could be very high,

depending on how the performance of the learning method varies with the

size of the training set.

Bootstrap

The bootstrap is another general tool for measuring statistical models ac-

curacy and it is used typically for estimating the expected prediction er-

ror. Bootstrap techniques (also called resampling computation techniques)

have introduced new advances in modeling and model evaluation. Using

resampling methods to construct a series of new samples which are based
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on the original data set, allows to estimate the stability of the parameters.

This technique was introduced by Efron (1979) and represents a simulation

technique based on the empirical distribution of the observed sample. Let

X = {x1, . . . , xn} be an n sample, with an unknown distribution function F ,

depending on an unknown real parameter θ. The problem consists in esti-

mating this parameter θ by a statistic θ̂ = s(x) function of the sample data

and in evaluating the estimate accuracy, although the distribution F is un-

known. In order to evaluate this accuracy, B random samples are built from

the initial sample X, by re-sampling. These samples are called bootstrapped

samples and denoted by X∗b

A bootstrapped sample X∗b = {x∗b1 , . . . , x∗bm} is built by a random drawing

(with repetitions) in the initial sample X: the distribution function of a boot-

strapped sample X∗b is F̂ , i.e. the empirical distribution of X . A bootstrap

replicate of the estimator θ̂ = s(x) will be θ̂∗b = s(X∗b)

This algorithm is often presented as a model selection techniques with many

derivation from the original idea as presented in Efron & Tibshirani (1994),

Shao (1996), Efron & Tibshirani (1997), Kallel et al. (2002).

More in detail, let X be a data set of size n

X = ({x1, y1}, . . . , {xi, yi}) with i = 1, . . . , n, (2.10)

where xi is the i -th value of a p-vector of explanatory variables and yi is the

response of the system. From the original data set X, the algorithm generates

B bootstrapped data set X∗b, from an uniform drawings of n data points in

X, with replacement. For any generated data sest X∗b an estimator of the

model parameters vector θ, called θ̂∗b, is found. So the bootstrap procedure

provides B replications θ̂∗b for the model. Then the initial data set X is used

as the test set, and evaluate, for each b = 1, . . . , B, the residuals estimate and

consequently the mean square error. Even the bootstrap methods refer to the

bias-variance decomposition and, in fact, this procedure is used to estimate

the residual variance of the model, estimated from the bootstrapped samples,

and the average bias of the model estimate.

All the methods presented before had lot of success in many applicable fields,

above all when the collected data are in n � p condition and under strict

assumption like linearity, omoschedasticity and incorrelation (typical of the
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multiple linear regression models); substantial innovations are developed with

bootstrap and cross-validation to be more flexible to be applied without con-

straints due to the model type, but as a consequence, the required computa-

tional time is increased enormously. In high dimensional settings many efforts

are devoted to create more efficient techniques, able to estimate sufficiently

good models in acceptable computational time. Cross-validation and boot-

strap represent two examples of these efforts but these methods have not

always proven to be adequate to address the model assessment problem in

high dimensionality.

3 Embedded Methods

Embedded methods differ from other feature selection methods in the way

feature selection and learning algorithm interact. Filter methods do not in-

corporate learning. Wrapper methods use a learning machine to measure the

quality of subsets of features without incorporating knowledge about the spe-

cific structure of the classification or regression function. They can therefore

be combined with any learning machine. In contrast to filter and wrapper

approaches, in embedded methods the learning part and the feature selection

part can not be separated; the structure of the class of functions under consid-

eration plays a crucial role (Lal et al. 2006). Some embedded methods guide

their search by estimating changes in the objective function value incurred by

making moves in variable subset space. Combined with greedy search strate-

gies (backward elimination or forward selection) they yield nested subsets of

variables (Guyon & Elisseeff 2003).

The basic idea of the embedded methods is to contemporary define the best

model in term of goodness-of-fit and generalization capability, putting inside

the training process some variable selection procedure that allow to delete

not-important features. Among the embedded methods, the `q-norm penal-

ized regression models represents a vast research area, but many other classi-

cal statistical algorithms have been modified to embed the variable selection

directly into the learning algorithms. Some examples are CART (Breiman

et al. 1984) with the pruning rules inside the learning process, Random For-

est (Breiman 2001) with ranking methods for variable selection, Support
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Vector Machine (Boser et al. 1992) with penalties or kernel methods variable

selection.

3.1 `q-norm penalized regression models

Formula 2.7 presents a very simplified penalized methods, where the regu-

larization parameter λ was set equal to one. A more general formulation of

Formula 2.7 can be the follow:

−log(L(θ)) + λ‖θ‖0, (2.11)

where the ‖θ‖0, called `0-norm of θ, counts the number of non-vanishing

components in θ and λ ≥ 0 is a regularization parameter. Given ‖θ‖0 = q,

the solution to Formula 2.11 is the subset with the largest maximum likeli-

hood among all subsets of size q. The model size is then chosen to maximize

Formula 2.11 among the subsets of sizes q with 1 ≤ q ≤ p. `0 regularization

arises naturally in many classical model selection methods. It gives a nice

interpretation of best subset selection and admits nice sampling properties.

However, the computation is infeasible in high dimensional statistical prob-

lems, therefore, other penalty functions should be used, providing a more

general formulation:

− 1

2n
log(L(θ)) + λ

p∑
j=1

pj|θj|, (2.12)

where log(L(θ)) is the log-likelihood function and λ
∑p

j=1 pj|·| is a penalty

function indexed by the regularization parameter λ ≥ 0. The dependence

of the penalty function on j allows to incorporate prior information. For in-

stance, we may wish to keep certain important predictors in the model and

choose not to penalize their coefcients. For simplicity, in this thesis, we as-

sume that the penalty functions for all coefficients are the same, denoted by

p(|·|) and λp(β) as pλ. By maximizing the penalized likelihood in 2.12, vari-

ables are selected and simultaneously their associated regression coefficients

are estimated. Those variables whose regression coefficients are estimated

as zero are automatically deleted. A natural generalization of penalized `0-

regression is the penalized `q-regression, called bridge regression in Frank &

Friedman (1993), in which pλ|θj| = λ|θ|q for 0 < q ≤ 2.
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According to the initial aim of `q-penalized methods, the linear regression

case is presented. Many other improvement are done in the last years to gen-

eralize the `q penalty for logistic regression (Meier et al. 2008), generalized

linear models (Roth & Fischer 2008) and non linear models (Friedman et al.

2010). In the regression form, the penalized likelihood 2.12 is equivalent,

up to an affine transformation of the log-likelihood, to the penalized least

squares (PLS):

PLS(β) =
1

2n

n∑
i=1

(yi − xTi β)2 + λ

p∑
j=1

pj(β). (2.13)

According to Fan & Li (2001) penalty functions have to obey three properties:

• Sparsity : the resulting estimator should automatically set small esti-

mated coefcients to zero to accomplish variable selection.

• Unbiasedness : the resulting estimator should have low bias, especially

when the true coefficient β is large.

• Continuity : the resulting estimator should be continuous to reduce in-

stability in model prediction.

The penalty function is becoming a vast field of research and many different

kind of penalties are introduced in statistical model and variable selection,

including SCAD (Fan & Li 2001), adaptive LASSO (Zou & Hui 2006), relaxed

LASSO (Meinshausen 2007) among others.

Ridge Regression

One of the most used penalty method is the ridge regression. Ridge regression

shrinks the regression coefficients by imposing a penalty on their size. The

ridge coefficients minimize a penalized residual sum of squares when the

penalty function uses q = 2 so that the penalty becomes λ
∑p

j=1 β
2. The

estimate of the coefficient are then calculated as:

β̂ridge = arg min
β

n∑
i=1

(yi − xTi β)2 + λ

p∑
j=1

β2. (2.14)

Here λ ≥ 0 is a complexity parameter that controls the amount of shrinkage:

the larger the value of λ, the greater the amount of shrinkage. The coefficients



48 Variable Selection and Model Assessment

are shrunk toward zero (and each other). An equivalent way to write the ridge

problem is

β̂ridge = arg min
β

n∑
i=1

(yi − xTi β)2

subject to

p∑
j=1

β2 ≤ t.

(2.15)

In matrix formula the ridge regression can be seen as:

RSSridge(λ) = (y −Xβ)T (y −Xβ) + λβTβ, (2.16)

whose solution is:

β̂ridge = (XTX + λI)−1XTY. (2.17)

As a continuous shrinkage method, ridge regression achieves its better pre-

diction performance, minimizing the bias-variance trade-off presented in For-

mula 1.2. However, ridge regression cannot produce a parsimonious model,

for it always keeps all the predictors in the model. In contrast, the use of an

`1 penalty does reduce terms to zero. This yields LASSO.

LASSO

The LASSO is a shrinkage method like ridge, with subtle but important

differences. The LASSO estimate is defined by

β̂LASSO = arg min
β

n∑
i=1

(yi − xTi β)2

subject to

p∑
j=1

|β| ≤ t.

(2.18)

This latter constraint makes the solutions nonlinear in the yi, and there

is no closed form expression as in ridge regression. In fact, the regression

coefficients are estimated as

β̂LASSO = (XTX)−1(XTY − λ

2
w), (2.19)

where the elements wj of w are either ±1, depending on the sign of the cor-

responding regression coefficient βj. This is a least squares problem with two
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inequality constraints (there are 2p possible sign patterns for the coefficients)

and can be solved using complicated quadratic programming methods.

The LASSO has many desirable features that have made it a popular regres-

sion algorithm. It is, at the same time, a shrinkage estimator of βOLS (OLS

coefficients are shrunk towards the origin) and a variable selection technique

(Izenman 2008), performing a kind of continuous subset selection (Hastie

et al. 2003). The value of t controls both the amount of shrinkage and the

number of nonzero coefficients. In particular, a smaller value of t produce a

smaller subset of nonzero coefficients. The entire LASSO sequence of paths

can be generated by a slight modication of the LAR algorithm (called LARS),

which is a procedure that efficiently combine LASSO, Forward-Stagewise and

LAR algorithms (Efron et al. 2004). Although the LASSO has shown sev-

eral successes in many situations, it has some limitations. Let consider the

following three scenarios:

(a) in the p � n case, the LASSO selects at most n variables before it

saturates, because of the nature of the convex optimization problem.

This seems to be a limiting feature for a variable selection method.

Moreover, the LASSO is not well defined unless the bound on the `1-

norm of the coefficients is smaller than a certain value.

(b) If there is a group of variables among which the pairwise correlations

are very high, then the LASSO tends to select only one variable from

the group and does not care which one is selected.

(c) For n > p situations, if there are high correlations between predictors,

it has been empirically observed that the prediction performance of the

LASSO is dominated by ridge regression.

Scenarios (a) and (b) make the LASSO an inappropriate variable selection

method in many real situations (Zou & Hastie 2005). Moreover it is known

that the convex `q penalty with q > 1 does not satisfy the sparsity condition,

whereas the convex `1 penalty does not satisfy the unbiasedness condition,

and the concave `q penalty with 0 ≤ q < 1 does not satisfy the continuity

condition. In other words, none of the `q penalties satisfies simultaneously

all the three conditions (presented in Section 3.1), considered fundamental in

variable and model selection. A very competitive approach is then created,

to assolve of the three properties: the Elastic Net procedure
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Elastic Net

Similar to the LASSO, the Elastic Net simultaneously does automatic vari-

able selection and continuous shrinkage, and it can select groups of correlated

variables. It is like a stretchable fishing net that retains “all the big fish” and

it outperforms the LASSO in terms of prediction accuracy (Zou & Hastie

2005). The regression model penilized with the Elastic Net is:

β̂enet = arg min
β

n∑
i=1

(yi − xTi β)2

subject to

p∑
j=1

|β| ≤ t1 and

p∑
j=1

|β|2 ≤ t2.

(2.20)

The penalty function is a convex combination of the LASSO and ridge

penalty. The first term encourages highly correlated features to be averaged,

while the second term encourages a sparse solution in the coefficients of these

averaged features. For the Elastic Net the regression coefficients are estimated

as

β̂enet = (XTX + λ2I)−1(XTY − λ1

2
w), (2.21)

where it is immediate to see the similarities with ridge regression and LASSO

models.

Sometimes, the estimate of the model is a secondary task, respect to the gen-

eralization aspect. If the main objective of modeling is to have minimal Pre-

diction Error (PE), many other algorithms can be better shaped. Moreover

in many real applications, we have very little information about the system,

so general assumption, requested by methods presented in this Chapter, can-

not be defined. Therefore, other algorithms are developed with more general,

robust and powerful search mechanism (Back et al. 1997). They usually pos-

sess other characteristics that are desirable for problems involving above all

intractably large and highly complex search spaces. They are often suited to

provide faster convergence in optimization problems when large number of

variables and complex system response functions are present. These methods

are called meta-heuristics



Chapter 3

Evolutionary Algorithms and

Neural Network models

The basic concept of heuristic search as an aid to problem solving was first

introduced by Polya (1971). A heuristic is a technique (consisting of a rule

or a set of rules) which seeks (and hopefully finds) good solutions at a rea-

sonable computational cost. A heuristic is approximate in the sense that it

provides (hopefully) a good solution for relatively little effort, but it does not

guarantee optimality (Voß 2001). Many definition of heuristic are presented

in literature, one the most interesting is given by Gilli & Winker (2008)

“Here, we follow a slightly more general denition of heuristic

based on the properties of an algorithm (Winker & Maringer

2007). First, a heuristic should be able to provide high quality

(stochastic) approximations to the global optimum at least when

the amount of computational resources spent on a single run of

the algorithm or on repeated runs is increased. Second, a well

behaved heuristic should be robust to changes in problem char-

acteristics, i.e. should not fit only a single problem instance, but

the whole class. Also, it should not be too sensitive with regard

to tuning the parameters of the algorithm or changing some con-

straints on the search space. In fact, these requirements lead to

the third one, namely that a heuristic should be easily imple-

mented to many problem instances, including new ones. Finally,

despite of its name, a heuristic might be stochastic, but should
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not contain subjective elements”.

Given the above denition of heuristics, one of their major advantages consists

in the fact that their application does not rely on a set of strong assumptions

about the optimization problem. In fact, for the implementation of most of

the algorithms discussed hereafter, it is sufficient to be able to evaluate the

objective function for a given element of the search space. It is not necessary

to assume some global property of the objective function, nor it is necessary

to be able to calculate derivatives. In particular, several heuristics also al-

low to tackle discrete optimization problems or are even tailor made for this

class of problems. On the other side, heuristics do not produce high-quality

(or even exact) solutions with certainty, but rather stochastic approxima-

tions. However, when traditional methods fail, heuristics might still work in

providing satisfying approximations.

Widely used heuristic are:

• constructive methods or greedy heuristics : simple heuristics available

for any kind of combinatorial optimization problem; a greedy heuristic

is an iterative methods and it usually starts with a given feasible or

infeasible solution. In each iteration there is a number of alternative

choices (moves) that can be made to transform the solution. From

these alternatives which consist in fixing (or changing) one or more

variables, a greedy choice is made, i.e., the best alternative according

to a given evaluation measure is chosen until no such transformations

are possible any longer.

• Local Search: whose basic principle is that solutions are successively

changed by performing moves which alter solutions locally. Valid trans-

formations are defined by neighborhoods which give for a solution all

neighboring solutions that can be reached by one move. Moves must

be evaluated by some heuristic measure to guide the search. As the

solution quality of local optima may be unsatisfactory, we need mech-

anisms which guide the search to overcome local optimality. A simple

strategy called iterated local search is to iterate/restart the local search

process after a local optimum has been obtained, which requires some

perturbation scheme to generate a new initial solution (e.g., perform-
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ing some random moves). Of course, more structured ways to overcome

local optimality might be advantageous.

Based on the definition of heuristics, we derive the definition of a meta-

heuristics. The description that better fit with the underlying idea of meta-

heuristic is presented in Voßet al. (1999):

“A meta-heuristic is an iterative master process that guides and

modifies the operations of subordinate heuristics to efficiently

produce high-quality solutions. It may manipulate a complete

(or incomplete) single solution or a population of solutions at

each iteration . The subordinate heuristics may be high (or low)

level procedures, or a simple local search, or just a construction

method. The family of meta-heuristics includes, but is not limited

to, adaptive memory procedures, tabu search, ant systems, greedy

randomized adaptive search, variable neighborhood search, evo-

lutionary algorithms, scatter search, neural networks, simulated

annealing, and their hybrids.”

Among them, brief overview of Tabu Search and Simulated Annealing is

presented since they achieved important results in real applications and they

are still widely applied. Then this thesis will focus on meta-heuristics that

are labelled as Evolutionary Algorithms (EAs) and Neural Networks.

Tabu Search: it was proposed initially by Glover (1977) as a combinatorial

optimization problem solver. As with other combinatorial approaches, Tabu

Search (TS) carries out a number of transitions in the search space aiming

to find the optimal solutions or a range of near-optimal solutions. The name

tabu is related to the fact that in order to avoid revisiting certain areas

of the search space that have already been explored, the algorithm turns

these areas tabu (or forbidden). It means that for a certain period of time

(the tabu tenure), the search will not consider the examination of alternatives

containing features that characterize the solution points belonging to the area

declared tabu (Lee & El-Sharkawi 2008). A simple TS usually implements

two forms of memory:

• A frequency-based memory, which maintains information about how

often a search point has been visited (or how often a move has been
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made) during a specified time interval.

• A recency-based memory, which maintains information about how re-

cently a search point has been visited (or how recently a move has been

made). Recency is based on the iteration at which the event occurred.

If, for example, the frequency count of a search point exceeds a given thresh-

old, then that point is classified as tabu for the next cycle of iterations.

Positions specified in the tabu list are excluded from the neighborhood of

candidate positions that can be visited from the current position. Positions

remain in the tabu list for a specified time period (Engelbrecht 2007).

Simulated Annealing: this refinement of the local search, proposed by

Kirkpatrick et al. (1983), is based on an analogy between combinatorial opti-

mization and the annealing process of solids. In fact, as temperature reduces,

the mobility of molecules reduces, with the tendency that molecules may align

themselves in a crystalline structure. The aligned structure is the minimum

energy state for the system. To ensure that this alignment is obtained, cooling

must occur at a sufficiently slow rate. If the substance is cooled at a too rapid

rate, an amorphous state may be reached. In the context of combinatorial

optimization, the minimum of an objective function φ(·) represents the min-

imum energy of the system. Simulated annealing (SA) uses a random search

strategy, which not only accepts new positions that decrease the objective

function (assuming a minimization problem), but also accepts positions that

increase objective function values. The latter are accepted probabilistically

based on a parameter Tk depending on the time k. If Pij is the probability

of moving from point xi to xj, then Pij is calculated using

Pij =

{
1 if φ(xj) < φ(xi)

e
−
φ(xj)−φ(xi)

Tk if φ(xj) > φ(xi).
(3.1)

Initially, when T is large, larger deterioration in the cost function is allowed;

as the temperature decreases, the simulated annealing algorithm becomes

greedier, and only smaller deteriorations are accepted; and at the end, when

T → 0, no deteriorations are accepted any longer.
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1 Evolutionary Algorithms

Evolutionary algorithms originate in Darwin’s theory of evolution, which ex-

plains the creation of species based on the evolution of life on Earth. Darwin

introduced three fundamental components of evolution: replication, varia-

tion, and natural selection. Replication is the formation of a new organism

from a previous one, but replicating would only produce identical copies of

organisms, thereby stalling evolution. However, during the replication pro-

cess there occur a series of errors called variations that allow a change in

individuals. One manner of variation is sexual reproduction. In addition to

replication and variation, evolution needs natural selection, which happens

when individuals of a same species compete for the scarce resources of their

environment and the possibility of reproducing. Such competition allows for

the fittest individuals to survive and the weakest to die (Darwin 1872).

The common underlying idea behind all the EAs is the same: given a pop-

ulation of individual, the environmental pressure causes natural selection

(survival of the fittest) and this causes a rise in the fitness of the population.

Given an objective function φ(·) to be optimize (minimization or maximiza-

tion are specular treated), the algorithmic procedure randomly create solu-

tions, i.e. elements of the function’s domain, and apply the objective function

as an abstract fitness measure.

Based on this fitness, some of the better candidates are chosen to seed the

next generation by applying recombination and/or mutation to them. Re-

combination is an operator applied to two or more selected candidates (called

parents) and results one or more new candidates (the children). Mutation is

also applied to one candidate, modifying a very small part of it, and creating

one new candidate. Executing recombination and mutation leads to a set of

new points (the offspring) that compete, based on their fitness, with the old

ones for a place in the next generation. This process is then reiterated until

a candidate with sufficient quality is found or a previously set computational

limit is reached. In this brief description, extract by Eiben & Smith (2008)

it is possible to figure out two important aspects of EAs:

• the variation operators (recombination and mutation) that create the

necessary diversity and thereby facilitate novelty;

• the selection pressure that acts as a force pushing quality.
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Figure 3.1: General structure of Evolutionary Algorithms.

The different ways in which the EA are implemented result in many paradigms

and methods (i.e. Genetic Algorithms, Genetic Programming, Evolutionary

Strategies, Differential Evolutions, Swarm Intelligence, among others), that

are widely compared in many books and articles both in theoretical proper-

ties (Bäck 1996, Rudolph 1996, Fouskakis & Draper 2002) and in practical

applications (Whitley 2001, Fogel & Corne 2002). What always emerge in all

the Evolutionary Algorithms are the presence of some common components:

• they are population based, i.e. they process a whole colleciton of can-

didate solutions simultaniously;

• they mostly use recombination to mix information of more candidate

solutions into new one;

• they are stochastic.

In order to search global optimum or very good local optima candidate, Evo-

lutionary Algorithms generally have to define some important components

(Engelbrecht 2007):

• representation (definition of individuals);

• evaluation function (usually called fitness function);

• population;
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• parent selection mechanism;

• variation operator (i.e recombination and mutation);

• survivor selection mechanism (replacement).

We refer to Eiben & Smith (2008) for the description of the components but

they will be emphasized in the Section 1.1 where all of them will be described

for the genetic algorithm structure. EAs have several nice features that made

them very popular in real problems optimization.

In contrast to many other optimization techniques, an important advantage

of evolutionary algorithms is that they can cope with multi-modal functions

and multi-objectives problems. Additional advantages are that their repre-

sentation is independent of the complexity of the system, in contrast with

other numerical techniques, which might be applicable for only continuous

values or other constrained sets. Moreover, they offer a framework such that

it is comparably easy to incorporate prior knowledge about the problem. In-

corporating such information focuses the evolutionary search, yielding a more

efficient exploration of the space of possible solutions. They are very flexible

and can be combined with more traditional optimization techniques. This

may be as simple as the use of a gradient minimization used after primary

search with an evolutionary algorithm, or it may involve simultaneous appli-

cation of other algorithms. As the least feature, that make them feasibly in

many fields, is that they are robust to dynamic changes in problem, adapting

solutions to changing circumstance.

The evolutionary algorithms, however, presents some drawbacks as:

• it is not guaranteed to reach the optimal solution within finite time

(even if there is in convergence);

• they work under weak theoretical basis;

• they may need parameter tuning;

• they are computationally expensive.

The Genetic Algorithms (GAs) are possibly the most widespread variant of

EAs. They were conceived by Holland (1975), and revolutionized the devel-

opments of optimization computer aided techniques.
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1.1 Genetic Algorithm

Before the introduction of genetic algorithms by Holland (1975), other scien-

tists with different backgrounds were also involved in developing similar ideas

(Fraser 1962, Rechenberg 1973). The common thread in these ideas was the

use of mutation and selection, the concepts at the core of the neo-Darwinian

theory of evolution. But unlike the earlier evolutionary algorithms, which fo-

cused only on the mutation as a straightforward developments of hill-climbing

methods, Holland’s GA had an extra ingredient: the idea of recombination.

As basic idea let us assume a discrete search space Ω and an objective func-

tion

φ : Ω→ R, (3.2)

and we want to optimize this function, let us say maximize it

arg max
x∈Ω

φ, (3.3)

where x is a possible candidate vector of the search space Ω and φ is the

objective function. The original motivation for the GA approach was a bio-

logical analogy. As in the selective breeding of plants or animals, for example,

offspring are sought that have certain desirable characteristics that are de-

termined at the genetic level by the way the parents’ chromosomes combine.

Similarly, In the case of GAs, the population of candidates x is encoded as a

string of gene, and these candidates are often referred to in the GA literature

as chromosomes.

The recombination of strings is carried out using simple analogies of genetic

crossover and mutation, and the search is guided by the results of evaluating

the objective function φ for each element of the population. Based on this

evaluation, candidates that have higher fitness (i.e., represent better solu-

tions) can be identified, and these are given more opportunity to breed.The

procedure is then iterated until a convergence toward the optimal solution,

optimizing φ.

Initially genetic algorithms were supposed to be codified as string of bits,

but recent development has shown that binary-coded genetic algorithm has

some disadvantages, such as lower operating speed, precocious convergence

(Yu-Fen & Xiao-Juan 2009). It does not suffice to abandon the original idea
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Phenotype 

1  0  1  0  0  Genotype 

Figure 3.2: Binary code of the genetic algorithms chromosome.

of binary-code, but it allow researcher to create more flexible tools, without

a deep understanding of binary code conversion. Genetic Algorithms usually

use all the components of the Evolutionary Algorithms, presented in Section

1.

Representation

In order to apply a GA to a given problem, the first decision one has to make

is how to represent a candidate solutions ( the phenotype) as the kind of

genotype the problem needs (Lee & El-Sharkawi 2008). The issue of selecting

an appropriate representation (i.e. transform the phenotype in genotype) is

crucial for the algorithm. The symbol alphabet used is often binary (see

Figure 3.2 as an example of the binary code representation), though other

representations have been used, including character-based and real-valued

encodings (Kelly et al. 1994) or Gray code (Gray 1953). Even if the binary

code is still very applied, in some problems like complex applications, it is

suggested to use non-binary alphabets. Integer or continuous valued genes are

typically used in large-scale function optimization problems (and in this case

there is no distinction between genotype and phenotype). Another advantage

of non-binary representations, particularly the real-valued one, is the easy

definition of problem-specific operators. Therefore, the very hard encoding

problem still remains in the hands of the designer. In order to achieve good

performance for large tasks, GAs must be matched to the search problem at
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hand. The only way to succeed is by using domain-specic knowledge to select

an appropriate representation.

Evaluation function

Each candidate is evaluated and assigned a fitness value f(·) after the creation

of an initial population as:

f(x) = h(φ). (3.4)

It is useful to distinguish between the objective function and the fitness func-

tion used by a GA. The objective function provides a measure of performance

with respect to a particular set of gene values, independently of any other

candidate. The fitness function transforms that measure of performance into

an allocation of reproductive opportunities (i.e., the fitness of a candidate is

defined with respect to other members of the current population).

After decoding the chromosomes (i.e., applying the genotype to phenotype

transformation), each element of the population is assigned a fitness value.

The phenotype is used as input to the fitness function. Then, the fitness

values are employed to relatively weight the candidates in the population.

The specication of an appropriate fitness function is crucial for the correct

operation of a GA (Radcliffe & Surry 1995).

At the beginning of the iterative search, the fitness function values for the

population members are usually randomly distributed and widespread over

the problem domain. As the search evolves, particular values for each gene

begin to dominate. The fitness variance decreases as the population con-

verges. This variation in fitness range during the evolutionary process often

leads to the problems of premature convergence and slow finishing.

Related with the fitness function is the problem of exploration and exploita-

tion: exploration is used to investigate new and unknown areas in the search

space and exploitation to make use of knowledge found at points previously

visited to help find better points (Beasley et al. 1993).

When GA finds genes from a few comparatively highly fit (but not optimal)

individuals that may rapidly come to dominate the population, it converges

on a local maximum or stagnates somewhere in the search space. Similarly

a slow convergence means that the average fitness is high, but the difference
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between the best and the average individuals is very small. Therefore, there

is insufficient variance in the fitness function values to localize the optimal

solutions. These problems show an huge exploitation around good solutions

and a lack of exploration of the search space.

On the other hand, an extreme search of the search space, due to an exces-

sive randomness, causes a very high variance of the results with a lack of

concentration around the optimal solution with, as a consequence, a massive

exploration and inadequate exploitation around the best candidates. These

two requirements are contradictory and a good search algorithm must find a

trade-off between them. GAs try to combine both exploration and exploita-

tion in the selection mechanism and in the variation operator (better known

as recombination operators).

Population

As the other EAs, genetic algorithms are stochastic, population-based search

algorithms. Each GA therefore maintains a population of candidate solutions,

also called generation. Therefore, in order to have the GA started, it is neces-

sary to create the initial population of solutions. This is typically addressed

by randomly generating the desired number of solutions. The goal of random

selection is to ensure that the initial population is a uniform representation

of the entire search space. If regions of the search space are not covered by

the initial population, chances are that those parts will be neglected by the

search process.

The size of the initial population has consequences in terms of computational

complexity and exploration abilities. Large numbers of individuals increase

diversity, thereby improving the exploration abilities of the population. How-

ever, the more the individuals, the higher the computational complexity per

generation. While the execution time per generation increases, it may be the

case that fewer generations are needed to locate an acceptable solution. A

small population, on the other hand will represent a small part of the search

space. While the time complexity per generation is low, the GA may need

more generations to converge than for a large population (Engelbrecht 2007).

Moreover, it is generally accepted that randomization is a good way of defin-

ing the candidates, but many other ideas are proposed, like the use of sta-
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tistical model to define the “best” initial points (i.e. with a latin hypercube

design of experiments), or with other meta-heuristics for seeding the popu-

lation with good solutions (Reeves 1995). These methods usually suffer of

premature convergence (Levine 1997).

Parent selection mechanism

Selection determines which individuals are chosen for mating (recombination)

and how many offspring each selected individual produces. Each candidate so-

lution in the generation receives a reproduction probability depending on the

fitness function f(·). The most popular techniques are fitness-proportionate

method. In these methods, the probability of selecting an individual for breed-

ing is proportional to its fitness:

p(xi(k)) =
fγ(xi(k))∑n(k)
i=1 fγ(xi(k))

, (3.5)

where k represent la k-th generation, i is the i-th candidate, and fγ(xi(k))

is the scaled fitness of the i-th candidate at the k-th generation. When

fγ(xi(k)) = f(xi(k)) the scaling function is the fitness itself. This selec-

tion method is the simplest and it is called Roulette-wheel, but more complex

scaling function usually are applied.

The scaling function fγ(·) play a pivotal role in the selection procedure; in

fact, fitness-proportionate selection faces problems when the fitness values of

individuals are very similar among them or when the numbers of candidates

is high. In this case, p(xi(k)) would be approximately
[∑n(k)

i=1 fγ(xi(k))
]−1

for each i = 1, . . . , n, and hence selection would be essentially random. Some

improvement are therefore implemented to avoid random selection and they

can be summarize as follow:

• linear scaling : where f ′(·) = af(·) + b with a and b real number;

• exponential scaling : where f ′(·) = f(·)α with α a real number, the

higher α, the harder the selection of better experiments;

• sigma truncation: in which f ′(·) = max(0, f(·)− f̄(·)− c · σ(k)) where

f̄(·) is the average fitness of the population at generation k, c is a pos-

itive constant and σ represent the fitness standard deviation at gener-

ation k.
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Other type of selection pressures are developed like stochastic universal selec-

tion, tournament selection, ranking selection, Boltzmann selection and more

complicated solutions like dynamical selection, but in this thesis they are just

mentioned and we refer to other sources for a wider explanation (Beasley et al.

1993, Glover & Kochenberger 2003, Engelbrecht 2007, Lee & El-Sharkawi

2008).

One particular case of selection is the elitism, where the “best” individual/s

of the k-th generation is/are cloned in the following generation in order to

reduce diversity, augmenting exploitation.

Variation operator

Variation operators allow to generate offspring from selected parents by ap-

plying crossover and/or mutation. Crossover is the process of creating one

or more new individuals through the combination of genetic material ran-

domly selected from two or more parents. If selection focuses only on the

fittest individuals, the selection pressure may cause premature convergence

due to reduced diversity of the new populations. Mutation is the process of

randomly changing the values of genes in a chromosome. The main objec-

tive of mutation is to introduce new genetic material into the population,

thereby increasing genetic diversity. Mutation should be applied with care

not to distort the good genetic material in highly fit individuals.

Crossover operator (also called recombination operator) is applied to

many pairs of individuals selected for mating and usually the probability

of crossover being applied is typically between 0.6 and 1.0 (Beasley et al.

1993). The typical forms of crossover are:

• Single Point Crossover : it takes two parents and cuts their chromo-

some strings at some randomly chosen position to produce two “head”

and two “tail” segments. The tail segments are then swapped over to

produce two new full length chromosomes (see Figure 3.3). The two

children inherit some genes from each parents.

• Multi Points Crossover: it operates on two parents, but as the name

suggests, two or more points are selected at random rather than a

single point and the sequence of components between the points is
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0  1  1  1  0  1 

1  1  0  0  0  0 

0  1  0  0  0  0 

1  1  1  0  1 

Figure 3.3: Single point crossover.

0  1  1  1  0  1 

1  1  0  0  0  0 

0  1  0  0 

1  1  1 

0  1 

0  0 

Figure 3.4: 2 points crossover.

exchanged. Figure 3.4 presents a 2 points crossover. In this more com-

plicated crossover chromosome are better represented, rather than by

linear strings, as loops formed by joining the ends together; in fact, to

exchange a segment from one loop with that from another loop requires

the selection of as least two cut points.

• Uniform crossover: it is radically different to the other crossover. Each

gene in the offspring is created by copying the corresponding gene from

one or the other parent, chosen according to a randomly generated

crossover mask. Where there is a 1 in the crossover mask, the gene is

copied from the first parent, and where there is a 0 the gene is copied

from the second parent (as shown in Figure 3.5).

There is no paradigm about the best crossover mechanism, but generally

the uniform crossover has shown better performance in reaching better or

optimal solutions. A very comprehensive comparison of the three methods is

presented in Fogel (2005).
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0  1  1  1  0  1 

1 0  1 

Crossover Mask 

1  1  0  1  0  1 

1 

1  1  0  0  0  0 

Figure 3.5: Uniform crossover.

0 0  1  1  1  0  1  1 0  1  1 

Figure 3.6: Uniform random replacement mutation.

Mutation is a genetic operator that alters one or more gene values in a

chromosome from its initial state. This can result in entirely new gene values

being added to the gene pool, incrementing the exploration of the search

space. With these new gene values, the genetic algorithm may be able to reach

better solutions than was previously possible. Mutation is an important part

of the genetic search as it helps to prevent the population from stagnating

at any local optima. Mutation occurs during evolution according to a user-

definable mutation probability. This probability should usually be set fairly

low (0.01 is a good first choice). If it is set too high, the search will turn into

a primitive random search.

The simplest mutation form is the uniform random replacement. In this case

mutation points are randomly selected from one parent (or alternatively from

the offspring after recombination) and replaced with another possible values

for that gene (in binary code it is just flipping from 0 to 1 and viceversa) as

shown in Figure 3.6.

Even if many different algorithms have been developed for the mutation

operator like Non-Uniform mutation or Gaussian mutation, with increas-

ing performance in some applications, the simplest mutation performs well

in many situation and it does not need a very complicated tuning of other

parameters. The same reasoning can be done for every genetic algorithms

component, where more and more complex ideas are presented in various
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papers. But, unfortunately, more innovative procedures tend to need more

complicate solutions, involving more parameters with an increase of compu-

tational costs and tuning time.

Survivor selection mechanism (replacement)

The role of replacement is keeping the population size constant. To do so,

some individuals from the population have to be substituted by some of the

individuals created during reproduction. This can be done in several ways:

• replacement-of-the-worst : the population is sorted according to fitness

and the new individuals replace the worst ones from the population.

• Random replacement : the individuals to be replaced are selected at

random.

• Tournament replacement : a subset of α individuals is selected at ran-

dom from the generation, and the worst one is selected for replacement.

This case is a generalization of the random replecement if α = 1.

• Direct replacement : the offspring completely replace their parents.

Some variants can be considered like the use of elitism, presented before, or

innovation that is the opposite of elitism and introduce new children chosen

randomly directly form the search space.

2 Neural Network models

As the genetic algorithm, neural networks are adaptive, learn, can deal with

highly nonlinear problems and noisy data and they are robust, weak random

search methods. They do not need gradient information or smooth functions.

Initially they were thought to be a quasi-brain systems, able to reproducing

the physical connection and behaviors of human brain neurons. A brief de-

scription of the biological inspiration can be very useful to understand the

ratio behind neural network models.

The brain consists of a very large number of neurons, about 1011, in aver-

age. Biological neurons (Figure 3.7) have three principal components: the

dendrites, the cell body (soma) and the axon. A neuron’s dendritic tree is

connected to about a thousand neighbouring neurons. When one of those
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Figure 3.7: A typical biological brain neuron

neurons fires, a positive or negative charge is received by one of the den-

drites. The strengths of all the received charges are added together through

the processes of spatial and temporal summation. Spatial summation occurs

when several weak signals are converted into a single large one, while tem-

poral summation converts a rapid series of weak pulses from one source into

one large signal. The aggregate input is then passed to the cell body or soma.

If the aggregate input is greater than the axon hillock’s threshold value, then

the neuron fires, and an output signal is transmitted down the axon. The

strength of the output is constant, regardless of whether the input was just

above the threshold, or a hundred times as great. The output strength is

unaffected by the many divisions in the axon; it reaches each terminal but-

ton with the same intensity it had at the axon hillock. This continuum of

input-output neuronal signal transmission allow the brain to feed itself by

environmental stimuli, and adapt to changes, in other word learn by experi-

ence.

In the ’40s this exceptional adaptability of our brain was inspiration to Mc-

Culloch & Pitts (1943) who, first, introduced the idea of artificial neuron.

The initial idea was very simple (see Figure 3.8): the output of the neuron is a

nonlinear transformation, due to the activation function f(·), of the summa-

tion of inputs Xj, weighted by the parameters wj. The parameters settings

in the former artificial neurons were very basic, in fact, McCulloch and Pitts

defined:
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Figure 3.8: The McCulloch and and Pitts’ Artificial Neuron

• all the inputs were binary Xj ∈ {0, 1} with j = 1, . . . , p,

• there was one single binary output,

• the bias neuron x0 associated to the weight w0t does not appear,

• the activation function f(·) was a threshold function:

f(st) =

{
1 st(x,w) =

∑n
i=0 xijwjt > θ

0 st(x,w) =
∑n

i=0 xijwjt < θ,
(3.6)

where θ is the activation threshold; without loss in generality, Expres-

sion 3.6 can use an activation threshold equal to 0 with the introduction

of the bias neuron.

Only with the introduction of “adaptive weights” (Rosenblatt 1962), the ar-

tificial neuron (now called perceptron) had found a widespread application.

The Rosenblatt’s seminal idea was to build up a very simple neural network

model, formed by only the input layer and the output layer, but the pa-

rameters of the model (the weights) can change their values in a learning

procedure. The adaptation of weights allow the model to better fit with the

observed output.

More specifically, let X = {X1, . . . , Xj, . . . , Xp} be a matrix of p observed

variables and W (k) = {w1t(k), . . . , wjt(k)} be the weights matrix associated



3.2.1 Activation function 69

to the input vector at the iteration k. By Formula 3.6, the perceptron esti-

mates the output as ŷ = f(st). Rosemblatt introduced the idea of using the

estimate error in the perceptron ε = y − ŷ to modify the weights in order

to minimize this error. The weights update is performed using the following

equation:

wjt(k + 1) = wjt(k) + α ε xij ∀j = 1, . . . , p, (3.7)

where α is a constant, chosen so that the ε asymptotically tends to 0.

The ∆ij = α ε xij, in Formula 3.7, represents the delta rule, i.e. the change

the network weights have to be done in order to reduce the error ε.

The learning procedure is iterated until a user-specified error threshold or a

predetermined number of iterations have been completed. The limitation of

the perceptron is due to the very simple topology of the network and above

all to the use of threshold activation function. In order to modify weights of

the neural network architecture, continues and differentiable activation func-

tions have been introduced (and presented in Section 2.1). The Rosemblatt’s

idea is the seed of the modern neural network complex architectures, where

various components are changed (learning rule, number of layers, activation

functions among others) even if Minsky & Papert (1969) wrote a very critic

book in which they described the limitations of single layer perceptrons. The

impact that the book had was tremendous and caused a lot of neural network

researchers to loose their interest. The book showed mathematically that sin-

gle layer perceptrons could not do some basic pattern recognition operations

like determining the parity of a shape or determining whether a shape is

connected or not. What they did not realised, until the 80’s, is that given

the appropriate training, multilayer perceptrons can do these operations.

2.1 Activation function

Although theoretically any differential function can be used in the neural net-

work model, usually the identity and sigmoid functions are the most used.

The choice of the activation function is strictly connected to the choice of

the training algorithms (present in Section 2.2). The threshold function, in

formula 3.6 was the first idea that mimic what a biological neuron do, but
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networks with threshold function are difficult to train because the error func-

tion is stepwise constant, hence the gradient either does not exist or is zero,

making it impossible to use back-propagation or more efficient gradient-based

training methods. Even for training methods that do not use gradients, such

as simulated annealing and genetic algorithms, sigmoid and linear activa-

tion functions are easier to handle than the threshold one. Some common

activation functions are:

• Linear function: The linear function produces a linearly modulated

output depending for a constant C.

f(st) = C st(x,w), (3.8)

where C is the slope of the function.

• Ramp function: The ramp function is a combination of the linear and

the threshold functions

f(st) =


γ if st(x,w) > θ

st(x,w) if − θ < st(x,w) < θ

−γ if st(x,w) < −θ.
(3.9)

• Sigmoidal function: the sigmoid function is a continuous version of the

ramp function, which maps the net into the codomain [0, 1].

f(st) =
1

1 + eλst(x,w)
, (3.10)

where parameter λ controls the steepness of the function and it is usu-

ally set to 1.

• Hyperbolic tangent function: is a sort of sigmoidal function that map

the network into the codomain [−1, 1]

f(st) =
eλst(x,w) − e−λst(x,w)

eλst(x,w) + e−λst(x,w)
. (3.11)

After defining the activation function, the neural network models should be

trained in order to estimate the weights W . Learning algorithms are suited

to cope with this issue.
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2.2 Lerning algorithms

The neural network learns the best values for the W by the observed data.

Learning consists of adjusting weights until a certain criterion (or several

criteria) is (are) satisfied.

Learning algorithms can be applied both in supervised and unsupervised

problems, but in this thesis we will refer only to the former case. The learn-

ing algorithms can be considered as an iterative optimization procedure that

define the “best” parameters of the network which minimize one loss function

L(·), also called empirical or generalization error. The loss function usually

approximates a distance measure between the observed output and the esti-

mated output by the neural network model. The most common loss function

is the Mean Square Error (presented in formula 1.2), that measures the aver-

age squared error between the network’s output, f(st), and the target value

Y .

Many learning algorithm are developed to detect the best parameters of the

neural network, but usually the “gradient descent methods” are computa-

tional affordable and with good solutions in many examples. The learning

techniques require two ingredients at each iteration of the step:

• the computation of the gradient of the cost function,

• the updating of the parameters as a function of that gradient, in order

to get closer to a minimum of the cost function.

Until the idea of back propagation (Rumelhart et al. 1986), that revolution-

ized the application of neural networks, the learning algorithms represented

a bottle-neck due to their slow computational time.

Back-propagation consists of an iterative procedure based on the delta rule;

the mathematical computation of the delta rules will be presented in the

next Section. The gradient descent methods compute at each generation of

the procedure can be summarize in the following way:
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Algorithm 1 Stochastic Gradient Descent Learning Algorithm
Input: Initialize weights W , α, and the number of maximum iterations k

Output: Ŵ which minimize the L(·)
1.. while stopping condition(s) not true do

2.. Let ε = 0

3.. for for each Xj do

4.. Calculate f(st)

5.. Calculate the empirical error yi − f(st)

6.. Adjust weights wjt with the delta rule in formula 3.7

7.. Compute the mean square error of the model as
∑n

i=1(yi − f(st))2

8.. end for

9.. t = t+ 1

10.. end while

The learning algorithms are performed until a stopping criteria is met. Stop-

ping criteria usually includes:

• maximum number of epochs (k) has been exceeded,

• the mean squared error (MSE) is small enough (below the α threshold).

When the number of parameters grows, the gradient methods, due to the

slow convergence and their problems to stuck in local optima, are surpassed

by conjugate gradient optimization. These methods trade off the simplicity

of gradient descent and the fast quadratic convergence of Newton’s methods;

in fact, in the conjugate gradient algorithms a search is performed along con-

jugate directions, which produces generally faster convergence than steepest

descent directions. Several conjugate gradient learning algorithms have been

developed (in Battiti (1992) many examples), most of which are based on the

assumption that the error function of all weights in the region of the solution

can be accurately approximated by

εT (Xj,w) =
1

2
wtHw, (3.12)

where H is the Hessian matrix. These learning algorithms take also the name

of second-order method because of the use of the second derivative matrix

(The Hessian matrix).

Since the dimension of the Hessian matrix is the total number of weights
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in the network, the calculation of conjugate directions on the error surface

becomes computationally infeasible in high parametrized networks. Compu-

tationally feasible conjugate gradient algorithms compute conjugate gradi-

ent directions without explicitly computing the Hessian matrix, and perform

weights update along these directions. Common algorithms, called quasi-

Newton’s methods, are Levenberg-Marquardt (Levenberg 1944, Marquardt

1963) and BFGS (Broyden 1970, Fletcher 1970, Goldfarb 1970, Shanno 1970);

they update an approximate Hessian matrix at each iteration of the algo-

rithm. The update is computed as a function of the gradient.

In the definition of the neural network models, the last important step in

order to define a good model is the choice of the architecture.

2.3 Feed-forward neural network

The perceptron convergence theorem states that, if a linear separation exists,

the perceptron error-correction scheme will find it (Rosenblatt 1962). Obvi-

ously this theorem let the application of neural network model to a very close

class of models, that is the linear separable set of binary input and the per-

ceptron does not converge when the system is not linear. The introduction of

multi-layer neural network, often called feed-forward neural network, allows

a generalization of the model which becomes a general function approxima-

tor. The feed-forward neural network introduced to the perceptron some new

layers between the input variables X and the observed response Y . These lay-

ers are called hidden layers and each of that can assume different number

of neurons and different activation functions. The most common model is a

single hidden layer neural network (see Figure 3.9) with a sigmoidal function

between the input and the hidden layer and a linear function between the

hidden layer and the outputs.

More specifically, let X = {xi1, . . . , xip} be the p vectors of i observations,

with i = 1, . . . , n, and Y = {yi1, . . . , yid} be the d vectors of i observed

outputs and r be the number of neurons in the hidden layers. Then, let

Wjt = {w11, . . . , wpr} and Wtq = {w11, . . . , wrd} be respectively the weights

matrixes between the input layer and the hidden layer and between the hid-

den layer and the output layer and f1(st) and f2(sq) be respectively the

sigmoidal function and the linear function, the estimated output can be cal-
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Figure 3.9: Feed Forward Neural Network with single hidden layer.

culated as:

ŷid = f2(f1(st)). (3.13)

Substituting in Formula 3.13 the activation function in Expressions 3.8 and

3.10 we obtain:

ŷid =
d∑
q=0

λWtqf1(st)

=
d∑
q=0

λWtq
1

1 + e
Pp
j=0 λxijWjt

.

(3.14)

This simple architecture is wildly used because it can approximate any func-

tion with a finite number of discontinuities, arbitrarily well, given sufficient

neurons in the hidden layer (Hagan et al. 1995). Although the theoretical

results are of great importance because they demonstrate the powerful capa-

bilities of feed-forward neural networks, they don’t give an indication of how

to choose the number of hidden units needed per hidden layer. In addition,

even if for some problems one hidden layer may be enough theoretically, in
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practice more than one hidden layers should be utilized to solve the problem

faster and more efciently.

However, in certain problems, a large number of hidden nodes may be re-

quired in order to achieve the desired accuracy. Thus, a network with two

hidden layers and much fewer nodes overall, should be able to solve the same

problem more efficiently. Hence, choosing an appropriate network size for a

given problem is still something very complicated. The selection of the topol-

ogy becomes really important in the definition of the generalization capabil-

ity of the model because too complicated networks often suffer of overfitting

problem. After the selection of the network topology, it is necessary to train

it with some learning algorithm in order to identify the “best” estimate of the

parameters which minimize the mean squared error or other loss functions.

2.4 Back-Propagation algorithm

Defined one gradient descent algorithm, the most used algorithms to com-

pute efficiently the gradient of the cost function L(·) of the network is the

Back-propagation. We consider a feed-forward neural network with one sin-

gle hidden layer with r neurons, and a single output neuron (the extension

to neural networks with several output neurons is straightforward). After

choosing the initial weights of the network randomly, the back-propagation

algorithm is used to compute the necessary corrections. The algorithm can

be decomposed in the following four steps:

• Feed-forward step: a propagation phase, where the inputs X feed the

network, and the potentials and outputs of all neurons are computed

with Formula 3.14. The Mean square error is then calculated as:

ε =
1

2

n∑
i=1

(ŷi − yi)2. (3.15)

• A backpropagation to the output layer : the back-propagation path, from

the q-th output of the network up to the t-th unit of the hidden layer,

is shown:

∂ε

∂Wrd

=
1

2

∂(ŷi − yi)2

∂Wrd

= −(ŷi − yi)
∂ŷi
∂Wrd

,

(3.16)
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where

∂ŷi
∂Wrd

=
∂f2(sq)

∂Wrd

=
∂f2(sq)

∂sq

∂sq
∂Wrd

= f ′2(sq)
∂
∑d

q=0 Wtqst

∂Wrd

= f ′2(sq)st.

(3.17)

From Formulas 3.16 and 3.17 we obtain:

∂ε

∂Wrd

= (ŷi − yi)f ′2(sq)f1(st), (3.18)

and we define

δq = (ŷi − yi)f ′2(sq). (3.19)

Substituting δq into Equation 3.18, we obtain the delta rule in formula

3.7 for the weights between the output and the hidden layer.

• A backpropagation to the hidden layer : similarly the partial derivative

of ∂ε
Wjt

between the hidden and the input layer should be computed as:

∂ε

∂Wjt

=
1

2

(∂ŷi − yi)2

∂Wjt

= −(ŷi − yi)
ŷi

∂Wjt

,

(3.20)

where

∂ŷi
∂Wjt

=
∂f1(st)

∂Wjt

=
∂f1(st)

∂st

∂st
∂Wjt

= f ′1(st)
∂st
∂Wjt

,

(3.21)

and

∂f1(st)

∂Wjt

=
∂
∑p

j=0 Wjtf1(st)

∂Wjt

=

p∑
j=0

Wjt
∂ŷt
∂Wjt

= Wjt
∂ŷt
∂Wjt

.

(3.22)
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Extended to all the units in the hidden layer we obtain:

∂ŷt
∂Wjt

=
∂f1(st)

∂Wjt

=
∂f1(st)

∂st

∂st
∂Wjt

= f ′1(st)
∂
∑p

j=0Wjtxij

∂Wjt

= f ′1(st)xij.

(3.23)

From Expression 3.20,3.21, 3.22 and 3.23 we obtain:

∂ε

∂Wjt

=
d∑
t=0

[(ŷt − yt)f ′2(sq)Wtq]f
′
1(st)xij, (3.24)

where substituting Formula 3.19 (ŷt − yt)f ′2(st) = δd we obtain:

∂ε

∂Wjt

=
d∑
t=0

[δdWtq]f
′
1(st)xij. (3.25)

Eventually we then define the delta rule for the entire network as:

δt =
d∑
t=0

[δdWtq]f
′
1(st)xij. (3.26)

• Weights update: after computing all partial derivatives the network

weights are updated in the negative gradient direction. A learning con-

stant η defines the step length of the correction. The corrections for the

weights are given by

∆Wrd = ηδdst, (3.27)

and

∆Wjt = ηδtxij, (3.28)

respectively for the weights between hidden and output layer, and be-

tween input and hidden layer

Despite its prevalent use, backpropagation can lead to entrapment in local

minima, as the techniques based on gradient descent, making neural networks
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incapable of sufficient performance and generalization. Some generalization

techniques are applied in order to fit good model on the data, but also ca-

pable to predict correctly new data. In order to achieve a good network in

terms of generalization accuracy, it is important to define models with a bal-

anced trade-off of bias and variance. Thus, a very complex model, with a

large number of adjustable parameters, may have a very low bias, i.e. may

have the ability of fitting the data whatever the noise present, but it is apt to

have a very large variance, depending strongly on the specific realization of

the noise present in the training set. Conversely, a very simple model, with

a small number of adjustable parameters, may be insensitive to the noise

present in the training data, but turn out to be unable to approximate the

regression function (Dreyfuss 2005).

Generalization techniques are strongly suggested and some of them are al-

ready presented in Chapter 2 such as cross-validation and bootstrapping, and

more classical techniques like weight decay are often used.



Chapter 4

The Evolutionary Neural

Network Design

This thesis proposes a new approach to address high dimensional variable

selection and model assessment: the Evolutionary Neural Network Design

(ENN-Design) approach. The ENN-Design method combines the strongest

features of some methods, presented in previous Chapters, in order to opti-

mize a high dimensional biological system. In particular, we develop a new

approach which embodies a model selection procedure to identify neural net-

work models with high prediction accuracy and a filter variable selection

procedure to identify subset of important variables. These approaches are

combined together and used to evolve a population of experimental points

to achieve optimal solutions in a very high dimensional problem. The idea

has been developed to address the biological problem of Protein Engineering

and Design (PED).

This research is part of an international project dedicated to “Designing

Informative Combinatorial Experiments” for living technology. The “DICE”

project aims at designing evolutionary combinatorial experiments in the high

dimensional and high throughput setting that characterizes the search of new

biological entities, such as new artificial proteins.

PED can be seen as a walk through a multi-dimensional experimental space

to find mutants with improved or novel properties. The exhaustive explo-

ration of the experimental space is unattainable and beyond current technical

reach, due to the inherent combinatorial nature of proteins, the non-linear in-
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teractions among variables and the complexity of the fitness landscape (Zhao

2007). The biological requirements in the experimentation were particularly

strict due to the technical constraints in the way the testing in the labora-

tory is carried out. Therefore, the main goal is to find new solutions to a high

dimensional problem in the presence of scarce data.

1 The biological problem

Synthetic biology aims at designing novel biological components (i.e. proteins,

metabolic and regulatory networks) for useful purposes: medical applications

(Hong et al. 2010), industrial productions (Clomburg & Gonzalez 2010) and

environmental applications (Danino et al. 2010). Proteins are ubiquitous in

nature and they are responsible for the major part of biological tasks. A

protein xi is a sequence of monomers, called amino-acids, covalently joined

together to form a complex string, called polypeptide. Each protein may

differ in length, amino acid composition and sequence and is characterized

by a well defined three-dimensional structure which in turn defines the pro-

teins function. One of the most intriguing feature of proteins is catalysis

(i.e. capability to enhance chemical reactions within a cell). For this reason,

significant effort has been made to engineer novel or improved version of ex-

isting proteins to perform this specific task. Despite a number of successful

applications reported in literature, engineering natural proteins has been a

challenging task for biochemistry. Extant proteins are the results of a long

evolutionary history and they have evolved within the constrains of cellular

environment and ecological niche. Thus, engineering natural proteins need to

compe with these constrains which significantly impair protein plasticity.

In the “DICE” project, the research is developed addressing the challenge

of protein engineering starting from non-natural random sequences of amino

acids (i.e. protein sequences with no significant homology level to extant

ones). The idea is to recreate a sort of hypothetical “primordial soup” (theo-

rized by Haldane (1928), Oparin (1924) and experimentally tested by Miller

(1953)) where random sequences of amino acids were deprived of any evolu-

tionary history and constrains. In this way, these sequences can be seen as the

starting point of an evolutive path that brought to the extant proteins. From
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Figure 4.1: Distribution of amino-acids in the non-natural random domains,

compared to natural frequencies.

a biological point of view, these sequences are more versatile and prone to

be engineered. Within this framework, we design a library of 95 protein ran-

dom domains dk = {d1, . . . , d95} (each one composed of 50 amino acids) with

no signicant homology to extant proteins. The amino acid frequency used

to generate random domains reflects the composition of natural proteins, as

presented in Figure 4.1

Random domains are combinatorially assembled to generate full-length ran-

dom proteins of 200 amino acids (each protein has 4 domains) to be sub-

sequently screened for assessing its catalytic function. Thus each individual

protein can be considered as a string composed of 4 domains selected among

the 95 polymers. Accordingly, all possible permutations with repetition of 95

elements in 4 positions are 954 ' 8.1 × 107 which represents the cardinality

(N) of the problem, i.e. the number of possible different full-length synthetic

proteins to be screened.

The output/response Y = f(xi) of the protein is obtained as a measure of

similarity between the i-th synthetic protein xi and the catalytic natural pro-

tein, the Serine esterase (cutinase) of Fusarium Solani (in Figure 4.3), calcu-

lated by the bioinformatic tool PSI-BLAST (http://toolkit.tuebingen.

mpg.de/psi_blast created by Altschul et al. (1997)), that is able to identify-

ing biologically relevant sequence similarities. In order to obtain a response

http://toolkit.tuebingen.mpg.de/psi_blast
http://toolkit.tuebingen.mpg.de/psi_blast
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the first step is to calculate the secondary structure of the domains using

PSIPRED software (Mcguffin et al. 2000) a tool of PSI-BLAST. PSIPRED

predicts whether a given domains adopts an helix, coiled-coil or beta-sheet

conformation. The typical output of the PSIPRED algorithm is presented in

Figure 4.2.

Conf: Confidence (0=low, 9=high)

Pred: Predicted secondary structure (H=helix, E=strand, C=coil)

AA: Target sequence

# PSIPRED HFORMAT (PSIPRED V3.0)

Position: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

AA: Y H C T Y S Q S E P G G G K T Q T Y S C

Pred: C E E E E H H H H H H H H E E E E E C C

Conf: 9 1 3 3 2 0 1 3 8 9 9 9 7 1 1 6 8 8 8 2

Figure 4.2: PSIPRED output of a test protein.

Each letter in Figure 4.2 represents a biological structure of the protein where

the letter C is a coiled-coil conformation, E is a beta-sheet conformation and

H is a helix conformation.

The second step is to use secondary structure profile of domains calculated us-

ing PSIPRED to calculate the similarity among different domains according

to the method proposed by De Lucrezia et al. (2009). Briefly, the similarity

of domain is calculated using secondary structure prediction by aligning all

domains in a pair-wise fashion and calculating similarity score by a two-step

procedure as follows:

1 Position-related score calculation:

si,j = IF (pred i,j = pred i,k) confi i,j ELSE {0}
where si,j is the position-score of the i-th amino acid of the j-th domain,

predi,j is the secondary prediction of the i-th amino acid of the j-th

domain whereas (predi,k) is the secondary prediction of the i-th amino

acid at the same position in the k-th domain. When the IF statement is

satisfied the output value is the correspondent confidence value confi i,j

of the i-th amino acid of the j-th domain, otherwise the output value

is zero.
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Figure 4.3: The confocal micro-

scope image of the serine esterase

(cutinase) of Fusarium Solani.

Figure 4.4: The 3D-folded ser-

ine esterase (cutinase) of Fusarium

Solani estimated by Chimera.

2 Global score calculation:

Sj =
∑50

i=1 si,j

which is a summation of individual position-related score over the entire

domain length.

In order to evaluate the shape of the predicted synthetic proteins by the

PSIPRED tool, the biologists identify the similarities between the natural

protein and the artificial one also comparing the 3-D structure. The Rosetta

software (http://boinc.bakerlab.org/rosetta/) is applied to determine

the 3-dimensional shapes of proteins and “Chimera” software (http://www.

cgl.ucsf.edu/chimera/) in order to identify similarities in the folded “syn-

thetic” proteins with the natural one (the natural protein 3-D structure is

presented in Figure 4.4).

The main challenge is to develop effective methodologies to identify the best

domain in the proper position to construct functional proteins without the

need to screen a large number of points (i.e. sequences) in the experimental

space (i.e. combinatorial protein space). In order to be experimentally tested,

candidate proteins should respect the following biological restrictions:

i) the number of cysteine residues should be at most 9 and different from

5 and 7, since proteins with these features are hard to express and

http://boinc.bakerlab.org/rosetta/
http://www.cgl.ucsf.edu/chimera/
http://www.cgl.ucsf.edu/chimera/
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purify.

ii) The percentage of coil should not be larger than 70% otherwise proteins

will hardly fold into stable tertiary structure.

2 The statistical problem

This challenging research have to face most of the statistical problems pre-

sented in previous Chapters. Real experimental constraints and complete

lack of information about the biological process pushed us to develop a new

method which combines evolutionary algorithms, statistical modeling and

variable selection procedure, in order to find the global optimal solution ( i.e.

the protein that is able to enhance chemical reaction), or some good solutions

that can be used as starting point for biologist in order to engineer synthetic

catalytic proteins. The statistical problems encountered in this research are:

• The stochastic representation of the variables of the biological prob-

lems: the 95 synthetic domains, created by the biologists, are inde-

pendent and there is no evidence about a rank among them. From a

statistical point of view, we can consider each of them as a simple label

(unordered categorical data). Moreover, it is extremely important the

order of the domains in the q = {1, . . . , 4} positions. More specifically,

let Ω = {z1, . . . , zi, . . . , zN} be the matrix of the whole experimental

space where N ' 8.1× 107. Each protein is then formed by 4 domains

zi = {d1, d2, d3, d4} where dk ∈ {1, . . . , 95} and consequently Ω is rep-

resented as:

Exp Pos1 Pos2 Pos3 Pos4 Y

z1 1 1 1 1 y1

...
...

...
...

...
...

zi d1 d2 d3 d4 yi

...
...

...
...

...
...

z8.1∗107 95 95 95 95 y8.1∗107

Table 4.1: The experimental space Ω.

The statistical representation adopted in this thesis, is a transforma-

tion of the original search space into a set of binary variables (presence
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or absence of the k-th domains in the q-th position). The transformed

search space becomes the follow:

Exp X1 X2 X3 X4 · · · Xj · · · X377 X378 X379 X380 Y

x1 1 1 1 1 · · · 0 · · · 0 0 0 0 y1

...
...

...
...

...
...

...
...

...
...

...
...

...
xi xij yi

...
...

...
...

...
...

...
...

...
...

...
...

...
x8.1∗107 0 0 0 0 · · · 0 · · · 1 1 1 1 y8.1∗107

Table 4.2: Binary variables representation of the experimental space.

The binary transformation converts the zi experiment into a vector xi

of zeros with length p = 95×4 and when the k-th domain appears in the

q-th position of the zi protein, the variable xi in position [(k∗q)−(q−j)]
assumes the value 1. The biological problem is then coded by p = 380

binary variables with an increase of the problem dimensionality.

• Sparsity and scarcity of data in high-dimensional setting: this issue

is related to the number of possible experimental trials that can be

tested in laboratory compared with the number of possible solutions

of the search space Ω. Due to the specific technology adopted in this

experimentation, the biologists can initially test only m = 96 proteins

among about 8.1 × 107 possible candidates. This means that in the

first set of trials we have m � p. The main problem of the scarcity

of data in the first generation concerns the information about the do-

mains. In fact, without any a priori information about the experimental

space and about relations among the domains, only 96 experiments do

not suffice to give information about all the p = 380 variables. Some

variable selection procedures are indeed necessary to detect the most

informative possible singles (95 for each position), 952 possible couples

and 953 possible triplets of domains.

• Model selection and assessment: the main problem is to define a good

statistical model able to identify which are the most important vari-

ables and simultaneously shrink the less informative ones. In continuos

settings, LASSO and Elastic Net, presented in Chapter 2, perform very

well if some assumption like linearity of the parameters or independence
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among marginal distributions are made. But their performances have

not been proven to be effective in very high combinatorial problems

with n � p and with categorical variables in complex surfaces. The

necessity of shifting toward more robust non-linear models like neural

networks can be very useful. Moreover, due to the scarcity of data, a

very complex task is to define models with high prediction accuracy in

order to estimate precisely the response surface of the search space.

• Computational complexity: in order to determine the most interesting

region of a high combinatorial problem, it is necessary to estimate the

response surface of the whole experimental space and to identify most

relevant subspaces. In such a setting, estimating about 8.1 × 107 ex-

perimental points becomes intractable in terms of computational cost.

Therefore, we need to identify only small regions of Ω that are supposed

to be the most informative about the biological system.

• Small number of experimental trials: according to the biologists, the

procedure can be competitive with classical biological techniques if the

algorithm is able to find the optimal or good proteins in at most 5 gen-

erations. Within this experimental constraint, new and more efficient

procedures that shift the research into the problem of optimization of

the design of experiments should be identified.

3 The proposed solution: Evolutionary Neu-

ral Network Design

In order to derive a procedure that can tackle the above mentioned problems,

the Evolutionary Neural Network Design (ENN-Design) merges the strengths

of the filter variable selection presented in Chapter 2 with the evolutionary

techniques presented in Chapter 3. The aim of this new approach is to evolve

a population of solutions to identify small subsets of good solutions from

a huge combinatorial experimental space using only few but “the most in-

formative” observations. These subsamples of the whole experimental space

should represent areas with large probability to find the global optimum of

sufficient good solutions. The choice of the new points in the experimental
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space is driven by neural network models that, at each generation, change

their topology in order to increase the accuracy in predicting the surface

of the search space. The optimization procedure in this approach has three

steps:

1. The model selection procedure related to the definition of the best

neural network model in terms of generalization capability given the

observed data (lines 4-11 of Alg 2).

2. The variable selection process to identify the most informative variables

(line 12-13 of 2).

3. The identification of the experimental points to form successive gener-

ations where the higher system response values are more likely to be

present (lines 17-26 of Alg 2).

The iteration of such steps drives the search of the subsets of experimen-

tal points with highest response. The iterative procedure of the ENN-Design

allows to evolve the initial set of points (that it is considered as the “first gen-

eration”), composed by a set of random experimental points, towards more

relevant regions of the experimental space. The proposed algorithm is suited

to tackle problems where many discrete variables, scarcity of data and high

dimensionality are present. The use of filter variable selection and model as-

sessment in the evolutionary procedure allows to shift the initial population

of trials, generation by generation, toward the global optimum or where good

solutions are more likely to be. Then, at each generation of the algorithm,

a new set of m individuals made by optimal or quasi-optimal experimental

points is created and added to the previous generations forming a more en-

riched set of experimental points and a more precise neural network model

in terms of adaptation and prediction is estimated.

Formally, at the beginning of the ENN-Design algorithm, a very small pop-

ulation of m = 96 experimental points is defined (Alg.2 line 1), picked

randomly from the experimental space Ω. Denoting zi = {d1, . . . , dq} with

q = {1, . . . , 4} and dk ∈ {1, . . . , 95} one possible candidate protein of the

experimental space, m experiments are selected, with m � N , representing

the initial population of the algorithm and their results are recorded (Alg.2

line 2).
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At each iteration of the ENN-Design algorithm, the model selection proce-

dure is applied to the collected data. A family of neural networks is built

up, where a sigmoidal activation function maps the input layer to the hidden

layer and a linear activation function maps the hidden layer to the output

layer (Bishop 1996). Each network is characterized by the same number of

nodes in the input layer, representing the p = 380 binary variables (obtained

according to the transformation presented in Table 4.2), but it differs in the

number of neurons in the hidden layer, from 2 to 20, (Alg.2 lines 4-11).

For every topological configuration, 20 different initial random weights ma-

trixes are created, forming the pot of candidate models, among which the

best network in prediction is selected. The learning of the networks is based

on a back-propagation algorithm (Rumelhart et al. 1986), which runs the

Levenberg-Marquardt (LM) quasi-Newton learning algorithm up to conver-

gence. The choice of LM algorithm is due to its robustness and fast conver-

gence compared with other methods, (Gopalakrishnan 2010, Demuth et al.

2009), when the complexity of the topology in terms of number of input

variables and number of connections is very high. We train all the networks

on the training set of the collected data (80% of the collected experimental

points) and evaluate the generalization accuracy on the test set, which is

formed by the remaining 20% of the data. The best model in prediction is

the one which minimizes the root predictive error (RPE) on the test set:

RPE =

√∑n∗

t=1(yt − ŷt)2

n∗
, (4.1)

where n∗ represents the 20% of the collected data. The network with the

lowest RPE, is considered as the best predictive model given the observed

data, and it will be used to determine the new points, that will form the next

generation.

Since the evaluation of the whole experimental space is computationally de-

manding, a procedure to localize the variables that can be used to identify

more informative subsets of the search space is then derived. Therefore, at

each generation, the collected data are used also to identify the most rele-

vant variables. In fact, according to the measured response Y , it is possible to

determine the empirical marginal and conditional distribution for each q-th
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position. The marginal distribution of each position Posq is:

P̂ (Posq = dk) =

∑n
i=1 I(Posq = dk)

n
(4.2)

where the I(·) denotes the indicator function and assume 1 when the k-th

domain is present in the q-th position of the i-th protein and 0 elsewhere.

Since the aim of this research is to maximize the system response, we can

estimate the distribution of the domains for each position conditional to the

response being larger than a threshold γ .

P̂ (Posq = dk|Y ≥ γ) =

∑n
i=1 I(f(xi) ≥ γ , Posq = dk)∑n

i=1 I(f(xi) ≥ γ)
, (4.3)

where
∑n

i=1 I(f(xi) ≥ γ) counts the number of experiments over the thresh-

old. Hereafter we adopt P̂ (Posq) and P̂ (Posq|Y ) to indicate respectively the

empirical marginal and conditional distribution for each position.

In Tables 4.6 and 4.7, respectively, the conditional and the marginal distri-

butions of the first generation of the real experimentation are presented and

it is possible to observe that, at most, only (1− γ)% of the domains appear

in Table 4.6.

From Equations 4.2 and 4.3 we can calculate the Shannon’s Entropy (Shan-

non 1948) and use it to rank all the domains.

H(Posq) = −P̂ (Posq)log(P̂ (Posq))−(1−P̂ (Posq))log(1−P̂ (Posq)), (4.4)

and consequently the gain of information derived by the domains that ap-

peared only in good experiments.

H(Posq|Y ≥ γ) =− P̂ (Posq|Y )log(P̂ (Posq|Y ))−

−(1− P̂ (Posq|Y ))log(1− P̂ (Posq|Y )).
(4.5)

By Equation 4.5, it is possible to identify the domains for each position which

embody the highest quantity of information conditional to the higher values

of the system response. We then derive a sampling probability of these do-

mains as H(Posq |Y )P95
k=1H(Posq |Y )

and we use it to sample 10 domains for each position

proportional to this probability distribution. The procedure, therefore, gen-

erates all the possible combinations of these selected domains, forming the

subset of 104 of the experimental space (called Sbest) where the optimal so-

lution is more likely to be present.
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Similarly we can calculate the sampling probability for all the domains of

each position by Equation 4.4. We use it to select proportionally other 20

domains for each position in order to give every single protein of Ω the chance

to be selected for the next generation of experimental points. Therefore, all

the possible combinations of these domains are produced, forming the subset

of 204 of the experimental space (called Sother) where the optimal solution is

less likely to be present. This idea derives form the evolutionary algorithms

paradigm of exploration and exploitation; in fact, the subset Sbest is formed

by points that exploit areas of the search space around the best solution

achieved in that moment and Sother is composed by new candidates where

few information are still available, exploring new and less known areas of the

search space.

The subset of candidate solutions to enter the second generation, S = {Sbest∪
Sother}, is then formed. Due to the small number of experiments in the first

generation, many domains for each position are not present (in Table 4.7 they

are represented by the value 0). The algorithm, therefore, generates a set of

new experiments, mnew, combining only the never-appeard domains and they

become part of the second generation. In this way, we may obtain within two

generations at least one observation for each domains in each positions.

The third step of the optimization procedure is the selection of the points

that will enter the next generation. We adopt the neural network model with

the lowest value of RPE (obtained in the first step of the optimization proce-

dure) to predict all the responses of S. The so predicted response surface of S

is used to identify experimental points with the highest predicted outputs. If

we are creating the second generation, m−mnew of the predicted points with

higher response values are added to mnew to form the set of m new points;

in the following generations the best neural network is used to detect all the

m new points (Alg.2 line 23-27).

The neural network model in the ENN-Design plays a fundamental role in

detecting the best points. In fact, it drives the selection of points, identifying

among the subsets S of possible candidate solutions which ones are predicted

to be with higher response. In this way, it guarantees that if some points of

Sother enter the next generation, these are with higher predicted response

values and consequently more likely to be good experimental points.
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The new generation is then evaluated by the biologists and added to the

previous ones, forming a reacher and supposed to be more informative set of

points. Initially, we expect to obtain more exploration of the search space,

due to the new random experimental points and to scarce accuracy of the

model but the procedure is built up to balance the exploration with an ex-

ploitation around the best solutions due to the identification of good domains

with the entropy measure. On the enlarged set of data, a new neural net-

work model is then learnt and the entropy measures are calculated. With

the increase of observations, the neural network becomes more accurate in

predicting points. Therefore, iterating the algorithms for some generations

(in the real experimentation we have at most 5 generation) we expect that

the procedure might identify more and more good solutions and eventually

the global optimal solution, reducing the variance within the generations.

The computation is performed coupling MATLAB R© (MATLAB 2008) for

the neural network model (using the package nnet (Demuth et al. 2009)),

Python (van Rossum 1995) for the computational demanding variable trans-

formations and software R (R Development Core Team 2010) for statistical

analysis. We can summarize the ENN-Design approach in the pseudo-code

presented in the algorithm 2:
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Algorithm 2 Evolutionary Neural Network Design Algorithm
Input: High dimensional experimental space Ω
Output: The Optimal solutions or a pot of very good solutions via ENN-Design
1.. Xn ← First Random Population of m points
2.. Measure the response Yn ∀Xn

3.. for l in 1, . . . ,# of generations do

4.. for r in 1, . . . ,# of topologies do

5.. divide the population in training and test set
6.. train the Netr on the training set with Backpropagation
7.. calculate RPEr Formula (4.1) on the test set
8.. if RPEr ≤ all RPE1,...,r−1 then

9.. BestNet ← Netr

10.. end if

11.. end for

12.. calculate P̂ (Posq) Formula (4.2) and P̂ (Posq|Y ) Formula 4.3;
13.. calculate H(Posq) Formula (4.4) and H(Posq|Y ≥ γ) Formula 4.5;
14.. if any P̂ (Posq) == 0 then

15.. create mnew as all the possible combinations of the not yet appeared domains
(the ones with P (Posq) == 0)

16.. end if

17.. sample 10 domains for each position proportionally to H(Posq|Y ≥ γ)
18.. create all the possible combinations of the domains obtained in line 17 (Sbest)
19.. sample 20 domains for each position proportionally to H(Posq)
20.. create all the possible combinations of the domains obtained in line 19 (Sother)
21.. form the subset of candidate solution for the next generation S = {Sbest ∪Sother}

22.. predict S with the BestNet;
23.. if any P̂ (Posq) == 0 then

24.. add the best predicted experimental points to mnew forming X∗
n

25.. else

define the new population X∗
n of m points formed by the best predicted points

and not yet tested;
26.. end if

27.. Xn ← concatenate{Xn, X
∗
n}

28.. end for

4 The simulation study

In order to evaluate the properties of the ENN-Design approach in terms of

convergence toward the optimal solution and of modeling high dimensional
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systems, we carry out a study based on Monte Carlo simulations. The algo-

rithms compared in this section are run for 10 generations of 96 experimental

points each and replicated in 10 Monte Carlo simulations. In each simulation,

the first generation of points is set to be the same for both the approaches

in order to fairly compare them. Specifically, we compare the ENN-Design

approach with an ad hoc genetic algorithm that showed, in pre-test simula-

tions, good performances in reaching optimal solutions in high dimensional

problems when the number of possible generations is very limited. The pa-

rameters of the genetic algorithm we adopt in these simulations are set as

follow:

• The mutation rate is equal to 0.05.

• The innovation is due to the selection of one new complete random

experiment from the not yet tested search space at each generation.

• The use of a single-point crossover.

• The selection pressure of the parents is a weighted dynamic selection

probability where the experiments are selected as follow:

p(xi) = Wi ×
f(xi)∑m
i=1 f(xi)

, (4.6)

where the weights are assumed to be:

Wi =


0.6 if f(xi) ≥ γ

0.3 if 1− γ ≤ f(xi) < γ

0.1 if f(xi) < 1− γ.
(4.7)

In this way we give more chance to the best parents to be selected re-

spect to the most common proportional selection presented in Formula

3.5.

These simulative studies highlight the performance in finding the optimum

or some good solutions in different scenarios that, according to the biolo-

gists, can represent some possible biological surface landscapes. Moreover,

the model estimated in the ENN-Design approach is compared with LASSO

and Elastic Net models in order to present the performance of the model

driving the optimization of the proposed algorithm. We compare the three

model in terms of their generalization accuracy in predicting complex high
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Pos1 Pos2 Pos3 Pos4

6 (31.556) 12 (36.823) 5 (34.438) 13 (31.94)

8 (31.463) 18 (38.843) 18 (39.406) 19 (36.991)

Table 4.3: Non zero domains in the sparse regression model simulation.

dimensional systems. The simulative study starts with simpler situations,

where the number of possible domains for each of the q = 4 positions are

assumed to be 20, generating an experimental space Ω = 204 of possible

candidates. Then, the simulations are extended to more complex cases to

highlight the robustness of the ENN-Design approach in different situations.

Eventually, problems simulating the real setting with 95 possible domains for

each of the 4 positions are then performed.

4.1 Sparse regression model

One possible biological scenario is that only very few possible domains in

each q-th position of the protein sequence largely influence the response of

the system and the others are close to 0. Such a scenario closely represents an

experimental protein fitness landscape where most of the protein sequences

do not posses any function (zero fitness) whereas rare functional proteins are

tightly clustered together (Aita & Husimi 2001). We simulate the response

of the system using the following model:

y =
k∑
i=1

q∑
j=1

βijxij (4.8)

where k = 20, p = 80 is the binary transformation of q = 4 positions and

the xij is equal to 1 when the i-th domain is in the j-th position, otherwise

it is 0. In this case the elements that influence the response are randomly

selected with uniform probability and their coefficients are drawn from a

normal distribution N(35, 10). Table 4.3 presents the non zero domains and

their coefficient values are in the brackets. The aim of this simulation is

to maximize the response of the system and Function 4.8 is optimized for

x = (6, 18, 18, 19) having a response value equal to 146.703.
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Figure 4.5: Sparse regression model: behavior of the best solutions achieved

in each of the 10 Generations in 10 Monte Carlo simulations.
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Figure 4.6: Sparse regression model: behavior of the average responses in ten

10 generations in 10 Monte Carlo simulations.
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Figure 4.5 shows the comparison of the ENN-Design with the genetic algo-

rithm in terms of the behavior of the best solutions achieved in each gen-

eration in 10 Monte Carlo simulations. The boxplot represents important

statistics of the distribution of the best solutions. In particular, the bottom

and top of the box are the 1st and 3rd quartile of the distribution of the

system response and the band near the middle of the box represent the me-

dian; the bottom and upper whiskers are calculated as the lowest datum still

within 1.5 × (3rd − 1st) of the lower quartile, and the highest datum still

within 1.5 × (3rd − 1st) of the upper quartile. Extreme values, laying out of

the whiskers, are called outliers. In Figure 4.5 the dash dotted line connects

the mean values of each generation and the black target line represents the

response value of the optimal solution. The green lines are used for the ENN-

Design approach whereas the blue lines are used for the genetic algorithm.

We can notice that both the approaches reach the optimal solutions within

10 generations, but ENN-Design algorithm reaches quickly the best combi-

nation of domains and the genetic algorithms needs more time to converge

toward the optimum.

Figure 4.6 shows the comparison of the ENN-Design with the genetic algo-

rithm in terms of the behavior of the average values of each generation in 10

Monte Carlo simulations. We can highlight that the new proposed algorithm

identifies most of the local optimal solutions since the behavior of the average

responses always outperforms the genetic algorithm. The descending behav-

ior of the ENN-Design boxplots in Figures 4.5 and 4.6 is due to the fact that

tested experiments cannot be present in the new generations; therefore, once

the algorithm reaches the best experiment the maximum value cannot be

reached anymore. In this research, we are interested in localizing the global

optimum and good solutions but the ENN-Design algorithm allows in addi-

tion to determine a precise model of the system. In order to assess the neural

network model after the first generation of points, we perform a comparison

of three models (Neural Network, Elastic Net, and LASSO models) in terms

of generalization capability and of discovering the non zero coefficients.

Figures 4.7 and 4.8 presents the coefficient profile plots of the coefficient

paths for fitted generalized linear model via penalized maximum likelihood

(respectively the LASSO and Elastic Net penalized models). The regulariza-
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Figure 4.7: The regularization path of the LASSO model.

tion path is computed for the LASSO and Elastic Net penalty at a grid of

values for the regularization parameter λ that is set in these simulation to

be descending. The values obtained at the end of the regularization path are

the estimate of the variables coefficients of the models: when the values are

shrunk toward 0, the variables in the models are deleted.

The neural network model, developed inside the Evolutionary procedure, is

able to find the non-zero domains in the right positions since it finds out,

in almost all the Monte Carlo simulation, the optimal solution in the second

generation (see Figure 4.5). Moreover, both the Elastic Net and LASSO mod-

els are able to identify the non-zero domains and shrink to 0 all the others

domains as shown in the Figures 4.7 and 4.8.

All the three models are efficient in finding the non zero-domains, but com-

paring their generalization performances on the same test set, we can imme-

diately see a huge difference. The neural network model presents a very low

root predictive error respect to the other models, as presented in Table 4.4.

Even in a simpler example than the real experimentation we can immediately

see the goodness of the proposed approach in optimizing and modeling high

dimensional combinatorial systems. In order to highlight the robustness of
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Figure 4.8: The regularization path of the Elastic Net model.

LASSO Elastic Net ENN

RPE 5.219 4.218 0.228

Table 4.4: Root predictive errors of three models on the same test set in the

sparse regression model simulation.
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the new approach more simulative studies are developed.

4.2 Non-linear model

The sparse regression model to generate the response of the search space, pre-

sented in the previous simulation, is not always adequate to model complex

biological systems. Therefore, same other comparative simulations are run for

more complex functions and settings. The Rosenbrock function (Rosenbrock

1960) is a non-convex function, well-known as a benchmark for numerical op-

timization problems. The global minimum is inside a long, narrow, parabolic

shaped flat valley. To find the valley is trivial. To converge to the global

minimum, however, is difficult. The algorithms are tested on the generalized

discrete Rosenbrock function

f(xi) =
3∑
q=1

(100(Posq+1 − Pos2
q)

2 + (1− Posq)2). (4.9)

This function has an optimal value equal to 0 when all the Posqs assume

values equal to 1. In the bivariate case the shape of the Rosenbrock’s function

is represented by the Figure 4.9 where it is evident the local optimal valley.

As in the previous simulation, we compare the ENN-Design approach with

the genetic algorithm, performing 10 Monte Carlo simulations each of which

is run for 10 generations. Initially we test the approaches in a situations

with k = 20 possible domains for each of the q = 4 positions; the domains

are set to be equally spaced between -5 and 5. Even in this simulative study

case, the ENN-Design outperforms the genetic algorithm both in reaching the

optimal solution and in finding many good experiments of the valley. Figure

4.10 shows that the global optimum is achieved by ENN-Design within the

fifth generation whereas the genetic algorithm only approaches the optimal

value without hitting it in ten generations. Moreover, the performance of

ENN-Design algorithm is much better than the genetic algorithm in terms of

identifying the set of locally optimal solutions; in fact, Figure 4.11 shows that

the average value within each generation is much lower in the ENN-Design

approach than in the genetic algorithm.
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Figure 4.9: The Rosenbrock function
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Figure 4.10: The Rosenbrock function with k = 20 and q = 4: behavior of

the best solutions achieved in each of the 10 generations in 10 Monte Carlo

simulations.
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Figure 4.11: The Rosenbrock function with k = 20 and q = 4: behavior of

the average responses of the 10 generations in 10 Monte Carlo simulations.

LASSO Elastic Net ENN

RPE 43,590.56 32,811.34 11,113

Table 4.5: Root predictive mean squared errors of three models on the same

test set in the Rosenbrock function simulation.

In this more complex scenario, the advantages of using the proposed algo-

rithm instead of the more popular genetic algorithm is evident. In order to

evaluate the goodness of generalization of the models, a comparison among

the neural network model, the generalized LASSO model and the generalized

Elastic Net models is performed. After the first generation, the best neural

network, obtained within the ENN-Design optimization, has a much lower

prediction error than the LASSO and Elastic Net models (calculated on the

same test set) as showed in Table 4.5.

These simulation studies show a very good performance of our method com-

pared to the high-performing GA and to the popular LASSO and Elastic

Net models. This is the case for both reaching the optimal solution and
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fitting good predictive statistical models. Combining variable selection pro-

cedure to identify subsamples of the search space with higher probability to

find the optimal solution and the neural network model, which represents

a robust model in different scenarios, helps the improvement of the popula-

tion of points, generation by generation, toward the global optimum and the

suboptimal areas of the search space. The ENN-Design seems to be suited

to address the model assessment and the optimization problems in high di-

mensional settings. Since the complexity of the Rosenbrock function could

be indicate to represent the real experimentation that will be performed in

laboratory, we create a new simulation with the same parameterization of

the real setting. Therefore, we tested the proposed approach in the situa-

tion where the number of possible domains for each of the q = 4 positions

are assumed to be 95 equally spaced between -5 and 5, generating an entire

experimental space Ω of N ' 8.1× 107 of possible candidate solutions.
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Figure 4.12: The Rosenbrock function with k = 95 and q = 4: behavior of

the best solutions achieved in each of the 10 generations in 10 Monte Carlo

simulations

As in previous examples, we can immediately highlight in Figures 4.12 and

4.13 how the behavior of the best solution and the behavior of the average
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Figure 4.13: The Rosenbrock function with k = 95 and q = 4: behavior of

the average responses of the 10 generations in 10 Monte Carlo simulations

response of the ENN-Design outperform the genetic algorithm. Moreover,

the genetic algorithm in this huge search space is able to identify very few

solutions with low response values. On the contrary, the best solutions iden-

tified by the ENN-Design approach converges since the second generation

toward optimal values. In this more complex simulation the proposed ap-

proach seems to be very effective to identify the optimum and to exploit

points in the valley.

Significant results are obtained in these simulation studies and they encour-

age to test the proposed approach in the real experimentation.

5 A real application: the synthetic protein

discovery

The real experimentation aims to engineer novel “synthetic” proteins able

to enhance catalysis within a cell. We apply the ENN-Design in order to

identify some “synthetic” proteins among a huge experimental space that
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present a catalytic functionality comparable with the natural protein, the

Serine esterase (cutinase) of Fusarium Solani. The ENN-Design approach is

used to address the optimization of this high dimensional problem and the

evolution of the generations of experimental points is presented. The aim

of the research is to find new proteins which maximize the response of the

biological system. The first generation of points is randomly selected in the

huge combinatorial experimental space Ω formed by about 8.1×107 candidate

“synthetic” proteins. The response values of the first generation is described

in Figure 4.14.

Y

D
en
si
ty

300 400 500 600 700

0.
00
0

0.
00
2

0.
00
4

1st qt 3rd qt

300 400 500 600 700

Figure 4.14: Descriptive analysis of the first generation: density distribution

of the response values and some important statistics

This figure shows the distribution of the response Y of the first generation of

experimental points, summarizing the main statistics. We can note that the

distribution of the Y is almost symmetrical around the median value, except

for an outlier whose response value is very high.

Since we are interested to maximize the response, we can identify which
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domains in each position are present in proteins with high system response

values. These domains are part of “synthetic” proteins with higher system

response values and, combined together, they can produce new biological

entities that are more likely to be good. For example, Figure 4.15 presents

all the domains appeared in position 1 of the “synthetic” proteins of the first

generation. The domains appeared in experiments whose response values

exceed the 3rd quartile threshold are marked by a green vertical line; we

can highlight that some of them are present only in experiments with high

response values (e.g. domains labelled as 24, 39, 88) and others appear both

in experiments with high and low values of the system response (e.g. domains

labelled as 8, 75).

More information about the experimental space can be achieved comparing

which domains in the first generation appear in experiments with the highest

and the lowest values of Y ; in fact, we need to avoid to test domains that can

form new experiments that are more likely to have low response values. Figure

4.16 shows the domains in position 1 that generates the highest and the

lowest response values. This information is very important in the ENN-Design

approach when we calculate the probability of the domains to be candidate

in forming the new set of experimental points. Tables 4.6 and 4.7 represent

respectively the conditional probability distribution of the k domains for each

position given high values of system response and the marginal distribution of

the domains for each position. This tables embody the information presented

in Figure 4.16 and are applied to create the subset of variables that are used

to form the next generation (as presented in Section 3).

Accordingly with the information derived with this preliminary analysis, it

is reasonable that the domains in each position cannot be sufficient alone

to give an higher response value of the system. Only interacting with other

domains in different positions, it is possible to identify proteins with much

higher response values. Figure 4.17 shows the interaction between domains

of the first and second position of the first generation of “synthetic” proteins.

The green bar is associated to interactions which lead to higher values of the

system response (over the 3rd quartile of the distribution) and the red bar

refers to interactions leading to lower values of the response (below the 1st

quartile). We can observed that some domains in position 1 (e.g 25 and 80)
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Figure 4.15: Scatterplot of the domains in position 1 of the “synthetic” pro-

teins of the first generation.
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experiments of the first generation.
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interacting with different domains in position 2 generate opposite results;

this implies that some domains are not important to reach higher values

of the system response by themselves, but they need to interact with other

domains to form building block with higher probability to produce good

proteins. This kind of analysis can be performed for each position and for all

the possible interactions, giving the biologist interesting information about

the bonds among strings of amino acids.

The ENN-Design algorithm is then run on the first generation of points, and

a new set of m “synthetic” proteins (not yet tested) is formed. The procedure

is then iterated until the maximum number of experimental generations is

reached. Figures 4.18 and 4.19 show the evolution of the initial population

of random experimental points within generations.

We can note that the initial exploration of the search space, due to the in-

troduction of mnew completely random experiments, brings to lower values

of the response introducing more variability within the second generation.

This exploration of the search space is balanced by the exploitation due to

the cooperation of variable selection (identification of good domains with the

entropy measure) and modeling procedure (prediction of the best points).

In fact, since the second generation, we identify very good “synthetic” pro-

teins, achieving much higher response values than in the first generation. The

shift toward higher values is more evident in the third generation, where the

ENN-Design approach identifies a pot of many good solutions. Moreover, it

is evident a strong reduction of the variability in the third and forth genera-

tions, with an exploitation around the subsets of the Ω where good proteins

are more like to be present.

Iterating the procedure since the fifth generation we can observed a strong

improvement of the results; in fact, the last generation enables to identify

a pot of good solutions with a remarkable shift of the response distribution

toward optimal values. Moreover, an evident reduction of the variability is

achieved, forming a very informative set of “synthetic” proteins and eventu-

ally reaching the maximum value. The evolutive path is constrained by the

experimental requests to be five generations, but the response behavior of

the experimental application suggests that iterating the procedure for other

generations we can achieved even better solutions. We can conclude that
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(b) Third generation
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Figure 4.18: Density distribution of the response values of the second (a),

third (b), forth (c) and fifth (d) generation of experimental points.

the initial set of random “synthetic” proteins, therefore, has been evolved,

forming new biological entities which are supposed to enhance catalysis.
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Figure 4.19: Boxplot of the response values of each generation of “synthetic”

proteins.

Domains P̂ (X1|Y ) P̂ (X2|Y ) P̂ (X3|Y ) P̂ (X4|Y )

1 0.0000 0.0000 0.0000 0.0000

2 0.0000 0.0442 0.0435 0.0000

3 0.0000 0.0000 0.0000 0.0469

4 0.0000 0.0000 0.0435 0.0000

5 0.0000 0.0000 0.0000 0.0000

6 0.0000 0.0732 0.0721 0.0000

7 0.0000 0.0000 0.0000 0.0000

8 0.0721 0.0000 0.0000 0.0000

9 0.0000 0.0000 0.0000 0.0469

10 0.0000 0.0000 0.0000 0.0000

11 0.0000 0.0000 0.0000 0.0777

12 0.0000 0.0000 0.0435 0.0469

13 0.0000 0.0442 0.0000 0.0469

14 0.0000 0.0442 0.0000 0.0000

15 0.0000 0.0000 0.0000 0.0469
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16 0.0435 0.0000 0.0000 0.0000

17 0.0000 0.0000 0.0000 0.0000

18 0.0000 0.0000 0.0000 0.0000

19 0.0000 0.0000 0.0000 0.0000

20 0.0000 0.0442 0.0435 0.0777

21 0.0435 0.0442 0.0000 0.0000

22 0.0000 0.0732 0.0000 0.0469

23 0.0000 0.0000 0.0000 0.0000

24 0.0435 0.0442 0.0000 0.0000

25 0.0435 0.0000 0.0000 0.0000

26 0.0000 0.0000 0.0000 0.0000

27 0.0000 0.0000 0.0435 0.0000

28 0.0435 0.0000 0.0435 0.0000

29 0.0435 0.0442 0.0435 0.0469

30 0.0000 0.0000 0.0435 0.0000

31 0.0000 0.0442 0.0000 0.0000

32 0.0000 0.0000 0.0000 0.0000

33 0.0000 0.0000 0.0000 0.0000

34 0.0435 0.0000 0.0435 0.0000

35 0.0000 0.0000 0.0000 0.0000

36 0.0000 0.0000 0.0000 0.0000

37 0.0000 0.0000 0.0000 0.0000

38 0.0000 0.0000 0.0000 0.0000

39 0.0435 0.0000 0.0000 0.0000

40 0.0435 0.0442 0.0000 0.0000

41 0.0000 0.0000 0.0000 0.0000

42 0.0435 0.0000 0.0000 0.0000

43 0.0435 0.0000 0.0000 0.0000

44 0.0000 0.0000 0.0435 0.0000

45 0.0000 0.0000 0.0000 0.0000

46 0.0000 0.0000 0.0000 0.0000

47 0.0000 0.0000 0.0000 0.0000

48 0.0000 0.0000 0.0000 0.0469

49 0.0000 0.0000 0.0000 0.0000
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50 0.0000 0.0000 0.0000 0.0000

51 0.0000 0.0000 0.0000 0.0000

52 0.0000 0.0000 0.0435 0.0000

53 0.0000 0.0000 0.0435 0.0000

54 0.0000 0.0442 0.0000 0.0777

55 0.0435 0.0000 0.0000 0.0000

56 0.0000 0.0000 0.0000 0.0000

57 0.0000 0.0000 0.0721 0.0000

58 0.0000 0.0000 0.0000 0.0000

59 0.0000 0.0000 0.0000 0.0000

60 0.0000 0.0000 0.0000 0.0000

61 0.0000 0.0000 0.0435 0.0469

62 0.0435 0.0000 0.0000 0.0000

63 0.0000 0.0000 0.0000 0.0000

64 0.0000 0.0000 0.0435 0.0000

65 0.0000 0.0000 0.0000 0.0000

66 0.0000 0.0000 0.0000 0.0469

67 0.0000 0.0000 0.0000 0.0000

68 0.0000 0.0000 0.0000 0.0000

69 0.0000 0.0442 0.0000 0.0000

70 0.0000 0.0000 0.0000 0.0000

71 0.0000 0.0442 0.0000 0.0000

72 0.0435 0.0000 0.0000 0.0000

73 0.0000 0.0000 0.0000 0.0000

74 0.0435 0.0000 0.0000 0.0000

75 0.0721 0.0000 0.0721 0.0000

76 0.0000 0.0732 0.0000 0.0000

77 0.0000 0.0000 0.0000 0.0000

78 0.0435 0.0000 0.0435 0.0000

79 0.0721 0.0000 0.0000 0.0000

80 0.0435 0.0000 0.0000 0.0000

81 0.0000 0.0000 0.0000 0.0000

82 0.0000 0.0000 0.0435 0.0469

83 0.0000 0.0000 0.0000 0.1020
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84 0.0000 0.0442 0.0000 0.0469

85 0.0000 0.0442 0.0000 0.0000

86 0.0000 0.0000 0.0000 0.0000

87 0.0000 0.0000 0.0000 0.0000

88 0.0435 0.0000 0.0000 0.0000

89 0.0000 0.0442 0.0000 0.0000

90 0.0000 0.0442 0.0000 0.0000

91 0.0000 0.0732 0.0435 0.0000

92 0.0000 0.0000 0.0435 0.0000

93 0.0000 0.0000 0.0000 0.1020

94 0.0000 0.0000 0.0000 0.0000

95 0.0000 0.0000 0.0000 0.0000

Table 4.6: Conditional probability distribution of the k

domains for each position, given high values of the system

response.
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Domain P̂ (X1) P̂ (X2) P̂ (X3) P̂ (X4)

1 0.0000 0.0000 0.0000 0.0116

2 0.0117 0.0120 0.0118 0.0116

3 0.0117 0.0000 0.0000 0.0279

4 0.0000 0.0210 0.0206 0.0116

5 0.0000 0.0210 0.0000 0.0000

6 0.0117 0.0359 0.0352 0.0116

7 0.0117 0.0210 0.0206 0.0116

8 0.0413 0.0000 0.0000 0.0203

9 0.0117 0.0288 0.0283 0.0203

10 0.0205 0.0120 0.0000 0.0116

11 0.0117 0.0000 0.0000 0.0203

12 0.0000 0.0000 0.0283 0.0116

13 0.0117 0.0210 0.0206 0.0203

14 0.0117 0.0210 0.0000 0.0203

15 0.0000 0.0000 0.0000 0.0203

16 0.0117 0.0424 0.0118 0.0000

17 0.0205 0.0120 0.0118 0.0000

18 0.0205 0.0120 0.0000 0.0000

19 0.0000 0.0000 0.0000 0.0000

20 0.0117 0.0120 0.0206 0.0279

21 0.0281 0.0210 0.0283 0.0203

22 0.0117 0.0210 0.0118 0.0116

23 0.0000 0.0000 0.0000 0.0000

24 0.0117 0.0210 0.0206 0.0116

25 0.0205 0.0000 0.0000 0.0000

26 0.0000 0.0000 0.0000 0.0000

27 0.0205 0.0000 0.0118 0.0116

28 0.0350 0.0288 0.0118 0.0116

29 0.0117 0.0120 0.0206 0.0116

30 0.0205 0.0120 0.0206 0.0203

31 0.0117 0.0210 0.0118 0.0203

32 0.0000 0.0000 0.0118 0.0203
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33 0.0117 0.0120 0.0000 0.0000

34 0.0117 0.0000 0.0118 0.0203

35 0.0000 0.0000 0.0000 0.0203

36 0.0000 0.0000 0.0118 0.0000

37 0.0000 0.0000 0.0118 0.0000

38 0.0205 0.0000 0.0000 0.0203

39 0.0117 0.0120 0.0118 0.0000

40 0.0117 0.0120 0.0000 0.0116

41 0.0117 0.0359 0.0000 0.0116

42 0.0117 0.0210 0.0000 0.0000

43 0.0205 0.0000 0.0000 0.0203

44 0.0000 0.0000 0.0206 0.0000

45 0.0000 0.0210 0.0000 0.0203

46 0.0000 0.0000 0.0118 0.0116

47 0.0281 0.0120 0.0206 0.0000

48 0.0000 0.0000 0.0118 0.0203

49 0.0117 0.0120 0.0206 0.0116

50 0.0000 0.0120 0.0000 0.0116

51 0.0000 0.0000 0.0000 0.0000

52 0.0000 0.0210 0.0118 0.0116

53 0.0205 0.0000 0.0206 0.0203

54 0.0205 0.0120 0.0118 0.0279

55 0.0205 0.0120 0.0206 0.0116

56 0.0000 0.0000 0.0118 0.0203

57 0.0000 0.0000 0.0283 0.0000

58 0.0000 0.0000 0.0118 0.0000

59 0.0205 0.0000 0.0118 0.0000

60 0.0000 0.0210 0.0000 0.0203

61 0.0205 0.0120 0.0118 0.0203

62 0.0117 0.0000 0.0206 0.0000

63 0.0117 0.0120 0.0000 0.0116

64 0.0117 0.0120 0.0118 0.0116

65 0.0117 0.0120 0.0000 0.0000

66 0.0117 0.0000 0.0000 0.0279
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67 0.0117 0.0120 0.0118 0.0116

68 0.0000 0.0000 0.0206 0.0116

69 0.0000 0.0120 0.0206 0.0000

70 0.0117 0.0000 0.0000 0.0116

71 0.0117 0.0120 0.0000 0.0000

72 0.0117 0.0000 0.0000 0.0000

73 0.0205 0.0000 0.0118 0.0116

74 0.0205 0.0000 0.0000 0.0000

75 0.0472 0.0120 0.0283 0.0000

76 0.0000 0.0210 0.0206 0.0000

77 0.0117 0.0000 0.0206 0.0000

78 0.0205 0.0210 0.0118 0.0000

79 0.0281 0.0000 0.0118 0.0116

80 0.0205 0.0120 0.0206 0.0116

81 0.0000 0.0120 0.0000 0.0000

82 0.0000 0.0000 0.0118 0.0116

83 0.0117 0.0000 0.0000 0.0279

84 0.0000 0.0120 0.0352 0.0347

85 0.0000 0.0120 0.0000 0.0000

86 0.0117 0.0288 0.0000 0.0000

87 0.0000 0.0000 0.0206 0.0116

88 0.0117 0.0288 0.0000 0.0000

89 0.0117 0.0120 0.0118 0.0116

90 0.0000 0.0288 0.0206 0.0000

91 0.0117 0.0485 0.0352 0.0000

92 0.0117 0.0000 0.0118 0.0116

93 0.0000 0.0210 0.0000 0.0279

94 0.0117 0.0210 0.0000 0.0203

95 0.0000 0.0000 0.0118 0.0116

Table 4.7: Marginal probability distribution of the k do-

mains in the first generation of random points.



Conclusion

The issue of high dimensionality represents a challenging topic for statisti-

cians and data miners with many problems that are still unsolved. Classical

statistical methods cannot cope with the increasing availability of massive

data. The large number of variables and the scarcity of observations char-

acterize the current state of real applications, therefore, new methods and

theories need to be developed.

The thesis is an attempt to overcome classical statistical limitations in mod-

eling and optimizing high dimensional systems, giving a new flexible tool for

identifying important variables and modeling complex scenarios. The intro-

duction of statistical model and variable selection procedures in the paradigm

of evolution is still an innovation in the optimization fields. Moreover, the

attempt to solve the optimization problem in very few generations of exper-

imental trials can be fundamental to address costly experimentation.

This attempt might be very competitive in high dimensional optimization

problems both in reaching optimal solutions and in producing robust predic-

tive models. It has been proven in the simulative examples and eventually

in the real experimentation to be more flexible and robust than the classical

approaches in comparison with benchmarks as genetic algorithm for opti-

mization and LASSO and Elastic Net for modeling.

The Evolutionary Neural Network Design algorithm, developed in this thesis,

is capable of handling problems with very few observations compared with

the number of variables. It merges some of the stronger features of traditional

approaches in order to derive a new evolutive procedure, optimizing complex

scenarios. The approach combines a model selection procedure, used to assess

accurate predictive neural network models, with a ranking variable selection

strategy. The procedure shifts the classical problem of variable and model



118 Conclusion

selection in the domain of the evolutionary experimental design of experi-

ments.

In fact, the model and variable selection procedures drive the evolution of

an initial random generation of points toward subsets of the search space

where the optimal solutions are more likely to be found. At each generation

of points, both the model and the variable ranking procedure evolve. This

increases the efficiency of the algorithm in identifying new optimal solutions.

The results of some simulation studies show an important improvement of

ENN-Design over the traditional and widely applied optimization techniques.

Moreover, the application of the ENN-Design method for identifying new

“synthetic” proteins among a huge search space of competitive candidates

shows a remarkable shift of the initial population toward higher response

values areas of the search space. As a result it generates “synthetic” proteins

which are more likely to enhance a chemical reaction.

A first effort has been made in this thesis to solve this high combinatorial

optimization problem, but further efforts are needed in order to create a more

efficient computational procedure. Embedding the variable selection directly

in the neural network model selection procedure could be, for example, an

important step toward creating network topologies with fewer input neurons

and connections and, consequently, a more efficient algorithm.
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