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INTRODUCTION 

Oxidation reactions are among the most useful and used reactions in the industrial processes. 

However, at the same time, they are among the most polluting and hazardous processes, often occurring 

with high E-factor (mass of waste per mass unit of product)1 and delivering considerable amount of 

toxic waste, for instance metal salts in oxidations employing stoichiometric Cr(VI) or Mn(VII) 

derivatives or nitrogen oxides in oxidations carried out with HNO3. In particular, the oxidation of 

primary and secondary alcohols to the corresponding carbonyl compounds is of fundamental importance 

in organic synthesis, due to the wide ranging utility of these products as important precursors and 

intermediates for many drugs, vitamins and fragrances. A recent publication by Pfizer’s medicinal 

chemists2 showed that the three most popular oxidants used in Pfizer for the oxidation of primary 

alcohols to the corresponding aldehydes are Dess-Martin periodinane3 or its precursor IBX, the Swern 

reagent4 and TPAP/NMO5 system. All of these methods still have poor atom efficiencies6 and 

significant scale-up issues. As a result, the oxidation of an alcohol to a carbonyl compound, in spite of 

being a fundamentally important reaction, yet is actually avoided by the pharmaceutical industry.7 From 

an environmentally point of view, it is of particular importance the development of methods which use 

cleaner oxidants and minimize the amount and toxicity of the released waste. Moreover, the use of 

catalysis, that allows processes to occur under mild conditions in order to save the overall implied 

energy, is strongly encouraged.8 In this respect, the recovery and reuse of the catalyst is a further 

important goal. In this review, we will present an overview of the recent advances made by the 

international scientific community in this field. Oxygen (or even better air) is among the cheaper and 

less polluting stoichiometric oxidants, since it produces no waste or water as the sole by-product.9 The 

implementation of a catalyst in combination with molecular oxygen represents an emerging alternative 

process to the traditional procedures. 
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In the development of transition metal-catalyzed aerobic alcohol oxidations, several challenges 

exist, as the need of low pressures of O2 especially in flammable organic solvents, mild reaction 

conditions, low catalyst loadings, and avoidance of costly or toxic additives. 

Another main issue is the functional group tolerance and the chemoselectivity of the alcohol 

transformation when other groups susceptible to oxidation are present. A further goal is the 

development of methods able to oxidize one class of alcohols in the presence of another. Finally, an 

ultimate goal is the development of diastereo- and/or enantioselective alcohol oxidations. Many 

homogeneous and heterogeneous catalytic systems have been developed;10 this review, that does not 

pretend to be exhaustive, aims to give an overview on the most significant procedures developed in this 

extremely investigated field of the research. The most versatile and studied metal catalysts (copper-, 

ruthenium-, palladium- and gold-based) will be analyzed, highlighting their synthetic potential and 

always taking in account the previously mentioned synthetic challenges.  

 

COPPER-BASED HOMOGENOUS CATALYSTS  

Copper seems an appropriate metal for the catalytic oxidation of alcohols with O2 since it is 

present in Nature as the catalytic centre in a variety of enzymes (e.g. galactose oxidase) that catalyze 

this conversion. Some catalytically active biomimetic models for these enzymes have been designed and 

constitute seminal examples in this area.11 In 1984, Semmelhack reported the first practical Cu-

catalyzed aerobic oxidation of alcohols, using Cu in combination with the stable nitroxyl radical 

TEMPO (2,2,6,6-tetramethyl-1-piperidine-N-oxyl) in DMF as solvent; however, this system was 

efficient only for activated primary alcohols.12 Markό and co-workers pioneered much of the catalyst 

development. In their initial report, a combination of CuCl (5 mol %), phenantroline (5 mol%) and di-

tert-butylazodicarboxylate, DBAD (5 mol%) allowed oxidation of alcohols with great tolerance of other 

functional groups.13 However, this system required the presence of 2 equivalents of a base (K2CO3) and 

was not consistent for the oxidation of primary aliphatic alcohols. In these basic conditions, alcohols 

bearing α-stereogenic centres could be oxidized with no racemisation. In these first reports, the active 

catalyst was postulated to be heterogeneous, and absorbed on the insoluble K2CO3, since filtration of the 

mixture gave a solution devoid of any oxidizing ability. Indeed, it appeared that K2CO3 may also served 

as a solid support on which the copper catalyst could be anchored. A change of the solvent from toluene 

to fluorobenzene allowed to use catalytic base,14 and further investigations led to the discovery that 

addition of catalytic N-methylimidazole dramatically enhanced the activity of the system allowing 

efficient conversion of primary aliphatic alcohols (Scheme 1).15  
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Scheme 1. The Cu-catalytic system developed by Markό and co-workers 
 

The use of such system in combination with a diazo reagent and triphenyl phosphine recently 

allowed a domino one-pot oxidation-olefination process that could be applied to a wide variety of 

alcohol substrates including aliphatic secondary alcohols. α-Chiral alcohols could be converted into 

olefins without any detectable racemization (Scheme 2).16 
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Scheme 2. Copper-catalyzed tandem oxidation-olefination process 

 
In addition to Markό’s work, other groups reported chemoselective oxidations of primary alcohols 

with Cu in combination with TEMPO. Sheldon and co-workers showed that CuBr2 and TEMPO in the 

presence of 2,2’-bipyridine as a ligand for Cu led to the oxidation of several primary alcohols with no 

overoxidation to carboxylic acids. When mixtures of primary and secondary alcohols were reacted in 

these conditions, only primary alcohols were converted. The advantage of this very mild procedure is 

that excellent conversions were obtained with air at room temperature (Scheme 3).17 

R OH R ON N
5 mol%CuBr2, 5 mol%

5mol% TEMPO, 5 mol% tBuOK
CH3CN/H2O (2:1)
air, 25 °C  

Scheme 3. The Cu(II)-TEMPO catalyzed aerobic oxidation of primary alcohols by Sheldon et al. 
 

In the presence of an enantiopure bidentate ligand, Seckar and co-workers achieved an efficient 

non enzymatic kinetic resolution of several secondary benzylic amino alcohols (Scheme 4).18  

Several other groups reported the use of alternative solvents with the aim of allowing catalyst 

recycling and simple product purification. In 2002 Ansari and Gree reported a CuCl-TEMPO catalyzed 

aerobic oxidation of several primary and secondary benzylic and allylic alcohols in the 1-butyl-3-

methylimidazolium hexafluorophosphate ([bmim]PF6) ionic liquid. 
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Scheme 4. Oxidative kinetic resolution of secondary benzylic amino alcohols 

 
The authors could recycle the ionic liquid but not the catalyst.19 Jiang and Ragauskas reported the 

use of a pyridil based ionic liquid, 1-butyl-4-methylpyridinium hexafluorophosphate ([bmpy]PF6) in a 

room-temperature aerobic oxidation of primary alcohols catalyzed by a three-component system 

acetamido-TEMPO/Cu-(ClO4)2/DMAP, that allowed the recover and reuse of catalyst up to five runs 

without loss of activity (Scheme 5).20  
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5mol% Cu(ClO4)2, 10 mol%DMAP
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Scheme 5. Cu(II)-TEMPO-catalyzed oxidation in ionic liquid 
 

More recently, they reported a similar three component system for the oxidation of primary 

alcohols to aldehydes under solvent-free conditions, and simply recovered the three catalyst components 

by addition of a non polar solvent (hexanes) that selectively dissolved the product aldehydes.21 In case 

of solid alcohols, PEG-200 (not oxidized in these reaction conditions) was used as solvent. 

To enhance catalyst recyclability, Knochel and co-workers also used a biphasic solvent system, 

(chlorobenzene/perfluoroctyl bromide), and a pyridine ligand containing fluorinated ponytails for the 

CuBr-Me2S-TEMPO catalyzed oxidation of several alcohols, and they could recover and reuse the 

fluorous layer containing the catalyst up to eight times with little loss of activity.22 Furthermore, the 

selective aerobic oxidation of benzyl alcohols to the corresponding benzaldehydes could be achieved 

using the sole water as solvent without the need of any organic or alternative solvent, employing a 

multinuclear copper (II) compound in combination with TEMPO at 25-80 °C.23  

 

COPPER-BASED HETEROGENOUS CATALYSTS  

In contrast to the great development of homogenous copper-based catalysts, heterogeneous 

systems are still largely unexplored. One of the few examples is a recyclable Cu-Mn mixed oxide 

supported on active carbon that was employed in combination with TEMPO as co-catalyst for the 

aerobic oxidation of several benzylic primary alcohols.24 

 

 

 



RUTHENIUM-BASED HOMOGENOUS CATALYSTS  

Ruthenium compounds have been extensively studied as catalysts for the aerobic oxidation of 

alcohols.25 This metal gives the widest range of oxidation states from +2 to +8, therefore a large variety 

of oxidative transformations has been developed. The activity of common low valent ruthenium 

precursors such as RuCl2(PPh3)3 can be increased by the use of ionic liquids as solvents.26 Ruthenium-

based compounds have been extensively investigated as catalysts for hydrogen transfer reactions. These 

systems, in combination with a hydrogen acceptor as co-catalyst and dioxygen as oxidant, can be readily 

adapted to the aerobic oxidation of alcohols in a multicatalytic process. For example Bäckvall and co-

workers, employing a benzoquinone and a cobalt-Schiff’s base complex, developed one of the fastest 

catalytic systems reported for the oxidation of secondary alcohols (Scheme 6).27  
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Scheme 6. Bäckvall’s multicatalytic system for the aerobic oxidation of alcohols 
 

The sole weakness of this procedure was the requirement of high loading of 2,6-dimethoxy-1,4-

benzoquinone (20 mol%) which served as electron transfer mediator (ETM). Recently Bäckvall and co-

workers reported, in combination with Ru Shvo’s catalyst, a second generation Co hybrid catalyst that 

comprises cobalt salens and pendant hydroquinone groups, thus avoiding the use of benzoquinone and 

affording excellent conversions of secondary alcohols.28 On the other hand, Ishii and co-workers 

demonstrated that the regeneration of benzoquinone can also be achieved in the absence of the cobalt 

co-catalyst in PhCF3 as solvent.29 In these conditions, primary alcohols could be chemoselectively 

oxidized in the presence of secondary alcohols. 

Sheldon and co-workers developed one of the most efficient systems for the aerobic oxidation of 

non activated primary and secondary alcohols using RuCl2(PPh3)3 in combination with TEMPO in PhCl 

at 100 °C (Scheme 7).30  
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Scheme 7. Ruthenium-TEMPO catalyzed oxidation of alcohols 
 



Overoxidation of primary alcohols to carboxylic acids was completely suppressed by catalytic 

TEMPO, which avoided the autooxidation of aldeydes by efficiently scavenging free radical 

intermediates. Unfortunately, this system required 10 bar pressure and a number of alcohols containing 

heteroatoms (O, N, S) still remained unreactive, probably due to their coordination to the ruthenium 

metal centre and subsequent catalyst inactivation. An oxidative hydrogenation mechanism, analogous to 

that proposed by Bäckvall and co-workers for the Ru-quinone system, can be envisaged for the 

Ru/TEMPO system. 

High valent perruthenate catalysts, i. e. tetra-n-propylammonium perruthenate (TPAP), are 

excellent air-stable Ru-catalysts, non volatile and soluble in a wide range of organic solvents. In 1997 

Markό31 and Ley32 simultaneously showed that TPAP is able to perform the aerobic oxidation of 

alcohols; however, both systems had some drawbacks such as the need for high catalyst loading in a 

chlorinated solvent32 or the need for high temperature (70-80 °C) (Scheme 8)31 and were not effective 

for the oxidation of primary aliphatic alcohols in contrast to using NMO as the stoichiometric oxidant.5 
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Scheme 8. TPAP-catalyzed aerobic oxidation of alcohols 

 
More recently, Katsuki and co-workers have published several papers on Ru-salen catalysts for 

aerobic alcohol oxidations. They designed an efficient catalyst for the photo-induced chemoselective 

oxidation of primary alcohols in the presence of secondary alcohols,33 and upon further derivatization of 

chiral ligands they could accomplish efficient kinetic resolutions of secondary alcohols34 and 

desymmetrization of meso-diols (Scheme 9).35 Moreover, recently, they developed a chemoselective 

oxidation of primary alcohols using a Ru-salen catalyst that did not need further irradiation conditions.36 
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Scheme 9. Ru-salen catalyzed oxidative desymmetrization of meso-diols 

 
In conclusion, ruthenium has proved to be effective for the homogenous aerobic oxidation of 

alcohols, but some further work remains to develop general alcohol oxidation catalysts that employ low 

catalyst loading and perform under mild conditions.  



RUTHENIUM-BASED HETEROGENOUS CATALYSTS  

Especially in industrial chemistry, heterogeneous catalytic systems are preferred over homogenous 

ones due to easy recyclability and separability. However, they usually suffer from low catalytic activity 

relative to their homogenous counterparts. Much effort has been made to overcome the difficulties 

involved because reduction of environmental loading due to easy separation and reuse of the catalyst 

could result. 

A pioneering work by Ley and co-workers dates back to 1997 and reports the use of polymer-

supported perruthenate (PSP) in the aerobic oxidation of alcohols; however, this catalyst suffered from 

oxidative degradation of the polymer support.37 Soon later the same authors found a mesoporous silicate 

(MCM-41) as an efficient alternative support for TPAP and showed the recyclability of this catalyst up 

to 12 times (Scheme 10);38 this material was used in a ten-step linear synthesis of the powerful analgesic 

natural product epibatidine, which employed only solid supported reagents.39  
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Scheme 10. Ley’s modified mesoporous silicate materials MCM-41 

 
The grafting of an organic moiety onto solid surfaces allows the building of organic-inorganic 

hybrid materials, which are promising supports for catalyst design.40 For example, organically modified 

silicates (ORMOSIL) were studied by Pagliaro and Ciriminna for the encapsulation of the TPAP via a 

sol-gel process (SG-TPAP).41 However, the first reports did not show a wide substrate scope; in order to 

broaden the application of the SG-TPAP catalyst, alternative conditions were investigated such as 

supercritical carbon dioxide (scCO2)42 and the introduction of ionic moieties43 or of fluoroalkyl chains44 

into the silica matrix of SG-TPAP. They reported the use of hybrid fluorinated silica glass doped with 

TPAP (denoted FluoRuGel) as a versatile catalyst for the aerobic oxidation of different alcohols in 

dense CO2 (Scheme 11).44,45,46  
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Scheme 11. TPAP-heterogeneous catalysts developed by Pagliaro and co-workers 

 



Low valent ruthenium species have been also supported on solid matrices. Zeolites impregnated 

with RuO2 nanoclusters (RuO2-FAU) were found to be effective and selective catalysts for a wide 

variety of both activated and unactivated alcohols. These materials display a strong shape selectivity due 

to uniform pore size, and in a competitive experiment benzyl alcohol was reacted in the presence of 

unreacted 9-hydroxyfluorene.47 Kaneda and co-workers developed a monomeric ruthenium cation on 

the surface of hydroxyapatite (Ru/HAP), which gave efficient aerobic oxidations of primary, secondary 

and functionalized alcohols (Scheme 12). The main disadvantage of this process was the need for a high 

catalyst loading (17 mol%).48 
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Scheme 12. Heterogeneous Ru/HAP catalyst developed by Kaneda and co-workers  
 

Ruthenium supported on alumina (Ru(OH)x/Al2O3) was developed by Yamaguchi and Mizuno and 

demonstrated the ability to oxidize both primary, secondary and activated alcohols in PhCF3 as solvent 

or even in solvent-free conditions.49 Recently, the use of superparamagnetic nanoparticles as a 

supporting material for immobilized metal catalysts was reported. For example, Mizuno and co-workers 

showed that a ruthenium hydroxide species on magnetite (Ru(OH)x/Fe3O4) performed very well in the 

aerobic oxidation of alcohols, and catalyst/product(s) separation was extremely simple. Indeed, after 

completion of the oxidation reaction, a permanent magnet was attached to the outside wall of the glass 

reactor to magnetically “hold” the catalyst, and the reaction solution including the product(s) was 

separated by simple decantation.50 

In contrast to the many reports of inorganic supports or organic-inorganic hybrid materials, after 

the pioneering PSP by Ley and co-workers37 only a few polymer-supported catalysts for the aerobic 

oxidation of alcohols were reported. Kobayashi and co-workers developed a polymer incarcerated 

ruthenium (PI Ru) capable of oxidizing alcohols in aerobic conditions, based on the technique of 

microencapsulation and cross-linking from a polystyrene-based copolymer and ruthenium chloride 

hydrate as the metal source. However, this catalyst needed the presence of 15 mol% of TEMPO to show 

wide applicability to various alcohols (Scheme 13)51 and leaching of Ru metal was observed in some 

cases (never exceeding 0.72%), which is typical of polymer supported catalysts, that suffer from low 

chemical and/or mechanical resistance.  

The authors later showed that introduction of inorganic species to organic moieties, thus going 

back to the creation of organic-inorganic hybrid catalysts generated by the sol-gel approached, allowed 



the synthesis of an effective heterogenous catalyst which worked well for the aerobic oxidation of 

alcohols without the need for any additive, avoiding the leaching of Ru.52  
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Scheme 13. Polymer Incarcerated (PI) Ruthenium catalyst 

 
The main problem with all these heterogeneous catalysts is that they can be accessed with some 

difficulties since they are handmade and/or expensive. Much effort has been devoted to develop 

efficient oxidation methods for alcohols using the readily available carbon-supported metal catalysts.10 

Ruthenium is less expensive than Au, Pd or Pt; however, one of the few reports of Ru/C-catalyzed 

oxidation methods for alcohols was presented recently by Sajiki and co-workers, who showed that 10% 

Ru/C as a catalyst in toluene (at 50 °C) under an oxygen atmosphere was able to convert various 

secondary and primary benzylic alcohols to the corresponding carbonyl compounds and primary 

aliphatic alcohols to carboxylic acids when water was added as a co-solvent (Scheme 14).53  
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Scheme 14. Ru/C-catalyzed aerobic oxidation of alcohols 

 
PALLADIUM-BASED HOMOGENOUS CATALYSTS  

Overall, Pd(II) catalysis represents one of the most mature fields in the aerobic oxidation of 

alcohols. Much effort has been devoted to finding synthetically useful methods for the palladium-

catalyzed aerobic oxidation of alcohols, and some excellent reviews on this topic have appeared.54 Many 

mechanistic studies have been undertaken and a generally accepted mechanism for the Pd-catalyzed 

aerobic oxidations involves the formation of Pd-hydride species.54b,55,56 The palladium is then reduced to 

the zerovalent state by the alcohol substrate and is reoxidized to palladium(II) by dioxygen. The 

transient Pd(0) species is metastable and prone to aggregation to bulk palladium metal (Pd black) with 

concomitant loss of catalytic activity. One approach to avoid this is to add coordinating ligands, which 

stabilize the transient Pd(0) species. 



The first synthetically useful system was reported in 1998 by Peterson and Larock, who showed 

that simple Pd(OAc)2 in combination with NaHCO3 as a base in DMSO as solvent catalyzed the aerobic 

oxidation of primary and secondary allylic and benzylic alcohols to the corresponding aldehydes and 

ketones, respectively.57 The replacement of the non-green DMSO by an imidazole-type ionic liquid 

resulted recently in a higher activity of the Pd-catalyst.58 However, this method suffered from narrow 

substrate scope. Uemura and co-workers reported an improved procedure using Pd(OAc)2 (5 mol%) in 

combination with pyridine and 3Ǻ molecular sieves in toluene at 80°C,59 that allowed oxidation of 

primary and secondary aliphatic alcohols in addition to benzylic and allylic ones. When applied to tert-

cyclobutanols, this reaction proceeded with cleavage of the C-C bond (Scheme 15).60 This approach 

could also be employed under fluorous biphasic conditions.61 
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Scheme 15. Pd(II)-catalyzed oxidative ring cleavage of tert-cyclobutanols under O2 atmosphere 
 

A much more active catalyst is represented by a water-soluble palladium(II) complex of sulfonated 

bathophenantroline introduced by Sheldon and co-workers.62 This stable, recyclable catalyst allowed 

oxidation in a two-phase acqueous-organic medium in 5h at 100 °C/30 bar air with 0.25 mol% catalyst. 

No organic solvent was required (except for solid alcohols) and the carbonyl product was recovered 

easily by phase separation. Primary alcohols afforded the corresponding carboxylic acids via further 

oxidation of the aldehyde intermediate; otherwise, in the presence of 1 mol% of TEMPO, the aldehyde 

was obtained in high yield (Scheme 16).62 Pd-neocuproine (in the presence of ethylene carbonate as 

cosolvent) was found to be even more active and exceptionally tolerant to many functional groups such 

as C=C bonds, triple bonds, halides, ethers, amines etc, thus showing a broad synthetic utility.63 

However, a more detailed recent investigation of this latter ligand proved that in this case formation of 

Pd nanoparticles, which are presumably the active catalytic species, occurs (see later for a more detailed 

discussion).64 
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Scheme 16. Sheldon’s Pd-catalyzed aerobic oxidation of alcohols 

 
One of the main problems associated with homogeneous Pd(II)-catalyzed aerobic oxidations is 

often represented by Pd black formation. Tsuji and co-workers used substituted pyridines as ligands to 

prevent formation of Pd black, allowing oxidations to be performed under air and using low catalyst 

loading.65 Sigman and co-workers also developed three novel Pd(II)-catalysts for the aerobic oxidations 

of alcohols,66 and in a recent publication67 they reported a comparison study in which they evaluated the 

substrate scope and the reaction conditions of each of them, concluding that the Pd(OAc)2/TEA system 

represents the most convenient of the three developed catalytic systems. For example, this catalyst was 

employed for the direct conversion of α-hydroxy ketones into quinoxalines (Scheme 17).68 
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Scheme 17. Quinoxaline synthesis via a tandem oxidation process 

 
Another nice example of Pd oxidation catalysis in tandem reactions was shown by Lebel and 

Paquet, who applied the catalyst developed by Sigman66b to the one-pot synthesis of alkenes through a 

tandem oxidation/olefination process (Scheme 18).69 
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Scheme 18. One-pot Pd-catalyzed oxidation and Rh-catalyzed methylenation reaction 

 
In the presence of a chiral diamine, the scope of these oxidations can be expanded to asymmetric 

catalysis, as for example the oxidative kinetic resolution of racemic secondary alcohols or the oxidative 



desymmetrization of meso-diols. Sigman and Stoltz independently discovered70 that in the presence of 

the chiral diamine (-)-sparteine, which plays a dual role of chiral ligand for Pd and exogenous chiral 

base,71 the Pd(II)-catalyzed aerobic oxidation of alcohols afforded efficient oxidative kinetic resolution 

of secondary alcohols, with enantiomeric excesses up to 99.8% (Scheme 19). This methodology was 

recently applied to the enantioselective total synthesis of various alkaloids,72 and to the kinetic 

resolution of key pharmaceutical building blocks, relevant to the enantioselective preparation of 

Prozac®, Singulair® and the promising hNK-1 receptor antagonist from Merck.73 
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Scheme 19. Pd(II)-catalyzed oxidation kinetic resolutions of alcohols 

 
This is an excellent method for the aerobic kinetic resolution of alcohols, leading to remarkably 

high ee’s under optimized conditions; the main limitation of sparteine as a chiral ligand is that only the 

(-)-enantiomer is available in large quantities, and this will remain a problem until an effective method 

is found for the preparation of quantities of its enantiomer or a surrogate thereof.74 However, all the 

Pd(II)-catalysts reported to date are not widely used on a larger industrial scale. Catalysts with improved 

stability and activity need to be developed and the research is still very active in this field. A recent 

study investigated the use of N,O-ligated Pd(II) complexes, which compared well with the previously 

reported N,N-ligands in the aerobic oxidation of 2-octanol on the gram scale.75 

 

PALLADIUM-BASED HETEROGENEOUS CATALYSTS 

Besides the aerobic oxidation of alcohols, palladium catalyzes many oxidative transformations 

including epoxidation of alkenes, oxidation of terminal alkenes to ketones and other Wacker-type 

reactions, oxidation of alkanes, hydroxylation of benzenes, and oxidative coupling reactions.76 Among 

the transition metals, palladium shows very promising catalytic properties in the form of heterogeneous 

metal catalysts or nanoparticles. The major problem related to the use of palladium-based catalysts is 

that palladium agglomeration and formation of palladium black can cause catalyst deactivation in many 

cases.  

Uemura and co-workers attempted heterogenization of their homogenous catalytic system based 

on Pd(OAc)2, pyridine and 3Ǻ molecular sieves59 employing hydrotalcite, a naturally produced basic 

clay mineral, and they found that the Pd/HT system had a higher activity.77 Especially in the oxidation 

of geometrically isomerizable allylic alcohols such as geraniol and nerol this catalyst proved to be 

efficient without any isomerization of the alkenic part (Scheme 20). However, an excess of pyridine 



instead of the usual 20 mol% was required with such alcohols. Pd/HT was reused at least three times, 

although a gradual decrease in catalytic activity was observed.  

OH
CHO

E:Z = 98:2 E:Z = 96:4 (91% yield)

Pd/HT (5mol%)
pyridine (excess)

O2 (1 atm)
toluene, 80°C, 4.5 h  

Scheme 20. Pd(II)-supported hydrotalcite-catalyzed aerobic oxidation of geraniol 
 

The general routes to nanoclusters/nanoparticles synthesis are based on the chemical reduction of 

transition metal salts with the appropriate reducing agent in the presence of a stabilizer for the metal. 

The resulting stabilized metal nanoclusters dispersed in solution can be used as catalysts as such or 

subsequently heterogeneized on solid supports by different means (e.g surface adsorption, covalent 

anchoring, embedding by sol-gel techniques). For example, Pd nanoclusters stabilized by N,N-

dimethylacrylamid-based soluble cross-linked polymers (microgel) were tested as catalysts in the 

selective oxidation of secondary alcohols to the corresponding ketones with molecular oxygen in 

water.78 

Kaneda and co-workers reported hydroxyapatite–supported palladium nanoclusters (Pd/HAP-0) 

prepared from stoichiometric HAP with [PdCl2(PhCN)2] as a metal source.79 Fresh Pd/HAP-0 had an 

induction period of about 10 minutes, in which Pd(II) species were converted into Pd(0) nanoparticles. 

A wide variety of alcohols, also bearing heteroatoms, were oxidized with this heterogeneous catalyst in 

trifluorotoluene at 90°C, in water at 110°C or in solvent-free conditions. 1-Phenyl ethanol was oxidized 

on a quite large scale (30 grams) without any solvent at 160°C.  

An amphiphilic resin dispersion of palladium nanoparticles (ARP-Pd) was reported by Uozumi 

and Nakao, readily prepared by reduction of a PS-PEG resin-supported Pd(II) complex with benzyl 

alcohol (Scheme 21). This catalyst was applied to the aerobic oxidation of benzylic, allylic and 

secondary aliphatic alcohols in refluxing water.80 In the case of primary aliphatic alcohols, the 

corresponding carboxylic acids were obtained in excellent yields in the presence of K2CO3. 
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Scheme 21. Preparation of amphiphilic resin-dispersion of nanoparticles of palladium (ARP-Pd) 

 
However, organic polymers used as support for Pd nanoclusters are potentially susceptible to 

oxidative degradation under aerobic oxidative conditions. Besides the already mentioned hydrotalcite 

and hydroxyapatite minerals, an inorganic alternative for forming a scaffold in which three-dimensional 

dispersions of nanoparticles can be supported is represented by ordered mesoporous structures (such as 

MCM-41 and SBA-15) with regular channel and pore diameters in the range of 2 to 30 nm. Karimi and 

co-workers developed a new type of palladium catalyst immobilized on functionalized SBA-15 and 

applied it to the oxidation of various alcohols in toluene at 80°C in the presence of K2CO3 (1 

equivalent), which was found to be essential to avoid formation of Pd black.81 Primary alcohols were 

converted to the corresponding esters, presumably by previous selective oxidation to carboxylic acids. 

This example showed that the combination of an organic ligand and ordered mesoporous channels 

(Scheme 22) resulted in an interesting synergistic effect that led to enhanced reactivity, prevention of 

the agglomeration of the Pd nanoparticles and generation of a durable catalyst.  
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Scheme 22. Palladium nanoparticles stabilized on mesoporous channels of SBA-15 

 
Park and co-workers reported aluminium hydroxide supported-palladium nanoparticles 

(Pd/AlO(OH)) prepared from [Pd(Ph3)4], tetra(ethylene glycol), 1-butanol, and aluminum tri-sec-

butoxide.82 This catalyst displayed dual catalytic activity for both alkene hydrogenation and aerobic 

oxidation of alcohols. Successful hydrogenation of cholesterol followed by aerobic oxidation to give 

cholestan-3-one was demonstrated in a one-pot manner (Scheme 23).  
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Scheme 23. Cholesterol hydrogenation followed by aerobic oxidation 

 
However, Pd/AlO(OH) did not catalyze the oxidation or primary aliphatic alcohols such as 1-

octanol. Some other examples of palladium-based heterogeneous catalysts obtained by dispersion of the 

metal on an inorganic support have been recently reported, such as Pd/MgO83 or Pd/Al2O3
84 (this latter 

was found to be selective for the aerobic oxidation of allylic alcohols). Moreover, Wang and co-workers 

demonstrated that the preparation method of palladium catalyst on aluminum oxide was important for 

high catalytic performance. Indeed, the activity of Pd/Al2O3 catalyst prepared by an adsorption method 

(Pd/Al2O3-ads) was higher than that prepared by an impregnation method.85 The authors postulate the 

formation of Pd nanoparticles, which are probably the true active species, during the course of alcohol 

oxidation. 

A quite different approach was developed by Leitner and co-workers. They found that the giant 

palladium cluster, [Pd561phen60(OAc)180], dispersed in poly(ethylene glycol) (PEG), efficiently catalyzes 

the aerobic oxidation of alcohols in scCO2 (Scheme 24).  

OH
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PEG-1000  

Scheme 24. Aerobic oxidation of alcohols catalyzed by PEG-stabilized Pd-nanoparticles in scCO2 
 

In this biphasic system, the PEG matrix contains the catalyst (helping in preventing aggregation 

and deactivation of the catalytically active nanoparticles) while the supercritical carbon dioxide phase 

dissolves the substrate and the product (thus providing a safe environment for the use of molecular 

oxygen under essential solvent-free conditions and allowing continuous operation, even with substrates 

of low volatility).86 The authors postulate that the high activity and long term stability of the new 

catalytic system is due to formation of Pd-nanoparticles during the reaction. A variety of alcohols were 

oxidized in these conditions. Both the catalyst matrix and the mobile phase used in this approach are 

toxicologically innocuous and environmentally benign materials, thus making this approach particularly 

appealing for “green” nanoparticle catalysis. 

Interestingly, as previously mentioned, Sheldon and co-workers recently demonstrated that, 

contrarily to the catalytic system based on the bathophenanthroline disulfonate ligand (Scheme 16),62 



their previously described homogeneous catalytic system based on Pd(II) acetate in combination with 

the more hindered neocuproine ligand63 actually involves palladium nanoparticles. The susbstrate 

alcohol acts indeed as the reducing agent and in situ forms Pd-nanoparticles which are the effective 

catalysts. The catalytic system based on neocuproine-stabilized palladium nanoparticles was applied to 

the oxidation of nandrolone (Scheme 25).64  
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Scheme 25. Aerobic oxidation of nandrolone with Pd nanoparticles in acqueous media 
 

Much work has to be done yet in order to investigate in detail the mechanisms involved when 

nanoparticles are formed in the reaction. Indeed, it is difficult to attribute the actual catalytic activity 

solely to the ligand bound Pd or to the Pd nanoparticles. 

 

 

GOLD-BASED HOMOGENOUS CATALYSTS  

The homogeneous oxidation of alcohol catalyzed by gold has rarely been reported. Shi and co-

workers,87 in early evaluations, optimized the aerobic oxidation of primary and secondary benzylic and 

allylic alcohols using AuCl (5 mol%) and ligand (6.3 mol%) in toluene at 90°C under oxygen 

atmosphere (Scheme 26).  
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Scheme 26. Oxidation of alcohols with gold(I) complexes 

 
Addition of 4Å molecular sieves proved to be beneficial for the reaction. With activated benzyl 

and allylic alcohols as substrates, both conversions and yields were very high, only aldehydes were 

produced with excellent selectivity with no overoxidation to carboxylic acids; however, primary 

aliphatic alcohols were slowly oxidized and formed aldol byproducts. This system was then improved, 

in terms of sustainability of the process, using water as solvent.88 Different oxidants, bases and ligands 

were studied and a final optimized system using 1:1 ratio of gold(I)-neocuproine as catalyst in aqueous 

basic solution under O2 atmosphere was found. Surprisingly, the oxidation run efficiently only with 

NaHCO3 as base, NaOH or organic bases, such as Et3N, being inefficient. The limitation of this 



oxidation procedure is the same as the previous: the narrow substrate scope, being limited to secondary 

benzyl or allyl alcohols. Moreover, given Sheldon’s results with Pd-neocuproine, we cannot exclude 

that the effective catalysts here are gold nanoparticles formed by gold reduction by the alcohol substrate.  

 

GOLD-BASED HETEROGENOUS CATALYSTS  

Although bulk gold has for a long time being regarded as a poorly active metal, the surprisingly 

high activity of gold nanoparticles has initiated intensive research into their use for aerobic oxidation 

reactions. Moreover, the recent findings related to the synergic activity of bimetallic nanocluster 

catalysis has further expanded the possibilities for the design of new efficient gold-based heterogeneous 

catalysts. 

The general procedure for the synthesis of gold nanoparticles is based on reduction of Au salts by 

a reducing agent or by the support itself in some cases. The first to clearly demonstrate that supported 

gold nanoparticles can be very effective catalysts for the oxidation of alcohol were Rossi, Prati and co-

workers. They employed Au/carbon catalysts, which were effective for a wide range of substrates like 

diols, glucose and aminoalcohols, and found that the presence of a base was essential for catalysis.89 

Similar Au/SiO2 catalysts were found to be effective with gas-phase reactants and, in this case, no base 

addition was required.90 These pioneering studies using Au/carbon catalysts were extended by 

Hutchings and co-workers91 who showed that Au supported on graphite could oxidize glycerol to 

glycerate with 100% selectivity using dioxygen as the oxidant in water with yields approaching to 60%. 

It was observed that the selectivity to glyceric acid and the glycerol conversion were strongly dependent 

upon the glycerol/NaOH ratio (Scheme 27).  

Au/graphite (1 mol%)OH
O2, H2O, NaOH, 60°C

OH
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O  
Scheme 27. Oxidation of glycerol using Au/graphite catalysts 

 
Afterwards, Qiu et al. demonstrated that water has dual promotional functions in the catalytic 

activity of Au/TiO2 for the selective oxidation of benzyl alcohol: it helps to form microdroplets in a 

multiphase reaction system and it assists the oxygen adsorption and activation.92  

One of the most significant advances in the field of alcohol oxidations has been the observations 

by Corma and co-workers who showed that Au/CeO2 catalyst is active for the selective oxidation of 

alcohols to aldehydes and ketones and the oxidation of aldehydes to acids.93 In these studies, the 

catalysts are active in solvent-free conditions, using O2 as oxidant without the requirement for the 

addition of NaOH to achieve high activity. Subsequently they showed that for the relevant oxidation of 

allylic alcohols, gold presented unique selectivity when compared with Pd (Scheme 28).94  
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Scheme 28. Aerobic oxidation of allylic alcohols under solvent-free conditions  

 
In many catalytic studies, the support-catalyst interaction is a crucial factor for controlling 

reactivity.93,95 Interestingly, Rossi and co-workers have shown that water-dispersed “naked” gold 

colloidal particles can be very effective catalysts for the oxidation of glucose to gluconic acid.96 These 

particles were produced as a colloidal sol by reducing HAuCl4 in the presence of a large excess of 

glucose acting either as reagent or protector. Christensen, Riisager et al. have made a number of 

significant advances in the direct oxidation of primary alcohols using supported gold nanocrystals and 

they have concentrated their efforts on decreasing the amount of base required in these oxidations. They 

have shown that Au-MgAl2O4 can catalyze the oxidation of aqueous solutions of ethanol to give acetic 

acid in high yields.97 This provides a potential new route to a key commodity chemical that is based on a 

bio-renewable feedstock using a substantially green technology approach. Recently, they presented the 

one-pot conversion of alcohols to imines (Scheme 29) by aerobic oxidation with Au/TiO2 followed by 

condensation with primary amines in methanol.98 
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Scheme 29. Au-catalyzed one-pot formation of imines 

 
Polymer compounds are attractive because they work as quasi-homogeneous catalysts and provide 

a large contact area to organic substrates. Examples of these catalysts are represented by the gold-

nanocluster stabilized by water-soluble polymer poly(N-vinyl-2-pyrrolidone) (Au:PVP),99 and the 

microgel-stabilized Au nanoclusters prepared by gold nanoclusters of small size and an appropriate 

microgel like vinylpyridine with a narrow size.100 Both catalysts performed very well for the aerobic 

oxidation of alcohols in water. Kobayashi and co-workers developed, besides PI Ru (Scheme 13), also a 

polymer-incarcerated gold catalyst (PI Au) for the selective oxidation of alcohols at room temperature 

and atmospheric pressure of molecular oxygen on air.101 Aromatic and aliphatic secondary alcohols. 

also containing S and N heteroatoms, were oxidized to the corresponding carbonyl compounds in good 

yields and the catalyst could be reused at least 10 times without loss of activity. The same PI Au was 

used for oxidative esterification of alcohols under ambient conditions102 and could be applied to 

triphasic (gas-liquid-solid) reactions by using a microchannel reactor and a capillary column also with 



molecular oxygen.103 Recently, Kobayashi et al. included carbon black (CB) to the composition of the 

PI Au to enhance the stability of gold nanoclusters probably via synergistic π-π interactions between the 

three components which enables they to increase the metal loading amount up to 0.60 mmol g-1.104  

The oxidation of benzyl alcohols was also reported in scCO2 using Au-catalysts supported on 

TiO2, Fe2O3 and C.105 At 100°C and a total gas pressure of 15.0 mPa, benzyl alcohol, O2 and CO2 

formed a single homogeneous phase and benzaldheyde was obtained with 99.0% selectivity but only 

16.0% conversion using 1% Au/TiO2. Higher conversions were achieved by Kawanami et al. using 2% 

Au/TiO2, prepared by a deposition-precipitation (DP) method.106 

Recently, the synergic activity of bimetallic nanoclusters has been presented. Hatchings et al. 

showed that alloying Pd with Au in supported Au/TiO2 catalysts, that was found the best support in 

previously studies,95 the activity for alcohol oxidation was enhanced under solvent-free conditions by a 

factor of over 25.107 Then, Zheng and Stucky demonstrated that with the use of low-cost promoting 

agents (i.e. K2CO3) instead of Pd and under similar conditions, oxide-supported pure gold nanoparticles 

could catalyze the oxidation of alcohols even more efficiently; in particular, in contrast to Au/Pd-TiO2 

catalysts which were inactive for the oxidation of 2-octanol, pure supported gold nanoparticles were 

highly active with the help of a small amount of K2CO3.108 Recently, Prati and co-workers reported that 

Au-Pt nanoparticles supported on the zeolite H-mordenite were able to selectively oxidize glycerol 

directly to glyceric acid without the use of basic conditions.109 Also Kobayashi et al. studied the aerobic 

oxidation of alcohols under ambient condition with gold-platinum bimetallic clusters110 and in a recent 

publication they compared the different selectivities using different metal combination catalysts.111 

Recently, using pyrrolidone-modified SBA-15 supported Au nanoparticles, Xiao, Meng et al. 

presented a catalytic system which synergistically combined the advantages of both homogeneous 

catalysts (high activity) and heterogeneous catalysts (good recyclability). This system could oxidized 1-

butanol with 50.7% conversion.112 

Hirao and coworkers reported the first example of catalyst design for the alcohol oxidation 

reaction using a redox-active polymer as the catalyst support (Scheme 30).113 They demonstrated that 

the redox-active PMAS (poly(2-methoxyaniline-5-sulfonic acid)) can work in a multi-catalytic process 

as both a stabilizer of Au NPs and a redox mediator for aerobic alcohol oxidation in water (Scheme 30). 

This design concept provides a new type of redox catalyst system for transferring protons and electrons. 
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Scheme 30. Proposed multi-catalytic cycles for the oxidation with Au NPs and PMAS 

 

CONCLUSIONS 

During the last 15 years there has been a considerable increase of interest in the area of metal-

catalyzed aerobic alcohol oxidations. In the field of homogeneous alcohol oxidations, the Marko’s Cu-

(phen), the Sheldon’s Pd-(sulfonated bathophenantroline) and the Sigman’s Pd(OAc2)/TEA systems are 

the most mature. Ruthenium-based catalysts often suffer from the need for high catalyst loading. A 

considerable effort has been also made to replace common organic solvents with alternative solvents 

such as ionic liquids, fluorinated solvents or supercritical CO2 or to perform the oxidation reactions in 

water. Regarding the chemoselectivity of the reaction, it is interesting to note the complementarity 

between Cu-based catalysts, who better work with primary alcohols, and gold-based catalysts, who 

better perform the oxidation of secondary alcohols. Selective methods to obtain aldeydes or carboxylic 

acids from primary alcohols were also developed. Moreover, elegant examples of efficient kinetic 

resolutions of racemic secondary alcohols and desymmetrization of meso diols were achieved with Pd-

based catalysts in the presence of (-)-sparteine as the chiral ligand. The discovery that Pd and Au 

nanoparticles are effective catalysts for the oxidation of alcohol moieties has further expanded this 

research field in the search for new heterogeneous systems, that can allow recovery and reuse of the 

metal catalyst and the obtainment of pure products. Mechanistically, not much work has been done to 

elucidate the fine details for many of the metal-catalyzed aerobic alcohol oxidations, except for Pd-

catalyzed aerobic alcohol oxidations. Especially for the new heterogeneous procedures involving 

nanoparticles, the exact nature of the active catalyst has still to be understood. While there has been a 

tremendous amount of effort applied to the development and improvement of metal-catalyzed aerobic 

alcohol oxidations, many improvements can be still envisioned. For instance, in order to use these 

methods in target synthesis, the scope of the individual catalytic systems must be broadened to include 

more complex alcohols that are synthetically relevant. Moreover, each method should be tested on a 

larger scale to explore its potential utility in the industrial processes. 
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