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Abstract

The term service has been used for more than two decades and it is more and more
common today tanks to the recent diffusion of Web Services (ws). ws are a way of
implementing Service Oriented Architecture (soa): an architectural style introduced
in the 90s and developed around the concept of service. While there exist a lot of
“high-level” languages and proposals for describing and defining ws, this technology
still lacks formal basis. We argue that process calculi are a promising tool for modeling
and studying soa, in general, and ws, in particular.

In this thesis we will consider a few basic aspects of soa and propose formal
methods – based on process calculi, type systems and behavioral equivalences – for
reasoning on them. The aspects of soa we are interested in are: xml message pass-
ing, distributed and concurrent evaluation of xml queries, responsiveness of services,
failures and transactions.

In the first part of the thesis we focus on the processing model. We consider
soa and ws as communication-centered applications, and propose XPi, a core calculus
for xml messaging. XPi features asynchronous communications, pattern matching,
name and code mobility and integration of static and dynamic typing. We study the
typing issues arising from interactions of these features. Next, we take into account
distribution of documents and services. We propose an asynchronous process calcu-
lus, named Astuce, where xml data and expressions are represented as distributed
processes. The calculus is accompanied by a static type system based on regular ex-
pression types. In the second part, we concentrate on responsiveness and atomicity,
two relevant non-functional aspects of services. A responsive system is one for which
it is guaranteed that any service invocation will be eventually replied. We describe
services as π-calculus processes and define two different type systems each of which
statically ensures responsive usage of return channels, that implies responsiveness of
services. After that, we study transactional aspects of ws. In particular, we formalize
the optimistic approach of the Software Transactional Memory model from a process
calculi viewpoint. We define an extension of the asynchronous ccs with atomic blocks
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Abstract iv

and prove a few interesting properties of this model using behavioral equivalences.
E.g. we prove that our proposal can be used for encoding concurrency primitives like
choice and mutiset-synchronization à la Join-calculus.



Résumé

Le terme de service fait partie du vocabulaire informatique depuis plus de deux
décennies maintenant. Néanmoins, on le retrouve de plus en plus utilisé aujourd’hui
de part la diffusion grandissante du modèle des Services Web (ws). Les Services
Web sont lié aux Architectures Orientées Service (soa), une approche à la conception
des systèmes distribué, développée dans les années 90, et fondée sur l’interaction entre
composants logiciels faiblement couplés (les services) ; les Services Web sont un moyen
d’implanter les applications basées sur l’approche soa.

Alors qu’il existe un grand nombre de propositions de langages de haut niveau pour
spécifier ou implanter les ws, les technologies existantes manquent pour la plupart de
bases formelles. Un postulat de notre approche est que les calculs de processus four-
nissent un outil de choix dans l’étude de la sémantique des Services Web. Dans cette
thèse, nous cherchons à modéliser certains aspects de base des SOA et proposons des
méthodes formelles pour les étudier. Les aspects que nous étudions sont : l’échange de
documents xml comme valeur entre services ; l’évaluation distribuée de requêtes xml ;
la disponibilité des services (service responsiveness) ; le comportement transactionnel.
Pour ce faire, les outils utilisés sont essentiellement basés sur les calculs de processus
; les systèmes de types ; et les équivalences comportementales.

Dans la première partie de la thèse, nous nous concentrons sur le modèle opéra-
tionnel des services. Nous proposons un calcul de processus typé, XPi, afin de mod-
éliser les ws. XPi étend le pi-calcul de Milner avec la possibilité d’envoyer des docu-
ments xml comme valeur dans un message ; il ajoute aussi des opérateurs de filtrage
sur les valeurs, des primitives pour la mobilité de noms et la migration de code, et
il intègre un système de typage mêlant approches statique et dynamique. Nous in-
troduisons également un second modèle formel dans lequel les documents, comme les
processus, sont distribués. Dans ce modèle, la vérification de la conformité des services
utilise un système de types basé sur des expressions régulières de types.

Dans la seconde partie de la thèse, nous nous concentrons sur deux aspects
non fonctionnels des services : la disponibilité et l’atomicité. On parle de service
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Résumé vi

disponible lorsqu’on peut garantir qu’un message d’invocation est toujours suivi (à
plus ou moins longue échéance) par un message de réponse. Dans cette partie, nous
modélisons un service par un processus du pi-calcul et définissons deux systèmes de
types, d’expressivité croissante, permettant de certifier statiquement si un processus
est disponible. Nous étudions aussi les aspects transactionnels des WS en adaptant
au cadre des calculs de processus l’approche dite “Software Transactional Memory”
(stm). Plus précisément, nous étendons ccs asynchrone en ajoutant la possibilité de
déclarer des blocs d’actions devant s’exécuter atomiquement ; cette extension modifie
sensiblement la sémantique du calcul et permet de prouver de nouvelles propriétés
intéressantes.
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2.3 Une approche algèbre de processus pour l’étude des Web Services . . . 23
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Chapter

ONE

Introduction

In this introductory chapter, we set the scene of the whole thesis. In Section 2.2, we
introduce Service Oriented Architecture and the main related concepts. In Section 2.3,
we describe the process algebraic approach we follow and give an overview of the thesis.
In Section 2.4 we summarize the main contribution of this thesis and in Section 1.4
we discuss related works.

1.1 Service Oriented Architecture and Web Services

The term service has been used for more than two decades. By now for example,
transaction monitoring software used the term “service” in the early 1990s. In the
same years, many client-server development efforts used the term“services” to indicate
methods furnished by servers and accessed by clients by using remote method calls.
Recently, Web Services (ws) have given this term more prominence and have renewed
the interests in Service-Oriented Architecture (soa).

Service Oriented Architecture. soa can be considered as an architectural evolu-
tion, rather than a revolution, which captures many of the best practices of previous
software architectures. soa is just a revival of the Component Based Architecture,
Interface Based Design and Distributed Systems of the 1990s and inherits their key
aspects and principles, such as distribution, autonomy, reusability and composability
of services. While these concepts have existed for decades, the adoption of soa is
accelerating due to the emergence of standard-based integration technologies. That
is, eXtensible Markup Language (xml), a simplified subset of Standard Generalized
Markup Language introduced to facilitate the sharing of data across different informa-

1



1. Introduction 2

tion systems, and ws, xml based systems designed to support interoperable machine-
to-machine interaction over a network.

The goal promoted by soa is loose-coupling, that is separating users from service
implementations with the aim of maximizing the reuse of application-neutral services
and of increasing efficiency. A service can provide a single specific function, typically
a business function, or it can perform a set of related functions. For instance, a ser-
vice can convert one type of currency into another, can translate words, can analyze
an individual’s credit history, can process a purchase order or can handle operations
involved in an airline reservation system. Thanks to loose-coupling, clients commu-
nicate with services according to well-defined interfaces and then leave it up to the
service implementation (back-end) to perform the necessary processing. Modifications
of the back-end services, for instance a revision of the airline reservation application,
do not affect the way clients communicate with the service, provided that the interface
remains the same. Interfaces, also called contracts, are at the heart of soa. They are
used for describing the functional part of services and provide indication for formal
parameters and the constraints and policies defining the “contractual terms” to invoke
the service. Moreover, they provide a description of non-functional aspects of services,
such as security, transactionality and Quality of Service.

Web Services. Recently, ws have become the most prevalent approach to imple-
menting soa. This is possible thanks to the widespread acceptance of ws as a de-
facto standard. ws are communication-centered applications and in general they use
message-passing as communication paradigm. Message-passing allows clients and ser-
vices to communicate and understand with each other across a wide variety of plat-
forms and language boundaries. In spite of their diffusion, a globally accepted formal
definition of ws does not exist. The most relevant attempt to define ws is due to the
World Wide Web Consortium (w3c) [27]. The w3c defines ws and the ws protocol
stack – a collection of computer networking protocols that are used to define, locate,
implement and make ws interact with each other – as follows:

“A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface de-
scribed in a machine-processable format (specifically wsdl). Other sys-
tems interact with the Web service in a manner prescribed by its descrip-
tion using soap-messages, typically conveyed using http with an xml

serialization in conjunction with other Web-related standards.”



3 1.1. Service Oriented Architecture and Web Services

http has been introduced in 1996 by the w3c and, since then, it has become the
most popular Web transport protocol.

xml has recently become the de-facto standard for describing data to be exchanged
on the Web. As its name indicates, xml is a markup language; it involves the use
of tags that “mark up” and describe the content of a document. Each tag identifies
information in a document and its structure. An xml document is typically associated
with a schema (defined using e.g. dtd [138] or xml-Schema [137]) that specifies the
structure of the document: what tags are allowed, their structure, the type of data
expected in a tag and so on. Valid xml documents must be well-formed (opening
and closing tags must correspond and be “well-nested”) and conform to the associated
schema.

Agreeing on the meaning and structure of xml tags makes the use of xml an
effective way to exchange data, but this is not sufficient for data interchange on the
Web. For instance, the sender still needs some agreed-upon protocol for formatting an
xml document so that the receiver understand what the main part of the message is
and what part contains additional instructions or supplemental content. That’s where
Simple Object Access Protocol (soap) comes in. soap is a protocol for exchanging
xml data over networks. The most common soap’s messaging pattern is the Remote
Procedure Call pattern, where a node (the client) sends a message (a request) to an-
other node (the server), which in turn replies to the client by sending another message
(a reply). The basic item of transmission in soap is a soap message, which, a part
from the body of the message, contains a mandatory envelope specifying additional
information – such as the encoding style – necessary for understanding and handling
the received message. It is also possible to specify an optional header to indicate some
additional processing at intermediate nodes reached along the message path from the
sender to the receiver.

At the top level of the stack, Web Services Description Language (wsdl [58])
defines an xml Schema for describing ws’s interfaces. A wsdl document defines
interfaces in terms of ports and messages – data transmitted to (and sent by) ports
– in an abstract way. wsdl disciplines the usage of ports by defining and associating
them port types. A port type describes a collection of message types that are expected
to be received at (and sent by) the associated port. To discover the description of
a ws, a client needs to find the service’s wsdl document. A typical way to do this
for the client is to find a pointer to the wsdl document in the Universal Description,
Discovery and Integration (uddi) registry: the “Yellow Pages” for ws.
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More on standards for Web Services. The previously mentioned standards ad-
dress the basics of interoperable services and of the ws protocol stack. They ensure
that a client can find a service and issue a request understood by the service, inde-
pendently from where the client and the service reside and from what language they
are coded in. In particular, the wsdl notion of port types provides a way to describe
a service-usage discipline. Port types can be considered a basic kind of contracts
between service requester and service provider. But they say nothing about non-
functional requirements (like Quality of Service, time and order) that would appear
in a business-level contract governing an actual service provision. Contracts require
more than just wsdl and more “high -level” standards have to be adopted for ws to
become a current practice.

ws-Policy provides a general purpose model and corresponding syntax to describe
the policies of a ws; ws-Security describes security-related enhancements to soap mes-
saging that provide for message integrity and confidentiality; Web Services Business
Process Execution Language (bpel4ws) can be used for coordinating ws invocations
and interactions. And more, Web Services Choreography Description Language (ws-
cdl) is an xml-based language that describes peer-to-peer collaborations of parties by
defining, from a global viewpoint, their common and complementary observable be-
havior; Web Services Level Agreements (wsla) defines the agreed-upon performance
characteristics of a service and the way to evaluate and measure them; Web Services
Offerings Language (wsol) enables formal specification of multiple classes of service
for one ws; and ws-Transactions defines mechanisms for transactional interoperabil-
ity between ws and provides means to compose transactional qualities of service into
ws applications. All these – and plenty of others – emerging proposed standards allow
to specify non-functional requirements in great detail.

Putting the standards together. In the Web Services Architecture specifica-
tion [27], the w3c explains how these and related technologies can be assembled
together to deliver the greatest number of benefits. This architecture defines the
relationships and constraints among the basic aspects of ws and includes four comple-
mentary models, each of them oriented to describe and define one specific aspect. Two
models focus on the functional part of contracts: the so-called message-oriented and
service-oriented models. The first one focuses on messages: structure, transport and
manipulation. The second one focuses on service related aspects and on sequences
of actions the involved parties are supposed to perform for correct interaction, the
so-called choreography. The third model, called policy-oriented, defines sets of obliga-
tions and permissions useful to formally describe the non-functional part of contracts.
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The last model, called resource-oriented, focuses on those aspects related to resources,
such as discovery and description.

Moreover, in [27] the w3c identifies two major classes of ws: arbitrary and rest-
compliant. Arbitrary ws may expose an arbitrary set of operations on “concrete”
resources, like purchase order and shipping. The primary purpose of rest-compliant
ws, instead, is the manipulation of xml representations of Web resources using a
uniform set of “stateless” operations, like in search engines. Hence, the Representation
State Transfer (rest) architecture can be seen as a model for building ws. rest has
been introduced by Roy Fielding [70] as an architectural style for the World Wide Web
(www). The rest Web is the subset of the www (based on http) in which agents
provide uniform interface semantics – essentially create, retrieve, update and delete on
web resources – rather than arbitrary or application-specific interfaces. Furthermore,
the rest interactions are stateless in the sense that the meaning of a message does
not depend on the state of the conversation.

1.2 This thesis: a process algebraic approach to Web Ser-

vices

All previously mentioned proposals allow to describe services in functional
and non-functional terms. However, as stated in [24], some of them say nothing
about the correct functioning of such application (like wsdl) or say too much
and their expressive power causes them to be more about implementation rather
than specification of useful and interesting properties (like bpel4ws). The raising
question is if there exist any interesting or useful specification mechanisms in between
pure connectivity (wsdl) and full implementation (bpel4ws) enabling the rigorous
verification of the correct functioning of such applications. The answer is positive:
formal methods. While several proposals rely on Petri nets, (timed) automata
and digraphs as conceptual models for describing ws and ws composition (see e.g.
[50, 1, 17, 90, 106, 118]), it is generally recognized that mobile process calculi (a.k.a.
process algebras) are natural candidates for the formal specification of ws. Moreover,
the last 30 years of research on the algebraic specification of systems has yielded
simple, but powerful, methods (e.g. type systems and behavioral equivalences) for
specifying and verifying their behavior. Generally speaking, process calculi provide a
simple and expressive framework in which to reason about properties of concurrent,
distributed and mobile systems. In particular, the π-calculus of Milner, Parrow and
Walker [111] features name-passing – a distilled form of message-passing, the base
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communication ontology adopted by ws – and is a promising candidate for laying
the basis of a rigorous semantic theory of ws. The π-calculus is a powerful language,
designed for describing the behavior of concurrent systems and is built around
abstractions of ports: channels. π-processes are built in terms of synchronization
constraints over input/output request (messages) at a collection of ports (channels).
Furthermore, the π-calculus is at the basis of many other languages which target
specific aspects of concurrent and distributed systems, like the spi-calculus [3] and
the applied π-calculus [2], which have been used to study security protocols, and the
distributed π-calculus [83] and safeDpi [82], which have been used for resource access
control.

The idea underlying the process algebraic approach to ws is that of exploiting
the common base ontology of ws and process calculi (communication) and describing
services and clients as processes, so as to use or adapt existing techniques, or define
new ones, for guaranteeing some properties of services. Notably, one can be interested
in proving that the “contractual terms” defined in service interfaces are respected
both by clients and services. A lot of recent proposals adhere to this approach (see
Section 1.4 for a digression on related works) and this is the direction we follow in this
thesis.

With the aim of describing and studying ws, we use process calculi for defining
services and clients, and type system and behavioral equivalences for reasoning on
them. Contracts are really powerful instruments for defining services, moreover they
are usually expressed in human language, which, as well-known, is extremely rich and
ambiguous. It follows that there are a lot of aspects and problems one has to deal with
when designing and analyzing ws. Of course, it is not possible to cover all of them
in this work. Here, as a starting point, we have chosen to focus on some important
functional (Part I) and non-functional (Part II) aspects of ws as explained below.

In the first part of this thesis, Chapter 3 and 4, we focus on the computational
model and, in particular, on the message-oriented architectural model. This choice is
due to the fact that communication – messages, messaging and pattern matching –
is the basic interaction mechanism of ws. We propose two computational models for
arbitrary and rest-compliant web services, which focuses respectively on message
exchange among clients and services and distribution of resources. In the second
part, Chapter 5 and 6, we target policy-oriented model, and specifically two non-
functional aspects of ws: responsiveness and transactionality. We judge these two
as basic properties of services. Responsiveness because it guarantees to clients that
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each request will be eventually processed and replied. Transactionality because it
ensures that the execution of “critical” operations always satisfies some transactional
properties (like e.g. consistency and isolation). As already stated, our work does not
cover the huge number of – functional and non-functional – contractual constraints
and aspects of ws, and there is a lot of work to do in this direction. As an example,
we have not directly addressed neither the coordination and orchestration aspects,
nor the security-related and resource management problems. A more detailed plan of
the thesis follows.

Given that ws are mainly viewed as communication-centered applications, we in-
vestigate this aspect first. In Chapter 3 we propose a core calculus for xml messaging,
named XPi. XPi is an asynchronous version of the π-calculus where: addresses on
the net are represented as names (channels); messages passed around are xml docu-
ments; and clients and services are represented as processes that may communicate by
sending and retrieving messages on channels. In XPi, an output action corresponds to
sending an xml message over a channel and an input corresponds to querying chan-
nel’s content. A type system ensures that messages comply with channel’s capacity
– that is with the structure expected by contract terms – and that there will not be
type mismatch at run-time. XPi is equipped with a behavioral equivalence based on
barbed bisimulation, useful for reasoning on the behavior of service implementations.

The model we propose in Chapter 3 is not appropriate for modelling ws described
according to the rest architectural model, which focuses on resources and distribu-
tion rather than communication. In Chapter 4 we try to capture these aspects by
focusing our attention on a computation paradigm inspired by search-engines and
their applications. Actually, our aim is to define a model suitable for representing and
querying large, distributed and dynamically generated xml documents. We propose a
process calculus, Astuce, where xml data are processes that can be queried by means
of concurrent pattern-matching and documents and pattern evaluations are concur-
rently distributed among locations. A type system, based on regular expression types,
ensures that messages, patterns and retrieved information comply with the expected
structure.

In the second part of the thesis, we focus on policy-oriented aspects, where policies
are used for describing non-functional aspects of contracts. A policy is generically
defined as either an obligation or a permission of either (not) do an action or (not) be
in a particular state. Obviously, distinct contracts may give rise to distinct policies.
Here we try to capture this fundamental guarantees, usually expected by service users:
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responsiveness and transactionality.
Responsiveness ensures that any request to a service is eventually followed by a

reply. In Chapter 5, we formally define responsiveness in a process calculus, represent
services as π-calculus processes, and define two type systems each of which statically
ensures responsiveness of processes. The first system allows one not only to ensure
responsiveness, but also to say something about latency (response time) of services. In
fact it allows for upper bounds on the number of actions preceding a reply. The second
one is less restrictive than the first and expressive enough to let internal choice and
orchestration patterns expressed in Cook and Misra’s orc orchestration language [59]
(see § 1.4.1 for more details about orc) be encodable into well typed processes.

Transactions, in a databases’ theory sense, can be defined as minimal units of
interaction with a database management system. Transactions are usually required
to satisfy the well-known acid properties: atomicity (a transaction must be either
completed or aborted), consistency (a transaction cannot break global invariants),
isolation (partial execution of transactions cannot be observed) and durability (the
effects of a committed transaction cannot be undone). As ws transactions are long-
lived (or long-running) and involve more than one ws, the acid properties cannot in
general be guaranteed. In fact, the most reasonable way for “undoing” the effects of
a long-running transaction is to use programmable compensations. In other words, to
use additional code that is activated when a failure occurs, with the aim of recover-
ing a consistent state. Compensation is a global answer to failures that presuppose
the existence of local mechanisms for ensuring transactionality in each node partic-
ipating at the transaction. Local transactionality is usually implemented by using
a lock-based approach, which is widely recognized as difficult and error prone. We
study here the original approach found in the Software Transactional Memory (stm)
model [84], where transactions are regulated optimistically. In particular, sequences of
transactional actions are grouped into atomic blocks whose whole effect should occur
atomically. In Chapter 6 we investigate this model from a process algebra perspective
and define Atccs, an extension of asynchronous ccs [110] with atomic blocks of ac-
tions. Suitable behavioral equivalences for processes and atomic blocks of actions are
defined and a few interesting properties of this model are proved. E.g. we introduce
some “laws of transactions” which allow to rewrite each atomic block in an equivalent
one in normal form. We also show that the addition of atomic transactions results in a
very expressive calculus, powerful enough to let easily encode other concurrency prim-
itives such as (preemptive versions of) guarded choice and multiset-synchronization à
la Join-calculus [72]. It is worth to notice that this last piece of work is only a first
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attempt at studying the stm approach from a process calculi viewpoint, one where
we consider a local model. Further work is in order to make the approach effective in
a distributed setting.

1.3 Summary of contributions

We summarize below the main contributions of this thesis.

• We define XPi, an asynchronous core calculus for xml messaging which can be
used for studying the communication features of ws. We introduce static and
dynamic types for XPi and prove results on run-time safety. XPi is a joint work
with M. Boreale and has been presented at FMOODS’05 [5].

• We present Astuce, a functional strongly-typed programming model for querying
large and distributed xml documents. We introduce a type system for Astuce,
which is based on regular expression types and is compatible with dtd and other
schemes for xml, and prove type soundness of the calculus. Astuce is a joint
work with M. Boreale and S. Dal Zilio and has been presented at TGC’06 [6].

• We propose type systems for statically ensuring responsiveness of services rep-
resented as π-calculus processes and apply them to non-trivial examples. This
is a joint work with M. Boreale and has been presented at ASIAN’06 [7].

• We define Atccs, a process calculus for atomic transactions that can be used for
describing transactionality of services. Atccs is based on the original optimistic
approach of the stm model and is equipped with a congruence useful for reason-
ing on processes and atomic expressions and proving interesting equations, e.g.
laws stating properties of atomic operators like commutativity and distributivity
(with respect to choice) of action prefix. Atccs is a joint work with M. Boreale
and S. Dal Zilio and has been presented at ESOP’07 [8].

1.4 Related Work

In this section we consider works that are interesting to the present setting. Papers
that are specifically related to our work will be examined in later chapters. We organize
the section in three parts. In Section 1.4.1, we introduce the most popular languages
proposed for the definition and description of ws. In Section 1.4.2, we make a roundup
of various languages introduced for the processing of xml documents. Finally, in
Section 1.4.3, we comment on some of the existing type systems for process calculi.
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1.4.1 Languages for Web Services

The large spectrum of works on languages for ws can be divided into two sub-
classes: languages for the description of ws in terms of communication, orchestration,
behavior and so on; and languages for the description of contracts.

Languages for communication and orchestration. Microsoft’s BizTalk [23] is
a system for orchestrating message-based applications on the Internet, which mod-
els processes as flowcharts, features short, long and timed transactions, and provide
basic actions for sending or receiving data and controlling the workflow. BizTalk im-
plements XLang [129]: an xml business process language inspired by the π-calculus.
XLang provides a way to orchestrate applications and ws into larger-scale, federated
applications by enabling developers to aggregate even the largest applications as com-
ponents in a long-lived business process. XLang is a precursor of Business Process
Execution Language for Web Services (bpel4ws) [13]: an orchestration language for
ws which allow to describe business processes in terms of the offered services and of
the behavior of the involved actors.

A lot of works aiming at translating (a subset of) bpel4ws into process alge-
bras and at defining a formal semantics for it have been proposed: we present a
brief overview of the most relevant ones. In [103], the authors consider a subset
of bpel4ws, which is sufficient to model the interactions among ws, and define its
operational semantics. The language is supplied with a type system that is useful
for disciplining communications. In [71], the authors propose a formal approach to
model and verify the composition of ws workflow using the Finite State Processes
(fsp) notation and the ltsa tool. Their paper introduces a translation of the main
bpel4ws structured activities into fsp. In [74], an approach to analyze bpel4ws

composite ws communicating through asynchronous messages is presented. The au-
thors use guarded automata as an intermediate language from which different target
languages (and tools) can potentially be employed. Ferrara [68] defines a two-way
mapping between the Lotos process algebra and executable ws written in bpel4ws,
including in the mapping also faults, compensations, and event handlers. In [119],
the authors propose a language called µ-bpel including all primitives and structured
activities within bpel4ws, except compensation handler with scope. They propose a
mapping from µ-bpel to Timed Automata (ta) that is useful for using existing au-
tomatic tools for ta with the aim of checking properties of bpel4ws processes. One
of the main features of bpel4ws is the fully programmable fault and compensation
handling mechanism, which allows the user to specify the compensation behavior of
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processes in application-specific manners. In [104, 120, 44] the authors formalize this
key aspects and propose operational semantics for them. We will say more about
compensation in Section 6.1.

Works aiming at reasoning only on some key aspects of ws and integrating such
aspects into process calculi are closer to ours. Bierman and Sewell [21] define Iota:
a concurrent xml scripting language used to program Home Area Networks. Iota
is a strongly typed functional language with concurrency primitives inspired by the
π-calculus. The type system ensures well-formedness of xml documents, but it says
nothing about validity, that is about the conformance of documents with respect to
dtd or schemes. Gardner and Maffeis [75] define Xdπ: a peer-to-peer model for rea-
soning about dynamic web data. Xdπ is a calculus for describing interaction between
data and processes across distributed locations; it is focused on process migration and
lacks of a type system.

Brown et al. [34] have defined πDuce: an extension of the π-calculus with native
xml datatypes and operators for constructing and deconstructing xml documents.
πDuce features asynchronous communication and code/name mobility. The consid-
ered pattern matching mechanism embodies built-in type checks. The language in [52]
is basically a π-calculus enriched with a rich form of “semantic” subtyping and pattern
matching. Pattern matching, similarly to πDuce’s, performs type checks on messages.

A recent proposal is Cook and Misra’s orc [59] orchestration language: a basic
programming model for structured orchestration of services. scc [31] is a process
calculus for orchestrating services influenced by orc. scc features explicit notions of
service definition, service invocation and session handling. Similarly, cows [102] is
an ad-hoc process calculus for orchestrating ws. cows borrows from already existing
caluli its main ingredients – asynchronous communication, pattern matching, protec-
tion and killing activities – and, as bpel4ws, uses a mechanism based on correlation
sets for correlating different interactions, rather than explicitly representing sessions.

Contract languages. A large number of works can be classified in this field. Works
aiming at defining schemes for xml documents are contracts languages: they allow
to specify the format of documents expected by, and exchanged with, ws. We recall
dtd and xml-Schema proposed by the w3c, Relax-NG [122], XDuce [88, 89] and
CDuce [16] regular expression types and the schema language in [48].

Besides the schema languages for xml, we recall a series of works on session
types [128, 86, 76, 130, 77] and behavioral types [92, 121, 54]. Session types are associ-
ated to session channels and specify the sequence and the types of messages sent and
received respectively by clients and services. Behavioral types are associated to the
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overall processes and abstract their behavior from a predefined point of view, e.g. by
focusing on the sequences of calls performed and messages exchanged not only into a
session. Behavioral types can be used for regulating aspects of safety, liveness, security
and resource usage management. A more precise description of behavioral types can
be found in § 1.4.3. Both session and behavioral type systems can be used for ensuring
a certain kind of conformance between service requester and service supplier, hence for
guaranteeing that the behavioral part of a contract is respected. With this purpose,
Carpineti et al. [49], describe contracts as ccs processes and define suitable subcon-
tract and compliance relations. They extract contracts out of processes and prove that
a client completes his interaction with a service provided that the corresponding con-
tracts comply. In [53], the authors depart from [49] and solve the transitivity problem
of the subcontract relation. They give a direct characterization of strong compliance
between clients and services and develop a new subcontract relation.

1.4.2 xml processing languages

There is a significant body of work in this field; each of these proposals supports
sophisticated query primitives, but issues raised by communication and mobility are
absent.

XDuce is a statically typed functional language for xml document processing. In
the spirits of dtd, types are regular expressions and a powerful notion of subtyping
naturally arises. XDuce supports regular expression pattern matching, which combines
if-expressions, tag-checks and extraction of sub-nodes. CDuce extends XDuce with a
richer set of basic types, constructed types and higher-order functions. Closely related
to XDuce, is the work in [46] where a spatial logic for reasoning about labeled directed
graphs is introduced. This logic is used for providing a query language – for analyzing,
manipulating and building graphs – and transducers – for relating input and output
graphs. Cardelli and Ghelli [45] have defined TQL: a logic and a query language for
xml, which is based on a spatial logic for the Ambient calculus [47] and operates on
information represented as unordered trees. The high expressivity of the logic allows
to express complex types, constraints and queries.

A different approach is followed in ubQL [123]. ubQL is a distributed query lan-
guage for programming large-scale distributed query systems such as resource sharing
systems. The language is inspired by the π-calculus and is obtained by adding a small
set of mobile process primitives on top of any traditional query language. Relevant
features are that queries are encapsulated into processes and can migrate between
sites and streaming data can be handled.
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We cannot forget a series of works aiming at evaluating XPath [133] or
XQuery [132] expressions on streams of xml data. These proposals can be roughly
divided in two approaches. The first is to provide efficient single-pass evaluators,
working with one query at a time (generally XPath queries) on multiple documents,
like in XSQ [56], SPEX [115] and XSM [105]. The second approach, in relation to
peer-to-peer and event-notification systems, is to filter xml streams by a large number
of queries, like in XFilter [10], YFilter [66], XTrie [55] andXPush Machine [80].

Finally, we would consider some works on streaming xml transformation. XTiSP
have been introduced [112] and after ameliorated [113, 114] by Nakano. It is an xml

transformation language intended for stream processing. A recent proposal in this field
is XStream [73]. XStream is a Turing complete programming language that allow the
programmer to write xml transformation in a functional style and use term rewriting
for evaluating them in a streamed fashion.

1.4.3 Type systems for process calculi

In Chapter 3 and 5 we will introduce two sorting systems à la Milner for the
π-calculus. Milner’s sorting system [109] has been defined for preventing arity mis-
match errors in communications involving polyadic π-calculus processes. The type
system in [117] refines the one in [109] by distinguishing the ability to either read
from a channel, write to a channel, or both read and write. A subsorting relation,
which allow the use of a channel to be restricted to input-only or output-only in a
given context, is defined. Beside these, a large number of type systems have been pro-
posed for ensuring some interesting properties of π-calculus processes: a brief overview
follows.

Kobayashi et al. [99] have introduced a type system ensuring linearity of names.
This system guarantees that, at run-time, any linear name in a process will occur ex-
actly once in input and once in output. Closely related to this, there is a series of works
by Berger, Honda and Yoshida. In [136], they introduce a type system that guaran-
tees strong normalization (termination and determinacy) of π-calculus processes. The
type system in [135] is a refinement of those in [136] and ensures a linear liveness
property. Two kinds of names are considered: linear (used exactly once) and affine
(used at most once) and it is ensured that a well typed process eventually prompts for
a free output on them. Kobayashi’s type systems in [94, 100, 95, 96] can be used to
guarantee that certain actions are lock free, that is, they succeed in synchronization
if they become available. These type systems either lack a reasonable type inference
algorithm or are not strong enough to ensure deadlock-freedom of processes using re-
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cursion. In [97] an inference system is proposed and a new type system, which is a
refinement of those in [95, 96] and allows to deal with recursion, is defined. In [64],
termination of π-processes is ensured by using four different type systems obtained
by successive refinements. In [125], a type system for ensuring uniform receptiveness
of names is defined. It guarantees that names are used exactly once in input and are
(immediately) available as input subjects at least as long as there are processes that
can output on them.

In recent years, behavioral type systems for π-calculus processes have been widely
studied. The aim of these works is to abstract the behavior of processes by using
types, expressed as processes in (possibly “decidable”) process calculi, and to check
safety and/or liveness properties on types. Igarashi and Kobayashi’s type system [92]
is inspired by the previously cited works on linearity and deadlock-livelock freedom.
Types for π-calculus processes are restriction-free ccs processes. Roughly, types are
obtained from π-processes by considering each action prefix in turn and replacing any
bound subject with a tag and turning each object into a ccs-annotation describing the
behavior of the prefix continuation. The works in [121, 54] present type systems in-
spired by [92]. The main difference between these works and Igarashi and Kobayashi’s,
is that behavioral types here are more precise than in [92], because they are described
by using full ccs.



Chapter

TWO

Introduction

2.1 Présentation

Le thème central de cette thèse est la modélisation et la vérification des Web
Services (ws). Cette étude est menée, principalement, à l’aide des outils de la théorie
des algèbres de processus et des systèmes de types.

Le terme de service fait partie du vocabulaire informatique depuis plus de deux
décennies maintenant. Néanmoins, on le retrouve de plus en plus utilisé aujourd’hui
de part la diffusion grandissante du modèle des architectures orientées service, ou
soa, pour Service-Oriented Architecture). Il s’agit d’une approche à la conception des
systèmes distribué, développée dans les années 90, et fondée sur l’interaction entre
composants logiciels faiblement couplés. On utilise dans ce cas le terme de service, à
la place de celui de composant, tandis que le terme Web Services s’utilise pour décrire
une classe d’applications basées sur l’approche soa qui utilisent les technologies liées
à xml.

Alors qu’il existe un grand nombre de propositions de langages de haut niveau pour
spécifier ou implanter les ws, les technologies existantes manquent pour la plupart
de bases formelles. Un postulat de notre approche est que les calculs de processus
fournissent un outil de choix dans l’étude de la sémantique des Services Web.

Dans cette thèse, nous cherchons à modéliser certains aspects de base des soa et
proposons des méthodes formelles pour les étudier. Les aspects que nous étudions sont
: l’échange de documents xml comme valeur entre services; l’évaluation distribuées
de requêtes xml; la disponibilité des services (service responsiveness en anglais); le
comportement transactionnel.

15
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Pour mener à bien notre étude, les outils utilisés sont essentiellement basés sur les
calculs de processus; les systèmes de types; et les équivalences comportementales.

La thèse se découpe en deux parties. Dans la première partie, nous nous concen-
trons sur le modèle opérationnel des services. Nous proposons un calcul de processus
typé, XPi, afin de modéliser les ws. XPi étend le π-calcul de Milner avec la possi-
bilité d’envoyer des documents xml comme valeur dans un message; il ajoute aussi
des opérateurs de filtrage sur les valeurs, des primitives pour la mobilité de noms et
la migration de code, et il intègre un système de typage mêlant approches statique et
dynamique.

Nous introduisons également un second modèle formel dans lequel les documents,
comme les processus, sont distribués. Dans ce modèle, la vérification de la conformité
des services utilise un système de types basé sur des expressions régulières.

Dans la seconde partie de la thèse, nous nous concentrons sur deux aspects
non fonctionnels des services: la disponibilité et l’atomicité. On parle de service
disponible lorsqu’on peut garantir qu’un message d’invocation est toujours suivi (à
plus ou moins longue échéance) par un message de réponse. Dans cette partie, nous
modélisons un service par un processus du π-calcul et définissons deux systèmes de
types, d’expressivité croissante, permettant de certifier statiquement si un processus
est disponible.

Avant de conclure, nous étudions les aspects transactionnels des ws en adaptant
au cadre des calculs de processus l’approche dite Software Transactional Memory
(stm). Plus précisément, nous étendons une version asynchrone de ccs (le Calculus
of Communicating Systems de Milner) en ajoutant la possibilité de déclarer des blocs
d’actions devant s’exécuter atomiquement; cette extension modifie sensiblement la
sémantique du calcul et permet de prouver de nouvelles propriétés intéressantes.

2.2 Architectures orientées service et Web Services

Le terme de service fait partie du vocabulaire de l’informatique depuis plus de
deux décennies maintenant. On le trouve employé dans le courant des années 90, par
exemple, dans le domaine des systèmes de suivis de transactions. À la même période,
on retrouve l’expression de service utilisé dans le cadre des systèmes clients-serveurs,
du type de corba, en particulier pour indiquer la capacité à réaliser des appels de
méthodes distants.

Plus récemment, les Web Services ont remis au goût du jour l’utilisation de ce
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terme, tout en renouvelant l’intérêt pour les architectures orientées service. Le modèle
soa peut être vu comme une évolution architecturale, plus que comme une révolution,
qui capture la plupart des règles de “bonnes pratiques” énoncées par les concepteurs
de logiciels distribués. À première vue, le concept de soa est avant tout une ré-
interprétation de plusieurs approches popularisées dans les années 90: architecture
basée composants (Component Based Architecture); conception basée sur les interfaces
(Interface Based Design); et systèmes répartis (Distributed Systems). Le modèle soa

hérite d’ailleurs des aspects principaux et des principes de ces trois approches, en
se concentrant sur: la distribution; l’autonomie; la réutilisabilité; la composition des
services.

Bien qu’il s’agisse d’aspects centraux dans la conception des systèmes distribués,
l’importance croissante du modèle soa s’explique plus particulièrement par l’adoption
de nouveaux standards d’intégration. On peut citer principalement xml (pour
eXtensible Markup Language), un sous-ensemble simplifié de sgml, mis au point
pour faciliter l’échange de données semi-structurées entre systèmes d’informations
hétérogènes. Se basant sur xml, d’autres standards d’intégrations, regroupés au-
tour du terme de Web Services, servent de fondement au modèle soa. Il s’agit d’un
ensemble de technologies facilitant les interactions machines-machines sur les grands
réseaux, comme par exemple soap, wsdl, bpel4ws, etc.

2.2.1 Architectures orientées service

L’objectif que se fixe l’approche soa est d’assurer la coopération de composants
logiciels faiblement couplés, s’exécutant sur un réseau hétérogène, sans administration
centrale; c’est-à-dire le modèle du Web. Comme dans le cas de l’approche objets,
l’idée est d’abstraire le plus possible des utilisateurs finaux les détails de l’implantation
des services. Les buts visés sont de maximiser la réutilisation du code; d’augmenter
le niveau d’abstraction des spécifications; d’améliorer l’efficacité et la fiabilité des
applications.

La granularité des services peut être très diverse. Un service peut fournir une
fonction spécifique très simple, typiquement une “fonction métier”, ou il peut exécuter
tout un ensemble de fonctions liées entre elles. Par exemple, on trouve des services
qui se résument à calculer le montant d’une conversion entre devises ou bien à trouver
les synonymes d’un mot. On trouve également des services aux fonctionnalités très
complètes, comme par exemple les services permettant de traiter des ordres d’achats
ou bien les réservations sur les lignes aériennes.

Selon le principe de “composition faiblement couplée”, un client ne communique
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avec un service qu’à travers une interface bien définie, fixée à l’avance. Un avantage
de ce choix est qu’un service peut être changé en cours d’exécution sans pour autant
mettre en péril l’exécution d’un traitement. Par exemple, l’application de gestion
d’une ligne aérienne peut être mise à jour dynamiquement, sans rien changer pour
l’utilisateur, à condition que l’interface demeure la même.

Finalement, un élément de base du modèle soa est le recours à la notion d’interface,
également appeléee contrat. On retrouve ici un des nombreux traits communs avec
les approches à base de composants, ou avec les modèles de programmation répartis
du type corba. En premier lieu, les contrats sont employés pour décrire la partie
fonctionnelle des services. Ils indiquent les paramètres formels de chaque service, les
possibles contraintes, ainsi que les politiques (les limites contractuelles) qui régissent
l’appel au service. Dans certains formalismes, les contrats peuvent aussi être utilisé
pour fournir une description non fonctionnelle des services, tel que les contraintes
concernant la sécurité, la qualité de services, ou encore ayant trait au comportement
transactionnel.

2.2.2 Web Services

Récemment, les ws sont devenus l’approche la plus répandue pour l’implantation
d’applications suivant le modèle soa. À tel point que les ws sont devenus aujourd’hui
un standard de facto. Mais c’est un standard ouvert et encore mal défini. Ainsi,
clients et services communiquent entre eux au-dessus d’une grande variété de langages
de programmation et de plate-formes logicielle. De plus, malgré la large diffusion de
ce modèle, une définition formelle des ws, globalement admise par chacun, n’existe
pas.

Dans cette thèse, nous choisissons pour définir les ws l’approche qui consiste à
définir un service Web comme une application utilisant une “pile de protocole” bien
spécifiés, basés sur xml. De manière grossière, la “pile de protocole ws” est une
collection de protocoles réseaux servant à définir, localiser, implanter et faire interagir
les ws entre eux. (Parmi tout ces protocoles on peut nommer prioritairement wsdl,
soap, uddi.) Nous nous rapprochons en cela de la définition due au World Wide
Web Consortium (w3c) [27], qui nous semble une des plus appropriées. Ainsi, le w3c

définit les ws de la manière suivante:

“A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface de-
scribed in a machine-processable format (specifically wsdl). Other sys-
tems interact with the Web service in a manner prescribed by its descrip-
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tion using soap-messages, typically conveyed using http with an xml

serialization in conjunction with other Web-related standards.”

2.2.3 Pile de protocoles Web

Nous présentons les différents protocoles ws, en privilégiant l’ordre chronologique
de leur apparition plutôt que l’ordre d’utilisation sur la pile.

HTTP. Parmi les premiers protocoles entrant en jeux dans la définition des ws,
apparaissent les protocoles liés au mode de transport, c’est-à-dire à la manière dont les
appels et les communications sont véhiculés entre services. Les protocoles de transport
déjà existant pour Internet sont utilisés. Le plus souvent, on retrouve l’utilisation de
http, un protocole introduit en 1996 par le w3c et qui, depuis lors, c’est imposé
comme le protocole de transport le plus populaire pour le Web. Si http est le choix
privilégié, on peut noter que certaines spécifications prennent également en compte
l’utilisation des protocoles liés aux courriers électroniques, en particulier smpt, et que
beaucoup de protocoles ws sont totalement agnostique quand au choix du protocole
de transport.

XML. À côté du choix du “mode de transport”, il convient également de choisir le
mode de représentation des données qui sont échangés par les services. Le choix le
plus courant est xml (le eXtensible Markup Language), une technologie beaucoup plus
récente que http, destinée à être le format privilégié pour l’échange de données sur le
Web. xml est devenu très rapidement un standard de fait. Comme son nom l’indique,
xml est un langage se basant sur des balises pour marquer (“mark up”) le sens des
différentes données contenues dans un document, ainsi que pour les hiérarchiser. Les
balises permettent d’identifier et de localiser l’information dans un document, mais
elles servent aussi à structurer cette information.

XML Schema. Les standards présentés ici prennent en compte la nécessité de typer
les échanges entre services, c’est-à-dire le besoin de faire respecter aux messages un
certains nombres de contraintes; contraintes qui permettent à chaque noeud du réseau
qui reçoit un message de le comprendre. On utilise ici les technologies de typage pour
xml, En effet, le plus souvent, un document xml est associé à un schéma, définit
grâce à des technologies telles que les dtd [138] ou les schémas xml [137], qui spécifie
et contraint la structure du document. Typiquement, un schéma décrit les balises
que peut contenir le document et dans quel ordre ceux-ci peuvent apparâıtre. Il peut
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également servir à décrire le type des données pouvant apparâıtre sous une balise. Un
document associé à un schéma est valide si il est bien formé (les “balises ouvrantes et
fermantes” sont bien balancées) et si il respecte les contraintes imposées par le schéma.

SOAP. Bien que la possibilité de fixer un choix sur le sens et la structure des balises
constitue un avantage lorsqu’il s’agit de s’échanger des documents xml, ceci est loin
d’être suffisant dans un scénario d’échange de données sur le Web. Par exemple,
l’émetteur et le récepteur des données doivent encore se mettre d’accord sur un pro-
tocole de formatage. C’est ici qu’entre en jeux soap (qui fut jusqu’à récemment un
acronyme pour Simple Object Access Protocol). soap est un protocole permettant
d’encapsuler et de sérialiser des appels de fonctions distantes sur un réseau. Le “pat-
tern” le plus courant pour l’échange de message soap est celui de l’appel de fonction
distant (Remote Procedure Call), dans lequel un noeud du réseau (le client) envoie
un message (une requête) à un autre noeud (le serveur). Dans cette pattern, le client
attend un message de réponse du serveur à sa requête. Les messages soap sont basé
sur la métaphore du courrier postal: l’élément de base dans une transmission soap est
le message, qui se compose d’un corps englobé dans une enveloppe. L’enveloppe con-
tient les en-têtes et les informations nécessaires à acheminer et traiter le message. Le
protocole soap permet également de définir des traitements à exécuter sur les “noeuds
intermédiaires” qui routent le message.

WSDL. Pour finir cette liste de protocole, le Web Services Description Lan-
guage [58] (wsdl) est un vocabulaire xml permettant de décrire l’interface des ws. Un
document wsdl définit les actions (operations) fournies par un ws ainsi que les don-
nées transmises aux actions (messages). Une collection d’opérations reliées entre elles
est appelé un port (port type). Cette description est abstraite, mais une spécification
wsdl permet également de décrire l’implantation concrète du service en fournissant
des informations de liaison (binding). Les informations de liaison associent à chaque
port le protocole réseaux qui doit être employé. Elles donnent aussi, par exemple,
des urls ou des numéro ip à utiliser, et spécifient le format des messages. On peut
également noter qu’il existe un mécanisme permettant de découvrir dynamiquement
la description wsdl d’un service. La manière générique de trouver une description
wsdl consiste à interroger un registre des services, en utilisant le protocole Univer-
sal Description, Discovery and Integration (uddi), sorte de “pages jaunes” pour les
services.
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2.2.4 Remarques concernant les standards ws

Les standards présentés précédemment adressent les fonctionnalités de bases per-
mettant de faire interopérer les services: format et typage des données; format des
messages; transport. La réunion de ces standards forme la pile de protocole ws. C’est
elle qui fournit les moyens de s’assurer qu’un client peut trouver les services dont
il a besoin, et qu’il peut envoyer des requêtes qui seront comprises par ces services,
indépendamment du lieu où s’exécute le client ou du langage utilisé pour son implan-
tation.

Ces standards représentent un service minimum, mais ne sont pas suffisant à eux
seul. Pour permettre une plus grande adoption de modèle des services Web, il reste en-
core à développer et faire adopter des standards “de plus haut-niveau”. Ainsi, le stan-
dard wsdl apparâıt souvent insuffisant lorsqu’il s’agit de décrire le cahier des charges
d’un service (son contrat). En particulier, wsdl permet uniquement de définir un en-
semble d’obligations fonctionnelles. Rien n’est dit sur les besoins non-fonctionnel du
service ou sur les contraintes sémantique qu’on voudrait pouvoir imposer aux données
qu’il produit.

Cette remarque sur les limitations de wsdl est très commune et il existe au-
jourd’hui beaucoup de propositions visant à étendre et enrichir wsdl. Néanmoins, il
s’agit d’une véritable jungle de nouvelles spécifications, chacune s’adressant le plus sou-
vent à améliorer les standards existant de manière parcellaire. Nous donnons quelques
exemples de ces standards xml liés aux ws, en étant loin d’être exhaustif:

• ws-Policy fournit un modèle général, et un métalangage (une syntaxe corre-
spondante), pour décrire les politiques liées à un ws.

• ws-Security décrit des extensions aux échanges de messages soap liées aux as-
pect sécurité. Plus précisément à l’intégrité et la confidentialité des échanges.

• Business Process Execution Language for Web Services (bpel4ws) est une
proposition de standard pour coordonner les interactions et les invocations de
ws.

• Encore au-dessus, Web Services Choreography Description Language (ws-cdl)
est un métalangage xml qui permet de décrire des collaborations multi-agents
(peer-to-peer) en définissant, d’un point de vue global, leurs comportements
observable.

• Web Services Level Agreements (wsla) définit des protocoles utilisé pour fixer,
entre services, des choix sur les caractéristiques de performances et sur les moyens
de les évaluer.

• Web Services Offerings Language (wsol) rend possible la spécification formelle
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de multiples classes de services pour un ws fixé.
• Finalement, ws-Transactions définit des mécanismes transactionnels pour

l’interaction entre services et fournit des moyens pour composer ces politiques
transactionnelles entre elles.

Il faut retenir que tous ces “standards émergents”, et bien d’autres encore, ont été
motivé par le besoin de décrire, dans les plus grands détails possible, les contraintes
non-fonctionnelles d’une application.

2.2.5 Intégration des standards

Dans la spécification Web Services Architecture [27] (wsa), le w3c tente de dé-
montrer comment l’ensemble des technologies que nous avons présentés dans la section
précédente peuvent s’intégrer afin de fournir une plate-forme d’exécution la plus riche
possible. Cette architecture définie les relations, ainsi que les contraintes, entre les
aspects de bases des services. Elle inclus quatre modèles complémentaires, chacun ori-
enté vers la description d’un aspect spécifique. Deux de ces modèles se concentrent sur
la partie fonctionnelle des contrats, le modèle nommé orienté-messages et le modèle
orienté-service. Le premier de ces deux modèles s’intéresse plus particulièrement aux
messages échangés: à leur structure, leur transport et à leur manipulation. Alors que
le second modèle se concentre sur les aspects liés aux services en eux-mêmes et sur
la chorégraphie, c’est-à-dire la séquence des actions réalisées par chacune des parties
impliquées dans une interaction. Le troisième modèle, orienté-politique, permet de
définir des ensembles d’obligations et de permissions, qui sont stipulées dans la par-
tie non-fonctionnelles des contrats. Finalement, le dernier modèle, orienté-ressources,
se concentre sur les aspects de découverte et de description des ressources liés aux
services.

Dans la spécification wsa, le w3c identifie deux classes principales de ws, la classe
arbitrary et la classe rest-compliant. Les ws arbitrary peuvent exposer un ensemble
arbitraire d’opérations sur des ressources concrètes. À l’opposé, le but premier d’un
ws rest est de manipuler les représentations xml de ressources Web en utilisant
un ensemble uniforme d’opérations stateless. Le terme rest est l’acronyme de Rep-
resentational State Transfer et correspond à un type d’architecture logicielle qui se
concentre sur la manière dont les ressources doivent être définie et adressée. rest a
été introduit par Roy Fielding, dans sa thèse [70], comme un style de programmation
pour le Web. Plus particulièrement, le Web rest est le sous-ensemble du Web, basé
sur http, dans lequel les agents fournissent une interface à la sémantique uniforme; ils
fournissent essentiellement les opérations create, retrieve, update et delete. De plus,
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les interactions rest sont sans état (stateless), dans le sens où la signification d’un
message ne dépend pas de l’état de la conversation ou de la ressource qui est adressée.

Un exemple typique d’application arbitrary est un service de gestion de bons de
commandes, qui permet de mettre en réseaux des bases de données propriétaires,
tandis que les moteurs de recherches sont un bon exemple d’architecture rest.

2.3 Une approche algèbre de processus pour l’étude des

Web Services

Nous avons décrit, dans les sections précédentes, un grand nombre de propositions
permettant de décrire les services de manière très détaillé. Néanmoins, il n’existe
pas encore aujourd’hui de méthodologie, bien implantée, permettant de vérifier si un
service répond réellement à sa spécification. Nous avons besoin de méthodes formelles
pour répondre à ce problème.

Il existe plusieurs approches à l’étude formelle des ws et à leur composition.
Ces travaux se basent sur différents modèles conceptuels, tel que les réseaux de
Petri, les automates (temporisé ou non), les digraphes, etc. (voir par exem-
ple [50, 1, 17, 90, 106, 118, 15]). Il est généralement reconnu que les calculs de
processus mobile, du type du π-calcul de Milner, Parrow et Walker [111], sont des
candidats naturels au rôle de modèle pour la spécification et la vérification formelle
de ws. En effet, les algèbres de processus fournissent un cadre à la fois simple et ex-
pressif qui permet de raisonner sur les problèmes lié à la concurrence, la distribution
et la mobilité des systèmes. Par exemple, les techniques liées aux systèmes de types
(dans le style des types comportementaux) peuvent être adaptées pour permettre de
réguler les échanges de messages entre services. Ces mêmes techniques peuvent aussi
être utilisées pour contraindre le comportement des processus, et des outils tel que les
équivalence comportementales peuvent être employés pour établir des correspondances
entre différents niveaux d’abstractions dans la description des services.

Parmi les nombreuses algèbres de processus pouvant être utilisé pour cette tâche,
on peut mettre en avant le π-calcul, qui se caractérise par son approche basée
sur le passage de noms. On peut d’ailleurs noter que le π-calcul est à la base de
plusieurs langages visant différents aspects des systèmes concurrents et distribués.
Par exemple la sécurité et les protocoles cryptographique, avec le spi-calcul de
Abadi et Gordon [3] ou le π-calcul appliqué [2], ou encore le contrôle d’accès pour
les ressources distribués, avec le π-calcul distribué de Hennessy et Riely ou safeDpi [82].
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L’idée sous-tendant une approche“algèbre de processus”pour l’étude des ws est de
décrire les services et les clients comme des termes d’un calcul de processus et d’utiliser
(en les adaptant) les techniques de vérification existantes pour garantir les propriétés
des services. Nous sommes loin d’être les premiers à invoquer cette approche et un
grand nombre de propositions récentes vont dans le sens que nous poursuivons ici
(voir la Section 1.4 pour une discussion sur l’état de l’art correspondant). Dans cette
thèse, nous représentons les clients et les services par des processus et nous utilisons
des notions adéquates de systèmes de typage et d’équivalences comportementale pour
vérifier que certaines propriétés sont respectées. (Nous nous intéressons à la fois à des
propriétés fonctionnelles et à des propriétés non-fonctionnelles, exprimées de manière
contractuelle ou non.)

Suivant la ligne développée dans [27], nous considérons certains des aspects de
base des ws et nous proposons des méthodes formelles permettant de raisonner sur
ces aspects. La thèse peut se diviser en deux grandes parties.

Dans la première partie, chapitres 3 et 4, nous nous concentrons sur le modèle
opérationnel des ws ainsi que sur le modèle architectural, orienté-messages. Nous
proposons deux modèles, un pour les Web services arbitrary et un pour les services
rest-compliant, qui se concentrent pour le premier sur la communication entre clients
et services, et pour le second sur la distribution des ressources sur le réseaux. Dans
la deuxième partie, chapitres 5 et 6, nous nous concentrons sur le modèle orienté-
politique et abordons plus spécifiquement les propriétés de disponibilité des services.
Nous étudions également les aspects transactionnels des processus, un autre exemple
de propriétés non-fonctionnelles.

Notre travail est, bien sûr, loin d’être complet et il reste encore beaucoup de
propriétés, et de directions, à explorer. Par exemple, nous n’avons pas directement
adressé les aspects liés à la coordination ou à l’orchestration des services, ni les
problèmes lié à la sécurité.

Nous donnons ci-après un plan plus détaillé du manuscrit de thèse.
Étant donné que les ws sont principalement abordés comme des applications

orienté-messages, nous étudions en premier ce dispositif. Dans le chapitre 3, nous
proposons un calcul de processus pour la transmission de messages xml, appelé XPi.
Le calcul XPi peut se voir comme une version asynchrone du π-calcul dans lequel: les
“adresses internet” sont représentées par des noms (de canaux); les messages échangés
sont des documents xml (et pas uniquement des tuples de noms, comme dans le π-
calcul); les clients et les services sont représentés comme des processus qui peuvent



25 2.3. Une approche algèbre de processus pour l’étude des Web Services

communiquer en envoyant et en interrogeant des messages sur des canaux. Dans XPi,
une émission correspond à l’envoie d’un message sur un canal de communication et
une réception correspond à interroger (appliquer une requête) le contenu d’un canal.
Le calcul est munis d’un système de type (statique) qui permet de s’assurer du sché-
mas des messages contenus dans un canal. Nous définissons une relation d’équivalence
comportementale pour XPi basée sur la notion de bisimulation à barbes (barbed bisim-
ulation), qui se révèle utile pour raisonner sur le comportement de l’implantation d’un
service sous forme de processus.

Le modèle basé sur XPi, que nous proposons au chapitre 3, n’est pas approprié pour
modéliser les ws bâti sur l’approche rest, qui se concentrent plus sur la distribution
des ressources plutôt que sur la communication entre agents. Dans le chapitre 4,
nous essayons de capturer ces aspects différents en développant un modèle basé sur
un calcul de pattern distribués. Notre but est de définir un modèle approprié à la
représentation et à l’interrogation de grands documents xml distribués, voir même
de documents générés dynamiquement, et donc potentiellement infinis. Pour ce faire,
nous proposons un calcul de processus, Astuce, dans lequel: les données (les documents
xml) sont des processus qui peuvent être interrogé au moyen de requêtes concurrentes;
les noeuds des documents et l’évaluation des requêtes sont explicitement distribués;
un système de typage statique, basé sur la notion d’expressions régulières de types,
s’assure que les messages, les requêtes et le résultat des requêtes sont conformes à un
schéma définit à l’avance.

Dans la deuxième partie de cette thèse, nous nous concentrons sur le modèle
orienté-politique, dans le cadre où les politiques sont employées pour décrire des as-
pects non fonctionnels des contrats. Dans l’approche que nous suivons, une politique
est définie de manière générique comme soit une obligation, soit une permission, de
faire une action ou d’atteindre un certains état. Évidemment, des contrats différents
peuvent engendrer des politiques différentes, par conséquent, nous essayons ici de
capturer une sous-classe de garanties fondamentales, habituellement prévues par les
utilisateurs des services. Plus précisément, nous étudions des propriétés liées à la
disponibilité et au comportement transactif des services.

La disponibilité, ou responsiveness en anglais, est la propriété associée aux sys-
tèmes tel que toute demande de service est assurée d’être suivie par une réponse (du
moins en absence de panne et/ou de perte de messages). Dans le chapitre 5, nous
définissons formellement la propriété de disponibilité dans un calcul de processus;
nous représentons les services comme des processus du π-calcul; et nous définissons
deux systèmes de type de complexité croissante qui assurent statiquement la disponi-
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bilité des processus. Le premier système permet de s’assurer de la disponibilité d’un
processus mais permet également d’obtenir des précisions sur la latence du service
(son temps de réponse). Plus précisément, il permet d’inférer une limite supérieure
sur le nombre d’actions précédant une réponse. Le second système de types est moins
restrictif que le premier système et permet de coder certaine pattern de programma-
tion intéressante. Par exemple, ce système de types est assez expressif pour typer le
codage, sous forme de processus, du choix interne ainsi que les différentes patterns
d’interaction qu’on retrouve dans langage d’orchestration orc de Cook et Misra [59]
(voir la section 1.4.1 pour plus de détail sur le langage orc).

En ce qui concerne le comportement transactif, nous nous intéressons à l’ajout
de transactions aux services, aux sens des bases de données, c’est-à-dire à des unités
minimales d’exécution qui exhibent des propriétés d’atomicité et de durabilité. Plus
particulièrement, nous nous intéressons aux propriétés dites acid : l’atomicité (une
transaction doit être soit validée soit avortée); la consistance (une transaction ne peut
pas casser les invariants globaux); l’isolation (on ne peut pas observer l’exécution par-
tielle d’une transaction); et la durabilité (les effets d’une transaction validée ne peuvent
pas être annulé). Toutes ou parties de ces propriétés ne se retrouvent généralement
pas dans les modèles de transactions pour les ws. En effet, on retrouve le plus sou-
vent un modèle de transactions par compensation, plus approprié aux transactions
distribuées, de longue durées et faiblement couplées. Nous étudions l’approche orig-
inale introduite par Herlihy dans le modèle des Transactions Mémoire Logicielle, ou
stm pour Software Transactional Memory [84]. Dans cette approche, des séquences
d’actions peuvent être groupé au sein d’un “bloc atomique” dont l’effet doit s’exécuter
atomiquement. Dans le chapitre 6 nous étudions ce modèle en utilisant encore une fois
une approche algèbre de processus. Nous définissons un calcul de processus, Atccs,
qui est une extension de ccs asynchrone [110] avec des blocs atomique. Nous définis-
sons également une notion d’équivalence comportementale et prouvons un ensemble de
lois algébriques intéressante pour ce modèle. Nous prouvons par la même que l’ajout
des stm à ccs résulte en un calcul très expressif, permettant de coder facilement des
primitives de la programmation concurrente; par exemple (une version préemptive du)
choix non-déterministe ou la multi-synchronisation à la join-calcul.

2.4 Résumé de nos contributions

Dans cette section, nous résumons les principales contributions de notre travail de
thèse.
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• Nous avons défini XPi, un calcul de processus asynchrone pour l’échange de
message xml, pouvant servir de base à l’étude des aspects communications dans
les Web services. Nous avons également défini des systèmes de typage, statique
et dynamique, pour XPi et prouvé que les processus bien typé était sauf. Les
résultats sur XPi sont un travail commun avec M. Boreale et ont été publié à la
conférence FMOODS’05 [5].

• Nous avons développé la théorie du calcul Astuce, un modèle de programmation
fonctionnel et concurrent, fortement typé, pour l’interrogation de très grand doc-
uments xml distribués. Nous avons défini un système de type pour Astuce qui
se base sur l’utilisation d’expression régulière de type, une approche compati-
ble avec les dtd, ainsi que d’autres formalismes de schémas pour xml, et qui
est compatible avec des langages de programmation fonctionnel tel que XDuce.
Astuce est un travail en commun avec M. Boreale et S. Dal Zilio; les résultats
présenté ici ont été publiés à la conférence TGC’06 [6].

• Nous avons proposé une nouvelle technique pour vérifier statiquement la
“disponibilité”d’un service décrit comme un processus du π-calcul, et nous avons
appliqué cette technique à des exemples non-triviaux. Il s’agit d’un travail avec
M. Boreale; ces résultats ont été publié à la conférence ASIAN’06 [7].

• Nous avons défini Atccs, un calcul de processus qui étend ccs avec des transac-
tions atomique, et avons développé une nouvelle notion d’équivalence comporte-
mentale pour raisonner sur ces processus. Le calcul Atccs se base sur le modèle
des stm, qui est une approche optimiste permettant d’ajouter des transactions
atomique au niveau des langages de programmation. Il s’agit d’un travail en
commun avec M. Boreale et S. Dal Zilio, publié à la conférence ESOP’07 [8].
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Chapter

THREE

XPi: a typed process calculus for xml messaging

In this chapter we present XPi, a core calculus for xml messaging. XPi features
asynchronous communications, pattern matching, name and code mobility, integration
of static and dynamic typing. Flexibility and expressiveness of this calculus are illus-
trated by a few examples, some concerning description and discovery of web services.
In XPi, a type system disciplines xml message handling at the level of channels, pat-
terns, and processes. A run-time safety theorem ensures that in well-typed systems no
service will ever receive documents it cannot understand, and that the offered services,
even if re-defined, will be consistent with the declared channel capacities. A notion of
barbed equivalence is defined that takes into account information about service inter-
faces.

3.1 Introduction

The message-oriented model [27] describes ws from the point of view of the
communication. It focuses on those aspects of the architecture that relate to
message exchange and processing. Specifically, this model is not concerned with
any semantic significance of the content of a message or its relationship to other
messages. However, it focuses on the structure of messages, on the relationship
between message senders, message receivers and other message processors. In this
chapter, we aim at giving a concise semantic account of xml messaging and of the
related typing issues. To this purpose, we present XPi, a process language based on
the asynchronous π-calculus. Prominent features of XPi are: xml communication,
patterns generalizing ordinary inputs, ML-like pattern matching, and integration of
static and dynamic typing. Our objective is to study issues raised by these features

31
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in connection with name and code mobility. A more precise plan of the chapter follows.

Syntax and reduction semantics of the calculus are introduced in Section 3.2. In
XPi, resource addresses on the net are represented as names, which can be generally
understood as channels at which services are listening. Messages passed around are
xml documents, represented as tagged/nested lists, in the vein of XDuce; in what
follows we usual refer to messages by using the term documents. Services and their
clients are processes, that may send documents to channels, or query channels to
retrieve documents obeying given patterns. Documents may contain names, which
are passed around with only the output capability [117]. Practically, this means that
a client receiving a service address cannot use this address to re-define the service.
This assumption is perfectly sensible, simplifies typing issues, and does not affect
expressive power (see e.g. [28, 107]). Documents may also contain mobile code in the
form of abstractions, roughly, functions that take some argument and yield a process
as a result. More precisely, abstractions can consume documents through pattern
matching, thus supplying actual parameters to the contained code and starting its
execution. This mechanism allows for considerable expressiveness. For example, we
show that it permits a clean encoding of encryption primitives, hence of the spi-
calculus [3], into XPi.

Types (Section 3.3) ensure the validity of documents and discipline their processing
at the level of channels, patterns, and processes. At the time of its creation, each
channel is given a capacity, i.e. a type specifying the format of documents that can
travel on it. Subtyping arises from the presence of star types (arbitrary length lists)
and union types, and by lifting at the level of documents a subtyping relation existing
on basic values. The presence of a top type T enhances flexibility, allowing for such
types as“all documents with an external tag f, containing a tag g and something else”,
written T = f[g[T],T]. Subtyping is contravariant on channels: this is natural if one
thinks of services, roughly, as functions receiving their arguments through channels.
Contravariance calls for a bottom type

T

, which allows one to express such sets of
values as “all channels that can transport documents of some type S < T”, written
ch(f[g[

T

],

T

]). Interplay between pattern matching, types, and capacities raises a
few interesting issues concerning type safety (Section 3.4). Stated in terms of services
accessible at given channels, our run-time safety theorem ensures that in well-typed
systems, first, no service will ever receive documents it cannot understand, and second,
that the offered service, even when re-defined, will comply with the statically declared
capacities. The first property simply means that no process will ever output documents
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violating channel capacities. The second property means that no service will hang
due to an input pattern that is not consistent with the channel’s capacity (a form of
“pattern consistency”).

type checking is entirely static, in the sense that no run-time type checking is
required, while in πDuce [34] and the language of [52] pattern matching also performs
type check on messages. Moreover, in both [34, 52] the type system guarantees a
form of absence of deadlock, which however presupposes that basic values do not
appear in patterns. We thought it was important to allow basic values in patterns
for expressiveness reasons (e.g., they are crucial in the encoding of the spi-calculus
presented in Section 3.2).

Our type system is partially inspired by xml Schema [137], but is less rich than, say,
the language of [45, 52, 48]. In particular, we have preferred to omit recursive types.
While certainly useful in a full-blown language, recursion would raise technicalities
that hinder issues concerning name and code mobility. Also, our pattern language is
quite basic, partly for similar reasons of simplicity, partly because more sophisticated
patterns can be easily encoded.

The calculus described so far enforces a strictly static typing discipline. We also
consider an extension of this calculus with dynamic abstractions (Section 3.5), which
are useful when little or nothing is known about the actual types of incoming docu-
ments. Run-time type checks ensure that substitutions arising from pattern matching
respect the types statically assigned to variables. Run-time safety carries over. We
shall argue that dynamic abstractions, combined with code mobility and subtyping,
can provide linguistic support to such tasks as publishing and discovering services.

A behavioural equivalence based on barbed bisimulation [126] is introduced in Sec-
tion 3.6. This equivalence takes into account both type information and the presence
of an input interface. The underlying idea is that systems come equipped with an
interface, i.e. a set of input channels at which services are offered; on these channels,
external observers do not have input capability. The resulting equivalence can be used
to validate interesting equations. Section 3.7 concludes this chapter.

3.2 Syntax and semantics of XPi

This section presents syntax and reduction semantics of XPi, and a few derived
constructs.
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3.2.1 Syntax

We assume a countable set of variables V, ranged over x, y, z, . . . , a set of tags F ,
ranged over f, g, . . ., and a set of basic values BV v, w, . . . . We leave BV unspecified
(it might contain such values as integers, strings, or Java objects), but assume that
BV contains a countable set of names N , ranged over a, b, c, . . . . N is partitioned
into a family of countable sets called sorts S,S ′, . . .. We let u range over N∪V and
x̃, ỹ, . . . denote tuples of variables.

Definition 3.1 (documents, patterns and processes). The set D of XPi docu-
ments M, N, . . ., the set Q of XPi patterns Q, Q′, . . . and the set P of XPi processes
P, R, . . . are defined by the syntax in Table 3.1. In Qex, we impose the following lin-
earity condition: x̃ is a tuple of distinct variables and each xi ∈ x̃ occurs at most once
in Q.

In the style of XDuce and CDuce, xml documents are represented in XPi as
tagged, ordered lists that can be arbitrarily nested; these are the documents being
exchanged among processes. A document can be either a basic value, a variable, a
tagged document, a list of documents, or an abstraction. The last mentioned takes
the form (Qex)P , where variables x̃ are a subset of variables in Q representing formal
parameters, to be replaced by actual parameters at run-time: variables in x̃ are used
for extracting values from matching documents. A pattern is simply an abstraction-
free document. For the sake of simplicity, we have ignored tag-variables that could be
easily accommodated. Also, note that patterns do not allow for direct decomposition
of documents into sublists, akin to the pattern p, p’ in XDuce, which can be easily
encoded though, as we show later in this section.

Process syntax is a variation on the π-calculus. In particular, asynchronous (non
blocking) output on a channel u is written u〈M〉, and u is said to occur in output subject
position. Nondeterministic guarded summation

∑
i∈I ai.Ai waits for any document

matching Ai’s pattern at channel ai, for some i ∈ I, consumes this document and
continues as prescribed by Ai; names ai are said to occur in input subject position.
Note that the syntax forbids variables in input subject position, hence a received
name cannot be used as an input channel; in other words, names are passed around
with the output capability only. Parallel composition P |R represents concurrent
execution of P and R. Process P else R behaves like P , if P can do some internal
reduction, otherwise reduces to R. This operator will be useful for coding up, e.g.,
if − then− else, without the burden of dealing with explicit negation on patterns.
Replication !P represents the parallel composition of arbitrarily many copies of P .
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Document M ::= v Value∣∣ x Var∣∣ f(M) Tagged Document∣∣ LM List∣∣ A Abstraction

List of documents LM ::= [ ] Empty list∣∣ x Var∣∣ M , LM Sequence

Abstraction A ::= (Qex)P Pattern and Continuation∣∣ x Var

Pattern Q ::= v Value∣∣ x Var∣∣ f(Q) Tagged Pattern∣∣ LQ List

List of patterns LQ ::= [ ] Empty list∣∣ x Var∣∣ Q, LQ Sequence

Process P ::= u〈M〉 Output∣∣ ∑
i∈I ai.Ai Input Guarded Summation∣∣ P else P Else∣∣ P |P Parallel Composition∣∣ !P Replication∣∣ (ν a)P Restriction

Table 3.1: Syntax of documents, patterns and processes.

Restriction (ν a)P creates a fresh name a, whose initial scope is P .

Binding conventions and notations. We stipulate that in every abstraction
(Qex)P the variables in x̃ bind with scope P , and that in each restriction (ν a)P name
a binds with scope P . Accordingly, notions of alpha-equivalence (=α), free and bound
names (fn(·) and bn(·)), free and bound variables (fv(·) and bv(·)) arise as expected
for documents, patterns and processes. We assume that =α is sort-respecting, in the
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sense that a bound name can be alpha-renamed only to a name of the same sort.
Whenever needed, we shall implicitly assume all binding occurrences of names (resp.
variables) are distinct and disjoint from free names (resp. variables). Moreover, we
identify processes up to alpha-equivalence.

The following abbreviations for documents and patterns are used:
[M1, M2, . . . , Mk−1, Mk] stands for M1, (M2, (. . . (Mk−1, (Mk, [ ])) . . .)), while
f[M1, . . . , Mk] stands for f([M1, . . . , Mk]). The following abbreviations for processes
are used: 0, a1.A1 and a1.A1 + a2.A2 + · · · + an.An stand for

∑
{i∈I} ai.Ai when

|I| = 0, |I| = 1, and |I| = n, respectively; (ν a1, . . . , an)P = (ν ã)P stands for
(ν a1) . . . (ν an)P ; and a stands for a.0. We sometimes save on subscripts by marking
binding occurrences of variables in patterns by a “?” symbol, or by replacing a
binding occurrence of a variable by a don’t care symbol, “ ”, if that variable does not
occur in the continuation process. E.g. ([f[?x], g[ ]])P stands for ([f[x], g[y]]{x,y})P
where y /∈ fv(P ).

Our list representation of xml ignores algebraic properties of concatenation (such
as associativity, see [89]). We simply take for granted some translation from actual
xml documents to our syntax. The following example illustrates informally what this
translation might look like.

Example 3.2.1. An xml document encoding an address book (on the left) and its
representation in XPi (on the right):

< addrbook > addrbook[
< person > person[

< name > John Smith < /name > name(John Smith),
< tel > 12345 < /tel > tel(12345),
< emailaddrs > emailaddrs[

< email > john@smith < /email > email(john@smith),
< email > smith@john < /email > email(smith@john)

< /emailaddrs > ],
< /person > ],
< person > person[

< name > Eric Brown < /name > name(Eric Brown),
< tel > 678910 < /tel > tel(678910),
< emailaddrs >< /emailaddrs > emailaddrs[]

< /person > ]
< /addrbook > ]

Note that a sequence of tagged documents such as
< tag1 >M< /tag1 >< tag2 >N< /tag2 > · · · is rendered as an ordered
list [tag1(M), tag2(N), · · · ]. A pattern that extracts name and tele-
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P |R ≡ R |P P |0 ≡ P

(P |R) |S ≡ P | (R |S) !P ≡ P | !P
(ν a)0 ≡ 0 (ν a)(ν b)P ≡ (ν b)(ν a)P

(ν a)(P |R) ≡ P | (ν a)R if a /∈ fn(P )

Table 3.2: Structural congruence.

phone number of the first person of the address book above is: Q =
addrbook[person[name(?x), tel(?y), ], ].

Definition 3.2 (closed processes and documents). We denote with Pcl (resp.
Dcl) the set containing all processes P ∈ P (resp. documents M ∈ D) such that
fv(P ) = ∅ (resp. fv(M) = ∅), that is all closed processes (resp. documents).

3.2.2 Reduction semantics

A reduction relation describes system evolution via internal communications. Fol-
lowing [109], XPi reduction semantics is based on structural congruence ≡, which
permits certain rearrangements of parallel composition, replication, and restriction.

Definition 3.3 (structural congruence). The structural congruence ≡ is the least
congruence satisfying the rules in Table 3.2.

The relation ≡ extends to abstractions, hence to documents, in the expected
manner. The reduction semantics also relies on a standard matching predicate, that
matches a (linear) pattern against a closed document and yields a substitution.

Definition 3.4 (substitutions). Substitutions σ, σ′, . . . are finite partial maps from
the set V of variables to the set Dcl of closed documents. We denote by ε the empty
substitution. For any term t, tσ denotes the result of applying σ onto t (with alpha-
renaming of bound names and variables if needed.)

In what follows, we denote by dom(σ) the domain of the substitution σ.

Definition 3.5 (match document-pattern). Let M be a closed document and Q

be a linear pattern: match(M,Q, σ) holds true if and only if dom(σ) = fv(Q) and
Qσ = M ; in this case, we also say that M matches Q.

We can now introduce the reduction relation.

Definition 3.6 (reduction). The reduction relation, → ⊆ Pcl × Pcl, is the least
binary relation on closed processes satisfying the rules in Table 3.3.



3. XPi: a typed process calculus for xml messaging 38

(com)
j ∈ I aj = a Aj = (Qex)P match(M,Q, σ)

a〈M〉 |
∑
i∈I

ai.Ai → Pσ

(struct) P ≡ R R → R′ R′ ≡ P ′

P → P ′ (ctx) P → P ′

(ν ã)(P |R) → (ν ã)(P ′ |R)

(else1)
P → P ′

P else R → P ′ (else2)
P 9

P else R → R

Table 3.3: Reduction semantics.

According to (com), a communication between a〈M〉 and
∑

{i∈I} ai.Ai occurs
provided that a = aj for some j ∈ I and the match predicate between the pattern
Q and M yields a substitution σ. The other rules account for structural congruence,
else, parallel composition and restriction as expected. As usual, we denote by →∗ the
reflexive and transitive closure of →.

Example 3.2.2. Consider the document M and the pattern Q defined in Exam-
ple 3.2.1. match(M,Q, σ) holds true, with dom(σ) = {x, y}, σ(x) = John Smith and
σ(y) = 12345; according to (com):

a〈M〉 | a.(Q)(b〈[n(x), t(y)]〉 |P ) → b〈[n(John Smith), t(12345)] 〉 |Pσ .

3.2.3 Derived constructs and examples

XPi allows for straightforward definition of a few powerful constructs, that will
be used in later examples. In the following, we shall freely use recursive definitions
of processes of the form A(x̃)

4
= P (with fv(P ) ⊆ x̃), that can be coded up using

replication [109].

Application. A functional-like application for abstractions, A •M , can be defined
as (ν c)(c〈M〉 | c.A), for any c /∈ fn(M,A).

Case. A pattern matching construct relying on a first match policy, written

case M of (Q1)ex1
⇒ P1,

(Q2)ex2
⇒ P2,
...

(Qk)exk
⇒ Pk
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evolves into P1 if M matches Q1 (with substitutions involved), otherwise evolves into
P2 if M matches Q2, and so on; if there is no match, the process is stuck. This
construct can be defined in XPi as follows (assuming precedence of • on else and
right-associativity for else):

(Q1)ex1
P1 •M else (Q2)ex2

P2 •M else · · · else (Qk)exk
Pk •M .

Example 3.2.3. Consider the document M defined in Example 3.2.1. Suppose that
we want to extract and send along b the name of all persons that have at least an
email, and along c the name of all persons that do not have an email. Assume M is
available on channel a. A process that performs this task is: a.(addrbook[?x])R(x),
where R(x) is:

R(x) = case x of person[name(?y), , emailaddrs[email( ), ]], ?w⇒ b〈y〉 |R(w)

person[name(?z), ], ?j ⇒ c〈z〉 |R(j) .

Decomposition. A process that attempts to decompose a document M into two
sublists that satisfy the patterns Qex and Q′ey and proceeds like P (with substitutions
for x̃ and ỹ involved), if possible, otherwise is stuck, written:

M as Qex, Q′ey ⇒ P

can be defined as the recursive process Dec([ ], M), where:

Dec(l, x)
4
= case x of ? y , ? w ⇒

(
case l@y of Qex ⇒

(
case w of

Q′ey ⇒ P,

⇒ Dec(l@y, w)
)
,

⇒ Dec(l@y, w)
)

.

Here we have used a list-append function @, which can be easily defined via a call
Append(l1, l2, r) where l1 and l2 are two lists, r is the channel where the result of the
append l1@l2 will be sent and Append is the following recursive process:

Append(x, y, r)
4
= case x of ?w, [ ] ⇒ r〈[w, y]〉

?w1, ?w2 ⇒ (ν r′)(Append(w2, y, r′) | r′.(?z) r〈[w1, z]〉) .
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Example 3.2.4. Consider M = [int(1), int(2), int(3), char(a), char(b), char(c)]
and the patterns Q{x} = ?x and Q′

{y,w} = char(?y), ?w. Then

a〈M〉 | a.(?z) z as Q, Q′ ⇒ b〈x〉 | c〈[char(y), w]〉

−→∗ b〈[int(1), int(2), int(3)]〉 | c〈[char(a), char(b), char(c)]〉 .

Map. A process that, from a list LM , generates another list containing all docu-
ments of the original list satisfying a certain (closed) pattern Q, assigns this list to a
variable y and proceeds like P :

let y = map Q, LM in P

can be defined as the process Map([ ], LM), where the following recursive definition is
assumed:

Map(l, x)
4
= case x of ? z , ? w ⇒ ( case z of Q ⇒ Map(l@z, w),

⇒ Map(l, w) ),

⇒ P [l/y] .

Example 3.2.5. Suppose the document M of Example 3.2.1 is available at a. Here
is a process that consumes M , creates a list of all persons that have at least an email
and sends this list along b:

a.(addrbook[?x])(let y = map person[ , , emailaddrs[email( ), ]], x in b〈y〉) .

Path expressions. A process that evaluates the path expression /f, that is extracts
all top-level elements tagged f from a document M is abbreviated as

let x = path /f, M in P

and can be defined as the process Path([ ],M), where the following recursive definition
is assumed:

Path(l, y)
4
= case y of f[?w1], ?w2 ⇒ Path(l@f[w1], w2)

, ?w⇒ Path(l, w)

[ ]⇒ P [l/x] .
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More involved is the definition of a recursive process evaluating //f, which extracts
all elements tagged f from a document M . We abbreviate with

let x = path //f, M in P

the process DeepPath([ ],M) below:

DeepPath(l, y)
4
= (ν r)(r(x).P |DP ′([ ], y, r))

DP ′(l, y, r)
4
= case y of f[?w1], ?w2 ⇒ (ν r1, r2)

(
DP ′([ ], w1, r1) |DP ′([ ], w2, r2)

| r1(x1).r2(x2).r〈[f[w1]]@x1@x2〉
)

[?w1], ?w2 ⇒ (ν r1, r2)
(
DP ′([ ], w1, r1) |DP ′([ ], w2, r2)

| r1(x1).r2(x2).r〈x1@x2〉
)

[ ]⇒ r〈l〉 .

Obviously the previous processes can be composed for evaluating expressions like
//f/g. Other common path expressions can be easily coded up in this style. We shall
not pursue this direction any further.

Example 3.2.6 (a web service). Consider a web service WS that offers two different
services: an audio streaming service, offered at channel stream, and a download service,
offered at channel download . Clients that request the first kind of service must specify
a streaming channel and its bandwidth (high or low), so that WS can stream one of
two audio files (vlow or vhigh), as appropriate. Clients that request to download must
specify a channel at which the player will be received. A client can run the downloaded
player locally, supplying it appropriate parameters (a local streaming channel and its
bandwidth). We represent streaming on a channel simply as an output action along
that channel:

WS
4
=!( stream.(req stream[bandwidth(low), channel(?x)]) x〈vlow〉

+ stream.(req stream[bandwidth(high), channel(?y)]) y〈vhigh〉

+ download .(req down(?z))z〈Player〉 ) .

Player is an abstraction:

Player
4
= (req stream[bandwidth(?y), channel(?z)])( case y of low⇒ z〈vlow〉

high⇒ z〈vhigh〉 ) .

Note that the first two addends of WS are equivalent to stream.Player . However,
the extended form written above makes it possible a static optimization of channels
(see Example 3.3.3).
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A client that asks for low bandwidth streaming, listens at s and then proceeds like
C is:

C1
4
= (ν s)(stream〈req stream[bandwidth(low), channel(s)]〉 | s.(?v)C) .

Another client that asks for download, then runs the player locally, listening at a
local high bandwidth channel s is defined as:

C2
4
= (ν d, s)

(
download〈req down(d)〉 | d.(?x)(x•

req stream[bandwidth(high), channel(s)] | s.(?v)C)
)

.

3.2.4 Encryption and decryption

Cryptographic primitives are sometimes used in distributed applications to guar-
antee secrecy and authentication of transmitted data. As a testbed for expressiveness,
we show how to encode shared-key encryption and decryption primitives à la spi-
calculus [3] into XPi. In Example 3.5.2, we shall see an example of application of
these encodings. We first introduce XPicr, a cryptographic extension of XPi that
subsumes shared-key spi-calculus, and then show how to encode XPicr into XPi. Doc-
ument syntax is extended with the following clause, that represents encryption of M

using N as a key:
M ::= · · · | {M}N Encryption

where N does contain neither abstractions nor encryptions. Process syntax is extended
with a case operator, that attempts decryption of M using N as a key and if successful
binds the result to a variable x :

P ::= · · · | case M of {x}N in P Decryption

where N does contain neither abstractions nor encryptions, M is a variable or a
document of the form {M ′}N ′ and x binds in P . Patterns remain unchanged, in
particular they may not contain encryptions or abstractions. The additional reduction
rule is:

(dec) case {M}N of {x}N in P → P [M/x] .

Next, two translation functions, one for documents ([[·]]) and one for processes
(〈| · |〉), are defined from XPicr to XPi. The translations of document follow a familiar
continuation-passing style (see Table 3.4).

Following [126], let us define the barb predicate P ⇓ a as follows: there is P ′ s.t.
P →∗ P ′ and P ′ has either an input addend a.A or an output a〈M〉, which are not
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[[u]] = u [[f(M)]] = f([[M ]])

[[{M}N ]] = ([N , ?x])x〈[[M ]]〉 [[(Qex)P ]] = (Qex)〈|P |〉
[[M , LM ]] = [[M ]], [[LM ]]

〈|u〈M〉|〉= u〈[[M ]]〉 〈|P1 |P2|〉= 〈|P1|〉 | 〈|P2|〉
〈|

∑
i∈I ai.Ai|〉=

∑
i∈I ai.[[Ai]] 〈|!P |〉= !〈|P |〉

〈|P else R|〉= 〈|P |〉 else 〈|R|〉 〈|(ν a)P |〉= (ν a)〈|P |〉
〈| case M of {x}N in P |〉 = (ν r) ([[M ]] • [N , r] | r.(?x) 〈|P |〉)

Table 3.4: Translating functions from XPicr to XPi.

in the scope of a (ν a), an else or guarded summation. The encoding defined above is
correct, in the sense that it preserves reductions and barbs in both directions, as stated
by the proposition below. Note that, by compositionality, this implies the encoding is
fully abstract w.r.t. barbed equivalence (see e.g. [28]).

Proposition 3.1. Let P be a closed process in XPicr.
(1) if P → P ′ then 〈|P |〉 →∗ 〈|P ′|〉;
(2) if 〈|P |〉 → P ′ then ∃P ′′ ∈ XPicr s.t. P ′ →∗ 〈|P ′′|〉;
(3) P ⇓ a if and only if 〈|P |〉 ⇓ a.

Proof:

(1) The proof is straightforward by induction on the derivation of P → P ′. We
consider the last reduction rule applied; the most interesting case is rule (dec), in
the other cases 〈|P |〉 reduces in one step into 〈|P ′|〉. case {M}N of {x}N in P →
P [M/x] and

〈| case {M}N of {x}N in P |〉

= (ν r)
(
[[{M}N ]] • [N , r] | r.(?x) 〈|P |〉

)
(by def. of 〈| · |〉, r fresh)

= (ν r)
(
([N , ?y])y〈[[M ]]〉 • [N , r] | r.(?x) 〈|P |〉

)
(by def. of [[·]], y fresh)

= (ν r)
(
(ν c)(c.([N , ?y])y〈[[M ]]〉 | c〈[N , r]〉) | r.(?x) 〈|P |〉

)
(by def. of •, c fresh)

→ (ν r)
(
r〈[[M ]]〉 | r.(?x) 〈|P |〉

)
(by (com))

→ 〈|P |〉[[[M ]]/x] (by (com))

= 〈|P [M/x]|〉 (by def. of 〈| · |〉) .

(2) The proof is straightforward by induction on 〈|P |〉 → P ′, we proceed by distin-
guishing the various cases by looking at the structure of P . The most interesting
is the case P = case {M}N of {x}N ′ in R. Recall that P is closed, hence M ,
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N and N ′ are closed documents.

〈|P |〉 = (ν r)
(
(ν c)(c.([N , ?y])y〈[[M ]]〉 | c〈[N ′, r]〉) | r.(?x) 〈|R|〉

)
→ P ′.

A communication on c takes place, thus rules (ctx) and (com) are ap-
plied. This means that match([N ′, r], [N , y], [r/y]), N = N ′ and P ′ =
(ν r)

(
r〈[[M ]]〉 | r.(?x) 〈|R|〉

)
. Moreover, match([[M ]], x, [[[M ]]/x]) and by rule (com),

P ′ → 〈|R|〉[[[M ]]/x]. By rule (dec), case {M}N of {x}N in R → R[M/x] = P ′′,
and 〈|P ′′|〉 = 〈|R|〉[[[M ]]/x] by definition of 〈| · |〉.

(3) The result follows from (1) and (2).
2

3.3 A type system

In this section, we define a type system for XPi that disciplines messaging at the
level of channels, patterns and processes. The system guarantees that well-typed pro-
cesses respect channels capacities at run-time. In other words, services are guaranteed
to receive only requests they can understand, and conversely, services offered at a
given channel are consistent with the type declared for that channel. Concerning the
structure of messages, XPi’s type system draws its inspiration from, but is less rich
than, xml-Schema [137]. Our system permits to specify types for basic values (such
as string or int) and provides tuple types (fixed-length lists) and star types (arbitrary-
length lists). Moreover, it provides abstraction types for channel and code mobility.
For the sake of simplicity, we have omitted attributes and recursive types.

3.3.1 Document types

We assume an unspecified set of basic types BT , ranged over by bt, bt’, . . . , that
might include int, string, boolean, or even Java classes. We assume that BT contains
a countable set of sort names in one-to-one correspondence with the sorts S,S ′, . . .

of N ; by slight abuse of notation, we denote sort names by the corresponding sorts.

Definition 3.7 (types). The set T of types, ranged over by T, S, . . . , is defined by
the syntax in Table 3.5.

Note the presence of the union type T + S, that is the type of all documents of
type T or S, and of the star type ∗T, that is the type of all (possibly empty) lists of
elements of type T. (T)Abs is the type of all abstractions that can consume documents
of type T. Finally, note the presence of T and

T

types. T is simply the type of all
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Type T ::= bt Basic type∣∣ T Top∣∣ T

Bottom∣∣ f(T) Tagged Type∣∣ LT List∣∣ T + T Union∣∣ (T)Abs Abstraction

List type LT ::= [ ] Empty∣∣ ∗ T Star∣∣ T, LT Sequence

Table 3.5: Syntax of types.

documents. On the contrary, no document has type

T

, but this type is extremely
useful for the purpose of defining channel types, as we shall see below.

Notations. The following abbreviations for types are used: [T1, T2, . . . , Tk−1, Tk]
stands for T1, (T2, (. . . (Tk−1, (Tk, [ ])) . . .)), while f[T1, . . . , Tk] stands for
f([T1, . . . , Tk]).

Example 3.3.1. A type for address books (see document M in Example 3.2.1) can
be the following:

addrbook[∗person[name(string),

tel(int),

emailaddrs(∗email(string))]] .

Next, we associate types with channels, or more precisely with sorts. This is done
by introducing a capacity function.

Definition 3.8 (capacity function). A capacity function is a surjective map from
the set of sorts to the set of types.

In the sequel, we fix a generic capacity function. We shall denote by ch(T) a generic
sort S that is mapped to T. The meaning of this being that channels of sort ch(T) can
only carry documents of type T. Note that, by surjectivity of the capacity function,
for each type T there is a sort ch(T). In particular, ch(T) is the sort of channels that
can transport anything. In practice, determining capacity T of a given channel a, i.e.
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(Sub-Sort)
T < S

ch(S) < ch(T)

(Sub-Top)
T < T

(Sub-Bottom) T

< T

(Sub-Basic)
bt1 ≺ bt2
bt1 < bt2

(Sub-Tag)
S < T

f(S) < f(T)

(Sub-Star1) [ ] < ∗T
(Sub-Star2)

S < T LT < ∗T
S, LT < ∗T

(Sub-Star3)
S < T

∗S < ∗T
(Sub-List)

T < S LT < LS

T, LT < S, LS

(Sub-Union1)
T < S or T < S′

T < S + S′
(Sub-Union2)

S < T S′ < T

S + S′ < T

Table 3.6: Subtyping relation.

that a belongs to ch(T), might be implemented with a variety of mechanisms, such
as attaching to a an explicit reference to T’s definition. We abstract away from these
details.

3.3.2 Subtyping relation

List and star types and the presence of T and
T

naturally induce a subtyping
relation. For example, a service capable of processing documents of type T = f(∗ int)
must be capable of processing documents of type T′ = f[int, int], i.e. T′ is a subtype
of T. Subtyping also serves to lift a generic subtyping preorder on basic types, ≺, to
all types.

Definition 3.9 (subtyping). The subtyping relation <⊆ T ×T is the least reflexive
and transitive relation closed under the rules of Table 3.6.

Note that we disallow subtyping on abstractions. The reason for this limitation
will be discussed shortly after presenting the type checking system (see Remark 3.1).
Also note that subtyping is contravariant on sorts capacities (rule (Sub-Sort)): this
is natural if one thinks of a name of capacity T as, roughly, a function that can
take arguments of type T. As a consequence of contravariance, for any T, we have
ch(T) < ch(

T

), that is, ch(

T

) is the type of all channels.
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3.3.3 Type checking

A basic typing relation v : bt on basic values and basic types is presupposed, which
is required to respect subtyping, i.e. whenever bt ≺ bt′ and v : bt then v : bt′. We
demand that for each bt there is at least one v : bt. Moreover, we require that for each
v the set of bt’s such that v : bt has a minimal element bt′ such that bt′ ≺ bt for each
bt in the set. On names and sort names the basic typing relation is the following:

a : S if and only if a ∈ S ′ for some S ′ < S .

Contexts Γ,Γ′, . . . are finite partial maps from variables V to types T , sometimes
denoted as sets of variable bindings {xi : Ti}i∈I with xi distinct from xj for each i

different from j.

Notations. We denote the empty context by ∅. We denote by Γ−ex the context
obtained from Γ by removing the bindings for the variables in x̃, and by Γ|ex the
context obtained by restricting Γ to the bindings for the variables in x̃. The subtyping
relation is extended to contexts by letting Γ1 < Γ2 iff dom(Γ1) = dom(Γ2) and ∀x ∈
dom(Γ1) it holds that Γ1(x) < Γ2(x). Union of contexts Γ1 and Γ2 having disjoint
domains is written as Γ1 ∪ Γ2 or as Γ1, Γ2 if no ambiguity arises. Sum of contexts
Γ1 and Γ2 is written as Γ1 + Γ2 and is defined as (Γ1 + Γ2)(x) = Γ1(x) + Γ2(x) if
x ∈ dom(Γ1) ∩ dom(Γ2), otherwise (Γ1 + Γ2)(x) = Γi(x) if x ∈ dom(Γi) for i = 1, 2.

Type checking relies on a type-pattern matching predicate, tpm(T, Q, Γ), whose
role is twofold: (1) it extracts from T the types expected for variables in Q after
matching against documents of type T, yielding the context Γ, (2) it checks that Q is
consistent with type T, i.e. that the type of Q is a subtype of T under Γ.

Definition 3.10 (type-pattern match). The predicate tpm(T, Q,Γ) is defined by
the rules in Table 3.7.

The matching predicate between types and patterns is univocal:

Lemma 3.1. For every T, Q, Γ and Γ′ if tpm(T, Q,Γ) and tpm(T, Q,Γ′) then Γ = Γ′.
Proof: The proof is straightforward by induction on the derivation of

tpm(T, Q,Γ). The base cases are (tpm-Empty), (tpm-Value) and (tpm-Star1),
where Γ = Γ′ = ∅, (tpm-Var), where Γ = Γ′ = {x : T} and (tpm-Top), where for
each x ∈ fv(Q) we have Γ(x) = Γ′(x) = T. The other cases can be proved by applying
the inductive hypothesis (recall the linearity of Q). 2

As expected, type checking works on an annotated syntax, where each Qex is deco-
rated by a context Γ for its binding variables x̃, written Qex : Γ, with x̃ = dom(Γ), or
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(tpm-Top)
Q 6= x

tpm(T, Q,Γ) , ∀x ∈ fv(Q) : Γ(x) = T

(tpm-Empty) tpm([ ], [ ], ∅) (tpm-Var) tpm(T, x, {x : T})

(tpm-Value) v : bt
tpm(bt, v, ∅) (tpm-Tag)

tpm(T, Q,Γ)
tpm(f(T), f(Q),Γ)

(tpm-Star1) tpm(∗T, [ ], ∅) (tpm-Star2)
tpm(T, Q,Γ1) tpm(∗T, LQ,Γ2)

tpm(∗T, (Q, LQ),Γ1 ∪ Γ2)

(tpm-List)
tpm(T, Q,Γ1) tpm(LT, LQ,Γ2)
tpm((T, LT), (Q, LQ),Γ1 ∪ Γ2)

(tpm-Union)
tpm(T0, Q,Γ0) or tpm(T1, Q,Γ1)

tpm(T0 + T1, Q,Γ) where:

Γ =

 Γ0 + Γ1 if tpm(T0, Q,Γ0) and tpm(T1, Q,Γ1)

Γi if tpm(Ti, Q,Γi) and for no Γ′ tpm(Ti+1 mod 2, Q,Γ′), for i = 0 or i = 1

Table 3.7: Matching between types and patterns.

simply Q : Γ, where it is understood that the binding variables of Q are dom(Γ). For
notational simplicity, we shall use such abbreviations as a.(f[?x : T, ?y : S])P instead
of a.(f[x, y] : {x : T, y : S})P , and assume don’t care variables “ ” are always anno-
tated with T. Reduction semantics carries over to annotated closed processes formally
unchanged.

Notations. We say that a type T is abstraction-free if T contains no subterms of
the form (S)Abs. A context Γ is abstraction-free if for each x ∈ dom(Γ), Γ(x) is
abstraction-free. We use Γ ` u ∈ ch(T) as an abbreviation for: either u = a ∈ ch(T)
or u = x ∈ V and Γ(x) = ch(T).

The type system, defined on open terms, consists of two sets of inference rules,
one for documents and one for processes, displayed in Table 3.8 and 3.9, respectively.
These two systems are mutually dependent, since abstractions may contain processes,
and processes may contain abstractions. Note that the system is entirely syntax driven,
i.e. the process P (resp. the pair (M,T)) determines the rule that should be applied
to check Γ ` P : ok (resp. Γ ` M : T), where ok is the type associated to well-typed
processes.

The most interesting of the typing rules for documents is (Tm-Abs). Informally,
Γ ` A : (T)Abs ensures that under Γ the following is true: (1) abstraction A =
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(Tm-Empty) Γ ` [ ] : [ ] (Tm-Top) Γ ` M : T

(Tm-Value) v : bt
Γ ` v : bt (Tm-Var)

Γ(x) < T
Γ ` x : T

(Tm-Tag) Γ ` M : T
Γ ` f(M) : f(T) (Tm-List) Γ ` M : T Γ ` LM : LT

Γ ` M , LM : T, LT

(Tm-Star1) Γ ` [ ] : ∗T (Tm-Star2)
Γ ` M : T Γ ` LM : ∗T

Γ ` M , LM : ∗T

(Tm-Union) Γ ` M : T or Γ ` M : S
Γ ` M : T + S

(Tm-Abs)
tpm(T, Q,Γ1) (Γ1)|ex < ΓQ (Γ1)|ey > Γ|ey Γ,ΓQ ` P : ok

Γ ` (Q : ΓQ)P : (T)Abs

where x̃ = dom(ΓQ), ỹ = fv(Q) \ x̃ and (Γ1)|ey is abstraction-free

Table 3.8: Type system for documents.

(T-In) a ∈ ch(T) Γ ` A : (T)Abs
Γ ` a.A : ok

(T-Out) Γ ` u ∈ ch(T) Γ ` M : T
Γ ` u〈M〉 : ok

(T-Sum)
∀i ∈ I Γ ` ai.Ai : ok |I| 6= 1

Γ `
∑
i∈I

ai.Ai : ok

(T-Rep) Γ ` P : ok
Γ ` !P : ok (T-Par) Γ ` P : ok Γ ` R : ok

Γ ` (P |R) : ok

(T-Res) Γ ` P : ok
Γ ` (ν a)P : ok

(T-Else) Γ ` P : ok Γ ` R : ok
Γ ` P else R : ok

Table 3.9: Type system for processes.

(Qex : ΓQ)P behaves safely upon consuming documents of type T (because the type
at which the actual parameters will be received is a subtype of the type declared for
formal parameters, (Γ1)|ex < ΓQ, and because of Γ,ΓQ ` P : ok); (2) the pattern Q

is consistent with type T, i.e. essentially, the run-time type of Q is a subtype of T

(because of type-pattern match and of Γ|ey < (Γ1)|ey). This guarantees existence of
a document of type T that matches the pattern, that is, patterns with no chance of
being matched are forbidden. Moreover, no ill-formed pattern will arise from Q thanks
to the abstraction-freeness of (Γ1)|ey. Of course, Γ ` A : (T)Abs does not guarantee
that any documents of type T can be consumed, as this depends on pattern matching,
hence on the value associated at run-time to the free variables in A’s pattern.

Rule (T-In) checks that an abstraction A residing at channel a ∈ ch(T) can safely
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consume documents of type T, and that there do exist documents of type T that
match the pattern of A. Conversely (T-Out) checks that documents sent at u be
of type T. Input and summation (rule (T-Sum)) are dealt with separately only for
notational convenience. Finally, it is worth to notice that, by definition of a : S, rule
(Tm-Value) entails subsumption on channels (i.e. Γ ` a : S and S < S ′ implies
Γ ` a : S ′). The remaining rules should be self-explanatory.

In the sequel, for closed annotated processes P , we shall write P : ok for ∅ ` P : ok,
and say that P is well-typed. Similarly we write M : T for closed annotated documents
M .

Example 3.3.2. Assume a ∈ ch(∗int) and b ∈ ch(f[int, ∗int]). Then P : ok, where:

P = a.(?y : ∗int)b.(f[?x : int, y])a〈x, y〉 | a〈[4, 5]〉 | a〈[4, 5, 6]〉 .

Note that, if we change the sort of b into ch(f[int, [int, int]]), then P is not well-typed, as
rule (Tm-Abs) fails on A = (f[?x : int, y])a〈x, y〉. This is intuitively correct, because
a possible run-time type of A is (f[int, [int, int, int]])Abs, which is not consistent with
the capacity associated to b, that is f[int, [int, int]].

To illustrate the use of ch(T) and ch(

T

), and contravariance on sort names, con-
sider a “link process” ([28]) that constantly receives any name on a and sends it along
b. This can be written as !a.(?x : ch(

T

))b〈x〉. This process is well-typed provided
a ∈ ch(ch(T)), for some T, and that b ∈ ch(ch(

T
)).

Remark 3.1 (on abstractions and subtyping). To see why we disallow subtyping
on abstractions, consider the types T = [f(int), f(int)] and ∗f(int) = S. Clearly T < S.
Assume we had defined subtyping covariant on abstractions, so that (T)Abs < (S)Abs.
Now, clearly A = (?x : T)0 : (T)Abs, but not A : (S)Abs (the condition (Γ1)|ex < ΓQ

of (Tm-Abs) fails). In other words, a crucial subtyping property would be violated.
On the other hand, assume we had defined subtyping contravariant on abstrac-

tions, so that (S)Abs < (T)Abs. Consider A′ = (Q : ΓQ)0, where Q : ΓQ = [f(?x :
int), f(?y : int), f(?z : int)]; clearly A′ : (S)Abs, but not A′ : (T)Abs (simply because
there is no type-pattern match between T and Q.) This would violate again the
subtyping property.

3.3.4 Typing rules for Application and Case

Previously we presented the typing rules for the standard syntax of the calculus,
but also the processes that use derived constructs and recursive processes are subject
to type checking. We can do this by traducing the constructs in standard syntax and
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using the basic rules. To facilitate type checking we define some rules that we can
directly apply on derived constructs.

Application. In the following, we let TM,Γ denote the exact type of M under Γ,
obtained from M by replacing each x by Γ(x), each name a ∈ ch(T) by ch(T), each
other v by the least type bt s.t. v : bt, and, recursively, each abstraction subterm
(Q : ΓQ)P by (TQ, Γ∪ΓQ

)Abs. The rule for application is derived by rules (T-Par),
(T-Out) and (T-In) and is the following:

(T-Appl)
Γ ` A : (TM,Γ)Abs

Γ ` A •M : ok

that is easily proved sound recalling that A • M = (ν c)(c.A | c〈M〉) (c fresh) and
assuming that c is chosen s.t. c ∈ ch(TM,Γ).

Case. Concerning case, first note that the typed version of this construct contem-
plates annotated patterns, thus:

case M of Q1 : ΓQ1 ⇒ P1,

Q2 : ΓQ2 ⇒ P2,
...

Qk : ΓQk
⇒ Pk .

Then, relying on the rule for application, the typing rule can be written as:

(T-Case)
∀i = 1, . . . , k : Γ ` (Qi : ΓQi)Pi •M : ok

Γ ` case M of Q1 : ΓQ1 ⇒ P1, . . . , Qk : ΓQk
⇒ Pk : ok

.

Example 3.3.3 (a web service, continued). Consider the service defined in Ex-
ample 3.2.6. Assume a basic type mp3 of all mp3 files, such that vlow, vhigh : mp3, and
a basic type l-mp3 of low quality mp3 files, s.t. vlow : l-mp3, but not vhigh : l-mp3. As-
sume l-mp3 < mp3; note that this implies that ch(mp3) < ch(l-mp3), i.e. if a channel
can be used for streaming generic files, it can also be used for streaming low-quality
files, which fits intuition. Let T be req stream[bandwidth(string), channel(ch(mp3))]
and fix the following capacities for channels stream and download : stream ∈ ch(T)
and download ∈ ch(req down(ch((T)Abs))). An annotated version of WS , which per-
mits in principle a static optimization of channels (assuming allocation of low-quality
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channels is less expensive than generic channels’):

WS =!
(
stream.(req stream[bandwidth(low), channel(?x : ch(l-mp3))])x〈vlow〉

+ stream.(req stream[bandwidth(high), channel(?y : ch(mp3))])y〈vhigh〉

+ download .(req down[?z : ch((T)Abs)])z〈Player〉
)

where Player is the obvious annotated version of the player of Example 3.2.6. It is
easy to check that Player : (T)Abs and that WS : ok.

3.4 Properties of typing

A type system aims at providing static guarantees that certain properties hold
at run-time. The safety property of our interest can be defined in terms of channel
capacities, document types and consistency. First, a formal definition of consistent
types and patterns.

Definition 3.11 (T-consistency). A type T is consistent if

T

does not occur in T.
A pattern Q is T-consistent if there is a document M : T that matches Q.

Note that all sort names, including ch(

T

), are consistent types by definition. A
safe process is one whose output and input actions are in agreement with channel
capacities, as stated by the definition below. Of course, for input actions it makes
sense to require consistency (condition (2)) only if the input channel has in turn a
consistent capacity.

Definition 3.12 (safety). Let P be an annotated closed process. P is safe if and
only if for each name a ∈ ch(T):

(1) whenever P ≡ (ν h̃)(a〈M〉 |R) then M : T;
(2) suppose T is consistent. Whenever P ≡ (ν h̃)(S |R), where S is a guarded

summation, a.A an addend of S and Q is A’s pattern, then Q is T-consistent.

A first expected result about the type system is type safety which relies on the
following lemma.

Lemma 3.2. Suppose T is consistent. If tpm(T, Q,Γ) for some Γ then Q is T-
consistent.

Proof: The proof is straightforward by induction on the derivation of
tpm(T, Q,Γ). The most interesting cases are (tpm-Top) and (tpm-Var):
(tpm-Top): consider the document M obtained by replacing every variable in Q

with a value; by (Tm-Top) M : T and obviously M matches Q, thus Q is
T-consistent;
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(tpm-Var): tpm(T, x, {x : T}) implies that Q = x and Q is T-consistent because
we can prove that, for every consistent type T, there is a document M : T (the
proof is immediate assuming that for each basic type bt there is at least one
v : bt);

(tpm-Empty), (tpm-Star1): it is enough to choose M = [ ];
(tpm-Value): given that for each basic type bt there is at least one v : bt it is

enough to choose M = v;
(tpm-Tag), (tpm-Star2), (tpm-List) and (tpm-Union): the proof proceeds by

applying the inductive hypothesis.
2

Theorem 3.1 (type safety). Let P be an annotated closed process and suppose
P : ok, then P is safe.

Proof: The proof is straightforward by induction on the derivation of P : ok, by
distinguishing the last typing rule applied. Case (T-In) relies on Lemma 3.2. 2

Subject reduction relies on the following lemmata. The first states that typing
does respect the subtyping relation:

Proposition 3.2 (subtyping). If S < T then for any document M such that Γ `
M : S we have Γ ` M : T.

Proof: We distinguish two cases:
M = x: Γ ` M = x : S implies, by rule (Tm-Var), Γ(x) < S; but S < T, therefore,

by the transitivity of <, Γ(x) < T and, by rule (Tm-Var), Γ ` M = x : T.
M 6= x: The proof is straightforward by induction on the sum of the depths of the

derivations of S < T and Γ ` M : S and proceeds by distinguishing the last
subtyping rule applied. The base cases are (Sub-Basic), which relies on the
fact that subtyping on basic values entails subtyping, (Sub-Sort), which relies
on definition of a : S, (Sub-Top) and (Sub-Star1). The other cases can be
proved by applying the inductive hypothesis.

2

The following lemma ensures, roughly, that type-pattern match agrees with
document-pattern match. In particular, if a closed document of type T matches a
pattern Q, then the values taken on by Q’s variables after matching will be of the
type predicted by tpm. Moreover, the lemma states that type-pattern match is pre-
served by type-respecting substitutions.

Proposition 3.3 (matching). Let M be a closed document.
(1) If M : T and match(M,Q, σ) then tpm(T, Q, Γ) and σ(x) : Γ(x) for each x in

dom(σ).
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(2) If M is abstraction-free and M : T then tpm(T,M, ∅).
(3) If M is abstraction free, tpm(T, Q,Γ) and M : Γ(x) then tpm(T, Q[M/x],Γ−{x}).

Proof:

(1) We distinguish two cases:

Q = x: σ = [M/x] and, by (tpm-Var), tpm(T, x, {x : T});

Q 6= x: the proof is straightforward by induction on the derivation of M : T.
Note that it can be neither the case M = x, because M is closed, nor
M = A, because match(M,Q, σ) with Q 6= x,A.

(tm-Empty): M = [ ] : [ ] = T and match(M,Q, σ) implies Q = [ ] and
σ = ε; moreover, by (tpm-Empty), tpm([ ], [ ], ∅);

(tm-Star1): the proof proceeds as in the previous case;

(tm-Top): tpm(T, Q,Γ) with Γ(x) : T for each x ∈ fv(Q). By
(Tm-Top), each document is of type T, hence σ(x) : T = Γ(x) for
each x ∈ fv(Q) = dom(σ);

(tm-Value): v : bt and match(v,Q, σ), with Q 6= x, implies Q = v and
σ = ε. Moreover, by (tpm-Value), tpm(bt, v, ∅);

(tm-Tag), (tm-Star2), (tm-List), (tm-Union): the proof relies on
linearity of patterns and proceeds by applying the inductive hypothesis.

(2) The proof is straightforward by induction on the derivation of M : T.
(3) The proof is straightforward by induction on the derivation of tpm(T, Q,Γ), the

base case (tpm-Var) relies on Proposition 3.3 (2).
2

The next three propositions ensure that typing is preserved by substitution, weak-
ening and structural congruence.

Proposition 3.4 (substitution). Let M be a closed document and M : T. If Γ, x :
T ` P : ok then Γ ` P [M/x] : ok. If Γ, x : T ` N : S then Γ ` N [M/x] : S.

Proof: The proof proceeds by mutual induction on the derivation of Γ, x : T `
P : ok and Γ, x : T ` N : S. We distinguish the last typing rule applied. The most
interesting cases are:
(T-Out): Γ, x : T ` u〈M ′〉 : ok implies Γ, x : T ` u ∈ ch(S) and Γ, x : T ` M ′ : S.

By induction Γ ` M ′[M/x] : S. If u 6= x then Γ ` u[M/x] = u ∈ ch(S). If u = x

then T = ch(S) and M = a for some a ∈ N . a : T implies a ∈ ch(S′) < ch(S), for
a S′ such that S < S′. By Proposition 3.2 (subtyping), Γ ` M ′[M/x] : S and S < S′

imply Γ ` M ′[M/x] : S′. In both cases, by rule (T-Out), Γ ` (u〈M ′〉)[M/x] : ok.
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(Tm-Var): Γ, x : T ` y : S; the proof proceeds by observing that, in case x = y, it
holds that T < S and, by applying Proposition 3.2 (subtyping), M : S.

(Tm-Abs): Γ, x : T ` (Qex : ΓQ)P : (S)Abs implies Γ,ΓQ, x : T ` P : ok and, by
induction, Γ,ΓQ ` P [M/x] : ok.
If x /∈ fv(Q) then Q[M/x] = Q. Otherwise, by (Tm-Abs), (Γ1)|ey > (Γ, x : T)|ey.
Hence, from M : T and Proposition 3.2 (subtyping), it follows that M : Γ1(x).
Therefore, by Proposition 3.3 (3) (matching), we have tpm(S, Q[M/x], (Γ1)−{x}).
Finally, by rule (Tm-Abs), Γ ` ((Q[M/x])ex : ΓQ)P [M/x] = ((Qex : ΓQ)P )[M/x] :
(S)Abs.

The other cases can be proved by applying the inductive hypothesis. 2

Proposition 3.5 (weakening). Let P be an annotated process. If Γ, x : T ` P : ok

and x /∈ fv(P ) then Γ ` P : ok.
Proof: The proof is straightforward by induction on the derivation of Γ, x : T `

P : ok. 2

Proposition 3.6 (subject congruence). Let P and R be annotated processes. If
Γ ` P : ok and P ≡ R then Γ ` R : ok.

Proof: The proof is straightforward by induction on the derivation of P ≡ R,
and in case (ν a)(P |R) ≡ P | (ν a)R, with a /∈ fn(P ), relies on Proposition 3.5. 2

Theorem 3.2 (subject reduction). Let P be an annotated closed process. If P : ok

and P → P ′ then P ′ : ok.
Proof: By induction on the derivation of P → P ′. We distinguish the last

reduction rule applied; the most interesting case is (com):
(com): a〈M〉 |

∑
i∈I ai.Ai → Pσ where, for some j ∈ I: a = aj , Aj = (Qex : ΓQ)P

and match(M,Q, σ). We have to prove that Pσ : ok; recall that P is closed,
hence M is closed.
From a〈M〉 |

∑
i∈I ai.Ai : ok and rule (T-Par): a〈M〉 : ok and

∑
i∈I ai.Ai : ok.

Hence, for some T it holds that a ∈ ch(T), M : T and Aj : (T)Abs, by (T-Out),
(T-Sum) and (T-In).
From Aj : (T)Abs and rule (Tm-Abs), we deduce that tpm(T, Q,Γ1), (Γ1)|ex <

ΓQ and ΓQ ` P : ok.
By Proposition 3.3 (1) (matching), M : T, match(M,Q, σ) and tpm(T, Q,Γ1)
imply that ∀x ∈ dom(σ) we have σ(x) : Γ1(x) and, by Proposition 3.2 (sub-
typing), σ(x) : ΓQ(x). Moreover, M closed implies that σ(x) is closed for each
x ∈ dom(σ). In conclusion, by ΓQ ` P : ok and Proposition 3.4 (substitution),
Pσ : ok;
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(struct): P → P ′ implies P ≡ R and R → R′ with R′ ≡ P ′. By Proposition 3.6
(subject congruence), P : ok implies R : ok and, by inductive hypothesis, R′ : ok.
Hence, again by Proposition 3.6 (subject congruence), P ′ : ok;

(ctx): (ν ã)(P |R) → (ν ã)(P ′|R) implies P → P ′. By (T-Res) and (T-Par),
(ν ã)(P |R) : ok implies P : ok and R : ok. By inductive hypothesis, P ′ : ok and,
again by (T-Res) and (T-Par), (ν ã)(P ′|R) : ok;

(else1): P else R → P ′ implies P → P ′. By (T-Else), P else R : ok implies
P : ok and by inductive hypothesis P ′ : ok;

(else2): P else R → R and, by (T-Else), P else R : ok implies R : ok.
2

As a consequence of subject reduction and type safety we get run-time safety.

Corollary 3.1 (run-time safety). Let P be a closed annotated process. If P : ok

and P →∗ P ′ then P ′ is safe.
Proof: By Theorem 3.1 (type safety) and 3.2 (subject reduction). 2

3.5 An extension: dynamic abstractions

Although satisfactory in most situations, a static typing scenario does not seem
appropriate in those cases where little is known in advance on actual types of data
that will be received from the network.

Example 3.5.1 (a directory of services). Suppose one has to program an on-line
directory of (references to) services. Upon request of a service of type T, for any T, the
directory should look-up its catalog and respond by sending a channel of type ch(T)
along a reply channel. If the reply channel is fixed statically, it must be given capacity
ch(

T

), that is, any channel. Then, a client that receives a name at this channel must
have some mechanism to cast at run-time this generic type to the subtype ch(T),
which means going beyond static typing. If the reply channel is provided by clients
the situation does not get any better. E.g. consider the following service (here we use
some syntactic sugar for the sake of readability):

! request .(req[?t : Td, ?x : ch(Tr)]) let y = lookup(t) in x〈y〉

where lookup is a function from some type Td of type-descriptors to the type of
all channels, ch(

T

). It is not clear what capacity Tr the return channel variable x

should be assigned. The only choice that makes the above process well typed is to
set Tr = ch(

T

), that is, x can transport any channel. But then, a client’s call to this
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service like request〈req[vtd, r]〉, where r has capacity ch(T), is not well typed (because
r ∈ ch(ch(T)) and ch(ch(T)) is not a subtype of ch(Tr) = ch(ch(

T

))).
Even ignoring the static vs. dynamic issue, the schemes sketched above would

imply some form encoding of types and subtyping into xml, which is undesirable if
one wishes to reason at an abstract level. As we shall see below, dynamic abstractions
can solve these difficulties.

The scenario illustrated in the above example motivates the extension of the cal-
culus presented in the preceding sections with a form of dynamic abstraction. The
main difference from ordinary abstractions is that type checking for pattern variables
is moved to run-time. This is reflected into an additional communication rule, that
explicitly invokes type checking. We describe below the necessary extensions to syntax
and semantics. We extend the syntactic category of Abstractions thus:

A ::= · · · | (|Qex : Γ|)P Dynamic abstraction

with x̃ = dom(Γ). We let D range over dynamic abstractions and A over all abstrac-
tions. We add a new reduction rule:

(com-d)
j ∈ I aj = a Aj = (|Qex : Γ|)P match(M,Q, σ) ∀y ∈ dom(σ) : σ(y) : Γ(y)

a〈M〉 |
∑
i∈I

ai.Ai → Pσ
.

We finally add a new type checking rule. For this, we need the following additional
notations. Given Γ1 and Γ2, we write Γ1 ≶ Γ2 if dom(Γ1) = dom(Γ2) and ∀x ∈
dom(Γ1) there is a consistent type T such that T < Γ1(x) and T < Γ2(x).

(Tm-Abs-d)
tpm(T, Q,Γ1) (Γ1)|ex ≶ ΓQ (Γ1)|ey > Γ|ey Γ,ΓQ ` P : ok

Γ ` (|Qex : ΓQ|)P : (T)Abs

where ỹ = fv(Q) \ x̃ and (Γ1)|ey is abstraction free. The existence of a common
consistent subtype for ΓQ and (Γ1)|ex ensures a form of dynamic consistency for Q,
detailed below.

We discuss now the extension of run-time safety. The safety property needs to
be extended to inputs formed with dynamic abstractions. A stronger form of pattern
consistency is needed.

Definition 3.13 (dynamic T-consistency). An annotated pattern Q : Γ (fv(Q) =
dom(Γ)) is dynamically T-consistent if there is a document M : T such that
match(M,Q, σ) and ∀x ∈ dom(σ) we have σ(x) : Γ(x).
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Definition 3.14 (dynamic safety). Let P be an annotated closed process. P is
dynamically safe if for each name a ∈ ch(T) conditions (1) and (2) of Definition 3.12
hold, and moreover the following condition is true. Suppose T is consistent. Whenever
P ≡ (ν h̃)(S |R), where S is a guarded summation, a.D is an addend of S and Q : Γ
is D’s annotated pattern, then Q : Γ is dynamically T-consistent.

It is straightforward to prove the extensions of Theorem 3.1 (type safety) and
Corollary 3.1 (run-time safety) to the dynamic case, i.e.: every closed annotated well-
typed process P is dynamically safe, and dynamic safety is preserved by reduction.

Proofs of Propositions 3.2 (subtyping), 3.3 (matching) and 3.4 (substitution) carry
over essentially unchanged to the language with dynamic abstractions.

Theorem 3.3 (extension of Theorem 3.1). Let P be an annotated closed process
and suppose P : ok, then P is dynamically safe.

Proof: By induction on the derivation on P : ok. The unique change is in rule
(T-In) when P = a.D : ok. By (T-In), a ∈ ch(T) and D : (T)Abs.

By rule (Tm-Abs-d): D = (|Qex : ΓQ|)P ; tpm(T, Q,Γ1); and (Γ1)|ex ≶ ΓQ. Hence,
for each y in x̃ there exists a consistent type Sy s.t. Sy < ΓQ(y) and Sy < Γ1(y).

Consider the document M obtained by replacing in Q every variable y ∈ x̃ by
some document M ′ : Sy (M ′ exists because Sy is consistent). Obviously, for each y in
x̃, match(M,Q, σ) and σ(y) = M ′ : Sy with Sy < ΓQ(y). Therefore Q is dynamically
T-consistent and, by Definition 3.14, the process a.D is dynamically safe. 2

Theorem 3.4 (extension of Theorem 3.2). Let P be an annotated closed process.
If P : ok and P → P ′ then P ′ : ok.

Proof: The proof is straightforward by induction on the derivation of P → P ′.
The interesting case is (com-d), the other cases are unchanged.

By rule (com-d), a〈M〉 |
∑

i∈I ai.Ai → Pσ where, for some j ∈ I: a = aj , Aj =
(|Qex : ΓQ|)P , match(M,Q, σ) and for every y ∈ dom(σ) it holds that σ(y) : ΓQ(y).

We have to prove that Pσ : ok. From a〈M〉 |
∑

i∈I ai.Ai : ok, we deduce that∑
i∈I ai.Ai : ok. Hence, there is a T ∈ T such that Aj : (T)Abs and ΓQ ` P :

ok, (Tm-Abs-d). Finally, σ(y) : ΓQ(y) for each y ∈ dom(σ) and Proposition 3.4
(substitution) imply Pσ : ok. 2

Corollary 3.2 (dynamic run-time safety). Let P be an annotated closed process.
If P : ok and P →∗ P ′ then P ′ is dynamically safe.

Proof: By Theorem 3.3 (extension of type safety) and 3.4 (extension of subject
reduction). 2
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Example 3.5.2 (a directory of services, continued). Consider again the directory
of services. Clients can either request a (reference to a) service of a given type, by
sending a message to channel discovery , or request the directory to update its catalog
with a new service, using the channel publish. Each request to discovery should
contain some type information, which should allow the directory service to select a
(reference to a) service of that type, taking subtyping into account. Types cannot
be passed around explicitly. However one can pass a dynamic abstraction that can
do the selection on behalf of the client and return the result back to the client at a
private channel. The catalog is maintained on a channel cat local to the directory.
Thus the directory process can be defined as follows, where

∏
i∈I ! cat〈ci〉 stands for

! cat〈c1〉 | · · · | ! cat〈cn〉 (for I = 1, . . . , n) and the following capacities are assumed:
discovery ∈ ch((ch(

T

))Abs), publish, cat ∈ ch(ch(

T

)).

Dir
4
= (ν cat)(

∏
i∈I ! cat〈ci〉 | ! publish.(?y : ch(

T

))! cat〈y〉

| ! discovery .(?x : (ch(

T

))Abs) cat .x) .

Note that (ch(

T

))Abs is the type of all abstractions that can consume some channel.
A client that wants to publish a new service S that accepts documents of some type
T at a new channel a ∈ ch(T) is:

C1
4
= (ν a)( publish〈a〉 |S ) .

A client that wants to retrieve a reference to a service of type T, or any subtype of it,
is:

C2
4
= (ν r)( discovery〈(|?z : ch(T)|)r〈z〉〉 | r.(?y : ch(T))C ′ ) .

Suppose r ∈ ch(ch(T)). Assuming S and C ′ are well typed (the latter under {y :
ch(T)}), it is easily checked that the global system

P
4
= Dir |C1 |C2

is well typed too.
In reality, the above solution would run into security problems, as the directory

executes blindly any abstraction received from clients (cat .x). Moreover, services
originating from unauthorized clients should not be published. We can avoid these
problems using encryption so to authenticate both abstractions and published services.
We rely on the encoding of encryption primitives described in Section 3.2. For the
purpose of the present example, we extend the encoding to the typed calculus by
[[{M}k]]

4
= ([k, ?x : ch(T)])x〈[[M ]]〉, and 〈| case M of {x : T}k in P |〉 4

= (ν r) ([[M ]] •
[k, r] | r.(|?x : T|) 〈|P |〉), with r ∈ ch(T).



3. XPi: a typed process calculus for xml messaging 60

Assume that every client Cj shares a secret key kj with the directory. A table asso-
ciating client identifiers and keys is maintained on a channel table local to the directory
(hence secure). Assume that identifiers idj are of a basic type identifier, that keys kj

are names of a sort Key and let enc(T) be the type of documents {M}k where M : T.
Fix the following capacities: cat ∈ ch(ch(

T

)), table ∈ ch([id(identifier), key(Key)]),
publish ∈ ch(service p[id(identifier), channel(enc(ch(

T

)))]), and discovery ∈
ch(service d[id(identifier), abstr(enc((ch(

T

))Abs))]). The process Dirs is:

Dirs
4
= (ν cat , table)

( ∏
i∈I ! cat〈ci〉 |

∏
j∈J ! table〈[id(idj), key(kj)]〉

| ! publish.(service p[id(?x : identifier), channel(?zc : enc(ch(

T

)))])

table.([id(x), key(?xk : Key)]) case zc of {y : ch(

T

)}xk
in !cat〈y〉

| ! discovery .(service d[id(?x : identifier), abstr(?za : enc((ch(

T

))Abs))])

table.([id(x), key(?xk : Key)]) case za of {y : (ch(

T

))Abs}xk
in cat.y

)
.

The client C1 may be rewritten as:

C ′
1
4
= (ν a)( publish〈service p[id(id1), channel({a}k1)]〉 |S )

and C2 as:

C ′
2

4
= (ν r)( discovery〈service d[id(id2), abstr({(|?z : ch(T)|)r〈z〉}k2)]〉

| r.(?y : ch(T))C ′ ) .

Suppose a ∈ ch(T′), r ∈ ch(ch(T)) and assume S and C ′ are well typed under the
appropriate contexts. The global system

Ps
4
= (ν k1, k2)(Dirs |C ′

1 |C ′
2)

is well typed too. An attacker may intercept documents on publish or discovery
and may learn the identifiers of the clients, but not the secret shared keys. As a
consequence, it cannot have Dirs publish unauthorized services or run unauthorized
abstractions.

3.6 Barbed equivalence

In [126], Milner and Sangiorgi propose barbed bisimulation as a tool for uniformly
defining bisimulation-based equivalences. Barbed equivalence is useful for its “porta-
bility” when studying a new calculus or a refinement of an existing one, as we are
doing here.
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Barbed bisimulation is a very coarse relation. According to a common pattern, one
closes barbed bisimulation under all contexts, thus getting barbed congruence. Here,
we find useful to depart from this pattern so as to capture an input locality property
for the observed processes (in the same vein as [125]). Approximately, one may think
of each observed process P as equipped with an “interface” I: a set of input channels
at which services are offered. Input channels in I should remain confined to P , in
other words, only external observers that do not own the input capability on channels
in I should be considered. Moreover, one wants to consider only well-typed processes
and observers. These considerations motivate a form of barbed equivalence presented
in the sequel.

The definition relies on the reduction relation of the calculus and on an observation
predicate (barb) P ↓a, which detects the possibility for P of immediately interacting
along port a. Being in an asynchronous setting, we restrict our attention to output
ports (see e.g. [12]). Thus, in XPi, P ↓a holds true if P has an output action a〈M〉, for
some M , which is not in the scope of another prefix, or of (ν a) or of an else operator;
P ⇓a means that for some P ′, P →∗ P ′ and P ′ ↓a. We define a version of barbed
bisimulation that respects an input interface I. This means output at names in I are
not observed, because the observer has not the corresponding input capability.

Definition 3.15 (I-barbed bisimulation). Let I ⊆ N . A symmetric binary relation
on annotated closed processes is a I-barbed bisimulation if (P,R) ∈ R implies:

• whenever P → P ′ then there is R′ such that R →∗ R′ and (P ′, R′) ∈ R;
• whenever P ↓a and a /∈ I then R ⇓a.

Two processes P and R are I-barbed bisimilar, written P ≈̇IR, if (P,R) ∈ R for some
I-barbed bisimulation R.

Note that one gets ordinary barbed bisimulation by setting I = ∅. The next step
is closing I-barbed bisimulation under appropriate contexts, while respecting input
locality for names in I. In the sequel, let us denote by in(P ) the set of names that
occur free in P in input subject position; similarly for in(M). Note that, following
e.g. [29], we only close under static contexts (in π-calculus, one gets ordinary early
bisimulation this way.)

Definition 3.16 (I-barbed equivalence). Let I ⊆ N . Two well-typed processes P1

and P2 are I-barbed equivalent, written P1 ≈I P2, if for each h̃ and each well-typed
R s.t. in(R) ∩ I = ∅, it holds that (ν h̃)(P1 |R)≈̇I(ν h̃)(P2 |R).

Ordinary barbed equivalence is obtained by setting I = ∅. Note that I-barbed
equivalence is not a congruence (not even ordinary barbed equivalence is), but it is
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preserved by restriction, and by parallel composition with those well-typed R s.t.
in(R) ∩ I = ∅.

Example 3.6.1. This example illustrates the effect of considering only well-typed
contexts. Suppose I = ∅ and a ∈ ch(f[int]) and consider

P = a.(?x : f[∗int]) case x of f[ ] ⇒ P1

⇒ P2 .

Clearly, P ≈I a.(?x : f[∗int])P2, because no well-typed context ever sends f[ ] along a,
hence the first branch of the case is never triggered. Note that this equality does not
hold for untyped barbed equivalence.

Example 3.6.2 (a web service, continued). Consider the web service WS and
the clients C1 and C2 defined in Example 3.2.6, and let I = {stream, download}. The
following equality states that, not surprisingly, requesting WS a streaming service is
functionally equivalent to requesting download and then running the player locally,
regardless of the capacity of the employed channels (high or low):

WS |C1 ≈I WS |C2 .

The above equality does not hold for ordinary (I = ∅) barbed equivalence, because,
e.g. C1 has an output barb on stream, which C2 does not.

Note that, although defined over all closed processes, ≈I only makes sense for
those processes that do not export input capability of names in I. In the ordinary
π-calculus, passing names with only the output capability (plus some mild conditions
on replication [11]) is sufficient to guarantee input locality. In XPi this is not the case,
in fact input capabilities can be exported by“packaging” input channels in abstractions
that are passed around, as for P = a〈([ ])b.([ ])0〉 |P ′ and I = {b} in P | a.(?x)(x •
[ ]) →∗ P ′ | b.([ ])0.

3.7 Conclusions

In this chapter, we have presented XPi, a core calculus for xml messaging, featur-
ing asynchronous communications, pattern matching, name and code mobility, static
and dynamic typing. We have proved results on run-time safety and presented a notion
of barbed equivalence that is useful to validate interesting equations. Flexibility of
the language has been demonstrated by a few examples, mainly concerning description
and discovery of web services.
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The presence of abstractions makes XPi somewhat related to higher-order π-
calculus [124], an extension of the π-calculus where processes can be passed around.
In fact, XPi might also be viewed as a typed version of higher-order π-calculus with
structured documents and pattern matching.

A relevant feature of XPi’s type system, is that it is entirely static: static type
checking and plain pattern matching suffice, as types of pattern variables are checked
statically against channel capacities. We confine dynamic type checking to dynamic
abstractions, which can be used whenever no refined typing information on incoming
documents is available (e.g. at channels of capacity T).
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Chapter

FOUR

Astuce: a typed calculus for querying distributed xml

documents

In this chapter we define Astuce: a typed process calculus studied for querying
large and distributed xml documents. What we achieve is a functional, strongly-typed
programming model where xml data are processes that can be queried by means of
concurrent pattern-matching expressions. Astuce is based on three main ingredients:
an asynchronous process calculus that draws features from π-calculus and concurrent-
ml; a model where both documents and expressions are represented as processes, and
where evaluation is represented as a parallel composition of the two; a static type
system based on regular expression types.

4.1 Introduction

The World Wide Web (www) operates as a networked information system that
imposes constraints on resources. Resources are objects in the system identified
via Uniform Resource Identifiers (uris). uris are used to identify and directly
or indirectly address resources, which are described and exchanged in a variety of
widely-understood data formats, such as xml, html, css, jpeg and png. An even
more constrained architectural style for Web applications has been proposed by Roy
Fielding [70] and is known as Representation State Transfer (rest). Many people
see it as a model for how to build ws. The rest Web is the subset of the www in
which uniform interfaces are provided. Essentially create, retrieve, update and delete
operations are allowed on resources, rather than arbitrary or application-specific
functions. The primary purpose of the so called rest-compliant ws is to manipulate
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xml representations of Web resources using a uniform set of operations. Well-known
examples of rest-compliant services are the web-search engines, where a fixed set of
operations, on usually large and distributed web documents, is provided.

In this chapter, we consider some facets of the rest approach and we concentrate
on the specific problems related to manipulating, principally querying, large and dis-
tributed xml documents. Actually, the model we define here cannot be viewed as a
model for rest-ws, mostly because we restrict our attention to create and retrieve
operations. As an example of application of Astuce, consider the computation of a
reverse web-link graph in search engines [63]. That is the computation of a list of web
pages, which contain a link to a common target url. Distribution, concurrency and
dynamic acquisition of data must be explicitly taken into account when designing an
effective computational model for this kind of applications.

We most particularly pay attention to the processing of messages in a distributed
setting. Our proposal takes the form of a process calculus, called Astuce, in which
xml data are processes that can be queried by means of concurrent pattern-matching
expressions. In this model, the evaluation of patterns is distributed among locations,
in the sense that the evaluation of a pattern at a node triggers concurrent evaluations
of sub-patterns at other nodes, and actions can be carried out upon success or failure
of patterns. Syntax and semantics are introduced in Section 4.2. The calculus also
provides primitives for storing and aggregating the results of intermediate computa-
tions and for orchestrating the evaluation of patterns. In this respect, we radically
depart from previous works on xml-centered process calculi, like e.g. XPi and [34, 75],
where queries would be programmed as operations invoked on (servers hosting) ws

and xml documents would be exchanged in messages. In contrast, we view queries as
code being dispatched to the locations “hosting” a document. This shift of view is mo-
tivated by our target application domain. In particular, our model is partly inspired
by the MapReduce paradigm described in [63] that is used to write programs to be ex-
ecuted on Google’s large clusters of computers in a simple functional style. Continuing
with the reverse web-link graph example above (developed in Example 4.3.2), assume
that the documents of interest are cached on different, perhaps replicated, servers. A
query that accomplishes the aforementioned task would dispatch sub-queries to every
server and create a dedicated reference cell to aggregate the partial results from each
server. Sub-queries sift the local documents and transmit to the central reference cell
sequences of pages with a link to the target url, so as to eventually produce the
global reverse web-link graph. To achieve reliability, sub-queries may have to report
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back periodically with status updates while the “master query” may decide to abort
or reinstate queries in case of servers failure.

Another important feature of our model is the definition of a static type system
(Section 4.3) based on regular expression types, inspired by XDuce and CDuce’s type
systems, which is compatible with Document Type Definitions (dtd) and other xml

schema languages. The soundness of the static semantics is proved in Section 4.4 via
a subject reduction property. In Section 4.5 we propose possible extensions of the
calculus: match construct, concurrency primitives and exceptions. What we achieve
is a functional, strongly-typed programming model for computing over distributed
xml documents based on three main ingredients: a semantics defined by an asynchro-
nous process calculus in the style of the π-calculus [109] and proposed semantics for
concurrent-ML [69]; a model where documents and expressions are both represented
as processes, and where evaluation is represented as a parallel composition of the two;
and a type system based on regular expression types. Each of these choices is moti-
vated by a feature of the problem: the study of service-oriented applications calls for
including concurrency and explicit locations; the need to manipulate large, possibly
dynamically generated, documents calls for a streamed model of processing; the doc-
uments handled by a service should often obey a predefined schema, hence the need
to check that queries are well-typed, preferably before they are executed or “shipped”.

4.2 Syntax and semantics of Astuce’s terms

4.2.1 Syntax

We consider a simple language of first-order functional expressions, denoted
e, e′, . . . , enriched with references and recursive pattern definitions that are used to
extract values from documents. Consider an infinite set of tag names, F , ranged over
by f, g, . . . ; suppose F contains a reserved fictitious tag root used during pattern-
matching evaluation for representing the root tag of xml documents. Consider also a
countable set of names, N , partitioned into locations, ı, , `, . . . , and variables, x, y, . . . .
We usually use the notation ı̃, x̃, . . . for tuples of names. Before formally defining the
calculus, we introduce its main ingredients: documents and patterns.

Documents

An xml document may be seen as a simple textual representation for nested se-
quences of elements <f> · · · </f>. As in the previous chapter, here we follow no-
tations similar to XDuce and choose the simplified version of documents by leaving
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aside attributes among other things. A document is an ordered sequence of elements
f1[M1] · · · fn[Mn], where M1, . . . ,Mn are documents. Documents may be empty, de-
noted (), and can be concatenated, denoted M , M ′. The composition operation is
associative with identity (). In what follows, let D be the set containing all documents.

In the following we consider distributed documents, meaning that each element
fj [Mj ] is placed in a given location, say ıj . Locations are visible only at the level
of the operational semantics, in which the contents of a document is represented by
the index ı1 · · · ın composed by the list of locations of its elements. As shown in the
following example, if a document Mj is stored at index ı1 · · · ım, fj [Mj ] is written
as fj(ı1 · · · ım). In what follows we sometimes abbreviate indexes, like ı1 · · · ın, as
u, v, . . . . For the sake of simplicity, locations and indexes are the only values handled
in Astuce and we leave aside atomic data values such as strings or integers, which can
be easily accommodated and are used only in examples.

Example 4.2.1. On the left we present a fragment of an xml document containing
a family tree. Each element describes a man or a woman and is characterized by a
name and two lists containing respectively his/her daughters (a list of women) and
sons (a list of men). On the right we introduce the representation of each element as
an Astuce’s resource; the global document is represented as the parallel composition
of them.

< family > 〈 ı 7→node family(ı1, . . . ) 〉

< man > 〈 ı1 7→node man(1, 2, 3) 〉

< name >John Doe< /name > 〈 1 7→node name(John Doe) 〉

< daughters > 〈 2 7→node daughters(4) 〉

< woman > 〈 4 7→node woman(5, 6, 7) 〉

< name >Jenny Doe< /name > 〈 5 7→node name(Jenny Doe) 〉

< daughters >< /daughters > 〈 6 7→node daughters(()) 〉

< sons >< /sons > 〈 7 7→node sons(()) 〉

< /woman >

< /daughters >

< sons > 〈 3 7→node sons(. . . ) 〉
...

...

As we will see in the formal presentation of the calculus, the keyword node simply
indicates that a location contains a (fragment of a) document.
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Selectors and Patterns

The core of our programming model is a system of distributed pattern matching
expressions that concurrently sift through documents to extract information. Like
functions, patterns are declared and have a name. Patterns take the form of regular
tree expressions enriched with variables used for capturing values. Informally, the
declaration

Q(x̃)
4
= let

(
z1 = e′1, . . . , zm = e′m

)
in

(
Reg(fi[Qi(x̃i)])i=1,...,n as y

)
then e1 else e2

with
⋃

i=1,...,n x̃i ∪ {y} ⊆ x̃ ∪
⋃

j=1,...,m z̃j and x̃ ∩
⋃

j=1,...,m z̃j = ∅, defines a pattern
called Q, with parameters x̃. Q collects all matched documents in the variable y,
also called capture variable. When the pattern-matching between Q and a document
is evaluated, the expressions e′1, . . . , e

′
m are evaluated first and their final values are

bounded to variables z1, . . . , zm respectively. After, the given document is matched
against Reg(fi[Qi(x̃i)])i=1,...,n. If the matching succeeds, variable y is used for cap-
turing (storing) the matched document and continuation e1 is executed. Otherwise
compensation e2 is started. These optional continuations allow to add basic exception
and transaction mechanisms to the calculus. In all these steps, variables in x̃ and
z1, . . . , zm are substituted by the received parameters and the results of the evalua-
tions of e′1, . . . , e′m, respectively. Reg(fi[Qi(x̃i)])i=1,...,n is called selector and stands
for a generic regular expression over the tagged patterns fi[Qi] for i = 1, . . . , n.

Definition 4.1 (patterns). The set Q of patterns, Q,Q′, . . . contains elements
defined by using a set of recursive definitions of the form

Q(x̃)
4
= let

(
z1 = e′1, . . . , zm = e′m

)
in

(
Reg as y

)
then e1 else e2

where Q ∈ Q is a pattern identifier, x̃∪
⋃

i=1,...,m zi ⊆ N , y ∈ (x̃∪
⋃

i=1,...,n zi), the set
of the free variables in Reg is a subset of x̃ ∪

⋃
i=1,...,n zi and Reg is a selector defined

by the grammar in Table 4.1.

The syntax in Table 4.1 is essentially a syntax for defining regular tree grammar
and is self-explaining. The choice operator is associative, commutative and has Empty

as unit.

Notations. In what follows, we write Reg for a generic selector and we use the
notation Reg(fi[Qi(x̃i)])i=1,...,n, when it is necessary to specify tags and patterns in-
volved in the selector. While in examples we sometimes consider “complete” pattern
definitions, for easy of presentation, we formally introduce the calculus by consid-
ering pattern definitions without local let declarations and continuations (Q(x̃)

4
=



4. Astuce: a typed calculus for querying distributed xml documents 70

Selector Reg ::= f[Q(x̃)] Tagged Pattern∣∣ All All∣∣ Empty Empty∣∣ Reg Reg Choice∣∣ Reg,Reg Sequence∣∣ Reg∗ Iteration

Table 4.1: Syntax of selectors.

Reg(fi[Qi(x̃i)])i=1,...,n as y). For the sake of completeness, in Section 4.5 we extend
the calculus to full pattern definitions.

Example 4.2.2. The pattern names defined below can be used to extract the names
of all persons occurring in the document defined in Example 4.2.1.

names(x, y)
4
=

(
man[p(x, y, x)] woman[p(x, y, y)]

)
∗

p(x, y, z)
4
= name[all(z)], daughters[names(x, y)], sons[names(x, y)]

all(z)
4
= All as z .

A call to names(ı, `) stores in (the reference located at) ı the name of all men and
in ` the name of all women. A call to names(`, `) will store the names of all persons
in `.

An important feature of our model is that patterns may extract multiple sets of val-
ues from documents in one pass, which contrasts with the monadic queries expressible
with technologies such as XPath.

Witness and Unambiguous Patterns. Next, we define what it means for a pat-
tern to match an index and define the notion of unambiguous pattern. Assume Reg
is the selector Reg(fi[Qi(ṽi)])i=1,...,m, where ṽi are the actual parameters used in the
pattern invocation. The sequence fi1 · · · fin matches Reg if and only if it is a “word”
in the language of Reg(fi)i=1,...,m. Consider the relation f1 · · · fn `Reg c1 · · · cn, with
ci ::= Q(ṽ) | All | Empty, defined in Table 4.2.

Definition 4.2 (witness). The sequence c1 · · · cn is a witness for Reg of f1 · · · fn if
f1 · · · fn `Reg c1 · · · cn holds. We write f1 · · · fn 6`Reg if the sequence has no witness
for Reg.

The rules that define `Reg are easy to understand and do not deserve explanations.
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(W-Empty) () `Reg Empty with Reg ::= Empty |All |Reg∗

(W-Atom) f `f[c] c (W-All) f1 · · · fn `All All · · ·All

(W-Choice)
∃i ∈ {1, 2} : f1 · · · fn `Regi

c1 · · · cn

f1 · · · fn `Reg1 |Reg2
c1 · · · cn

(W-Star)

∃i ∈ {1, . . . , n} :
f1 · · · fi `Reg c1 · · · ci

fi+1 · · · fn `Reg∗ ci+1 · · · cn

f1 · · · fn `Reg∗ c1 · · · cn

(W-Seq)

∃i ∈ {0, . . . , n} :
f1 · · · fi `Reg1

c1 · · · ci

fi+1 · · · fn `Reg2
ci+1 · · · cn

f1 · · · fn `Reg1, Reg2
c1 · · · cn

Table 4.2: Relation f1 · · · fn `Reg c1 · · · cn.

It is standard in xml to restrict to expressions that denote sequences of elements
unequivocally. Some schema languages, like dtds for example [35], restrict to one-
unambiguous expressions, that is to expressions for which the witnesses can be com-
puted incrementally, reading from a sequence of tags with only one symbol lookahead.
While this notion is suitable when working with streamed data of ordered documents,
it may impose needless performance penalties when working in a truly concurrent
way. For instance, one can be interested in being able to start the evaluation on an
element without necessarily matching all its preceding siblings beforehand (a sort of
“non-ordered” evaluation). For this, one can require an even stronger notion of unam-
biguity and say that a selector Reg(fi(Qi(x̃i)))i=1,...,n is consistently unambiguous if
every tag specifies a unique pattern, i.e. whenever fi = fj then Qi(x̃i) and Qj(x̃j) are
the same. A more flexible, but more complex alternative solution, would be to require
that, for every sequence of tags and every integer i, the ith component of a witness
can be computed only from the value of the ith tag.

For the sake of simplicity, we consider a weaker notion of unambiguity, which
allow to avoid backtracking during (“ordered”) pattern-matching evaluations on non-
streamed documents. In particular, we define unambiguous patterns as follows.

Definition 4.3 (unambiguous pattern). A selector Reg is said to be unambiguous
if each sequence of tags has at most one witness for Reg. A pattern is said unambigu-
ous if has a unambiguous selector.

Assume that c1 · · · cm is “the witness” of Reg for f1 · · · fm. When a document
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f1[v1] · · · fm[vm] is matched against a pattern with selector Reg , each sub-document
vj is matched against cj . If f1 · · · fm has no witness then the pattern-matching fails.
Obviously this notion of unambiguous patterns is not suitable when working with
streamed documents or when working in a truly concurrent way because it requires
to know in advance the entire word.

Example 4.2.3. We remark the differences among the various definitions of unam-
biguity by using some simple examples. Suppose Qi 6= Qj for i 6= j.

Selector f[Q1], g[Q2], h[Q3] f[Q1], g[Q2], h[Q4] is considered ambiguous indepen-
dently from the chosen definition. In fact tag h appears twice as third element of the
word fgh and specifies two different patterns, Q3 and Q4. In other words, there are
two witnesses for fgh. Moreover, this means that the witness for the word fgh cannot
be computed incrementally and the 3rd component of the witness for fgh cannot be
computed from the value of the tag.

Selector f[Q1], g[Q2], h[Q3] f[Q4], g[Q2], l[Q5] is unambiguous according to Defi-
nition 4.3, while is ambiguous according to each other definition (because tag f is used
twice in first position and specifies two different patterns).

Selector f[Q1], g[Q2], h[Q3] h[Q1], g[Q4], f[Q3] is unambiguous according to Defi-
nition 4.3 and to one-unambiguity, but not according to the others. This because tag
g is used twice as second tag and specifies two different patterns.

Finally, selector f[Q1], h[Q2], g[Q3] f[Q1], g[Q4], h[Q5] satisfies all definitions of
unambiguous pattern except for the strongest one (consistent unambiguity).

Syntax of the calculus

The presentation of the calculus can be naturally divided into two fragments: a
language of functional expressions, or programs, that are used in the body of pattern
and function declarations; and a language of processes, or configurations, that models
distributed documents and the concurrent execution of programs.

In the following, we assume that every function identifier f has associated arity
n > 0 and a unique definition f(x̃)

4
= e where the variables in x̃ are distinct and

include all free variables of e. We take similar hypotheses for patterns.

Definition 4.4. The sets E of expressions e, e′, . . . and P of processes P,R, . . . are
defined by the syntax in Table 4.3.

The first part of Table 4.3 defines the functional part of the calculus. A result is
either a variable or an index ı1 · · · ın, that is a possibly empty sequence of locations.
A result is an expression that immediately returns itself. Expressions include results;
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Result u, v ::= x Name∣∣ ı1 · · · ın, n > 0 Index

Expression e ::= u Result∣∣ f[u] Element creation∣∣ u, v Result composition∣∣ f(u1, . . . , un) Function call∣∣ let x = e in e Let∣∣ newref u New reference∣∣ !u Dereferencing∣∣ u += v Update∣∣ try v Q(u1, . . . , un) Pattern matching call∣∣ wait u(x) then e else e Wait matching

Process P,R ::= e Expression∣∣ let x = P in R Let∣∣ 〈 ı 7→ d 〉 Location∣∣ P � R Parallel composition∣∣ (ν ı)P Restriction

Resource d ::= ref u Reference with value u∣∣ node f(u) Node∣∣ try ı Q(u1, . . . , un) Try matching∣∣ test ı u v Test matching∣∣ ok ı Successful match∣∣ fail ı Failed match

Table 4.3: Syntax of the calculus.

operators for creating new elements, f[u]; operators for concatenating results u, v;
function calls f(u1, . . . , un); and operators for creating, accessing and updating refer-
ences. Reference update has a slightly unusual semantics since the effect of ı+=v is to
append v to the value stored in the reference ı. Actually, we could imagine that each
reference is associated with an “aggregating function” that specifies how the sequence
of values stored in the reference has to be combined. Here, we only consider index
composition.

The expression try v Q(u1, . . . , un) is used to apply the pattern Q to the index
v = ı1 · · · ın. A try expression returns at once with the location of a fresh node where
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the matching occurs. Moreover, evaluation of patterns is carried out concurrently: the
effect of evaluating let z =

(
try v Q(u1, . . . , un)

)
in P is to filter v by Q concurrently

with the evaluation of P . In this example, z is bound to the location of the “thread”
that executes the try expression, say `. The location ` can be tested in P to check
whether the pattern-matching has ended using the expression wait `(x) then e1 else e2.
The wait statement blocks until the pattern evaluating at ` stops. Then the continua-
tion e1 is evaluated if the matching succeeds, otherwise e2 is evaluated. In both cases
the variable x is bound to v.

The second part of Table 4.3 defines the syntax of configurations. The calculus
features operators from the π-calculus: restriction (ν ı)P specifies the scope of a name
ı local to P ; parallel composition P � R represents the concurrent evaluation of P and
R. The result of evaluating P � R is the result of R’s evaluation, this implies that “�”
is only left-commutative as explained in Section 4.2.2. Overall, a process is a multiset
of let expressions, describing threads execution, and locations 〈 ı 7→ d 〉, that describes
a resource d located at ı.

The calculus is based on an abstract notion of location that is, at the same time,
the minimal unit of interaction and the minimal unit of storage. Failures are not part
of this model (they can be viewed as an orthogonal feature) but could be added, e.g.
in the style of [11]. Locations store resources that are generated at run-time. The
main resources are ref u, to store the current state of a reference, and node f(u), to
describe an element of the form f[M ] if document M is stored at index u. The calculus
explicitly takes into account the distribution of document nodes and, for example, the
document f[g[ ] h[ ]] can be represented (at run-time) by the parallel composition:

(ν ı1ı2)
(
〈 ı 7→node f(ı1 ı2) 〉 �〈 ı1 7→node g(()) 〉 �〈 ı2 7→node h(()) 〉

)
.

The other resources arise in the evaluation of pattern-matching and correspond
to different phases in its execution: scheduling a “pattern call” (try); waiting for the
result of sub-pattern evaluations (test); stopping and reporting success (ok) or failure
(fail). In all these cases ı is the index corresponding to the resource containing the
document to analyze. Moreover, in test ı u v, u is the index of the ongoing sub-pattern
evaluations and v is the capture reference to be updated with the index of the node
located at ı in case of successful matching.

Binding conventions and Notations. We stipulate that the operators let, wait

and ν are name binders. Notions of alpha-equivalence and of free and bound names
(fn(·) and bn(·)) and free variables (fv(·)) arise as expected. Finally, we identify
expressions and terms up to alpha-equivalence.
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(P � S) � R≡ P �(S � R) (ν ı)(P � R)≡ ((ν ı)P ) � R, ı /∈ fn(R)

(P � S) � R≡ (S � P ) � R (ν ı)(P � R)≡ P �(ν ı)R, ı /∈ fn(P )

(ν ı)(ν `)P ≡ (ν `)(ν ı)P P � let x = S in R≡ let x = (P � S) in R, x /∈ fn(P )

(ν `)let x = P in R ≡ let x = (ν `)P in R, ` /∈ fn(R)

let y = (let x = P in S) in R ≡ let x = P in (let y = S in R), x /∈ fn(R)

Table 4.4: Structural congruence.

In the following, we make use of these abbreviations: if u = ı1 · · · ın then (ν u)P
is a shorthand for (ν ı1) · · · (ν ın)P ; the term (ν `)P � R stands for ((ν `)P ) � R; the
term let x = P in R � S stands for (let x = P in R) � S; and wait `(x) then e1 stands
for wait `(x) then e1 else () (and similarly for omitted then clause). Moreover, we
indicate with () an empty index, that is () = ı1 · · · ın if n = 0.

Definition 4.5 (closed processes). We denote with Pcl the set containing all pro-
cesses P ∈ P such that fv(P ) = ∅, that is all closed processes.

4.2.2 Reduction semantics

Following [109], Astuce’s semantics is based on structural congruence and a reduc-
tion relation.

Definition 4.6 (structural congruence). The structural congruence ≡ is the least
congruence satisfying the rules in Table 4.4.

The only rule which deserves some explanation is the one stating commutativity of
the parallel composition operator. Since a process may return a value, we take the con-
vention that the result of a composition P1 � · · · � Pn is the result of its rightmost term
Pn. The values returned by the other processes are discarded. This entails that the
order of parallel components is relevant. For this reason, unlike the situation in most
process calculi, parallel composition is not a commutative operator. Actually, compo-
sition is “left commutative”, which means that (P � S) � R is equivalent to (S � P ) � R

but that we do not necessarily have P � S equivalent to S � P . This choice is similar to
what is found in calculi introduced for defining the semantics of concurrent-ML [69]
and for concurrent extension of object calculi [78]. An advantage is that we directly
include sequential composition of processes: the sequential composition P ;R can be
interpreted by the term let x = P in R, where x /∈ fv(R). Moreover it relieves us
from the need to encode the operation of returning a result using continuations and
sending a message on a result channel, as in the π-calculus.
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In works mixing xml and process calculi, as XPi, usually documents are not repre-
sented as processes and pattern-matching evaluation is computed independently from
process evolution by using an additional ad hoc function. Here, instead, pattern-
matching evaluation is disciplined by reductions. The result of a pattern-matching
evaluation is a substitution that involves the continuations of a possible wait expres-
sion waiting for the matching result.

Definition 4.7 (substitutions). Substitutions σ, σ′, . . . are finite partial maps from
the set of variables V to results u, v, . . . . For any term P , Pσ denotes the result of
applying σ onto P (with alpha-renaming of bound names and variables if needed.)

Assume σ is the substitution [u1/x1, . . . , un/xn] and ũ = (u1, . . . , un). We write
f(ũ)

4
= e′ if f(x̃)

4
= e and e′ = eσ and we write Q(ũ)

4
= Reg ′ if the selector of Q(x̃) is

Reg and Reg ′ = Regσ.
A reduction represents an individual computation step and is defined in terms of

structural congruence and evaluation contexts.

Definition 4.8 (evaluation context). The set C of evaluation contexts, E,E′, . . . ,
is defined by the following grammar: E ::= [.]

∣∣ P � E
∣∣ E � P

∣∣ (ν `)E
∣∣ let x = E in P .

For the sake of readability, in the presentation of the reduction semantics, we
consider a simplified form of pattern without let definitions and continuations. We
discuss the semantics of full patterns in Section 4.5.

Definition 4.9 (reduction). The reduction relation, → ⊆ Pcl × Pcl, is the least
binary relation on closed processes satisfying the rules in Table 4.5.

As usual, we denote by →∗ the reflexive and transitive closure of →. A detailed
explanation of the reduction rules follows.

The rules for expressions are similar to traditional semantics for first-order lan-
guages, with the difference that resources in a configuration play the role of stores.
Likewise, the rules for operators that return new values (the operators newref , f[·]
and try) yield reductions of the form e → (ν `)(〈 ` 7→ d 〉 � `), which means that new
values are always allocated in a fresh location. Actually, a quick inspection of the rules
shows that resources are created in fresh locations and are always used in a linear way:
an expression cannot discard a resource or create two different resources at the same
location.

We can divide the rules in Table 4.5 according to the locations involved in the
reduction. A location 〈 ` 7→ ref u 〉 is a reference at ` with value u. Reference access,
rule (rd), replaces a top-level occurrence of !` with the value u. Reference update
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(fun)
f declared as f(x̃)

4
= e

f(u1, . . . , un) → e[ũ/̃x]
(ref) u = ı1 · · · ın ` fresh name

newref u → (ν `)(〈 ` 7→ ref u 〉 � `)

(let)
let x = u in P → P [u/x] (wr)

w = u, v
〈 ` 7→ ref u 〉 � ` += v → 〈 ` 7→ ref w 〉 � ()

(str) P ≡ R R → R′ R′ ≡ P ′

P → P ′ (rd) 〈 ` 7→ ref u 〉 �!` → 〈 ` 7→ ref u 〉 � u

(ctx) P → P ′

E[P ] → E[P ′]
(nd) u = ı1 · · · ın ı fresh name

f[u] → (ν ı)(〈 ı 7→node f(u) 〉 � ı)

(comp)
u1 = ı1 · · · ık u2 = ık+1 · · · ın

u1, u2 → ı1 · · · ın

(try)
u = ı1 · · · ın ı, ` distinct fresh names

try u Q(ṽ) → (ν ı)(ν `)(〈 ı 7→node root(u) 〉 �〈 ` 7→ try ı Q(ṽ) 〉 � ` )

(err)

P = 〈 ı 7→node f(ı1 · · · ın) 〉 �
∏

k=1,...,n〈 ık 7→node fk(wk) 〉
n > 0 Q(ṽ)

4
= Reg as vr f1 · · · fn 6`Reg

P �〈 ` 7→ try ı Q(ṽ) 〉 → P �〈 ` 7→ fail ı 〉

(mtc)

P = 〈 ı 7→node f(ı1 · · · ın) 〉 �
∏

k=1,...,n〈 ık 7→node fk(wk) 〉 n > 0

Q(ṽ)
4
= Reg as vr f1 · · · fn`Reg Q1(ṽ1) · · ·Qn(ṽn) w = 1 · · · n fresh names

P �〈 ` 7→ try ı Q(ṽ) 〉 → P � (ν w)
( ∏
k=1,...,n

〈 k 7→ try ık Qk(ṽk) 〉 �
〈 ` 7→ test ı w vr 〉

)
(unit)

P = 〈 ı 7→node f(()) 〉 Q(ṽ)
4
= Reg as vr () `Reg Empty

P �〈 ` 7→ try ı Q(ṽ) 〉 → P �〈 ` 7→ ok ı 〉

(test-ok)
P =〈 ı 7→node f(ı1 · · · ın) 〉 �

∏
k=1,...,n〈 k 7→ ok ık 〉 z 6= ı, `

P �〈 ` 7→ test ı 1 · · · n vr 〉→P � let z = (vr += ı1 · · · ın) in 〈 ` 7→ ok ı 〉

(test-fail)

P = 〈 ı 7→node f(ı1 · · · ın) 〉 �
∏

k=1,...,n〈 k 7→ dk 〉
∀k = 1, . . . , n : dk ∈ {ok ık, fail ık} ∃j ∈ 1, . . . , n : dj = fail ıj

P �〈 ` 7→ test ı 1 · · · n vr 〉 → P �〈 ` 7→ fail ı 〉

(wait-ok)
P = 〈 ı 7→node f(u) 〉 �〈 ` 7→ ok ı 〉

P � wait `(x) then e1 else e2 → P � e1[u/x]

(wait-fail)
P = 〈 ı 7→node f(u) 〉 �〈 ` 7→ fail ı 〉

P � wait `(x) then e1 else e2 → P � e2[u/x]

Table 4.5: Reduction semantics.
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`+=v, rule (wr), has a slightly unusual semantics since its effect is to append v to the
value stored in `. In the general case, we have that the value of w in (wr) is given by
op(u, v), where op is some “aggregating” function that specifies how the values u and v

have to be combined. For example, assume ` is an “integer reference” that increments
its value by one on every assignment. Then, in Example 4.2.2, a call to names(`, `)
counts the number of people in a family tree document.

A location 〈 ı 7→node f(u) 〉 is created by the evaluation of an element creation
expression f[u], where u is an index, (nd). A location 〈 ` 7→ try ı Q(ṽ) 〉 is created
by the evaluation of a try operator. The expression try u Q(ṽ) applies the pattern
Q to the index u = ı1 · · · ın, rule (try). A try expression returns at once with the
index ` of the fresh location where the matching occurs. It also creates a document
node 〈 ı 7→node root(u) 〉 that points to the index u that is processed (we use the
reserved tag root for the root of this node). Assume that Reg is the selector of Q, the
try resource will trigger evaluation of sub-patterns selected from a witness of Reg . If
there is no witness, the matching fails, rule (err). If a witness exists, the try resource
spawns new try resources and turns into a test, rule (mtc), waiting for the results of
these evaluations. Upon termination of all sub-patterns, a test resource turns into ok

or fail, rules (test-ok) and (test-fail). In case of success, the capture reference
vr is updated with the index of the matched document. In case the witness is Empty,
hence there are no sub-patterns to evaluate, the try resource becomes directly ok,
(unit). Note that updating the capture reference vr is meaningless – hence omitted
– here as we consider only append of indexes as aggregating function for references.
The ok and fail resources are immutable.

The remaining rules are related to the evaluation of a wait expression. The status
of a pattern evaluation can be checked with the expression wait `(x) then e1 else e2, see
rules (wait-ok) and (wait-fail). If the resource at ` is ok ı then the wait expression
evaluates to e1[u/x], where u is the index of the node located at ı. If the resource
is fail ı then the expression evaluates to e2[u/x]. In all other cases the expression is
stalled. Note that by substituting x by u the fictitious tag root, added by rule (try)

when pattern-matching evaluation started, is discarded.

Remark 4.1. In rule (mtc), we compute the witness for all children of an element
in one go. This is not always realistic since the size of the children’s index can be
very large (actually, in real applications, big documents are generally shallow and
have a large number of children). It is possible to refine the operational semantics so
that each sub-pattern is fired independently, not necessarily following the order of the
document. For instance, by considering consistently-unambiguous patterns instead
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of unambiguous ones (as defined in the previous section), we should be able to start
the evaluation on an element without necessarily matching all its preceding siblings
beforehand. Also, we can imagine that indexes are implemented using streams or
linked lists. We have chosen this presentation for the sake of simplicity.

Again in rule (mtc), we have assumed the presence of a capture reference vr in
the pattern. In case a capture is not specified, we can always define a fresh reference
and use it as fictitious capture reference in the new generated test resource.

4.3 A type system

Applications that exchange and process xml documents rely on type information,
such as dtds, to describe structural constraints on the occurrences of elements. In this
section we define a type system for Astuce that disciplines the typing of documents, by
using regular types that can be compared to dtds, and of processes, by using regular
types and types for references and resources. The system guarantees that well-typed
processes always deal with well-formed documents, that is with documents that can
be typed by using regular types. Moreover, it ensures that reference updates and
pattern-matching never generate typing errors. This means that a reference always
contains elements complying with the corresponding type. Moreover, if a pattern-
matching succeeds then the matched document complies with the type expected by
the pattern.

4.3.1 Types and subtyping relation

We first introduce document types, which are regular expression types and define
a subtyping relation among them. After, we continue by defining types for programs
and configurations.

Document Types

In our model, document types, as patterns, take the form of regular tree expres-
sions. Document types are particular kind of patterns: a pattern declaration without
parameters, let definitions, capture variables and continuations is a type declaration.
With a slight abuse of notation, in what follows we use the same keyword Reg for
indicating both the selector of patterns and of types.

Definition 4.10 (document types). The set DT of document types A,B, . . . con-
tains elements defined by using a set of recursive definitions of the form A

4
= Reg
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where Reg is a selector defined by the grammar

Reg ::= f[B]
∣∣ All

∣∣ Empty
∣∣ Reg Reg

∣∣ Reg,Reg
∣∣ Reg ∗ .

The syntax describing types’ selectors is essentially the syntax in Table 4.1, where
patterns are substituted by types and keywords are written in sans serif typeface.

Every pattern Q ∈ Q can be associated with the type A obtained by erasing from
Q let declarations, continuations and variables. A is the type of all documents that
are matched by Q. In the following, we assume that functions and patterns are typed
explicitly; in Remark 4.2 we extend the type system and define some typing rules that
can be applied for verifying well-typedness of them.

There is a natural notion of subtyping A < B between regular expression types,
meaning that every document of type A is also of type B. The type system is close
to what is defined in functional languages for manipulating xml, see e.g. XDuce [87,
88, 89] or the review in [51], hence we stay consistent with actual frameworks used in
sequential languages for processing xml data.

Example 4.3.1. A is the type of all documents matched by the pattern names defined
in Example 4.2.2. Note that the family tree document defined in Example 4.2.1
complies with this type.

A
4
= (man[P] woman[P])∗ P

4
= name[All], daughters[WL], sons[ML]

WL
4
= woman[P]∗ ML

4
= man[P]∗

We assume that the pattern names is declared with type (All,All) → A. In general,
a reference that merges values of type C will have a type B such that B, C < B (see
(T-Wt) in Table 4.7).

Witness and subtyping. We can easily adapt the definition of witness to types.
Assume A is declared as A

4
= Reg(fi[Ai])i=1,...,n. We say that there is a witness for A

of g1 · · · gm, denoted g1 · · · gm `A c1 · · · cn (with ci ::= A|All|Empty), if and only if the
sequence of tags g1 · · · gm is in the language of the regular expression Reg(fi)i=1,...,n.
It is worth to notice that each word generated by a regular type A is a document. The
language of a type can be formally defined as follows.

Definition 4.11 (language). Suppose A
4
= Reg(fi[Ai])i=1,...,n. The language of A,

L(A), is defined as the set of documents matched by Reg(fi[Ai])i=1,...,n.

As a consequence of this definition, L(Empty) contains only the empty document
(), while L(All) corresponds to D.
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Types T,S ::= ? Resource∣∣ A Document∣∣ ref A Reference∣∣ node f(u) Node location∣∣ loc f(A) Matching location

Table 4.6: Syntax of types.

Based on Definition 4.11, we obtain a natural notion of subtyping A < B:

Definition 4.12 (subtyping). Let A and B be two regular expression types (document
types). A is a subtype of B, written A < B if L(A) ⊆ L(B). We write A

.= B if
L(A) = L(B).

In what follows, we write A for some chosen regular expression type whose language
is the complement of A. The type A is unnecessary when A

.= All, which means that
we do not need to introduce a type with an empty language. In the case of type
witness, we have g1 · · · gn 6`A if and only if there is a witness for A of g1 · · · gn.

Types for Astuce’s terms

Astuce’s type system relies on: document types, which are used in the typing of
patterns, references and nodes, resource types and node types.

Definition 4.13 (types). The set T of types, ranged over by T, S, . . . , is defined
by the syntax in Table 4.6.

Apart from regular expression types A, used as types for document indexes, the
type T of a process can also be the resource type ?, a constant type for terms that
return no values; a reference type ref A; a node type node f(u) for the type of a
location holding an element f[u]; or a matching type loc f(A), that is the type of a
location hosting the evaluation of a pattern, which matches document of type A, on
the contents of an element tagged f. In what follows, we consider that references can
only hold document values: a reference is of type ref A and not ref T.

4.3.2 Type checking

We define contexts Γ,Γ′, . . . as finite partial maps from names N to types T ,
usually denoted as sets of bindings of the form {xi : Ti, ıj : Sj}i∈I, j∈J , with xi and ıj
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distinct. We denote with dom(Γ) the domain of the context Γ and the empty context
by ∅. In what follows, we write Γ, x : T for the context Γ ∪ {x : T} if x /∈ dom(Γ).

The typing rules are reported in Table 4.7. The type system is based on type
judgments of the form Γ ` P : T, meaning that the process P has type T under the
hypothesis Γ. We assume that there is a given, fixed set of type declarations of the
form A

4
= Reg(fi[Ai])i=1,...,n. We assume that functions and patterns are well-typed,

which is denoted f : T̃ → S and Q : T̃ → A. The types T1, . . . ,Tn in T̃ are the
types of the parameters, while S is the type of the body of f and A is the type of the
selector of Q. The type of a selector Reg(fi[Qi(x̃i)])i=1,...,n is obtained by substituting
to each pattern Qi in the selector its corresponding type Ai. Hence the type of Reg
is equivalent to some type A such that A

4
= Reg(fi[Ai])i=1,...,n. In Remark 4.2 we

discuss some rules that can be used, together with the rules in Table 4.7, for verifying
well-typedness of functions and patterns.

The typing rules for the functional part of the calculus are standard; rule (T-Wt)

deserves some explanations. Since a reference collects the sequence of values (docu-
ments) that are assigned to it, we check for every assignment of a value of type B into
a reference of type ref A that the relation A, B < A holds. This check allows us to
enforce statically the type of references.

The remaining typing rules are for resources and pattern-matching operators. The
type of an expression try uQ(ṽ) is loc root(A) if the pattern Q matches documents of
type A, rule (T-Try). Indeed the effect of this expression is to return a fresh location
hosting the evaluation of Q on an element of the form root[u]. Note the generic type
B associated to document u. As we do not consider basic types nor basic values, u : A,
the type check would ensure that all matching in a well-typed process succeed and it
makes no sense to proceed in the pattern evaluations. Pattern-matching, by definition,
can fail, thus we simply require well-formedness of u, that is that there exists a regular
type B such that u : B. Rule (T-Wait) disciplines the typing of wait expressions.
A wait is well typed only if it is blocking on a location of type loc f(A), that is the
location of a resource that can eventually turn into ok or fail. The important aspect
of this rule is that, while the continuations e1 and e2 must have the same type, they
are typed under different typing environments: the expression e1 is typed with the
hypothesis x : A while e2 is typed with the hypothesis x : A. This leads to more
precise types for filtering expressions (see Section 4.5.2).

The typing rules for locations are straightforward. Since a resource returns no
value it has type ?. The rule for node location, (T-Lnd), states that a location
containing node f(u) has only one possible type, namely node f(u) itself. Hence this
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(T-Nm) Γ, x : T ` x : T (T-Fun)
f : (T1, . . . ,Tn) → S Γ ` ui : Ti i = 1, . . . , n

Γ ` f(u1, . . . , un) : S

(T-Sub) A < B Γ ` P : A
Γ ` P : B (T-Let)

Γ ` P : T Γ, x : T ` R : S
Γ ` let x = P in R : S

(T-Nd) Γ ` u : A
Γ ` f[u] : f[A] (T-Doc)

Γ ` ık : node fk(uk) Γ ` uk : Bk k = 1, . . . , n
Γ ` ı1 · · · ın : f1[B1], . . . , fn[Bn]

(T-Ref) Γ ` u : A
Γ ` newref u : ref A (T-Com)

Γ ` ui : Ai i = 1, 2
Γ ` u1, u2 : A1, A2

(T-Em) Γ ` () : Empty

(T-Rd) Γ ` u : ref A
Γ ` !u : A (T-Wt)

Γ ` u : ref A Γ ` v : B A, B < A
Γ ` u += v : Empty

(T-Par)
Γ ` P : S Γ ` Q : T

Γ ` P � Q : T (T-Res)

Γ, `1 : T1, . . . , `n : Tn ` P : T

u = (`1 · · · `n) u ∩ fn(Γ) = ∅
Γ ` (ν u)P : T

(T-Try)
Q : (T1, . . . ,Tn) → A Γ ` vi : Ti i = 1, . . . , n Γ ` u : B

Γ ` try u Q(v1, . . . , vn) : loc root(A)

(T-Wait)
Γ ` u : loc f(A) Γ, x : A ` e1 : T Γ, x : A ` e2 : T

Γ ` wait u(x) then e1 else e2 : T

(T-Lre) Γ ` ` : ref A Γ ` u : A
Γ ` 〈 ` 7→ ref u 〉 : ?

(T-Lnd)
Γ ` ` : node f(ı1 · · · ın)

Γ ` 〈 ` 7→node f(ı1 · · · ın) 〉 : ?

(T-Lok)
Γ ` ` : loc f(A) Γ ` ı : node f(ı1 · · · ın) Γ ` u : A

Γ ` 〈 ` 7→ ok ı 〉 : ?

(T-Lfail)
Γ ` ` : loc f(A) Γ ` ı : node f(ı1 · · · ın) Γ ` u : A

Γ ` 〈 ` 7→ fail ı 〉 : ?

(T-Ltry)

Γ ` ` : loc f(A) Γ ` ı : node f(ı1 · · · ın)

Q : (T1, . . . ,Tn) → A Γ ` vi : Ti i = 1, . . . , n

Γ ` 〈 ` 7→ try ı Q(ṽ) 〉 : ?

(T-Ltest)

Γ ` ` : loc f(A) Γ ` ı : node f(ı1 · · · ın) Γ ` k : loc fk(Ak) k = 1, . . . , n

w = 1 · · · n f1 · · · fn `A A1 · · ·An Γ ` v : ref B B, A < B

Γ ` 〈 ` 7→ test ı w v 〉 : ?

Table 4.7: Typing rules.
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rule avoids the presence of two node resources with the same location but containing
different elements. Actually, we could extend our type system in a simpler way to
ensure that well-typed configurations are also well-formed, that is cannot have two
resources at the same location.

Definition 4.14 (well-formed configuration). A configuration P is well-formed
if for every location ` it contains at most one definition 〈 ` 7→ d 〉.

It is easy to prove that well-formedness is preserved by structural congruence, substi-
tutions and reductions (see [6] for details). By rule (T-Ltry), a location ` containing
a try resource, evaluating a pattern Q of type A, is well typed if ` is of type loc f(A)
and the root tag of the evaluated document is f. Note that no assumption is made
on index ı1 · · · ın, which, as already said for rule (T-Try), might well not be of type
A. Finally, (T-Ltest) verifies that if a location ` is waiting for the sub-pattern eval-
uation, then there is a witness for A (the type of documents accepted by the pattern
evaluated at `) for f1 · · · fn (the word composed by the root tags of the children of the
document at ı matched against the pattern). This is a necessary condition for having
that document at ı complies with type A. Moreover, (T-Ltest) ensures that the type
of the capture variable is a reference type and is compatible with the type A of the
matched documents.

An important feature of our calculus is that every pattern is strongly typed: its
type is the regular expression obtained by erasing capture variables. Likewise we can
type locations, expressions and processes using a combination of regular expression
types and ref types.

Remark 4.2 (well-typed patterns). From now onward, we assume all patterns and
functions are well-typed. We extend now the type system in Table 4.7 with judgments
for establish well-typedness of pattern and function definitions. The new typing rules
are reported in Table 4.8.

The type of a selector Reg is obtained from Reg by substituting every pattern
identifier Qi with the corresponding type Ai, rule (T-Sel). Rule (T-Pat) checks
if the definition Q(x1, . . . , xn)

4
= let z1 = e′1, . . . , zm = e′m in Reg as xk then e1 else e2

respects the declared type (T1, . . . ,Tn) → A. Therefore, that upon receiving its actual
parameters of type T1, . . . ,Tn and evaluating the expressions in the let part, pattern
Q actually matches documents of type A. In particular it is checked that the type
of the selector Reg is A, that continuations e1 and e2 are well typed, and that the
type Tk associated to the capture variable xk is compatible with A. Rule (T-Fdec)

verifies if the definition f
4
= e complies with the provided type (T1, . . . ,Tn) → S by
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(T-Sel)

Reg = Reg(fi[Qi(x̃i)])i=1,...,n Γ ` Qi(x̃i) : (T̃i) → Ai i = 1, . . . , n

Reg(fi[Ai])i=1,...,n
.= A

Γ ` Reg : A

(T-Pat)

Q(x1, . . . , xn)
4
= let z1 = e′1, . . . , zm = e′m in Reg as xk then e1 else e2

fn(Q(x̃)) = ∅ x1 : T1, . . . , xn : Tn ` e′i : T′
i i = 1, . . . ,m

x1 : T1, . . . , xn : Tn, z1 : T′
1, . . . , zm : T′

m ` Reg : A

Tk = ref B B, A < B

x1 : T1, . . . , xn : Tn, z1 : T′
1, . . . , zm : T′

m ` e1 : S1

x1 : T1, . . . , xn : Tn, z1 : T′
1, . . . , zm : T′

m ` e2 : S2

Γ ` Q(x1, . . . , xn) : (T1, . . . ,Tn) → A

(T-Fdec)
f

4
= e Γ, x1 : T1, . . . , xn : Tn ` e : S

Γ ` f(x1, . . . , xn) : (T1, . . . ,Tn) → S

Table 4.8: Typing rules for functions and patterns.

checking if the type of the body e is S when evaluated in a context where the formal
parameters of f have associated types T1, . . . ,Tn.

Example 4.3.2 (the reverse Web-Link Graph). We study the reverse web-link
graph application [63], used e.g. in the Google’s search-engine to compute page ranks.
The goal is to build a list of all pages containing a link to a given url. We consider a
calculus enriched with an atomic type for strings, String, and a conditional construct
if − then− else to test equalities between strings, these extensions are straightforward
to accommodate. Moreover, in pattern definitions, we sometimes use “T as x” as a
shortcut for the pattern invocation Q(x), where Q(x)

4
= All as x and T is the expected

document type. We assume that web pages in the index are stored as documents of
type WP = pg[B], where B is the type (url[String], link[URL∗], text[String]) and
URL is a shorthand for url[String], meaning that for each page we have its location
(url), a list of its hyperlinks (link) and its textual content (text). For simplicity,
assume that each list contains no duplicate hyperlinks. The following patterns are
used for building a reverse web-link graph:
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revWL(t, r)
4
=

(
pg[revWL′(t, r)]

)
∗

revWL′(t, r)
4
= let x = newref () , y = newref () in(

url[String as x], link[URL ∗ as y], text[String]
)

then
(
try !y sift(t, !x, r)

)
sift(t, t′, r)

4
=

(
url[sift ′(t, t′, r)]

)
∗

sift ′(t, t′, r)
4
= let z = newref () in

(
String as z

)
then

(
if z = t then r += url[t′]

)
.

The main pattern is revWL(t, r), where t is the string representing the target
url, and r is a (global) reference cell for t’s reverse-index. revWL visits each in-
dexed page and invokes revWL′, which extracts the page’s location (String as x) and
list of links (URL ∗ as y), and stores them in two fresh references x and y. Then
the pattern sift is used to test whether the list of url in y contains the target
location t. If true, the result r is updated by adding to it the value of x (that
is passed as the second parameter of sift). In each pattern, the “location” pa-
rameters t and t′ have type String while the final result, held in the parameter r,
is a reference holding values of type URL∗. Hence the pattern revWL has type
(String, ref (URL∗)) → WP∗ and sift has type (String,String, ref (URL∗)) → URL∗.
Assume ı1 · · · ın is the index of the web pages of interest, possibly stored in different
physical locations, we can create a reverse index for the target location ta with the
expression: let z = newref () in try ı1 · · · ın revWL(ta, z). Note that patterns and
functions are evaluated locally at each site, while the result reference z is “global” (it
is local to the caller, but is accessed by every site for storing the results.)

4.4 Properties of typing

As usual, it is useful to guarantee that properties ensured by the type system are
preserved at run-time. A subject reduction property is always used for guaranteeing
that well-typedness is preserved by reductions. Before introducing this result, we need
to prove a few preliminary lemmata. Firstly, we prove that structural congruence and
substitution preserve well-typedness; after, we introduce some interesting properties
of (unambiguous) patterns and languages.

Lemma 4.1 (weakening). If Γ, x : T ` P : T′ and x /∈ fn(P ) then Γ ` P : T′ and
vice versa.

Proof: The proof is straightforward by induction on the derivation of Γ, x : T `
P : T′. 2



87 4.4. Properties of typing

Proposition 4.1 (subject congruence). If P ≡ Q and Γ ` P : T then Γ ` Q : T.
Proof: The proof is straightforward by induction on the derivation of P ≡ Q;

the proof proceeds by distinguishing the last structural rule applied and relies on
Lemma 4.1 (weakening). 2

Proposition 4.2 (substitution). If Γ, x : T ` P : T′ and Γ ` u : T then Γ ` P [u/x] :
T′.

Proof: The proof is straightforward by induction on the derivation of Γ, x : T `
P : T′ and proceeds by distinguishing the last typing rule applied in the derivation.
The base case is rule (T-Nm), which can be easily proved by using the hypothesis
Γ ` u : T = T′. In the other cases the proof proceeds by inductive hypothesis. 2

Given a regular expression type A, its language contains the elements (documents)
a, b, . . . generated by the grammar: a ::= () | f[a] | aa. It is important to note that by
substituting the sequence“aa”with“a, a”and () with Empty, we obtain a grammar for
regular types that does not contain choices, “ ”, nor iterations, “∗”. With a slight abuse
of notation, in what follows we use a, b, . . . for indicating both elements generated by
the previous grammar and the corresponding types.

Lemma 4.2. If f1[a1] · · · fn[an] ∈ L(A), with n > 0, then A
.= f1[a1], . . . , fn[an] A.

If () ∈ L(A) then A
.= Empty A.

Proof: The result follows by Definition 4.11 (language) and by observing that
L(f1[a1], . . . , fn[an]) = {f1[a1] · · · fn[an]} ⊆ L(A) and L(Empty) = {()} ⊆ L(A). 2

The following lemma has been introduced for giving evidence to some connections
between the relation of witness and subtyping.

Lemma 4.3. Assume A is a regular type.
(1) If f1 · · · fn `A A1 · · ·An, with n > 0, then f1[A1], . . . , fn[An] < A. If () `A

Empty then Empty < A.
(2) If f1 · · · fn 6`A then for each B1, . . . ,Bn regular types it holds that

f1[B1], . . . , fn[Bn] < A.
Proof:

(1) By definition of (type) witness.
(2) Suppose A = Reg(gj [Aj ])j=1,...,k. By definition, f1 · · · fn 6`A implies f1 · · · fn /∈

Reg(gj)j=1,...,k. Hence, by Definition 4.11 (language), for each bi ∈ L(Bi),
with i = 1, . . . , n, we have f1[b1] · · · fn[bn] /∈ L(A), that is f1[b1] · · · fn[bn] ∈
L(A) by definition of ·. By Definition 4.11 (language) and 4.12 (subtyping),
f1[B1], . . . , fn[Bn] < A.

2
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In the following we define the function [[u]]Γ with parameters an index u and a
context Γ. [[u]]Γ can be used for deducing, according to the assumptions in Γ, the
element a that is the only word in the language associated to the “minimal type” of u.
Note that [[u]]Γ belongs to the language associated to each type complying with u.

Definition 4.15 ([[u]]Γ).
[[()]]Γ = ()

[[ı1 · · · ın]]Γ = f1[a1] · · · fn[an] if Γ ` ıi : node fi(ui) and [[ui]]Γ = ai.

Lemma 4.4. Assume A is a regular type and let be u = ı1 · · · ın, with n > 0. Γ ` u :
A ⇔ [[u]]Γ ∈ L(A).

Proof:

(⇒): By induction on the depth, d, of the document u:

d = 0: u = () and [[()]]Γ = (). Γ ` () : Empty, (T-Em), and () ∈ L(Empty).

d = m + 1: u = ı1 · · · ın. We distinguish two cases depending on the last rule
applied for deducing Γ ` u : A

(T-Doc): A = f1[B1], . . . , fn[Bn] and for each k = 1, . . . , n it holds that
Γ ` ık : node fk(uk) and Γ ` uk : Bk. Moreover, each uk has depth
smaller than d, hence by inductive hypothesis [[uk]]Γ ∈ L(Bk).

(T-Sub):

• Γ ` u : f1[B1], . . . , fn[Bn], that is Γ ` ık : node fk(uk), and Γ `
uk : Bk. As in the previous point, each uk has depth smaller than
d, hence by inductive hypothesis, [[uk]]Γ ∈ L(Bk).

• f1[B1], . . . , fn[Bn] < A implies L(f1[B1], . . . , fn[Bn]) ⊆ L(A).

In both cases, [[u]]Γ = f1[[[u1]]Γ] · · · fn[[[un]]Γ] ∈ L(f1[B1], . . . , fn[Bn]), thus
[[u]]Γ ∈ L(A).

(⇐): By induction on the depth, d, of the document u:

d = 0: u = () and [[()]]Γ = (). () ∈ L(A) and Γ ` () : Empty, (T-Em).
() ∈ L(A) implies, by Lemma 4.2, A

.= Empty A, hence Empty < A and,
by (T-Sub), Γ ` () : A.

d = m + 1: u = ı1 · · · ın. [[u]]Γ = f1[a1] · · · fn[an] ∈ L(A) and, by Definition 4.15,
ai = [[ui]]Γ, and Γ ` ıi : node fi(ui) for i = 1, . . . , n. Obviously, for
each i = 1, . . . , n it holds that ai ∈ L(ai) and by induction Γ ` ui : ai.
f1[a1] · · · fn[an] ∈ L(A) implies, by Lemma 4.2, A

.= f1[a1], . . . , fn[an] A.
Therefore, f1[a1], . . . , fn[an] < A and, by rules (T-Doc) and (T-Sub),
Γ ` u : A.
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2

The following results are useful for ensuring that pattern-matching never produces
typing errors. In other words, a document matching a pattern always complies with
its type, and vice versa, when the pattern-matching fail the document complies with
the complement of the type associated to the pattern.

Lemma 4.5. Let be Q(x̃) a pattern with selector Reg = Reg(fi[Qi(x̃i)])i=1,...,k and
suppose Γ ` Q(x̃) : (T̃) → A. If Γ ` ṽ : T̃, f1 · · · fn `

Reg[ṽ/̃x]
Q1(ṽ1) · · ·Qn(ṽn),

with n > 0 and Γ ` Qi(ṽi) : Ai, for i = 1, . . . , n, then f1 · · · fn `A A1 · · ·An. If
() `

Reg[ṽ/̃x]
Empty then () `A Empty.

Proof: Suppose f1 · · · fn `
Reg[ṽ/̃x]

Q1(ṽ1) · · ·Qn(ṽn), with n > 0. By the well-

typedness of Q(x̃), (T-Pat) and (T-Sel): x̃ : T̃ ` Reg(fi[Qi(x̃i)])i=1,...,k : A and there
are A1, . . . ,Ak such that for each i = 1, . . . , k it holds that x̃ : T̃ ` Qi(x̃i) : (T̃i) → Ai

and Reg(fi[Ai])i=1,...,k
.= A. By Γ ` ṽ : T̃ and Proposition 4.2 (substitution), Reg [ṽ/̃x] :

A and Qi(ṽi) : (T̃i) → Ai. By definition of witness, f1 · · · fn `Reg Q1(ṽ1) · · ·Qn(ṽn)
implies that f1 · · · fn ∈ Reg(fi)i=1,...,k. From this and Qi(ṽi) : (T̃i) → Ai it follows
that f1 · · · fn `A A1 · · ·An.

Suppose () `
Reg[ṽ/̃x]

Empty. This means that the empty document is matched by
Q(x̃), hence is in the language of A and () `A Empty by definition. 2

Lemma 4.6. Suppose A unambiguous and A 6= All. f1 · · · fj · · · fn `A A1 · · ·Aj · · ·An

implies f1[A1], . . . , fj [Aj ], . . . , fn[An] < A.
Proof: By Lemma 4.3 (1), f1 · · · fj · · · fn `A A1 · · ·Aj · · ·An implies

f1[A1], . . . , fj [Aj ], . . . , fn[An] < A, that is L(f1[A1], . . . , fj [Aj ], . . . , fn[An]) ⊆ L(A)
(by Definition 4.12 (subtyping)). By definition of ·, L(Aj) = L(Aj), hence
L(Aj) ∩ L(Aj) = ∅. This implies that L(f1[A1], . . . , fj [Aj ], . . . , fn[An]) ∩
L(f1[A1], . . . , fj [Aj ], . . . , fn[An]) = ∅. From the unambiguity of A, it
follows that L(f1[A1], . . . , fj [Aj ], . . . , fn[An]) ∩ L(A) = ∅. Therefore,
L(f1[A1], . . . , fj [Aj ], . . . , fn[An]) ⊆ L(A) and, again by Definition 4.12 (subtyping),
f1[A1], . . . , fj [Aj ], . . . , fn[An] < A. 2

Lemma 4.7. Let Q(x̃) be a unambiguous pattern with selector Reg and suppose Γ `
Q(x̃) : (T̃) → A, Γ ` ıi : node fi(ui), for n > 0, i = 1, . . . , n, and Γ ` ṽ : T̃. If
f1 · · · fn 6`

Reg[ṽ/̃x]
then Γ ` ı1 · · · ın : A.

Proof: Suppose Reg = Reg(f′i[Qi(x̃i)])i=1,...,k and n > 0. From the well-
typedness of Q(x̃), (T-Pat) and (T-Sel): x̃ : T̃ ` Reg : A, x̃ : T̃ ` Qi(x̃i) : (T̃i) → Ai

and A
.= Reg(f′i[Ai])i=1,...,k. By definition of witness, f1 · · · fn 6`

Reg[ṽ/̃x]
means that

f1 · · · fn /∈ Reg(f′i)i=1,...,k, hence, by definition, f1 · · · fn 6`A. By Lemma 4.3 (2), for
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each Bi it holds that f1[B1], . . . , fn[Bn] < A. Thus, f1[[[u1]]Γ], . . . , fn[[[un]]Γ] < A and
[[ı1 · · · ın]]Γ ∈ L(f1[[[u1]]Γ], . . . , fn[[[un]]Γ]) ⊆ L(A), hence, by Lemma 4.4, Γ ` ı1 · · · ın :
A.

Suppose n = 0. () 6`
Reg[ṽ/̃x]

means that () is not matched by Q(x̃), hence is not

in the language of A and, by definition of ·, () ∈ L(A) and Γ ` () : A. 2

We are now ready to prove that well-typedness is preserved by reductions. The
proof is quite involved since it is not possible to reason on a whole document at once:
its content is scattered across distinct resource locations. This complexity reflects
actual restrictions imposed when working with distributed documents, e.g. that they
can never be checked locally.

Theorem 4.1 (subject reduction). Suppose that P is well formed and contains
only unambiguous patterns and T contains only unambiguous types. If Γ ` P : T and
P → R then Γ ` R : T.

Proof: The proof proceeds by induction on the derivation of P → R; we distin-
guish the last reduction rule applied. We first consider the most interesting cases:
(mtc): by rules (T-Par), (T-Try), and (T-Lnd)

Γ `
∏

k=1,...,n

〈 ık 7→node fk(wk) 〉 �〈 ı 7→node f(ı1 · · · ın) 〉 �〈 ` 7→ try ı Q(ṽ) 〉 : ?

implies Γ ` ı : node f(ı1 . . . ın), Γ ` ık : node fk(wk), Γ ` ` : loc f(A), Γ ` Q(x̃) :
(T̃) → A and Γ ` ṽ : T̃.
By (mtc), P → R with f1 · · · fn `Reg Q1(ṽ1) · · ·Qn(ṽn) and

R =
∏

k=1...n〈 ık 7→node fk(wk) 〉 �〈 ı 7→node f(ı1 · · · ın) 〉 �

(ν 1 · · · n)(
∏

k=1,...,n〈 k 7→ try ık Qk(ṽk) 〉 �〈 ` 7→ test ı 1 · · · n vr 〉)

if vr is the capture reference of Q(ṽ).
Suppose Γ ` Qk(x̃k) : (T̃k) → Ak, then Γ, k : loc fk(Ak)k=1,...,n `
〈 k 7→ try ık Qk(ṽk) 〉 : ? for each k = 1, . . . , n, (T-Ltry).
We have already said that: Γ ` ` : loc f(A) and Γ ` ı : node f(ı1 . . . ın). By
(T-Pat), Tr = ref B and B, A < B. Moreover, all premises of Lemma 4.5 are
satisfied, hence f1 · · · fn `A A1 · · ·An. By (T-Ltest), Γ, k : loc fk(Ak)k=1,...,n `
〈 ` 7→ test ı 1 · · · n vr 〉 : ? and Γ ` Q : ?, by (T-Res) and (T-Par).

(err): 〈 ı 7→node f(ı1 · · · ın) 〉 �
∏

k=1,...,n〈 ık 7→node fk(wk) 〉 �〈 ` 7→ try ı Q(ṽ) 〉 →

〈 ı 7→node f(ı1 · · · ın) 〉 �
∏

k=1,...,n〈 ık 7→node fk(wk) 〉 �〈 ` 7→ fail ı 〉 with Q(ṽ)
4
=

Reg as vr and f1 · · · fn 6`Reg .
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By (T-Ltry), Γ ` ` : loc f(A), Γ ` ṽ : T̃ and Γ ` Q(x̃) : (T̃) → A. Moreover,
Γ ` ık : node fk(wk), by (T-Lnd). By Lemma 4.7, Γ ` ı1 · · · ın : A and by
(T-Lfail), Γ ` 〈 ` 7→ fail ı 〉 : ?. The result follows by applying rule (T-Par);

(test-ok): 〈 ı 7→node f(ı1 · · · ın) 〉 �
∏

k=1,...,n〈 k 7→ ok ık 〉 �〈 ` 7→ test ı 1 · · · n vr 〉 →
〈 ı 7→node f(ı1 · · · ın) 〉 �

∏
k=1,...,n〈 k 7→ ok ık 〉 � let z = (vr +=

ı1 · · · ın) in 〈 ` 7→ ok ı 〉 (with z 6= ı, `).
Γ ` 〈 ı 7→node f(ı1 . . . ın) 〉 �

∏
k=1,...,n〈 k 7→ ok ık 〉 �〈 ` 7→ test ı 1 · · · n vr 〉 : ?

implies by (T-Lnd), Γ ` ı : node f(ı1 · · · ın) and

• by (T-Ltest), Γ ` ` : loc f(A), Γ ` k : loc fk(Ak), f1 · · · fn `A A1 · · ·An,
Γ ` vr : Tr = ref B and B, A < B;

• by (T-Lok), ∀k = 1, . . . , n : it holds that Γ ` ık : node fk(uk) and Γ ` uk :
Ak;

By Lemma 4.3 (1), f1[A1], . . . , fn[An] < A. By (T-Doc),
Γ ` ı1 · · · ın : f1[A1], . . . , fn[An] and, by (T-Sub), Γ ` ı1 · · · ın :
A. Thus, by z 6= ı, `, (T-Wt), (T-Let) and (T-Par),
Γ ` 〈 ı 7→node f(ı1 · · · ın) 〉 �

∏
k=1,...,n〈 k 7→ ok ık 〉 � let z = (vr +=

ı1 · · · ın) in 〈 ` 7→ ok ı 〉 : ?.
(test-fail): in P = 〈 ı 7→node f(ı1 · · · ın) 〉 �

∏
k=1,...,n〈 k 7→ dk 〉 �〈 ` 7→ test ı 1 · · · n vr 〉

there is a k such that 〈 k 7→ fail ık 〉. Suppose that for each j = 1, . . . , n, with
j 6= k, 〈 j 7→ ok ıj 〉 (similar proof in the other cases). Hence, Γ ` P : ? implies:

• by (T-Lfail): Γ ` k : loc fk(Ak), Γ ` ık : node fk(ũk), and Γ ` uk : Ak;

• by (T-Ltest): Γ ` ` : loc f(A) and f1 · · · fn `A A1 · · ·An.

A 6= All, because otherwise the matching cannot fail (by definition of wit-
ness it would be Ak = All and L(All) = D). Hence, by Lemma 4.6,
f1[A1], . . . , fk[Ak], . . . , fn[An] < A. By rule (T-Doc), Γ ` ı1 · · · ın :
f1[A1], . . . , fk[Ak], . . . , fn[An] and by (T-Sub), Γ ` ı1 · · · ın : A. By (T-Lnd)

and Γ ` P : ?, Γ ` ı : node f(ı1 · · · ın), thus, by (T-Lfail) and (T-Par),
Γ ` 〈 ı 7→node f(ı1 · · · ın) 〉 �

∏
k=1,...,n〈 k 7→ dk 〉 �〈 ` 7→ fail ı 〉 : ?.

(wait-ok), (wait-fail): in these cases the proof follows by observing that Γ ` ` :
loc f(A), Γ ` ı : node f(u) and Γ ` 〈 ` 7→ ok ı 〉 : ? imply Γ ` u : A, (T-Lok)

(and similarly, Γ ` 〈 ` 7→ fail ı 〉 : ? imply Γ ` u : A, (T-Lfail)) and by applying
Proposition 4.2 (substitution).

(fun): f(ũ) → e[ũ/̃x]. By (T-Fun) Γ ` f(ũ) : T0 implies Γ ` f : (T̃) → T0 and
Γ ` ui : Ti. By (T-Fdec), Γ ` f : (T̃) → T0 means that f(x̃)

4
= e and

Γ, x1 : T1, . . . , xn : Tn ` e : T0. The result follows by applying Proposition 4.2
(substitution): Γ ` e[ũ/̃x] : T0.
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(ref): newref u → (ν `)(〈 ` 7→ ref u 〉 � `). By (T-Ref), Γ ` newref u : ref A

implies Γ ` u : A. The result follows by considering ` : ref A and by applying
(T-Res), (T-Par), (T-Lre) and (T-Nm).

(let): let x = u in P → P [u/x]. By (T-Let), Γ ` let x = u in P : T′ implies
Γ ` u : T and Γ, x : T ` P : T′ and, by Proposition 4.2 (substitution), E `
P [u/x] : T′.

(wr): 〈 ` 7→ ref u 〉 � l += v → 〈 ` 7→ ref u, v 〉 � (). By (T-Par), (T-Lre) and
(T-Wt), Γ ` 〈 ` 7→ ref u 〉 � l += v : Empty implies Γ ` ` : ref A, Γ ` u : A, Γ `
v : B and A, B < A. By (T-Com), Γ ` u, v : A, B and, by (T-Sub), Γ ` u, v : A.
Finally, by (T-Lre), (T-Em) and (T-Par), Γ ` 〈 ` 7→ ref u, v 〉 � () : Empty.

(str): the proof relies on Proposition 4.1 (subject congruence) and proceeds by
applying the inductive hypothesis.

(rd) 〈 ` 7→ ref u 〉 �!` → 〈 ` 7→ ref u 〉 � u. By (T-Lre) and (T-Rd) Γ `
〈 ` 7→ ref u 〉 �!` : A implies Γ ` ` : ref A and Γ ` u : A. Hence, Γ `
〈 ` 7→ ref u 〉 � u : A by (T-Par), (T-Lre) and (T-Nm).

(ctx): the proof is straightforward on the structure of the context E and by applying
in each case the inductive hypothesis.

(nd): f[u] → (νı)(〈 ı 7→node f(u) 〉 � ı). By (T-Nd), Γ ` f[u] : f[A] implies Γ ` u : A.
By (T-Nm), Γ, ı : node f(u) ` ı : node f(u) and, by (T-Doc), Γ, ı : node f(u) `
ı : f[A]. Thus, by (T-Par) and (T-Res), Γ ` (ν ı)(〈 ı 7→node f(u) 〉 � ı) : f[A].

(comp): u1, u2 → ı1 · · · ın if u1 = ı1 · · · ık and u2 = ık+1 · · · ın. By (T-Com),
Γ ` u1, u2 : A1, A2 implies Γ ` ui : Ai for i = 1, 2. Γ ` ı1 · · · ın : A1, A2, by
(T-Doc) and, if needed, (T-Sub).

(try): try u Q(ṽ) → (ν ı, `)(〈 ı 7→node root(u) 〉 �〈 ` 7→ try ı Q(ṽ) 〉 � ` ). By
(T-Try), Γ ` try u Q(ṽ) : loc root(A) implies Γ ` Q : (T̃) → A, Γ ` ṽ : T̃, and
Γ ` u : B.
By (T-Lnd), Γ, ı : node root(u) ` 〈 ı 7→node root(u) 〉 : ? and, by (T-Ltry),
Γ, ı : node root(u), ` : loc root(A) ` 〈 ` 7→ try ı Q(ṽ) 〉 : ?. Finally, by (T-Res),
(T-Par), and (T-Nm), Γ ` (ν ı, `)(〈 ı 7→node root(u) 〉 �〈 ` 7→ try ı Q(ṽ) 〉 � ` ) :
loc root(A);

(unit): 〈 ı 7→node f(()) 〉 �〈 ` 7→ try ı Q(ṽ) 〉 → 〈 ı 7→node f(()) 〉 �〈 ` 7→ ok ı 〉 im-
plies Q(ṽ)

4
= Reg as vk and () `Reg Empty. By (T-Par), (T-Lnd) and

(T-Ltry), Γ ` 〈 ı 7→node f(()) 〉 �〈 ` 7→ try ı Q(ṽ) 〉 : ? implies Γ ` ` : loc f(A),
Γ ` ı : node f(()), Γ ` Q(x̃) : T̃ → A, and Γ ` ṽ : T̃. By Lemma 4.5,
() `Reg Empty and Empty : Empty we have () `A Empty. By Lemma 4.3 (1),
Empty < A and, by (T-Em) and (T-Sub), Γ ` () : A. By (T-Lok) and
(T-Par), Γ ` 〈 ı 7→node f(()) 〉 �〈 ` 7→ ok ı 〉 : ?.
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2

We do not state a progress theorem in connection with Theorem 4.1. Indeed,
there exists no notion of errors in our calculus (like e.g. the notion of “message not
understood” in object-oriented languages) as it is perfectly acceptable for a pattern-
matching to fail or to get blocked on a wait statement. Nonetheless the subject
reduction theorem is still useful. For instance, we can use it for optimizations purposes,
like detecting that a specific matching will always fail.

4.5 Extensions

In this section we extend syntax, operational semantics and type system for show-
ing how to deal with pattern definitions enriched with local declarations and con-
tinuations. We also introduce some examples that show how to interpret interesting
programming idioms in our model, like spawning an expression in a new thread or
handling user-defined exceptions.

4.5.1 Full pattern definitions

For the sake of simplicity, we have presented the calculus by considering patterns
without local declarations and continuations; we discuss here changes introduced by
the presence of full pattern definitions.

First of all, the syntax of the test resource is modified for taking into account
pattern’s continuations, e1 and e2. The new test resource is test ı w u e1 e2.

A revised semantics is needed. Reduction rules in Table 4.5 that regulate pattern-
matching evaluation are substituted by the corresponding ones in Table 4.9.

Rules (test’-ok), (unit’), (test’-fail) and (err’) extend the previous versions
by simply starting the execution of continuations e1 and e2. The test resource created
by (mtc’) takes note of the continuations of the pattern Q and of the capture reference
vr. Local declaration D in Q are taken into account when evaluating sub-pattern-
matchings and continuations.

Concerning the type system, a revised version of rule (T-Ltest) in Table 4.7 is
needed for verifying well-typedness of continuations.

(T-Ltest’)

Γ ` ` : loc f(A) Γ ` ı : node f(u) Γ ` k : loc fk(Ak)

w = (1 · · · n) f1 · · · fn `A A1 · · ·An

Γ ` e1 : T1 Γ ` e2 : T2 Γ ` u : ref B B, A < B

Γ ` 〈 ` 7→ test ı w u e1 e2 〉 : ?
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(err’)

P = 〈 ı 7→node f(ı1 · · · ın) 〉 �
∏

k=1,...,n〈 ık 7→node fk(wk) 〉 n > 0

Q(ṽ)
4
= let D in Reg as vr then e1 else e2 f1 · · · fn 6`Reg z 6= `, ı

P �〈 ` 7→ try ı Q(ṽ) 〉 → P � let z = (let D in e2) in 〈 ` 7→ fail ı 〉

(mtc’)

P ≡ 〈 ı 7→node f(ı1 · · · ın) 〉 �
∏

k=1,...,n〈 ık 7→node fk(wk) 〉 n > 0

Q(ṽ)
4
= let D in Reg as vr then e1 else e2

f1 · · · fn `Reg Q1(ṽ1) · · ·Qn(ṽn) w = 1 · · · n fresh names

P �〈 ` 7→ try ı Q(ṽ) 〉→P �
(
let D in (ν w)

(∏
k=1,...,n〈 k 7→ try ık Qk(ṽk) 〉

�〈 ` 7→ test ı w vr e1 e2 〉
))

(unit’)

P = 〈 ı 7→node f(()) 〉 z 6= `, ı

Q(ṽ)
4
= let D in Reg as vr then e1 else e2 () `Reg Empty

P �〈 ` 7→ try ı Q(ṽ) 〉 → P � let z = (let D in e1) in 〈 ` 7→ ok ı 〉

(test’-ok)

P = 〈 ı 7→node f(ı1 . . . ın) 〉 �
∏

k=1,...,n〈 k 7→ ok ık 〉
w = 1 · · · n z /∈ fn(e1) z, z′ 6= `, ı, vr

P �〈 ` 7→ test ı w vr e1 e2 〉 → P � let z′ =
(
let z = (vr += ı1 · · · ın) in e1

)
in 〈 ` 7→ ok ı 〉

(test’-fail)

P = 〈 ı 7→node f(ı1 . . . ın) 〉 �
∏

k=1,...,n〈 k 7→ dk 〉 w = 1 · · · n z 6= `, ı

∀k ∈ 1, . . . , n : dk ∈ {ok ık, fail ık} ∃j ∈ 1, . . . , n : dj = fail ıj

P �〈 ` 7→ test ı w vr e1 e2 〉 → P � let z = e2 in 〈 ` 7→ fail ı 〉

Table 4.9: Reduction semantics with full pattern definitions.

4.5.2 Types and pattern-matching

We can encode a “traditional” match operator, as found in XDuce for example,
that matches the pattern Q against u and conditionally proceeds as e1 or e2. Assume
y is a fresh variable (y /∈ fv(e1) ∪ fv(e2)), we define:

match u with Q(ṽ) then e1 else e2
4
=

 let x =
(
try u Q(ṽ)

)
in

(
wait x(y) then e1 else e2

) .

This example allows us to emphasize the role of the variable y when typing a
wait statement. Let e

4
=

(
match z with Empty then f[z] else z

)
be the expression

that returns z if it is not empty else returns f[z]. Assume z is a variable of type All,
then the most precise type for e is also All. In contrast, if we consider the expression
let x =

(
try z Empty

)
in

(
wait x(y) then f[y] else y

)
, which is equivalent to e, we obtain
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the more precise type Empty, that is, we prove that the returned value cannot be empty.
Indeed y plays the role of an alias for the value of z that is used with type Empty in
the continuation f[y] and with type Empty in y (and we have f[Empty] < Empty).

4.5.3 Concurrency

We show how to model simple threads, that is, we want to encode an operator
spawn such that the effect of spawn e1; e2 is to evaluate e1 in parallel with e2,
yielding the value of e2 as a result. The simplest solution is to interpret spawn e1; e2

by the configuration e1 � e2. A disadvantage of this solution is that it is not possible
to test in e2 whether the evaluation of e1 has ended.

Another simple approach to encode spawn is to rely on the pattern-matching
mechanism. Let Q be the pattern Q( )

4
= (Empty then e1). We can interpret the

statement spawn e1; e2 with the expression let x = (try () Q( )) in e2. Indeed we
have:

let x = (try () Q( )) in e2 →∗ (ν ı`)
(
〈 ı 7→node root(()) 〉 �

(let z = e1 in 〈 ` 7→ ok ı 〉) � e2[ /̀x]
)

.

In the resulting process, e1 and e2 are evaluated concurrently and the resource
〈 ` 7→ ok ı 〉 cannot interact with e2 until the evaluation of e1 ends. Hence an oc-
currence of the expression (wait x(y) then e) in e2 acts as an operator blocking the
execution of e until e1 returns a value. We can in fact improve our encoding so that
the result of e1 is bound to z in e as follows:

spawn e1; e2
4
= (ν ı`)

(
let z = e1 in (〈 ı 7→node root(z) 〉 �〈 ` 7→ ok ı 〉) � e2[ /̀x]

)
.

It emerges from this example that a try location can be viewed as a future, that
is a reference to the “future result” of an asynchronous computation. More generally,
we can liken a process (〈 ı 7→node f(u) 〉 �〈 ` 7→ ok ı 〉) to an (asynchronous) output
action `!〈ok, u〉 as found in process calculi such as the π-calculus. Similarly, we can
compare an expression wait `(x) then e1 else e2 with a combination of input action
and matching, `?(x).{ok ⇒ e1 | fail ⇒ e2}, with the following synchronization rules:

`!〈ok, u〉 ‖ `?(x).{ok ⇒ e1 | fail ⇒ e2} → `!〈ok, u〉 ‖ e1[u/x]

`!〈fail, u〉 ‖ `?(x).{ok ⇒ e2 | fail ⇒ e2} → `!〈ok, u〉 ‖ e2[u/x]

The main distinction with “traditional process calculi” is that we are in a situation
where outputs are replicated. For this reason, we can have multiple wait operators



4. Astuce: a typed calculus for querying distributed xml documents 96

synchronizing on the same location ` without the need for global consensus (or a lock)
on the resource at `. Nonetheless, since the calculus can express atomic reads and
writes on a shared memory, it could be useful to rely on a standard mutual exclusion
algorithm for accessing references. We could also interpret high-level primitives for
mutexes directly in our calculus (see e.g. [78] for an example). Note also that there
is no need for replication in our calculus since resources are persistent and recursive
behaviors can be encoded using recursive function declarations.

4.5.4 Exceptions

We show how to model a simple exception mechanism in our calculus. Suppose we
need to check that a document u of type A in Example 4.3.1 (the type of family trees)
contains only women. This can be achieved using the pattern declarations Q( )

4
=

woman[Q′( )]∗ and Q′( )
4
= name[All], daughters[Q( )], sons[Empty] and a matching

expression try u Q( ). A drawback of this approach is that we need to wait for the
completion of all sub-patterns to terminate before completing the computation, even
if the matching trivially fails because we find an element tagged man early in the
matching. A natural optimization is to use an explicit handling of failures, e.g. to
add primitives to kill and “ping” (the location of) a try resource in the style of [11].
Another solution is to encode a basic mechanism for handling exceptions using the
following derived operators, where ıe is a default name associated to the location
〈 ıe 7→node root(()) 〉:

exception = (ν `)` creates a fresh (location) exception

throw ` = 〈 ` 7→ ok ıe 〉 � () raises an exception at `

catch ` e = wait `(x) then e catches exception ` and runs e (x /∈ fv(e))

A simple example is to raise the exception at the end of a computation, like
in the expression let x = exception in

(
(· · · ; throw x) � catch x e

)
. If and

when the throw expression is evaluated, we obtain a configuration of the form
(ν `)

(
· · · �〈 ` 7→ ok ıe 〉 � wait `(x) then e

)
, which starts the execution of e. For instance,

it is possible to raise the exception in the compensation part of a pattern declaration
and to redefine the pattern Q above in: Q(x)

4
= woman[Q′( )] ∗ else throw x.

With our encoding, it is not possible to abort the execution of a whole “program
block” using exceptions. Using a more involved encoding, e.g. based on CPS trans-
forms, we could interpret this more general exception model.
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4.6 Conclusions

In this chapter, we have proposed a formal model for computing over large, per-
haps dynamically generated, distributed xml documents. We define a typed process
calculus and show that it supports a first-order type system with subtyping based on
regular expression types, a system compatible with dtd and other schema languages
for xml. Our goal is to provide formal tools for studying concurrent computation
models based on service composition and streamed xml data. Hence, the key aspect
of the calculus is that documents are not represented as first class values exchanged
in messages (like in XPi and in almost all works mixing process calculi and xml).
This because this approach is inappropriate in the case of very large or dynamically
generated data. At the opposite, in Astuce documents are considered as special kind
of processes that can be randomly accessed through the use of distributed indexes.

Concerning query evaluation, in Astuce we take a strongly typed approach by
extending the functional approach taken in e.g. XDuce and defining distributed regular
expression patterns. As a byproduct, Astuce could be a basis for developing concurrent
extensions of strongly typed languages for xml, such as XDuce. It could also be used
to provide the semantics of systems in which xml documents contain active code that
can be executed on distributed sites (i.e. processes and document texts are mixed),
like in the Active xml system for example [4]. Nonetheless, since the operational
semantics does not dictate how regular patterns should be implemented, we can take
inspiration from these systems to implement efficient and scalable filtering primitives.
Conversely, Astuce can be used to give a formal semantics to these systems.

What we have proposed here is a complementary model to the most popular one,
at the basis e.g. of XPi and πDuce, which follows the fiefdoms and emissaries ap-
proach [85]. In this approach, ws are seen as fiefdoms, which own and manage data,
while messages used for accessing services are the emissaries, which allow fiefdoms to
collaborate with each other. This approach fits well with the message-oriented ap-
proach to ws and has several advantages, notably it makes easy to deal with security
(confidentiality, access control and so on). In Astuce we have chosen to focus on dis-
tribution and to investigate a different (more complex) approach, but there is still a
lot of work to be done to make it realistic. For example, it would be necessary to
undersand what happens in presence of updates, to study security related problems
from another point of view and to introduce different solutions to these problems.
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Chapter

FIVE

Responsiveness of services

In this chapter we study one of the properties we consider critical for soa: re-
sponsiveness. A responsive service is a service that guarantees that each request is
eventually followed by a reply. Here, we model services as π-calculus processes and
propose two distinct type systems, each of which statically guarantees responsive usage
of names in well-typed π-calculus processes. In a process calculus, an agent guaran-
tees responsive usage of a channel name r if a communication along r is guaranteed to
eventually take place. In the first system, we achieve responsiveness by combining tech-
niques for deadlock and livelock avoidance with linearity and receptiveness. The latter
is a guarantee that a name is ready to receive as soon as it is created. These conditions
imply relevant limitations on the nesting of actions and on multiple use of names in
processes. In the second system, we relax these requirements so as to permit certain
forms of nested inputs and multiple outputs. We demonstrate the expressiveness of the
second system by showing that Cook and Misra’s service orchestration language orc

can be encoded into well-typed processes.

5.1 Introduction

Contracts are at the basis of soa and describe services not only in functional
terms, but also specifying a non-functional part containing the rules of engagement
between consumers and providers, also known as policies. Policies define some
constraints on the behavior of services such as obligations, which require a service to
perform an action or to be in one or more allowable states, and permissions, which
enable one or more actions. The policy-oriented model [27] describes ws by focusing
on those aspects related to policies. Obligations and permissions are used to constrain

101
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the behavior of services, to ensure security (e.g. by performing access control) and to
guarantee a certain level of quality of service. To this purpose, obligations usually
require agents providing services to be in a certain state, such as a readiness state,
or to perform some actions, such as sending a reply after each invocation. A service
in a readiness state is said to be receptive, while a service that eventually reply after
each invocation is said responsive. The concept of receptiveness has been already
formalized and studied from the process calculi viewpoint by Sangiorgi [125]. We first
concentrate on responsiveness of services. In this chapter, first we formally define
what it means for a process to be responsive and after we propose two distinct type
systems, each of which statically guarantees responsive usage of names in well-typed
π-calculus processes.

In a process calculus, an agent guarantees responsive usage of a channel name r

if a communication along r is guaranteed to eventually take place. That is, under a
suitable assumption of fairness, all computations contain at least one reduction with
r as subject. Here we are interested in the case where r is a reply channel passed
to a service or function, and we call this property responsiveness. As an example, a
network of processes S may contain a service !a(x, r).P invocable in rpc style: the
caller sends at a an argument x and a return channel r. S’s responsive usage of r

implies that every request at a will be eventually replied.
In this chapter, we aim at individuating substantial classes of π-calculus processes

that guarantee responsiveness and that can be checked statically, that is, without hav-
ing to explicitly or implicitly unfold the behavior of the process under consideration.
In the past decade, several type systems for the π-calculus have been proposed to ana-
lyze properties that share some similarities with responsiveness, such as linearity [99],
uniform receptiveness [125], lock freedom [95, 96] and termination [64]; they will be
examined throughout the chapter. However none of the above mentioned properties
alone is sufficient, or even necessary, to ensure the property we are after.

The first system we propose (Section 5.3) builds around Sangiorgi’s system for uni-
form receptiveness [125]. However, uniformity is discarded and some other constraints
are introduced, as explained below. As expected, most difficulties in achieving re-
sponsiveness originate from responsive names being passed around. If an intended
receiver of a responsive name r, say a(x).P , never becomes available, r might never
be delivered, hence used. In this respect, receptiveness is useful, because it ensures
that inputs on a and on r are available as soon as they are created.

Even when delivery of r is ensured, however, one should take care that r will be
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processed properly. Indeed, the recipient of r might just “forget” about r, like in
(ν a, r)(a(x).0 | a〈r〉) ; or r might be passed from one recipient to another, its use as a
subject being delayed forever, like in

(ν a, b)
(
!a(x).b〈x〉 | !b(y).a〈y〉 | a〈r〉

)
. (5.1)

The first situation can be avoided by imposing that in the receiver a(x).P , name x

occurs at least once in the body P . In fact, it is necessary that any responsive name
be used linearly, that is, that it appear exactly once in input and once in output.
Infinite delays like (5.1) can be avoided relying on a stratification of names into levels,
akin to the type system for termination of Deng and Sangiorgi [64]. We will rule out
divergent computations that involve responsive names infinitely often, but we will do
allow divergence in general.

Finally, even when a responsive name is eventually in place as subject of an output
action, one has to make sure that such an action becomes eventually available. In other
words, one must avoid cyclic waiting like in

r(x).s〈x〉 | s(y).r〈y〉 . (5.2)

This will be achieved by building a graph of the dependencies among responsive names
and then checking for its acyclicity.

Receptiveness and linearity impose relevant limitations on the syntax of well-typed
processes: nested free inputs are forbidden, as well as multiple outputs on the same
name. On the other hand, the type system is expressive enough to enable a rpc pro-
gramming style; in particular the usual cps encoding of primitive recursive functions
into π-processes gives rise to well-typed processes [7].

In the second system we propose, Section 5.4, the constraints on receptiveness
and linearity are relaxed so as to allow certain forms of nested inputs and multiple
outputs. For instance, the new system allows nondeterministic internal choice, which
was forbidden in the first one. Relaxation of linearity and receptiveness raises new
issues, though. As an example, responsiveness might fail due to “shortage” of inputs,
like in (a, b and d responsive):

a〈b〉|a〈d〉|a(x).x|b|d τ−→ τ−→ a〈d〉|d .

These issues must be dealt with by carefully “balancing” inputs and outputs in typing
contexts and in processes. This system is flexible enough to encode into well-typed
processes all orchestration patterns of Cook and Misra’s orc language [59], Section 5.5.
Due to a rather crude use of levels, however, only certain forms of (tail-)recursion are
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Process P,R ::= 0 Inaction∣∣ a〈b〉 Output∣∣ a(x).P, x /∈ in(P ) Input prefix∣∣ !a(x).P, x /∈ in(P ) Replication∣∣ P |R Parallel Composition∣∣ (ν b)P Restriction

Table 5.1: Syntax of processes

encodable. In fact, neither the first system is subsumed by the second one, nor vice
versa.

The most lengthy and technical proofs of this chapter are reported in Appendix A
for readers’ convenience.

5.2 Syntax and semantics

In this section we describe the syntax of processes and types and the operational
semantics of the calculus. On top of the operational semantics, we define the respon-
siveness property we are after.

5.2.1 Syntax

We focus on an asynchronous variant of the π-calculus without nondeterministic
choice. Indeed, asynchrony is a natural assumption in a distributed environment.
Moreover, in the presence of a choice, it would be difficult to guarantee responsiveness
of names that belong to discarded branches. Assume a countable set of names N ,
ranged over a, b, . . . , x, y, . . . .

Definition 5.1. The set P of processes P,R, . . . is defined as the set of terms gen-
erated by the syntax in Table 5.1.

In a non blocking output action a〈b〉, name a is said to occur in output subject
position and b in output object position. In an input prefix a(x).P , and in a repli-
cated input prefix !a(x).P , name a is said to occur in input subject position and x in
input object position. We denote by in(P ) the set of names occurring free in input
subject position in P . The condition x /∈ in(P ), for input and replicated input, means
that names can be passed around with the output capability only. This assumption
simplifies reasoning on types and does not significantly affect the expressiveness of
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Type T ::= I Inert

| TU Channel

Usage U ::= [ω, k], k > 0 Omega

| [ρ, k], k > 0 Responsive

Table 5.2: Syntax of types

the language (see e.g. [28, 108]). As usual, parallel composition, P |R, represents the
concurrent execution of P and R and restriction, (ν b)P , creates a fresh name b with
initial scope P .

Binding conventions and notations. Notions of free and bound names (fn(·) and
bn(·)), and alpha-equivalence (=α) arise as expected. In the following, we shall only
consider well-formed processes, where all bound names are distinct from each other
and from free names. Please note that, as in [64], we do not identify processes up
to alpha-equivalence, hence we will need to introduce an explicit operational rule for
alpha-equivalence later on. We will better motivate this choice in page 105.

We shall often abbreviate a(x).0 as a(x), and (ν a1) . . . (ν an)P as (ν a1, . . . , an)P
or (ν ã)P , where ã = a1, . . . , an. In a few examples, the object part of an action may
be omitted if not relevant for the discussion; e.g., a(x).P may be shortened into a.P .

5.2.2 Sorts and types

The set of names N is partitioned into a family of countable sorts S,S ′, . . .. A
fixed sorting à la Milner [109] is presupposed: that is, any sort S has an associated
object sort S ′, and a name of sort S can only carry names of sort S ′. We only consider
processes that are well-sorted in this system. Alpha-equivalence is assumed to be sort-
respecting, in the obvious sense. Each sort is associated with a type T taken from the
set T defined below. We write a : T if a belongs to a sort S with associated type T.
The association between types and sorts is such that for each type there is at least
one sort of that type.

Definition 5.2 (types). The set T of types T,S, ... contains the constant

T

and the
set of terms generated by the grammar in Table 5.2.

A channel type T[u,k] conveys three pieces of information: a type of carried objects
T, a usage u, that can be responsive (ρ) or ω-receptive (ω), and an integer level k > 0.
If a : T[u,k] and u = ρ (resp. u = ω) we say that a is responsive (resp. ω-receptive).
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Informally, responsive names are guaranteed to be eventually used as subject in a
communication, while ω-receptive names are guaranteed to be constantly ready to
receive. Levels are used to bound the number of times a responsive name can be
passed around, so to avoid infinite delay in their use as subject. We also consider a
type I of inert names that cannot be used as subject of a communication – they just
serve as tokens to be passed around. Finally, a type

T

is introduced to collect those
names that cannot be used at all. As we discuss below,

T

is useful to formulate the
subject reduction property while keeping the standard operational semantics.

5.2.3 Operational semantics

The semantics of processes is given by a labeled transition system in the early
style, whose rules are presented in Table 5.3. An action µ can be of the following
forms: free output, a〈b〉, bound output, a(b), input a(b), or internal move τ〈a, b〉. The
last mentioned is used for denoting a communication where the – free or bound –
names a and b are used respectively as subject and object. This additional annotation
is necessary for guaranteeing the linear usage of responsive names as communication
subject (see rules (res) and (res-ρ)). We define n(a(b)) = n(a〈b〉) = n(a(b)) =
n(τ〈a, b〉) = {a, b}. A substitution σ is a finite partial map from names to names; for
any term P , we write Pσ for the result of applying σ to P , with the usual renaming
convention to avoid captures.

The rules are standard, with the difference that the notation
τ〈a,b〉−−−→ is used to

denote a τ -transition. Moreover, P >α,ρ R in (alpha) means that Pρ = R, where
ρ : V → (N \ fn(P )), with bn(P ) ⊆ V , is an injective (sort-respecting) renaming
function. Similarly for µ >α,ρ µ′. Rule (alpha) simply states that if P is obtained
by applying a renaming ρ to R, then P ’s behavior corresponds to the ρ renaming of
the behavior of R. As an example, suppose P = (ν a, b)(b〈a〉 | b(x).x) and P >α,ρ R,

with ρ(a) = d and ρ(b) = c. Then R = (ν d, c)(c〈d〉 | c(x).x), R
τ〈c,d〉−−−→ (ν d, c)d,

τ〈b, a〉 >α,ρ τ〈c, d〉, a >α,ρ d and P
τ〈b,a〉−−−→ (ν a, b)a. Note also that reduction rules

for restriction use information on typing. In rule (res-ρ), a bound responsive subject
a is alpha-renamed to a

T

-name c (a sort of “casting” of a to type

T

.) Informally,
this alpha-renaming is necessary because in a well-typed process, due to the linearity
constraint on responsive names, name a must vanish after being used as subject. Rule
(res) deals with the remaining cases of restriction. E.g. in a(x).x|(ν c)(a〈b〉) the rhs

can evolve by outputting b on a – this is obtained by applying rules (out) and (res)

(µ = a〈b〉 and c /∈ n(µ)) – hence the whole process can reduce to b|(ν c)0 by performing
a communication on a ((in) and (com)). Similarly, if we suppose d is an ω-receptive
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(in) a(x).P
a(b)−−→ P [b/x] (rep) !a(x).P

a(b)−−→!a(x).P |P [b/x]

(out) a〈b〉 a〈b〉−−→ 0 (alpha)

P >α,ρ R R
µ′

−→ R′

P ′ >α,ρ R′ µ >α,ρ µ′

P
µ−→ P ′

(com1)
P

a〈b〉−−→ P ′ R
a(b)−−→ R′

P |R τ〈a,b〉−−−−→P ′|R′
(par1)

P
µ−→ P ′ bn(µ) ∩ fn(R) = ∅

P |R µ−→ P ′|R

(open)
P

a〈b〉−−→ P ′ a 6= b

(ν b)P
a(b)−−→ P ′

(close1)
P

a(b)−−→ P ′ R
a(b)−−→ R′ b /∈ fn(R)

P |R τ〈a,b〉−−−−→ (ν b)(P ′|R′)

(res)

P
µ−→ P ′ if a ∈ n(µ) then ∃b :

either µ = τ〈b, a〉
or µ = τ〈a, b〉 and a not responsive

(ν a)P
µ−→ (ν a)P ′

(res-ρ)
P

τ〈a,b〉−−−−→ P ′ a responsive c :

T

c fresh

(ν a)P
τ〈a,b〉−−−−→ (ν c)P ′[c/a]

Symmetric rules not shown.

Table 5.3: Operational semantics.

name, the process (ν d)(!d(x).x|d〈e〉|d〈f〉) can reduce to (ν d)(!d(x).x|e|d) by applying
rules (rep), (out), (com) and (res) (µ = τ〈d,−〉 and d is not responsive).

Remark 5.1. It is worth to notice that, by ignoring the annotations of names in
communication labels, that is by substituting each τ〈a, b〉 with τ , the relation

µ−→
defined by rules in Table 5.3 coincides with the relation defined by the standard
operational semantics for the π-calculus.

Notations. We shall often refer to a silent move P
τ〈a,b〉−−−→ P ′, sometimes abbreviated

as P
τ−→ P ′, as a reduction and we denote by τ−→∗ the reflexive and transitive closure

of τ−→. P
[a]−→ P ′ means P

τ〈a,b〉−−−→ P ′ for some free or bound name b. For a string

s = a1 · · · an ∈ N ∗, P
[s]−→ P ′ means P

[a1]−−→ · · · [an]−−→ P ′, while P
[a]

=⇒ P ′ means

P
τ−→∗ [a]−→ τ−→∗P ′. We use such abbreviations as P

[a]
=⇒ to mean that there exists P ′

such that P
[a]
=⇒ P ′.

We can now introduce the responsiveness property we are after. Informally, we
think of a fair computation as a sequence of communications where for no name a a

transition
[a]−→ is enabled infinitely often without ever taking place. Then a process uses
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a name in a responsive way if that name is eventually, that is, in all fair computations,
used as subject of a communication. We then have the following definition. Below,
we assume that any bound name occurring in P and r is distinct from any free name
in P .

Definition 5.3 (responsiveness). Let P be a process and r ∈ fn(P ). We say that

P guarantees responsiveness of c if whenever P
[s]−→ P ′ (s ∈ N ∗) and r does not occur

in s then P ′ [r]
=⇒.

5.3 The type system `1

The type system consists of judgments of the form Γ ; ∆ `1 P , where Γ and ∆ are
sets of names. Before introducing the typing rules, we informally present the system
and introduce some preliminary definitions.

5.3.1 Overview of the system

Informally, names in Γ are those used by P in input, while in ∆ are those used by
P in output actions. There are several constraints on the usage of these names by P .
We require receptiveness of names, hence each name in Γ must occur immediately (at
top level) in input subject position, exactly once if it is responsive and replicated if it
is ω-receptive. A responsive name in ∆ must occur in P exactly once either in subject
or in object output position, although not necessarily at top level, that is, occurrences
in output actions underneath prefixes are allowed. There are no constraints on the
use in output actions of ω-receptive names: they may be used an unbounded number
of times, including zero. Linearity (“exactly once” usage) on responsive names is
useful to avoid dealing with “dangling” responsive names, which might arise after a
communication, like in

(ν r)(r.0|r|r) τ−→ (ν r)(0|0|r)

where r is a responsive name and we ignore the object parts of the communications.
If the process on the lhs above were declared well-typed, the transition would violate
the subject reduction property, as the process on the rhs above cannot be well-typed:
it violates the balancing condition described later in this section.

Linearity and receptiveness alone are not sufficient to guarantee a responsive usage
of names. As discussed in Section 5.1, we have also to avoid deadlock situations
involving responsive names, like (5.2). This is simply achieved by building a graph of
dependencies among responsive names of P (defined in the sequel) and checking for
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P |R ≡ R|P P |0 ≡ P (P |R)|S ≡ P |(R|S)

P ≡ R if P >α,ρ R (ν a)0 ≡ 0 if a :

T

or a : I

(ν a)(P |R) ≡ (ν a)P |R if a /∈ fn(R) (ν a)(ν b)P ≡ (ν b)(ν a)P

Table 5.4: Structural congruence

its acyclicity. We have also to avoid those situations like in (5.1), where a responsive
name is indefinitely “ping-pong”-ed among a group of replicated processes. To this
purpose, levels in types are introduced and the typing rules stipulate that sending a
responsive name to a replicated input of level k may only trigger output of level less
than k. This is similar to the use of levels in [64] to ensure termination. In our case,
we just avoid divergent computations that involve responsive names.

There is one more condition necessary for responsiveness, that is, the sets of input
and output names must be balanced, so as to ban situations like an output with no
input counterpart. This constraint, however, is most easily formulated “on top” of
well-typedness, and will be discussed later on.

5.3.2 Preliminary definitions

Formulation of the typing rules requires a few preliminary definitions. A structural
equivalence is necessary in order to correctly formulate the absence of cyclic waiting
on responsive names.

Definition 5.4 (structural congruence). The structural congruence ≡ is the least
congruence on processes satisfying the rules in Table 5.4.

Let us point out a couple of differences from the standard definition [109]. First,
there is no rule for replication (!P ≡ P |!P ), as its right-hand side would not be
well-typed. Consider e.g. the process !a(x).R, with a ω-receptive name; the process
a(x).R | !a(x).R is not well-typed because ω-receptive names cannot be used as subject
of non-replicated inputs. Similarly, in 0 ≡ (ν a)0 we require a :

T

or a : I. This because
the type system requires that bound non inert names be used in input subject position
at least once, and this is not the case in 0. In what follows we identify two classes of
processes: prime processes and processes in normal-form.

Definition 5.5 (normal-form). A process P is prime if either P = a〈b〉, or P =
a(x).P ′ or P =!a(x).P ′. A process P is in normal form if P = (ν d̃)(P1| · · · |Pn)
(n > 0), every Pi is prime and d̃ ⊆ fn(P1, ..., Pn).
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os(0) = ∅ os(!a(b).P ) = ∅ os(a(b).P ) = os(P )

os(a〈b〉) = {a} os((ν a)P ) = os(P ) os(P |R) = os(P ) ∪ os(R)

Table 5.5: os(P )

Every process is easily seen to be structurally equivalent to a process in normal
form.

Lemma 5.1. For each P ∈ P there exists R ∈ P in normal form such that P ≡ R.
Proof: The proof is straightforward by induction on the structure of P . 2

We proceeds by defining the dependency graph discussed above. Informally, its
nodes correspond to responsive names of typing contexts and there is an arc from a
node a to b exactly when an output action that involves a depends on an input action
on b. Although the following definition does not mention processes, one should think
of the pairs (Γi,∆i) below as typing contexts – limited to responsive names – for the
Pi’s in P1| · · · |Pn.

Definition 5.6 (dependency graph). Let {(Γi,∆i) : i = 1, ..., n} be a set of
context pairs. The dependency graph DG(Γi,∆i)i=1,...,n is a graph (V, T ) where:
V =

⋃
i=1,...,n(Γi ∪ ∆i) is the set of nodes and T =

⋃
i=1,...,n(∆i × Γi) is the set

of arcs.

Example 5.3.1. The (cyclic) dependency graph associated to the process
a.(b | c | d) | f.a | c.f is depicted below.

We will have more to say on both structural equivalence and dependency graphs
in Remark 5.2 at the end of the section. Like in [64], we will use a function os(P ),
defined in Table 5.5, that collects all – either free or bound – names in P that occur
as subject of an active output action, that is, an output not underneath a replication.
It is plain now why we choose to do not identify processes up to alpha-equivalence.
If otherwise stated it would have been impossible to give a syntactical definition of
os(P ) (and of other functions defined in the following).
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Notations. For any name a, we set lev(a) = k if a : T[u,k] for some T and u, otherwise
lev(a) is undefined. Given a set of names V , define V ρ 4

= {x ∈ V | x is responsive }
and V ω 4

= {x ∈ V | x is ω-receptive }. For V and W sets of names, we define V �W
4
=

V \W ρ. If ∆ ∩∆′ = ∅, we abbreviate ∆ ∪∆′ as ∆,∆′ and if a /∈ ∆, we abbreviate
∆ ∪ {a} as ∆, a; similarly for Γ.

5.3.3 The typing rules

The type system is displayed in Table 5.6. Recall that each sort has an associated
type. Linear usage of responsive names is ensured by rules (T-Nil) and (T-Out), by
the disjointness conditions in (T-Par) and by forbidding responsive names to occur
free underneath replication (T-Rep). Absence of cyclic waiting involving responsive
names is checked in (T-Par) and in (T-Inp) (a /∈ ∆). Note the use of levels in
rule (T-Rep): communication involving a replicated input subject a and a responsive
object can only trigger outputs of level less than lev(a). This condition is meant to
avoid those never-ending “ping-pongs” of responsive names mentioned above. Finally,
rule (T-Res) ensures that bound responsive names are used both in input and in
output, and ω-receptive names are used at least in input. Rule (T-Res-

T

) prevents
from using a name of type

T

and (T-Res-i) deals with inert names. We say that a
process P is well-typed if there are Γ and ∆ such that Γ; ∆ `1 P holds.

Remark 5.2. Avoiding deadlocks on responsive names might be achieved by using
levels in rule (T-Inp), in the same fashion as in rule (T-Rep), rather than using
graphs in (T-Par). In fact, this would rule out cyclic waiting such as the one in (5.2).
We shall pursue this approach in the system of Section 5.4, where there is no way of
defining a meaningful notion of dependency graph. However, in the present system,
a level-based way of dealing with cyclic waiting would be unnecessarily restrictive,
in particular, it would ban as ill-typed the usual encoding of recursive functions into
processes (see [7]).

Note that the premise P = P1| · · · |Pn, with P1, . . . , Pn prime, in rule (T-Par) calls
for a typing rule for structural congruence, but despite its presence the type system
may be viewed as essentially syntax driven, in the following sense. Given P in normal
form, P = (ν d̃)(P1| · · · |Pn), and ignoring structural equalities that just rearrange the
d̃ or the Pi’s, there is at most one rule one can apply with P in the conclusion. This
is made formal below.

We define a normal derivation of Γ; ∆ `1 S to be one where rule (T-Str) is applied
only where strictly necessary:
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(T-Out)
a, b ∈ ∆ a : TU b : T ∆ρ � {a, b} = ∅

∅;∆ `1 a〈b〉

(T-Nil) Γ = ∆ρ = ∅
Γ;∆ `1 0 (T-inp)

a : T[ρ,k] b : T a /∈ ∆ ∅;∆, b `1 P
a;∆ `1 a(b).P

(T-Str)
P ≡ R Γ;∆ `1 R

Γ;∆ `1 P
(T-Res)

a : TU Γ, a;∆, a `1 P
Γ;∆ `1 (ν a)P

(T-Res-

T

)
a :

T

Γ;∆ `1 P
Γ;∆ `1 (ν a)P (T-Res-i)

a : I Γ;∆, a `1 P
Γ;∆ `1 (ν a)P

(T-Rep)

a : T[ω,k] b : T ∆ρ = ∅ ∅ ;∆, b `1 P

( b responsive implies ∀c ∈ os(P ) : lev(c) < k )
a ;∆ `1!a(b).P

(T-Par)

P = P1| · · · |Pn (n > 1) ∀i : Pi is prime and Γi ; ∆i `1 Pi

∀i 6= j : Γρ
i ∩ Γρ

j = ∅ and ∆ρ
i ∩∆ρ

j = ∅ DG(Γρ
i ,∆

ρ
i )i=1,...,n is acyclic⋃

i=1,...,n

Γi ;
⋃

i=1,...,n

∆i `1 P

Table 5.6: Typing rules of `1

Definition 5.7 (normal derivation). A normal derivation of Γ;∆ `1 S is a deriva-
tion such that at each application of rule (T-Str) (Table 5.6) the process P in the
conclusion is not in normal-form, while the process R in the premise is in normal
form.

For each well typed process P there exists a normal derivation.

Lemma 5.2. Suppose Γ;∆ `1 P , then there exists a normal derivation of Γ;∆ `1 P .

5.3.4 Properties of type system `1

In this section we prove that processes well-typed in `1 are also responsive in the
sense of Definition 5.3. For the shake of completeness, omitted proofs are reported in
a separate appendix (Appendix A, Section A.1, A.2 and A.3).

Subject reduction states that well-typedness is preserved through reductions, and
it is our first step towards proving responsiveness.

Theorem 5.1 (subject reduction). Suppose Γ;∆ `1 P and P
[a]−→ P ′. Then

Γ � {a};∆ � {a} `1 P ′.

Our task is to prove that any balanced well-typed process guarantees responsive-
ness for all responsive names it contains. In the following definition we formally
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wt(0) = 0 wt((ν a)P ) = wt(P ) wt(P |R) = wt(P ) + wt(R)

wt(!a(b).P ) = 0 wt(a(b).P ) = wt(P ) wt(a〈b〉) = 0lev(a)

Table 5.7: wt(P )

identify balanced processes:

Definition 5.8 (balanced processes). A process P is (Γ;∆)-balanced if Γ;∆ `1 P ,
Γρ = ∆ρ and ∆ω ⊆ Γω. It is balanced if it is (Γ;∆)-balanced for some Γ and ∆.

We need two main ingredients for the proof. The first one is given by the following
proposition, stating that if the dependency graph of a process P is acyclic, then P

always offers at least one output action involving a responsive name.

Proposition 5.1. Suppose that Γ;∆ `1 P , with Γ, ∆ and P satisfying the conditions
in the premise of rule (T-Par) and Γρ = ∆ρ. Then for some j ∈ {1, . . . , n} we have
Pj = a〈b〉 with either a or b responsive.

Next, we need a measure of processes that is decreased by reductions involving
responsive names. We borrow from [64] the definition of weight of P , written wt(P ):
this is defined as a vector 〈wk, wk−1, . . . , w0〉, where k > 0 is the highest level of names
in os(P ), and wi is the number of occurrences in output subject position of names of
level i in P . A formal definition is given in Table 5.7. Here, “0k” is an abbreviation for
the vector 〈1, 0, . . . , 0〉 with k components “0” following “1”. The vector with just one
component that equals “0” is denoted by 0. Sum“+”between two vectors is performed
component-wise if they are of the same length; if not, the shorter one is first “padded”
by inserting on the left as many 0’s as needed.

The set of all vectors can be ordered lexicographically. Assuming two vectors are
of equal length (if not, the shorter vector is padded with 0’s on the left), we define
〈wk, . . . , w0〉 ≺ 〈w′

k, . . . , w
′
0〉 if there is i in 0, . . . , k such that wj = w′

j for all k > j > i

and wi < w′
i. This order is total and well-founded, that is, there are no infinite

descending chains of vectors. The next proposition states that the weight of a process
is decreased by reductions involving a responsive name, and leads us to Theorem 5.2,
which is the main result of the section.

Proposition 5.2. Suppose Γ;∆ `1 P and P
τ〈a,b〉−−−→ P ′, with either a or b responsive.

Then wt(P ′) ≺ wt(P ).

Theorem 5.2 (responsiveness). Let P be (Γ;∆)-balanced and r ∈ ∆ρ. Then P

guarantees responsiveness of r.
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Proof: Assume P
[s′]−−→ R, for any R, and r /∈ s′. We have to show that R

[r]
=⇒.

By contradiction, assume not. Let P ′ be a process with a minimal wt(·) satisfying

R
[s′′]−−→ P ′ for some s′′: this P ′ must exist by well-foundedness of ≺. Moreover,

r /∈ s′′. Let s = s′ ·s′′. By subject reduction we have that P ′ is (Γ′;∆′)-balanced, with
Γ′ = Γ � s and ∆′ = ∆ � s.

Consider now the normal form of the process P ′ (Lemma 5.5): P ′ ≡
(ν d̃)(P1| · · · |Pn), where every Pi is prime and it must be n > 1, as r occurs in both
input and output and by rule (T-Inp) an output r cannot occur under an input on r.
Assume, for simplicity, that d̃ does not contain inert names nor names of type

T

(in
both cases the proof proceeds similarly).

By Lemma 5.2, there exists a normal derivation of Γ′;∆′ `1 P ′. We prove that
Γ′, d̃;∆′, d̃ `1 P1| · · · |Pn, the proof proceeds by distinguishing two cases. Suppose P ′

is in normal-form (hence P ′ = (ν d̃)(P1| · · · |Pn)). Then, in the normal derivation,
Γ′;∆′ `1 P ′ is deduced from Γ′, d̃;∆′, d̃ `1 P1| · · · |Pn by repeated applications of
(T-Res). Suppose P ′ is not in normal-form. Then in the normal derivation the last
rule applied is (T-Str) with premise Γ′;∆′ `1 (ν d̃)(P1| · · · |Pn), which, in turn, has
been deduced from Γ′, d̃;∆′, d̃ `1 P1| · · · |Pn by repeated applications of (T-Res).

In the normal derivation, rule (T-Par) must have been applied to infer
Γ′, d̃;∆′, d̃ `1 P1| · · · |Pn, hence it must be: (Γ′, d̃) =

⋃
i=1,...,n Γi, and (∆′, d̃) =⋃

i=1,...,n ∆i, and Γi;∆i `1 Pi, where ∆ρ
i (resp. Γρ

i ) are pairwise disjoint and
DG(Γi

ρ,∆i
ρ)i=1,...,n is acyclic. Moreover, from balancing of Γ and ∆ and definition

of � we deduce balancing of Γ′ and ∆′, hence (∆′, d̃)
ρ

= (Γ′, d̃)
ρ
. By Proposition 5.1

there is a j such that Pj = a〈b〉 with a or b responsive name. By (T-Out) and
Γ′;∆′ `1 P ′ we have a ∈ ∆′, d̃. By (∆′, d̃)

ω
⊆ (Γ′, d̃)

ω
and receptiveness of responsive

and ω-receptive names ((T-Inp) and (T-Rep)), there is a k such that Pk = (!)a(x).P ′
k.

This implies P ′ τ〈a,b〉−−−→ P ′′, with wt(P ′′) ≺ wt(P ′), as either a or b is responsive (Propo-
sition 5.2). But this is a contradiction, because P ′ was assumed to be the process with

minimal weight satisfying R
[s′′]−−→ P ′. Hence R

[r]
=⇒. 2

Next, we establish an upper bound on the number of steps that are always sufficient
for a given responsive name to be used as subject. This upper bound can be given as
a function of the syntactic size of P , written |P |, and of name levels in P . A similar
result was given in [64] for terminating processes. Here, since we deal with processes
that in general may not terminate, the upper bound must be given relatively to a
notion of scheduling of transitions, that is introduced below.

Definition 5.9 (responsive scheduling). A responsive scheduling is a finite or
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infinite sequence of reductions P0
τ〈a1,b1〉−−−−−→ P1

τ〈a2,b2〉−−−−−→ · · · where the bound names in
{(ai, bi)|i > 1} are all distinct from the free names in P and for each i > 0, either ai

or bi is responsive.

The size of a process P , written |P |, is defined as

|0 |= 0 | a(x).P |= 1 + |P | | (ν c : T)P |= |P |

| a〈b〉 |= 1 | !a(x).P |= 1 + |P | |P |R |= |P |+ |R | .

Structural congruence preserves the size of a process:

Proposition 5.3. Suppose P ≡ R, then |P | = |R |.
Proof: The proof is straightforward by induction on the derivation of P ≡ R. 2

Theorem 5.3. Let P be (Γ;∆)-balanced and r ∈ ∆ρ and let k be the maximal level
of names appearing in active output actions of P . Then there is at least one respon-
sive scheduling that contains a reduction with r as subject. Moreover, in all such
schedulings, the number of reductions preceding the reduction on r is upper-bounded
by |P |k+1.

The proof relies on Theorem 5.2 (responsiveness), which ensures a communication
on r. The maximal number of communications that can precede the reduction on r

is evaluated by considering that each reduction can increase the number of outputs
– that is of potential reductions – in the continuation, but this increase is limited by
the initial size of the process (see Section A.3 for a detailed proof).

5.3.5 An extension: subtyping

The presence of responsive and ω-receptive names, and the presence of levels,
naturally induce a subtyping relation that we do not have yet introduced only for
presentation convenience. Intuitively, ω-names can be used in place of responsive
names, if their levels and carried type comply. Subtyping is contravariant on the type
of carried objects. This leads to defining < as the least reflexive and transitive relation
on types generated by the following rule:

(sub) T > S U < U′

TU < SU′ U < U′ holds in these cases:

 [ω, k] < [ · , k′] if k 6 k′

[ρ, k] < [ρ, k′] if k 6 k′ .

In the typing judgements, we have to abandon the sorting system, which does
not reconcile well with subtyping, and consider contexts Γ,∆ that explicitly associate
names with types. The rule for output is modified as expected. Intuitively, along
a channel of type TU we can always send something of type S < T, thus subtyping
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can be used for modifying rules in Table 5.6, and in particular for substituting rule
(T-Out) with the following:

∆ ` a : TU ∆ ` b : S S < T ∆ρ � {a, b} = ∅
∅;∆ `1 a〈b〉

.

5.3.6 Type system `1 vs Strong Normalization and Linear Liveness

Closely related to the system presented in this section are a series of papers by
Berger, Honda and Yoshida on linearity-based type systems. In [136], they introduce a
type system that guarantees termination and determinacy of pi-calculus processes, i.e.
Strong Normalization (sn). Our techniques of system `1 are actually close to theirs,
as far as the linearity conditions and cycle-detection graphs are concerned (see also
the type system in [134]). However sn is stronger than responsiveness, in particular
sn implies responsiveness on all linear names under a balancing condition. In fact, the
system in [136] is stricter than `1, e.g., it does not allow any form of nondeterminism
and divergence, as these features would obviously violate sn. Yoshida’s type system
in [135], in turn a refinement of the systems in [136] and [19], is meant to ensure a
Linear Liveness property, meaning that the considered process eventually prompts for
a free output at a given channel. This property is related to responsiveness, the differ-
ence being that Linear Liveness does not imply synchronization, as the corresponding
input might not become available. Two kinds of names are considered in [135]: linear
(used exactly once) and affine (used at most once). Linear subjects carrying linear
objects are forbidden and internal mobility is assumed: only restricted names can be
passed around.

5.4 The type system `2

The type system presented in Section 5.3 puts rather severe limitations on nesting
of input actions and multiple use of names. These limitations stem from the “immedi-
ate receptiveness”and linearity conditions imposed on responsive names. For instance,
the following encoding of internal choice r〈a〉 ⊕ r〈b〉, where r is responsive and a, b

inert, is not well-typed

(νc)(c〈a〉|c〈b〉 | c(x).r〈x〉) . (5.3)

In fact, c cannot be a ω-receptive name, because the input is not replicated, nor a
responsive name, because it is used twice in output.
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Limitations are also built-in in process syntax, as for example replicated outputs,
that clearly violate linearity, are absent. These might be useful to encode situations
like a process receiving from r a value y and storing it into a variable a, where reading
from a means doing an input on a:

(ν a)
(
r(x).!a〈x〉|a(y).P

)
. (5.4)

For another example, a process that receives two values in a fixed order from two
return channels, r1 and r2, and then outputs the max along s, is not well-typed

r1(x1).r2(x2).if x1 > x2 then s〈x1〉 else s〈x2〉 . (5.5)

In fact, the previous type system does not allow input actions guarded by other inputs.
We present below a new type system, which we indicate with `2, that overcomes

the limitations discussed above. In fact, we will trade off flexibility for expressiveness
in terms of encodable functions, as only certain patterns of (tail-)recursion will be
well-typed in the new system.

5.4.1 Syntax and operational semantics

We extend the syntax of processes by introducing replicated output and the syntax
of types by introducing a new responsive usage of names, ρ+, as follows:

P ::= · · · | !a〈b〉
U ::= · · · | [ρ+, k] .

A name a : T[ρ+,k] is called +-responsive, as it is meant to be used at least once
as subject of a communication. Therefore now we consider three different usages: ρ

(for names used once), ρ+ (for names used at least once) and ω (for names used an
undefined number of times). We point out that responsive names are not subsumed
by +-responsive: in particular, as we shall see, the conditions on the type of carried
objects are more liberal for responsive names. Operational semantics is enriched by
adding the obvious rule for replicated output.

5.4.2 Overview of the system

We give here an informal overview of the type system. Judgments are of the
form Γ; ∆ `2 P where in Γ and ∆ each +-responsive name a is annotated with a
capability t, written at. A capability t can be one of four kinds: n (null), s (simple),
m (multiple) and p (persistent). Informally, capabilities have the following meaning
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(in the examples below, we ignore object parts of some actions and assume b is a
(+-)responsive name):

• an indicates that a cannot be used at all. This capability has been introduced
to uniformly account for +-responsive names that disappear after being used as
subjects.

• as indicates that a appears at least once, but never under a replication nor as
subject of a replicated action. Examples: a.P , b.a.P , a and b.a.

• am indicates that a appears at least once, even under replication, but never as
subject of a replicated action. Examples: a.P |a.Q, !b.a.P and !b.a.

• ap indicates that a only appears as subject of a replicated action. Examples:
!a.P , !a, b.!a and !b.!a.

Note that a name a may be given distinct capabilities in input (Γ) and output (∆).
E.g. one may have, again ignoring the object parts, Γ; ∆ `2!a.P |a|a, where ap ∈ Γ
and am ∈ ∆. Next we illustrate and motivate the constraints on name usages realized
by the typing rules and by the balancing conditions discussed later on:

(1) Names with input capability s (simple) occur exactly once in input subject po-
sition. This constraint has been introduced for the sake of simplicity. Allowing
to use such names more than once in input requires to verify that the number
of inputs involving each name is smaller than the number of outputs. E.g. the
process (a and b +-responsive names)

a | a.b | a | b τ−→ a.b | b 6 τ−→ . (5.6)

has to be discarded, because a is used twice in input and only once in output.
(2) If am ∈ Γ then a can appear more than once in input subject position and it

is required that ap ∈ ∆. This is necessary to avoid deadlocks arising from not
having enough output actions of subject a, like in (5.6). This is avoided if a

appears in replicated output subject: a | a.b | !a | b.
(3) If at ∈ Γ and a carries (+-)responsive names, then t = p. This is to

avoid deadlocks arising from having too many outputs of subject a that carry
(+-)responsive names, like in (a +-responsive, b and d (+-)responsive names):

a〈b〉|a〈d〉|a(x).x|b|d τ−→ τ−→ a〈d〉|d .

(4) Concerning ap, we ban names persistent both in input and in output. This is a
necessary condition for avoiding divergences involving +-responsive names like
in (a +-responsive)

!a | !a(x).P .
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Moreover, names with capability p (persistent) are required to occur exactly
once in subject position (either in input or in output). This is necessary to
avoid deadlock situations due to nondeterminism like in (b and c +-responsive)

!a.b | !a.c | a | c | b τ−→!a.b | !a.c | b | c | b τ−→!a.b | !a.c | c 6 τ−→

where a communication on c would never happen. To preserve this conditions
at run-time, we have also to forbid

(i) replicated actions guarded by replicated inputs. E.g. it is necessary to avoid
situations like

!a.!b | a τ−→!a.!b | !b

where the rhs violates linearity of +-responsive names used as subjects of
replicated inputs;

(ii) persistent names passed around as objects (this for avoiding “collisions” of
capabilities).

(5) Names occurring under an (either simple or replicated) input must be of smaller
level than the input subject. The role of this condition is twofold, now. Under
replicated inputs, it avoids infinite delays, like in the first system. Under simple
inputs, it serves to avoid cyclic waiting, like in (a, b (+-)responsive):

a.b|b.a .

This was achieved by the use of dependency graphs in the first system. As
announced in Remark 5.2, however, there appears to be no meaningful extension
of this notion of graph in the present system. In particular, acyclicity of the
graph might not be preserved by reductions. E.g. consider the process

b(x).a〈x〉|c(x).a(y).x〈y〉|c〈b〉 .

Its graph is acyclic, but after a reduction on c the process become

b(x).a〈x〉|a(y).b〈y〉

and the corresponding dependency graph has a cycle involving a and b. As a
by-product of discarding the dependency graph, we achieve a simplification of
the typing rule for parallel composition. However, this rather crude use of levels
to ban cyclic waiting is also the cause of the reduced expressiveness in terms of
typable functions.
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Finally, we introduce a “syntactic” restriction. As +-responsive names used once
and more than once in output are treated in the same manner, we reserve capability
s for inputs, and use only m and p for outputs. This choice also alleviates some
technicalities in the proof of the subject reduction theorem.

5.4.3 The typing rules

We first introduce some additional notation. In what follows, we denote by is(P )
the set of either bound or free names used in input subject position in P . Contexts Γ
and ∆ are sets of annotated names of the form at, where t is a capability. Each name
occurs at most once in a context. +-responsive names are annotated with one of the
four capabilities n, s (only in Γ), m or p, while non-+-responsive names are always
annotated with a default “−” capability; when convenient a− is abbreviated simply as
a. Union and intersection of two contexts, written Γ1 ∪ Γ2 and Γ1 ∩ Γ2, are defined
only if the contexts agree on capabilities of common names, that is whenever ati ∈ Γi

for i = 1, 2 then t1 = t2. We write Γ1,Γ2 in place of Γ1∪Γ2 if Γ1∩Γ2 = ∅; while Γ1, a
t

abbreviates Γ1, {at}. For any context Γ and capability t, we define Γt 4
= {a|at ∈ Γ}.

The set of names Γρ+ 4
= { a | a is +-responsive and at ∈ Γ for some t 6= n } and Γρ, Γω

(defined similarly) will also be useful. The typing rules are presented in Table 5.8. We
briefly comment on the rules by considering the five points discussed above in turn.

(1) is ensured in (T+-Par) by checking the disjointness of Γs
1 and Γs

2 and in
(T+-Inp), because a /∈ Γ;

(2) is ensured in (T+-Par) by Γm ∩∆m = ∅. Note that a simpler constraint would
be to require Γm ⊆ ∆p, but, subject reduction at the labeled transition system
level (which is necessary for proving subject reduction) would be violated by the
process below

!a.b
a−→!a.b | b

where rule (T+-Par) would require b to be used as subject of a persistent output
in the rhs;

(3) is ensured in (T+-Inp) by checking that +-responsive names used as subject of
non-replicated inputs cannot carry (+-)responsive objects;

(4) all rules for input ensure that received names cannot be used as subjects of
replicated outputs (by checking the capability of the received objects); moreover,
(T+-Rep) and (T+-Repp) ensure that inputs on persistent names cannot be
guarded by replicated inputs (by checking Γp = ∅). Rules for outputs check
that persistent names cannot be passed around. Finally, (T+-Par) verifies the
linear usage of persistent names in input and output subject (by checking the
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disjointness of Γ1
p and Γ2

p and of ∆1
p and ∆2

p) and bans the usage of names
with persistent capability both in input and output (by checking the disjointness
of Γp and ∆p);

(5) is ensured by rules (T+-Inp), (T+-Rep) and (T+-Repp) by comparing the
levels of the input prefix against the levels of each nested inputs and outputs.

Finally, linear usage of responsive names is ensured by the typing rules for replicated
inputs by checking the emptiness of ∆ρ and Γρ, by rule (T+-Par), by checking Γ1

ρ ∩
Γ2

ρ = ∆ρ
1 ∩∆ρ

2 = ∅, and by (T+-Inp) (a /∈ Γ).

5.4.4 Properties of type system `2

Subject reduction carries over to the new system, modulo a small notational
change. For Γ a typing context and V a set of names let us denote by Γ �+ V

the typing context obtained by removing from Γ each at such that a ∈ V . Let us
denote by on(P ) the set of names occurring free in output, subject or object, position
in P .

Theorem 5.4 (subject reduction for system `2). Γ;∆ `2 P and P
[a]−→ P ′ imply

Γ′;∆′ `2 P ′, with Γ′ = Γ �+ ({a} \ in(P ′)) and ∆′ = ∆ �+ ({a} \ on(P ′)).

The analogous of Proposition 5.1 and 5.2 for system `2 holds (formal proofs can
be found in Section A.4). In what follows we consider the extension of wt(·) to the
system `2, written wt+(·), defined in Table 5.9.

Proposition 5.4. Suppose P is (Γ;∆)-strongly balanced with ∆ρ ∪ Γρ+ 6= ∅. Then

P
τ〈a,b〉−−−→ with either a or b (+-)responsive name.

Proposition 5.5. Γ;∆ `2 P and P
τ〈a,b〉−−−→ P ′ with either a or b (+-)responsive,

implies wt+(P ′) ≺ wt+(P ).

The balancing requirements are now more stringent. They include those for re-
sponsive and ω-receptive names necessary in the first system (condition 1 below).
Concerning +-responsive names, “perfect balancing” between input and output is re-
quired only for those names that carry (+-)responsive names (condition 2). Moreover,
the same requirements apply also to restricted +-responsive names (condition 3).

In the following, we need some additional notations. Given a set of names V let
us define V † = {a ∈ V | a : T and T is of the form (S[u,k])[u

′,h] with u ∈ {ρ, ρ+} }.
Define r+i (P ) (resp. r+o (P )) as the set of restricted +-responsive names in P occurring
in an input (resp. output) action in P , even underneath a replication. We have the
following definition and results.
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(T+-Inp)

a : T[u,k] with u 6= ω b : T ∀c ∈ os(P ) ∪ is(P ) : lev(c) < k

Γω = ∅ a +-responsive implies b not (+-)responsive

Γ;∆, bt′ `2 P t 6= n, p t′ 6= n, p

Γ, at;∆ `2 a(b).P

(T+-Rep)

a : T[ω,k] b : T ∆ρ = ∆ρ+
= ∅ ∅;∆, bt′ `2 P t′ 6= n, p

b (+-)responsive implies ∀c ∈ os(P ) ∪ is(P ) : lev(c) < k

a−;∆ `2!a(b).P

(T+-Repp)

a : T[ρ+,k] b : T Γ` = ∅ for ` ∈ {ρ, ω, s, p} ∆`′
= ∅ for `′ ∈ {p, ρ}

Γ;∆, bt `2 P t 6= n, p ∀c ∈ os(P ) ∪ is(P ) : lev(c) < k

Γ, ap;∆ `2!a(b).P

(T+-Out)
a : TU b : T ∆ρ = ∆ρ+

= ∅ t′ 6= n, p t 6= n, p

∅;∆, at, bt′ `2 a〈b〉

(T+-Outp)
a : T[ρ+,k] b : T ∆ρ = ∆ρ+

= ∅ b not (+-)responsive
∅;∆, ap, b− `2!a〈b〉

(T+-Nil) ∆ρ = ∆ρ+
= ∅

∅;∆ `2 0 (T+-Res)
a : TU Γ, at;∆, at′ `2 P

Γ;∆ `2 (ν a)P

(T+-Res-
T

)
a :

T
Γ;∆ `2 P

Γ;∆ `2 (ν a)P (T+-Res-I) a : I Γ;∆, a− `2 P
Γ;∆ `2 (ν a)P

(T+-Weak-Γ)
Γ;∆ `2 P

Γ, an;∆ `2 P
(T+-Weak-∆)

Γ;∆ `2 P
Γ;∆, an `2 P

(T+-Par)

Γ = Γ1 ∪ Γ2 ∆ = ∆1 ∪∆2 Γi;∆i `2 Pi (i = 1, 2)

Γ`
1 ∩ Γ`

2 = ∅ for ` ∈ {ρ, s, p} ∆`′

1 ∩∆`′

2 = ∅ for `′ ∈ {ρ, p}
Γp ∩∆p = ∅ Γm ∩∆m = ∅

Γ ;∆ `2 P1|P2

Table 5.8: Typing rules of `2.

Definition 5.10 (strongly balanced processes). A process P is (Γ;∆)-strongly
balanced if Γ;∆ `2 P and the following conditions hold:

(1) Γρ = ∆ρ and ∆ω ⊆ Γω;
(2) Γρ+ ⊆ ∆ρ+

and (∆ρ+
)
† ⊆ (Γρ+

)
†
;

(3) r+i (P ) ⊆ r+o (P ) and (r+o (P ))† ⊆ (r+i (P ))†.
P is said strongly balanced if it is (Γ;∆)-strongly balanced for some Γ and ∆.
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wt+(0) = 0 wt+(!a〈b〉) = 0 wt+(!a(b).P ) = 0

wt+(a〈b〉) = 0lev(a) wt+(P |R) = wt+(P ) + wt+(R)

wt+((νa)P ) = wt+(P ) wt+(a(b).P ) = wt+(P ) + 0lev(a)

Table 5.9: wt+(P )

The proof of the following theorem is non-trivial, as strong balancing is preserved
through reductions only up to certain transformations on processes. The lemma below
ensures that such transformations re-establish strong balancing.

Lemma 5.3. Suppose P (Γ;∆)-strongly balanced and P
τ〈a,b〉−−−→ P ′ with P ′ non strongly

balanced. Let be Γ′;∆′ `2 P ′. Then
(1) a ∈ (Γ′ρ+

\∆′ρ+

) ∪ (r+i (P ′) \ r+o (P ′));
(2) P ≡ (ν d̃)(!a(x).R |R′) and a /∈ in(R,R′);
(3) P ′ ≡ (ν d̃)(!a(x).R |R[b/x] |R′′) and a /∈ in(R,R′′, R[b/x]);
(4) P ′′ = (ν d̃)(R[b/x] |R′′) is strongly balanced.

Theorem 5.5 (responsiveness for system `2). Suppose P is (Γ;∆)-strongly bal-
anced and r ∈ ∆ρ ∪ Γρ+

. Then P guarantees responsiveness of r.

Proof: Suppose that P
[s]−→ P ′, with P ′ having a minimal weight among processes

reachable from P with r /∈ s (this P ′ must exist by well-foundedness of ≺). Let
s = a1 · · · an, and consider the sequence of reductions leading to P ′:

P = P0
[a1]−−→ P1

[a2]−−→ · · · [an]−−→ Pn = P ′ (5.7)

By Γ;∆ `2 P and subject reduction we have that Γi;∆i `2 Pi for i = 0, ..., n, where
Γ0 = Γ and ∆0 = ∆ and Γi = Γi−1 �+ ({ai}\ in(Pi)) and ∆i = ∆i−1 �+ ({ai}\on(Pi))

for i > 0. We prove that P ′ [r]
=⇒ by induction on the number k of non-strongly balanced

processes in the sequence of reductions (5.7), that is

k =
∣∣{i | 0 6 i 6 n and Pi is not (Γi,∆i)-strongly balanced }

∣∣.
k = 0: Then P ′ is strongly balanced. Since r ∈ (∆n

ρ ∪ Γn
ρ+

) (as r /∈ s), by Proposi-

tion 5.4, P ′ τ〈a,b〉−−−→ P ′′, with either a or b (+-)responsive, and, by Proposition 5.5,
wt+(P ′′) ≺ wt+(P ′). Hence a = r, because P ′ was assumed to have minimal
weight among the processes reachable from P without using r as subject.

k > 0: Let Pj (j > 0) be the leftmost non-strongly balanced process in the se-

quence (5.7). Consider the reduction Pj−1
[aj ]−−→ Pj . Process Pj−1 is strongly

balanced while Pj is not, thus, by Lemma 5.3 (1, 2), aj ∈ (Γj
ρ+ \ ∆j

ρ+
) ∪
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(r+i (Pj) \ r+o (Pj)) and Pj−1 ≡ (ν d̃)(!aj(x).R |S), with aj /∈ in(R,S). Again
by Lemma 5.3 (3), Pj ≡ (ν d̃)(!aj(x).R |R[c/x] |S′) with aj /∈ in(R,R[c/x], S′).
Moreover P ′ ≡ (ν d̃′)(!aj(x).R |P ′′′) with aj /∈ in(P ′′′). Now, the process
P ′

j = (ν d̃)(R[c/x] |S′), obtained by erasing the term !aj(x).R from Pj , is strongly

balanced (Lemma 5.3 (4)), and it holds P ′
j

[aj+1]
−−−→ · · · [an]−−→ P ′

n = P ′′, with
P ′′ ≡ (ν d̃′) P ′′′. This sequence has 6 k − 1 unbalanced processes, and more-
over P ′′ has minimal weight among the processes reachable from P ′

j without
using r as subject because wt+(P ′′) = wt+(P ′) (by definition of wt+(·) we have
wt+((ν d̃′)(!aj(x).R |P ′′′)) = wt+((ν d̃′)P ′′′)). Then, by inductive hypothesis,

P ′′ [r]
=⇒, which implies P ′ [r]

=⇒.

2

Example 5.4.1. Let us now examine a few examples. In what follows, unless oth-
erwise stated we assume that x, y are of type inert, that a, b, c are +-responsive and
that r, s are responsive. Conditions on levels are ignored when obvious.

Process (5.3) at the beginning of the section is well-typed with c of capability
multiple in output and simple in input; it is strongly balanced if put in parallel with
an appropriate context of the form r(x).P . Process (5.4) is well-typed with a of
capability persistent in output and simple in input (also, P must be assumed strongly
balanced, and not containing free persistent inputs or names of level greater than a’s);
it is strongly balanced if put in parallel with r〈x〉. Process (5.5) is well-typed assuming
r1 and r2 of capability simple in input and x1, x2 natural number variables (the obvious
extension of the system with if − then− else and naturals is here assumed); again,
it is strongly balanced if put in parallel with an appropriate context.

The next two examples involve non-linear usages of +-responsive names arising
from replication and reference passing. We mention these examples also because they
will help us to compare our system to existing type systems (see § 5.4.5 below). The
first example involves only replication, object parts play no role:

!a.b | a | b . (5.8)

The above process is strongly balanced under the assumption that a has capability
persistent in input and multiple in output, and b has capability simple in input and
multiple in output; also, the level of b must be less than a’s. In the next example,
an agent “looks up” a directory a to get the address of a service b, and then calls this
service:

!a(z).z〈b〉 | (ν r)(a〈r〉 | r(w).w) | b . (5.9)
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This process is strongly balanced under the assumption that: a is persistent in input
and multiple in output; b is simple in input and multiple in output; also, it must
be lev(b) < lev(r) < lev(a). The variant where b is replaced by !b is also strongly
balanced; in this case b is persistent in input.

5.4.5 Type system `2 vs Lock-Freedom

There is a series of works by Kobayashi where type systems for livelock and dead-
lock freedom are proposed [95, 96, 97]. In [95, 96] the proposed systems guarantee
that, under suitable fairness assumptions, certain actions are lock-free, i.e. are deemed
to succeed in synchronization, if they become available. The system in [97] is a fur-
ther refinement, but the resulting system cannot be used to ensure some interesting
properties like termination of processes or ensuring some kind of communications will
eventually succeed no matter whether the process diverges.

The systems in [95, 96] can be used for ensuring responsive usage of responsive
names but they do not always work for +-responsive ones. Let’s rapidly introduce
the systems and discuss their limits. In Kobayashi’s works channel types are defined
in terms of usages: roughly, ccs-like expressions on the alphabet {I, O}, that define
the order in which each channel must be used in input (I) and in output (O). Each
I/O action is annotated with an obligation level, related to when the action must
become available, and a capability level, related to when the action must succeed in
synchronization if it becomes available. A level can be a natural number or infinity,
the latter used to annotate actions that are not guaranteed either to become available
(infinite obligation) or to succeed in synchronization (infinite capability). This scheme
is fairly general, allowing e.g. for typing of shared-memory structures such as locks
and semaphores, which are outside the scope of our systems. Our responsive types can
be encoded into lock-freedom types as Io1

c1 |O
o2
c2 , with finite obligation and capability

levels (resp. oi and ci for i = 1, 2). The parallel composition I |O ensures a linear
usage. On the other hand, it appears that our +-responsive types cannot, in general,
be encoded into lock-freedom types. More precisely, one can exhibit processes well-
typed in our system two and containing +-responsive names that cannot be assigned
a finite capability in Kobayashi’s systems. For example, both the process (5.8) and
the “service-lookup” (5.9) are well-typed (in fact, strongly balanced) in our system
two, under a typing context where b is +-responsive. They are not in the systems
of [95, 96], under any type context that assigns to b a finite capability. The reason is
that, in [95, 96], a finite-capability input on b is required to be balanced by an instance
of a finite-obligation output on b. But this instance cannot be statically determined
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in the given processes because of the replicated input on a. In the latest version of
Kobayashi’s TyPiCal tool [98], released after the publication of [7], processes of this
form can however be handled.

Another difference from [95, 96] is that these systems partly rely on a form of
dynamic analysis which is performed on types: the reliability condition on usages,
which roughly plays the same role played in our systems by balancing, is checked via a
reduction to the reachability problem for Petri nets. As previously remarked, our sys-
tems are entirely static. Moreover, in [95, 96] services where the number of reductions
before synchronization depends on the argument that is passed (e.g. the encoding of
recursive functions) are not easily dealt with, unless extensions with dependent types
are considered (see [95]).

5.5 Encoding the Structured Orchestration Language

orc [59] is one of the recent proposed languages for ws orchestration that sup-
ports a structured model of concurrent and distributed programming. This model
assumes that basic services, like sequential computation and data manipulation, are
implemented by primitive sites, and provides constructs to orchestrate the concurrent
invocation of sites to achieve a given goal. In this section we briefly introduce orc

and show that it can be encoded into π-calculus processes well-typed in system `2.

5.5.1 orc: syntax and operational semantics

For the sake of simplicity, we consider a monadic version of this calculus, and we
suppose that inert names, c, c′, . . . , are the only data values that can be exchanged
among orc services. We also consider a countable set of variables x, y, . . . .

orc terms, ranged over f, g, . . . , are defined by the grammar in Table 5.10.
In the table, M is a site name, p is a parameter (either a variable x or a name

c) and for every expression name E there exists a declaration E(x)
4
= f , where x is

the formal parameter and fv(f) ⊆ {x}. The primitives can be informally explained
as follows. Each closed expression publishes (returns) a (finite or infinite) sequence
of zero or more values. A site call M(c) always publishes a predefined value FM (c).
An expression call E(c) publishes the values returned by f [c/x] if E(x)

4
= f . The

expression let(c) publishes the value c. In f > x > g, the execution of f is started,
and every value c published by f triggers a new instance of g, g[c/x]; the sequence
of values produced by all these instances of g running in parallel is published. In
f |g a sequence obtained by interleaving values produced by f and g is published. In
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Parameter p ::= x Variable∣∣ c Value

Term f, g ::= 0 Inaction∣∣ M(p) Site call∣∣ E(p) Expression call∣∣ let(p) Publication∣∣ f > x > g Sequential composition∣∣ f |g Symmetric parallel composition∣∣ g where x :∈ f Asymmetric parallel composition

Table 5.10: orc’s syntax.

(pub)
let(c)

!c
↪→ 0

(site)
M(c)

τ
↪→ let(FM (c))

(par1)
f

λ
↪→ f ′

f | g λ
↪→ f ′ | g

(par2)
g

λ
↪→ g′

f | g λ
↪→ f | g′

(seq1)
f

λ
↪→ f ′ λ 6=!c

f > x > g
λ
↪→ f ′ > x > g

(seq2)
f

!c
↪→ f ′

f > x > g
τ
↪→ (f ′ > x > g) | g[c/x]

(wh1)
f

λ
↪→ f ′ λ 6=!c

g where x :∈ f
λ
↪→ g where x :∈ f ′

(wh2)
f

!c
↪→ f ′

g where x :∈ f
τ
↪→ g[c/x]

(wh3)
g

λ
↪→ g′

g where x :∈ f
λ
↪→ g′ where x :∈ f

(def)
E(x)

4
= f

E(p)
τ
↪→ f [p/x]

where in (site) FM (c) is any function on data values.

Table 5.11: orc operational semantics.

g where x :∈ f the values produced by g are published; however, the execution of
f and g is started in parallel, and each subterm of g that depends on x is blocked
until f produces the first value c, which causes x to be replaced by c; subsequent
values published by f are discarded. The operational semantics is formally defined
in Table 5.11. Labels, λ, λ′, range over publications, !c, and synchronizations, τ . For
simplicity, we assume that a site M receives anything, then publishes a predefined
value FM (c) and returns. We write f

!c=⇒ if f
τ

↪→∗ !c
↪→, that is if f publishes the value

c possibly after some internal reductions.
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[[let(x)]]s = x(y).s〈y〉 [[let(c)]]s = s〈c〉
[[E(x)]]s = x(y).E〈y, s〉 [[E(c)]]s = E〈c, s〉
[[M(x)]]s = x(y).[[M(y)]]s [[M(c)]]s = (νr)(M〈c, r〉 | r(y).s〈y〉)

[[f | g]]s = [[f ]]s | [[g]]s [[f > x > g]]s = (νt)
(
[[f ]]t | !t(y).(νx)(!x〈y〉 | [[g]]s)

)
[[g where x :∈ f ]]s = (νr)

(
[[f ]]r | (νx)(r(y).!x〈y〉 | [[g]]s)

)
Table 5.12: Encoding of the orc language.

5.5.2 Encoding

orc terms are translated into π-calculus by the function [[·]]s defined in Table 5.12;

s is used here as a result channel. Encoding of a declaration E(x)
4
= f is given by

!E(x, s).[[f ]]s. The encoding of the site M is !M(x, s).s〈FM (c)〉. The encodings of
let(p), E(p) and M(p) for p = c correspond to outputting c on the result channel s

and invoking expression E and site M with parameters c and s, respectively. When
p = x, it is first necessary to retrieve the content of variable x (by reading on it) before
proceeding by either outputting, calling E or calling M . The encoding of the parallel
composition of two terms, corresponds to the parallel composition of both encodings.
The remaining two cases are more interesting. In [[f > x > g]]s the execution of
[[f ]]t is started and each published value is sent on t. For each of these values a new
copy of [[g]]s is started with a new “local variable” x containing such a value. Similar
comments for [[g where x :∈ f ]]s, but in this case the executions of f and g are
started in parallel, and only the first value published by f is considered (thanks to
the non-replicated input on r). Note that after the first publication f ’s execution is
not stopped, but it does not interfere with the execution of g because the name r is
no longer available.

The encoded terms are well typed under the typing assumptions in Table 5.13.
Levels are left unspecified, but suitable values for them can be easily inferred by
inspection.

The following result can be used for reasoning about responsiveness of orc ex-
pressions; the proof is reported in Section A.5. In what follows, given an orc term f ,
Df stands for the parallel composition of the encodings of all declarations and sites
involved in the definition of f , and d̃ = fn(Df ).

Proposition 5.6. Let f be a closed orc term and suppose Df is well typed. Under the

typing assumptions of Table 5.13, [[f ]]s is well-typed and F
4
= (νd̃)([[f ]]s |Df | !s(x).0),

with s and d̃ +-responsive, is strongly balanced. Moreover, f
!c=⇒ if and only if F

τ〈s,c〉
===⇒.
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Name c, y x s r t E M

Type I I[ρ
+,kx] I[ρ

+,h] I[ρ
+,h′] I[ρ

+,h′] (I, I[ρ
+,h])[ρ

+,kE ] (I, I[ρ
+,h′])[ρ

+,kM ]

I-Cap. m s or p s p p p

O-Cap. − p m m m m m

with: kx > h, kE , kM , and kE > h, and kM > h, h′ and h′ > h, kx

Table 5.13: Typing assumptions.

Example 5.5.1. We show how to encode an orc orchestration pattern into a well-
typed π-calculus process. Consider two sites, CNN and BBC , and suppose that, when
invoked, they reply by publishing a news-page. Consider also a site Mail(m, a), which
receives a message m and an e-mail address a, and notifies (publishes an uninteresting
value) after sending m to a. The orc function below emails n times the first news-
page received from CNN or BBC to address a, and publishes the current value of n

after every sending and upon termination:

MailNews(n, a)
4
= if n = 0 then let(n)

else (Mail(t, a) >> let(n))where t :∈ (CNN |BBC )

| MailNews(n− 1, a) .

Consider the extension of the calculus with natural values, Nat, polyadic communica-
tion and an if − then− else construct. Suppose the encodings of sites CNN , BBC and
Mail are, respectively, !CNN (x).x〈N〉, !BBC (x).x〈N ′〉 and !Mail(x, a, r).(a〈x〉 | r),
where N and N ′ represent pieces of news. The function MailNews can be encoded as
follows:

MN
4
= !Mn(n, a, s). if n = 0 then s〈n〉

else

(
(νr)

(
CNN 〈r〉 | BBC 〈r〉 | (νt)

(
r(y).!t〈y〉 | (νr′)(t(x).Mail〈x, a, r′〉

| !r′(x) .s〈n〉)
))
|MN 〈n− 1, a, s〉

)
where the received channel s is used for publishing values. Consider an ordering
relation“<”between (possibly open) integer expressions, e, and variables, x, as follows:
e < x if for each evaluation ρ under which e is defined, eρ < ρ(x). E.g., x − 1 < x.
We define the “/” relation over actions defined as follows: c〈d〉/a(d′) if either lev(c) <

lev(a) or lev(c) = lev(a) and d = e < x = d′, where d, d′ denote either names or (open)
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expressions. The type system `2 can be easily extended by considering “/”, in place
of “<”, in rules (T+-Inp), (T+-Rep) and (T+-Repp), and the obvious extensions of
Theorem 5.4 and 5.5 can be easily proved. MN is well-typed supposing s, r, r′ and t +-
responsive, lev(Mn) > lev(CNN ), lev(Mn) > lev(BBC ) and lev(CNN ), lev(BBC ) >

lev(r) > lev(t) > lev(Mail) > lev(r′) > lev(s).

Example 5.5.2. We show now that some orc terms are not encodable into well-
typed processes. Consider the term f = Inc(0), where the expression Inc is recursively
defined as Inc(x)

4
= Succ(x) > y > Inc(y) and Succ is the successor function Succ(x)

4
=

x + 1. The term F below is not well-typed.

F
4
= (ν Succ, Inc)([[f ]]s | !s(x).0 |Df )

[[f ]]s
4
= Inc〈0, s〉

Df
4
= !Succ(y, s).s〈y + 1〉

| !Inc(x, r).(ν s)
(
Succ〈x, s〉 | !s(y).(ν w)(!w〈y〉 |w(z).Inc〈z, r〉)

)
In fact, !Inc(x, r).(ν s)

(
Succ〈x, s〉 | !s(y).(ν w)(!w〈y〉 |w(z).Inc〈z, r〉)

)
is not well-typed

(Inc〈z, r〉 6/ Inc(x, r)) and the premise of Proposition 5.6 is not satisfied.

5.6 Conclusions

We have presented two type systems each of which is used for statically enforcing
responsive usage of names in π-calculus processes. The first system combines tech-
niques for linearity, receptiveness and deadlock and livelock-freeness. The resulting
system allows one to guarantee responsiveness and to give an upper bound on the
number of reductions preceding a responsive one. The usual encoding of primitive
recursive functions into π-calculus processes (see e.g., [64]) is well typed in this sys-
tem [7]. In the second system, receptiveness and linearity are relaxed at the price
of stronger requirements on levels and balancing. We lose some expressive power in
terms of encodable functions. Only tail-recursive functions are encodable into well-
typed processes, but we are able to type interesting processes, such as translation of
orc terms. This means that, by supposing all sites always respond, we can use the
type system `2 for checking if choreographies defined by using the orc language de-
scribe the behavior of responsive services. Both proposals are syntax driven, so that
type checking should be straightforward and efficient to implement.

In Section 5.3.5, we have sketched how to deal with subtyping in the first system,
but we do not have pursued this direction because it would require heavy annota-
tions on contexts. On the other side, the definition of a suitable subtyping relation
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for the second system deserve further investigation, mainly due to the presence of
+-responsive names and capability annotations. Similarly, the definition of an infer-
ence system requires additional care due to the presence of levels and annotations.
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Chapter

SIX

Atccs: A concurrent calculus with atomic transactions

In this chapter, we depart from the main topic of the thesis to look into another
kind of functional properties of ws. While in the previous chapters we mainly looked
at static properties by using “static tools”, like type systems, here we concentrate on
error recovery aspects and use “dynamic tools”, like behavioral equivalences. In partic-
ular, we study the Software Transactional Memory ( stm) model, an original approach
for controlling accesses to shared resources in concurrent applications, from a process
algebra perspective. We define Atccs: an extension of asynchronous ccs with atomic
blocks of actions. We show that the addition of atomic transactions results in a very
expressive calculus, enough to easily encode other concurrent primitives such as (pre-
emptive versions of) guarded choice and multiset-synchronization à la join-calculus.
The correctness of the encodings is proved using a suitable notion of bisimulation equiv-
alence. The equivalence is then applied to prove interesting “laws of transactions” and
to obtain a simple normal form for atomic blocks. Finally, we propose a may-testing
semantics for Atccs and prove that it is not appropriate for reasoning on atomic
processes.

6.1 Introduction

When studying and designing distributed and concurrent systems, it is necessary
to tackle the problem of failures. Typical problems of these systems arise from the
presence of a shared memory. A memory access control is needed for avoiding that
unwarranted accesses would give rise to inconsistent states and compromise future
computations. This kinds of problems have been already studied for a long time –
e.g., in the databases setting – and transactions have been introduced for coping with
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them. In the specific case of soa and ws the problem is not only to deal with a shared
memory, but also with“shared services”. Shared services in the sense that the required
service may involve more than one service and more than one ws and the failure of
at least one of them would cause a global failure. As an example, consider a trip
booking service that, when invoked, tries to book both flight and hotel by invoking
two other suitable services. If one of the two services fails, it is necessary to cancel the
reservation made by the other (undo its actions): this for guaranteeing a consistent
global state.

The ws-Transaction specification [91] defines mechanisms for transactional
interoperability between ws and provide a means to compose transactional qualities
of service into ws applications. It identifies two types of transactions: ws-atomic
transactions and ws-business activities. The first class identifies short-lived and dis-
tributed activities characterized by the all-or-nothing semantics, which is guaranteed
by using well-known commit protocols, like the two-phase commit. In this case the
acid properties of transactions, in their databases’ sense, are guaranteed. In the case
of (long-lived) business activities each “transactive” block of actions is associated with
a program, called compensation, that has to be run if a failure is detected. Its goal is
undoing the visible actions that may have been performed – in pretty much the same
way that exception handling in programming languages – and restoring a consistent
state. In the case of compensating transactions, atomicity, isolation and durability are
obviously violated. Both types of transaction specifications are useful for coordinating
the transactional behavior of (distributed) services and the (distributed) recovery
of errors. But in both cases nothing is said about local computation. In general,
the usage of local transactional mechanisms, such as locks, is assumed for ensuring
correct local execution of transactions.

In this chapter we focus on the local aspect of transactions and investigate the opti-
mistic approach found in Software Transactional Memory (stm) [84]. The stm model
is an original approach for controlling concurrent accesses to resources without using
explicit lock-based synchronization mechanisms. Similarly to database transactions,
the stm model provides a way to group sequences of read and write actions inside
atomic blocks whose whole effect should occur atomically. This model has several
advantages. Most notably, it dispenses the programmer from the need to explicitly
manipulate locks, a task widely recognized as difficult and error-prone. Moreover,
atomic transactions provide a clean conceptual basis for concurrency control, which
should ease the verification of concurrent programs. Finally, the model is effective:
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there exist several stm implementations for designing software for multiprocessor sys-
tems; these applications exhibit good performances in practice compared to equivalent,
hand-crafted, code using locks.

We study the stm model from a process algebra perspective and define an extension
of asynchronous ccs with atomic blocks of actions. We call this calculus Atccs. The
choice of a dialect of ccs is motivated by an attention to economy: to focus on stm

primitives, we study a calculus as simple as possible and dispense with orthogonal
issues such as values, mobility of names or processes, etc. We believe that our work
could be easily transferred to a richer setting. Our goal is not only to set a formal
ground for reasoning on stm implementations but also to understand how this model
fits with other concurrency control mechanisms. We also view this calculus as a testbed
for extending process calculi with atomic transactions.

The idea of providing hardware support for software transactions originated from
works by Herlihy and Moss [84] and was later extended by Shavit and Touitou [127] to
software-only transactional memory. Transactions are used to protect the execution
of an atomic block. Intuitively, each thread that enters a transaction takes a snapshot
of the shared memory (the global state). The evaluation is optimistic and all actions
are performed on a copy of the memory (the local state). When the transaction
ends, the snapshot is compared with the current state of the memory. There are two
possible outcomes: if the check indicates that concurrent writes have occurred, the
transaction aborts and is rescheduled; otherwise, the transaction is committed and its
effects are propagated instantaneously. Very recently, Harris et al. [81] have proposed
a (combinator style) language of transactions that enables arbitrary atomic operations
to be composed into larger atomic expressions. We base the syntax of Atccs on the
operators defined in [81].

We show that the addition of atomic transactions results in a very expressive calcu-
lus, enough to easily encode other concurrent primitives such as (preemptive versions
of) guarded choice and multiset-synchronization à la join-calculus (Section 6.2). The
correctness of our encodings is proved using a suitable notion of asynchronous bisim-
ulation equivalence that allows compositional reasoning on transactions and is shown
to be a congruence (Section 6.3). The equivalence is applied to prove interesting “laws
of transactions” and to obtain a simple normal form for atomic blocks. We also use
our transactions to give straightforward solutions to two celebrated examples of con-
current problems: the leader election and dining philosophers problems. Finally, in
Section 6.4 we show that a may-testing equivalence is not strong enough when ones
want to verify interesting properties of processes – such as atomicity in our case.
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The proofs of the main results of this chapter are reported in Appendix B.

Related works Transactions, failures and atomicity have been studied for a long
time and there are a lot of works treating such matters in different ways.

We can list several works that combine acid transactions with process calculi.
Gorrieri et al [79] have modeled concurrent systems with atomic behaviors using an
extension of ccs. They use a two-level transition system (a high and a low level) where
high actions are decomposed into atomic sequences of low actions. To enforce isola-
tion, atomic sequences must go into a special invisible state during all their execution.
Contrary to our model, this work does not follow an optimistic approach: transactions
are executed sequentially, without interleaving with other actions, as though in a criti-
cal section. Another related calculus is rccs, a reversible version of ccs [61, 62] based
on an earlier notion of process calculus with backtracking [20]. In rccs, each process
has access to a log of its synchronization’s history and may always wind back to a
previous state. This calculus guarantees the acd properties of transactions (isolation
is meaningless since rccs do not use a shared memory model). A similar approach is
followed in [57], where two extensions of the π-calculus are proposed: the pik-calculus
and the pike-calculus. Both calculi incorporate various abstractions for fault tolerance,
from which several forms of distributed transactions and distributed computation can
be built. Each transactional block is provided with a log that is used when rollback is
needed. Moreover, each transaction can access – in read-only fashion – to any other
logs. A relation of causality among logs, hence among transactions, is used for deal-
ing with commits and aborts. In some works, serializability is used as a criterion to
evaluate the correctness of transaction semantics. Busi and Zavattaro [41] introduce
the semantics of JavaSpaces by following a pessimistic approach. Locks are acquired
when entries are accessed, preventing other transactions from using these values until
the owning transaction commits. This pessimistic approach has two notable disad-
vantages: deadlock and scalability. In [93], a transactional semantics – based on an
optimistic concurrency model – for a transactional variant of Linda [40] is defined.
Nested and multithreaded transactions are allowed and a log-based approach is fol-
lowed for guaranteeing serializabilty of sequences of actions. A similar approach is
followed in [131], where a framework for specifying the semantics of nested and multi-
threaded transactions in an object calculus is given. The framework is parametrized
by the definition of a transactional mechanism and allows the study of multiple mod-
els, such as the usual lock-based approach. In this work, stm is close to a model called
versioning semantics. Like in our approach, this model is based on the use of logs
and is characterized by an optimistic approach where log consistency is checked at
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commit time. stm are used in practice in [67], where Donnelly and Fluet introduce a
concurrency abstraction combining first-class synchronization message-passing events
with all-or-nothing transactions. They introduce the notion of Transactional Events
(te) and give a formal semantics for te Haskell: a language inspired from Concurrent
ml and Concurrent Haskell, implemented by using stm Haskell. te have the com-
positional structure of a monad-with-plus and synchronization among transactions is
allowed. The dynamic semantics guarantees the all-or-nothing execution of te. As
stated by the authors, this work raises interesting questions about the relationship
between te and process calculi and about a right notion of behavioral equivalence –
that would be used also for proving the monad-with-plus laws. Fewer works consider
behavioral equivalences for transactions. A foundational work is [25], that gives a
theory of transactions specifying atomicity, isolation and durability in the form of an
equivalence relation on processes, but it provides no formal proof system.

Linked to the upsurge of works on ws and on long running Web transactions, a
larger body of works is concerned with formalizing compensating transactions. We
give a brief survey of works that formalize compensable processes using process cal-
culi. These works can be grouped into two classes: (1) interaction based compensa-
tion [36, 26, 37, 101], which are extensions of process calculi (like π or join-calculus)
for describing transactional choreographies where composition take place dynamically
and where each service describes its possible interactions and compensations; (2) com-
pensable flow composition [38, 43, 44], where ad hoc process algebras are designed from
scratch to describe the possible flow of control among services. These calculi are ori-
ented towards the orchestration of services and service failures. This second approach
is also followed in [18, 22] where two frameworks for composing transactional services
are presented.

6.2 The calculus

In this section we present syntax and operational semantics of the calculus, which is
essentially asynchronous ccs [110], without choice and relabeling operators, equipped
with atomic blocks (transactions) and constructs for composing transactional se-
quences of actions.

6.2.1 Syntax

We let N , ranged over a, b, . . . , be an infinite set of names. As in ccs, names
model communication channels used in process synchronization, but they also occur
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Action α, β ::= rd(a) Read a from memory∣∣ wt(a) Write a into the memory

Atomic expression M,N ::= end End∣∣ retry Retry∣∣ α.M Prefix∣∣ M orElse M Alternative

Ongoing atomic block A,B ::= (M)σ;δ M∣∣ A orElse A Ongoing alternative

Process P,R ::= 0 Nil∣∣ a Output∣∣ a.P Input∣∣ !a.P Replicated input∣∣ atom(M) Atomic block∣∣ P | P Parallel composition∣∣ P \n a, n > 0 Hiding∣∣ {|A|}M Ongoing atomic block

Table 6.1: Syntax

as objects of read and write actions in atomic transactions.

Definition 6.1. The set P of processes, ranged over P, R, . . . , M of atomic ex-
pressions, ranged over M, N, . . . , and A of ongoing atomic expressions, ranged over
A, B, C, . . . are defined by the grammar in Table 6.1.

Atomic expressions are used to define sequences of actions whose effect should
happen atomically. Actions rd(a) and wt(a) represent attempts to input and output
to the channel a. Instead of using snapshots of the state for managing transaction,
we use a log-based approach. During the evaluation of an atomic block, actions are
recorded in a private log δ (a sequence α1, . . . , αn) and have no effects outside the scope
of the transaction until it is committed. The action retry aborts an atomic expression
unconditionally and starts its execution afresh. The termination action end signals
that an expression is finished and should be committed. If the transaction can be
committed, all actions in the log are performed at the same time and the transaction is
closed, otherwise the transaction aborts. Finally, transactions can be composed using
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the operator orElse, which implements preemptive alternatives between expressions.
In M orElse N , the expression N is executed if M aborts and has the behavior of
M otherwise. This allows processes to wait for many things at once.

Ongoing atomic blocks are essentially atomic expressions enriched with an evalu-
ation state σ and a log δ of the currently recorded actions. A state σ is a multiset
of names that represents the output actions visible to the transaction when it was
initiated. This notion of state bears some resemblance with tuples space in coordina-
tion calculi, such as Linda [40]; but here we consider only read and write primitives
for modifying the state. When a transaction ends, the state σ recorded in the block
(M)σ;δ – the state at the initiation of the transaction – can be compared with the
current state – the state when the transaction ends – to check if other processes have
concurrently made changes to the global state, in which case the transaction should
be aborted.

Processes model concurrent systems of communicating agents. We have the usual
operators of ccs: the empty process, 0, the parallel composition P | R, and the
input prefix a.P . There are some differences though. The calculus is asynchronous,
meaning that a process cannot block on output actions. Also, we use replicated input
!a.P instead of recursion – this does not change the expressiveness of the calculus –
and we lack the choice and relabeling operators of ccs. The hiding operator P \n a

bounds the scope of name a to P . The integer n stands for the number of outputs on
a that can be accessed by P . Finally, the main addition is the presence of the operator
atom(M), which models a transaction that safeguards the expression M . The process
{|A|}M represents the ongoing evaluation of an atomic block M : the subscript is used
to keep the initial code of the transaction, in case it is aborted and executed afresh,
while A holds the remaining actions that should be performed.

Notations. In what follows, we consider processes up to alpha-renaming of bound
names and usually omit trailing end in atomic expressions. We write σ ] {a} for the
multiset σ enriched with the name a and σ \ σ′ for the multiset obtained from σ by
removing elements found in σ′, that is a multiset σ′′ such that σ = σ′ ] σ′′. The
symbol ∅ stands for the empty multiset while {an} is the multiset composed of exactly
n copies of a, where {a0} = ∅.

We denote the empty log as ε. Given a log δ, we use the notation wt(δ) for the
multiset of names which appear as objects of a write action in δ. Similarly, we use
the notation rd(δ) for the multiset of names that are objects of read actions. Formal
definitions of the functions wt and rd are given in Table 6.2.
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wt(ε) = rd(ε) = ε

wt(wt(a).δ) = wt(δ) ] {a} wt(rd(a).δ) = wt(δ)

rd(rd(a).δ) = rd(δ) ] {a} rd(wt(a).δ) = rd(δ) .

Table 6.2: wt and rd

Example 6.2.1 (composing synchronization). Before we describe the meaning
of processes, we try to convey the semantics of Atccs (and the usefulness of the
atomic block operator) using a simple example. Consider a concurrent system with
two memory cells, M1 and M2, used to store integers. We consider here a straight-
forward extension of the calculus with “value-passing.” In this setting, we can model
a cell with value v by an output mi!v and model an update by a process of the form
mi?x.(mi!v′ | . . . ). With this encoding, the channel name mi acts as a lock protecting
the shared resource Mi.

Assume now that the values of the cells should be synchronized to preserve a global
invariant on the system. For instance, we model a flying aircraft, each cell store the
pitch of an aileron and we need to ensure that the aileron stay aligned, that is that
the values of the cells are equal. A process testing the validity of the invariant is for
example P1 below (we suppose that a message on the reserved channel err triggers
an alarm). There are multiple design choices for resetting the value of both cells to 0,
e.g. P2 and P3.

P1
4
= m1?x.m2?y.if x != y then err !

P2
4
= m2?x.m1?y.

(
m1!0 |m2!0

)
P3

4
= m1?x.

(
m1!0 |m2?y.m2!0

)
Each choice exemplifies a problem with lock-based programming. The composition
of P1 with P2 leads to a race condition where P1 acquire the lock on M1, P2 on M2

and each process gets stuck. The composition of P1 and P3 may break the invariant
because the value of M1 is updated too quickly. A solution in the first case is to
strengthen the invariant and enforce an order for acquiring locks, but this solution
is not viable in general and opens the door to priority inversion problems. Another
solution is to use an additional (master) lock to protect both cells, but this approach
obfuscate the code and significantly decreases the concurrency of the system.

Overall, this simple example shows that synchronization constraints do not com-
pose well when using locks. This situation is consistently observed (and bears a
resemblance to the inheritance anomaly problem found in concurrent object-oriented
languages). The approach advocated here is to use atomic transactions. In our exam-
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(out) a ;σ → 0 ;σ ] {a} (rep) !a.P ;σ ] {a} → P | !a.P ;σ

(in) a.P ;σ ] {a} → P ;σ (com)
P ;σ → P ′ ;σ ] {a} R ;σ ] {a} → R′ ;σ

P |R ;σ → P ′ |R′ ;σ

(parL)
P ;σ → P ′ ;σ′

P |R ;σ → P ′ |R ;σ′
(hid)

P ;σ ] {an} → P ′ ;σ′ ] {am} a /∈ σ, σ′

P \n a ;σ → P ′ \m a ;σ′

(parR)
R ;σ → R′ ;σ′

P |R ;σ → P |R′ ;σ′
(atSt) atom(M) ;σ → {|(M)σ;ε|}M ;σ

(atPass) A → A′

{|A|}M ;σ → {|A′|}M ;σ
(atRe) {|(retry)σ′;δ|}M ;σ → atom(M) ;σ

(atFail)
rd(δ) * σ

{|(end)σ′;δ|}M ;σ → atom(M) ;σ

(atOk)
rd(δ) ⊆ σ σ = σ′′ ] rd(δ) wt(δ) = {a1, . . . , an}

{|(end)σ′;δ|}M ;σ → a1 | . . . | an ;σ′′

Table 6.3: Operational semantics processes.

ple, the problem is solved by simply wrapping the two operations in a transaction, like
in the process atom

(
rd(m2?y). wt(m2!0). rd(m1?x). wt(m1!0)

)
, which ensures that all

cell updates are effected atomically.

6.2.2 Reduction semantics

The semantics of Atccs is stratified in two levels: there is one reduction relation
for processes and a second for atomic expressions. With a slight abuse of notation, we
use the same symbol (→) for both relations.

Semantics of processes. Table 6.3 gives the semantics of processes. A reduction
is of the form P ;σ → P ′ ;σ′ where σ is the state of P . The state σ records the
names of all output actions visible to P when reduction happens. It grows when an
output is reduced, (out), and shrinks in the case of inputs, (in) and (rep). A parallel
composition evolves if one of the component evolves or if both can synchronize, rules
(parL), (parR) and (com). In a hiding P \na, the annotation n is an integer denoting
the number of outputs on a that are visible to P . Intuitively, in a “configuration”
P \n a ;σ, the outputs visible to P are those in σ ] {an}. This extra annotation is
necessary because the scope of a is restricted to P , hence it is not possible to have
outputs on a in the global state. Rule (hid) allows reductions, also involving name a,
to happen inside a hiding. For instance, we have (P | a) \n a ;σ → P \n+1 a ;σ.
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(ARdOk)
rd(δ) ] {a} ⊆ σ

(rd(a).M)σ;δ → (M)σ;δ. rd(a)
(ARdF)

rd(δ) ] {a} * σ
(rd(a).M)σ;δ → (retry)σ;δ

(AWr) (wt(a).M)σ;δ → (M)σ;δ. wt(a)

(AOI) (M1 orElse M2)σ;δ → (M1)σ;δ orElse (M2)σ;δ

(AOF) (retry)σ;δ orElse B → B (AOE) (end)σ;δ orElse B → (end)σ;δ

(AOL) A → A′

A orElse B → A′ orElse B
(AOR) B → B′

A orElse B → A orElse B′

Table 6.4: Operational semantics atomic expressions.

The remaining reduction rules govern the evolution of atomic transactions. Like
in the case of (com), all those rules, but (atOk), leave the global state unchanged.
Rule (atSt) deals with the initiation of an atomic block atom(M): an ongoing block
{|(M)σ;ε|}M is created which holds the current evaluation state σ and an empty log
ε. An atomic block {|A|}M reduces when its expression A reduces – according to the
semantics in Table 6.4, rule (atPass). Rules (atRe), (atFail) and (atOk) deal with
the completion of a transaction. After a finite number of reductions, the evaluation
of an ongoing expression will necessarily result in a fail state, (retry)σ;δ, or a success,
(end)σ;δ. In the first case, rule (atRe), the transaction is aborted and started again
from scratch. In the second case, we need to check if the log is consistent with the
current evaluation state. We consider a log as consistent if the read actions of δ can
be performed on the current state. If the check fails, rule (atFail), the transaction
aborts. Otherwise, rule (atOk), we commit the transaction: the names in rd(δ)
are taken from the current state and a bunch of outputs on the names in wt(δ) are
generated.

Remark 6.1. The synchronization rule (com) may seem redundant here, because it
can be simulated by applying (out) followed by either (rep) or (in). The presence of
(com) is fundamental in the definition of the labeled semantics for Atccs (see Propo-
sition 6.1) and we have preferred to introduce (com) here for ease of presentation.

Semantics of atomic expressions. Table 6.4 gives the semantics of ongoing atomic
expressions. We recall that, in an expression (rd(a).M)σ;δ, the subscript σ is the initial
state, that is a copy of the state at the time the block has been created and δ is the
log of actions performed since the initiation of the transaction.

Rule (ARdOk) states that a read action rd(a) is recorded in the log δ if all read
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actions in δ. rd(a) can be performed in the initial state. If it is not the case, the ongoing
expression fails, rule (ARdF). This test may be interpreted as a kind of optimization:
if a transaction cannot commit in the initial state then, should it commit at the end of
the atomic block, it would mean that the global state has been concurrently modified
during the execution of the transaction. Note that we consider the initial state σ and
not σ ]wt(δ), which means that, in an atomic block, write actions are not directly
visible and cannot be consumed by a read action. This is coherent with the fact that
outputs on wt(δ) only take place after commit of the block. Rule (AWr) states that
a write action always succeeds and is recorded in the current log.

The remaining rules govern the semantics of the retry, end and orElse constructs.
These constructs are borrowed from the stm combinators used in the implementation
of an stm system in Concurrent Haskell [81]. We define these operators with an
equivalent semantics, with the difference that, in our case, a state is not a snapshot
of the shared memory but a multiset of visible outputs. A composition M orElse N

corresponds to the interleaving of the behaviors of M and N , which are independently
evaluated with respect to the same evaluation state (but have distinct logs), (AOL)

and (AOR). The orElse operator is preemptive: the ongoing block M orElse N

ends, (AOE), if either M ends or M aborts and N ends, (AOF).

Remark 6.2. The semantics defined here is akin to an optimistic concurrency protocol
in which the validity of read and write performed within an atomic block is determined
by verifying if the log is consistent with the global state at commit time. We do not
care if such state is different from the evaluation state of the atomic block. Evaluation
states are introduced only with the aim of increasing “performances”: an atomic block
may be immediately retried when it tries to inputs a non-available name instead of
waiting the commit time for re-starting its evaluation.

Example 6.2.2 (leader election). Our first example is a simple (non-blocking)
solution to the well-known leader election problem. Consider a system composed by
n processes and a token, named t, that is modeled by an output t. A process becomes
a leader by getting (making an input on) t. As usual, all participants run the same
process (except for the value i of their identity). We suppose that there is only one
copy of the token in the system and that leadership of process i is communicated to
the other processes by outputting on a reserved name wini. A participant that is not
a leader outputs on losei. The protocol followed by the participants is defined by the
following process:

Li
4
=

(
atom

(
rd(t). wt(k). end orElse wt(k′). end

)
| k.wini | k′.losei

)
\0 k \0 k′ .
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In this encoding, the atomic block is used to protect the concurrent accesses to t.
If the process Li commits its transaction and grabs the token, it immediately release
an output on its private channel k. The transactions of the other participants may
either fail or commit while releasing an output on their private channel k′. Then, the
elected process Li may proceed with a synchronization on k that triggers the output
wini. The semantics of atom(·) ensures that only one transaction can acquire the lock
and commit the atomic block, then no other process has acquired the token and we
are guaranteed that there could be at most one leader. For simplicity, we propose a
one-round solution. An extension to a multiple-round system is straightforward: it is
enough to release the token after outputting wini and consuming losej for all j 6= i.

This expressivity result is mixed blessing. Indeed, it means that any implementa-
tion of the atomic operator should be able to solve the leader election problem, which
is known to be very expensive in the case of loosely-coupled systems or in presence
of failures (see e.g. [116] for a discussion on the expressivity of process calculi and
electoral systems). On the other hand, atomic transactions are optimistic and are
compatible with the use of probabilistic approaches. Therefore it is still reasonable to
expect a practical implementation of Atccs.

Example 6.2.3 (guarded choice). We consider an operator for choice, µ1.P1+ · · ·+
µn.Pn, such that every process is prefixed by an action µi that is either an output ai or
an input ai. The semantics of choice is characterized by the following three reduction
rules (we assume that R is also a choice):

(c-inp) a.P + R ;σ ] {a} → P ;σ (c-out) a.P + R ;σ → P ;σ ] {a}

(c-pass)
a /∈ σ R ;σ → R′ ;σ′

a.P + R ;σ → R′ ;σ′

A minor difference with the behavior of the choice operator found in ccs is that
our semantics gives precedence to the leftmost process (this is reminiscent of the
preemptive behavior of orElse). Another characteristic is related to the asynchronous
nature of the calculus, see rule (c-out): since an output action can always interact
with the environment, a choice a.P + R may react at once and release the process
a | P .

Like in the example of the leader election problem, we can encode a choice µ1.P1 +
· · · + µn.Pn using an atomic block that will mediate the interaction with the actions
µ1, . . . , µn. We start by defining a straightforward encoding of input/output actions
into atomic actions: [[a]] = wt(a) and [[a]] = rd(a). Then the encoding of choice is the
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process

[[µ1.P1 + · · ·+ µn.Pn]]
4
=

(
atom

(
[[µ1]].[[k1]]. end orElse · · · orElse [[µn]].[[kn]]. end

)
| k1.[[P1]] | · · · | kn.[[Pn]]

)
\0 k1 . . . \0 kn

The principle of the encoding is essentially the same that in our solution to the
leader election problem. Actually, using the encoding for choice, we can rewrite our
solution in the following form: Li

4
= t.wini + losei.0 . Using the rules in Table 6.3, it

is easy to see that our encoding of choice is compatible with rule (c-inp), meaning
that:

[[a.P + R]] ;σ ] {a}→∗ (
{|(end)σ]{a};rd(a). wt(k1)|}M | k1.[[P ]] | . . .

)
\0 k1 \ . . . ;σ ] {a}

→
(
k1 | k1.[[P ]] | . . .

)
\0 k1 \ . . . ;σ

→∗ (
[[P ]] | . . .

)
\0 k1 \ . . . ;σ

where the processes in parallel with [[P ]] are harmless. In the next section, we define
a weak bisimulation equivalence ≈a that can be used to garbage collect harmless
processes in the sense that, e.g. (P | k.R) \0 k ≈a P if P has no occurrences of k.
Hence, we could prove that [[a.P +R]] ;σ]{a} →∗≈a [[P ]] ;σ, which is enough to show
that our encoding is correct with respect to rule (c-inp). The same is true for rules
(c-out) and (c-pass).

Example 6.2.4 (join pattern). A multi-synchronization (a1 × · · · × an).P may be
viewed as an extension of input prefix in which communication requires a synchro-
nization with the n outputs a1, . . . , an at once. that is, we have the reduction:

(j-inp) (a1 × · · · × an).P ;σ ] {a1, . . . , an} → P ;σ

This synchronization primitive is fundamental to the definition of the Gamma
calculus of Banâtre and Le Métayer and of the Join calculus of Fournet and Gonthier.
It is easy to see that the encoding of a multi-synchronization (input) is a simple
transaction:

[[
(
a1 × · · · × an

)
.P ]]

4
=

(
atom([[a1]]. · · · .[[an]].[[k]]. end) | k.[[P ]]

)
\0 k

with k fresh name, and that we have

[[
(
a1 × · · · × an

)
.P ]] ;σ ] {a1, . . . , an} →∗ (

0 | [[P ]]
)
\0 k ;σ

where the process
(
0 | [[P ]]

)
\0 k is behaviorally equivalent to [[P ]], that is:

[[
(
a1 × · · · × an

)
.P ]] ;σ ] {a1, . . . , an} →∗≈a [[P ]] ;σ
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Based on this encoding, we can define two interesting derived operators: a mixed
version of multi-synchronization, (µ1 × · · · × µn).P , that mixes input and output
actions; and a replicated version, that is analogous to replicated input.

[[
(
µ1 × · · · × µn

)
.P ]]

4
=

(
atom([[µ1]]. · · · .[[µn]].[[k]]. end) | k.[[P ]]

)
\0 k

[[!
(
µ1 × · · · × µn

)
.P ]]

4
=

(
r | !r. atom([[µ1]]. · · · .[[µn]].[[r]].[[k]]. end) | !k.[[P ]]

)
\0 r \0 k

By looking at the possible reductions of these (derived) operators, we can define
derived reduction rules. Assume δ is the log [[µ1]]. · · · .[[µn]], we have a simulation
result comparable to the case for multi-synchronization, namely:

[[
(
µ1 × · · · × µn

)
.P ]] ;σ ] rd(δ) →∗≈a [[P ]] ;σ ]wt(δ)

[[!
(
µ1 × · · · × µn

)
.P ]] ;σ ] rd(δ) →∗≈a [[!

(
µ1 × · · · × µn

)
.P ]] | [[P ]] ;σ ]wt(δ)

To obtain join-definitions, we need to combine a sequence of replicated multi-
synchronizations using the choice composition defined precedently and we need hid-
ing to close the scope of the definition. Actually, we can encode even more flexi-
ble constructs mixing choice and join-patterns. For the sake of simplicity, we only
study examples of such operations. The first example is the (linear) join-pattern
(a × b).P ∧ (a × c).R, that may fire P if the outputs {a, b} are in the global state σ

and otherwise fire R if {a, c} is in σ – actually, real implementations of join-calculus
have a preemptive semantics for pattern synchronization. The second example is the
derived operator (a × b) + (b × c × a).P , such that P is fired if outputs on {a, b} are
available or if outputs on {b, c} are available (in which case an output on a is also
generated). These examples can be easily interpreted using atomic transactions:

[[(a× b).P ∧ (a× c).R]]
4
=

(
atom

(
[[a]].[[b]].[[k1]]. end orElse

[[a]].[[c]].[[k2]]. end
)
| k1.P | k2.R

)
\0 k1 \0 k2

[[
(
a× b + b× c× a

)
.P ]]

4
=

(
atom

(
[[a]].[[b]].[[k]]. end orElse

[[b]].[[c]].[[a]].[[k]]. end
)
| k.P

)
\0 k

In the next section we define the notion of bisimulation used for reasoning on
the soundness of our encodings. We also define an equivalence relation for atomic
expressions that is useful for reasoning on the behavior of atomic blocks.

6.3 Bisimulation semantics

A first phase before obtaining a bisimulation equivalence is to define a Labeled
Transition System (lts) for Atccs processes.
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6.3.1 Labeled semantics

It is easy to derive labels from the reduction semantics given in Table 6.3. For
instance, a reduction of the form P ;σ → P ′ ;σ ] {a} is clearly an output transition
and we could denote it using the transition P

a−→ P ′, meaning that the effect of the
transition is to add a message on a to the global state σ. In the following, we formalize
the notion of label and transition. Let Out be the set of output actions of the form a,
with a ∈ N . Besides outputs, which corresponds to an application of rule (out), we
also need block actions, which are multisets of the form {|a1, . . . , an|} corresponding to
the commit of an atomic block, that is to the deletion of a bunch of names from the
global state in rule (atOk). Let Ib = {{|a1, . . . , an|}|ai ∈ N}, ranged over θ, γ, . . . ,
be the set of (atomic) block actions. Block actions include the usual labels found in
lts for ccs and are used for labeling input and synchronizations: an input action a,
which intuitively corresponds to rules (in) and (rep), is a shorthand for the singleton
block action {|a|}; the silent action τ , which corresponds to rule (com), is a shorthand
for the empty block action ∅. In the following, we use the symbols µ, µ′, . . . to range
over labels, µ ::= a

∣∣ θ
∣∣ τ

∣∣ a .

Definition 6.2 (labeled semantics). The labeled semantics for Atccs is the small-
est relation P

µ−→ P ′ satisfying the two following clauses:
(1) we have P

a−→ P ′ if there is a state σ such that P ;σ → P ′ ;σ ] {a};
(2) we have P

θ−→ P ′ if there is a state σ such that P ;σ ] θ → P ′ ;σ.

Note that, in the case of the (derived) action τ , we obtain from clause (2) that P
τ−→

P ′ if there is a state σ such that P ;σ → P ′ ;σ. As usual, silent actions label transitions
that do not modify the environment – in our case the global state – and so are invisible
to an outside observer. Unlike ccs, the calculus has more examples of silent transitions
than mere internal synchronization, e.g. the initiation and evolution of an atomic
block, rules (atST) and (atPass). Consequently, a suitable (weak) equivalence for
Atccs should not distinguish e.g. the processes atom(retry), atom(end), (a.a) and
0. The same is true with input transitions. For instance, we expect to equate the
processes a.0 and atom(rd(a). end).

Our labeled semantics for Atccs is not based on a set of transition rules, as it
is usually the case. Nonetheless, we can recover an axiomatic presentation of the
semantics using the tight correspondence between labeled transitions and reductions
characterized by the following proposition.

Proposition 6.1. Consider two processes P and R. The following implications are
true:
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(com) if P
a−→ P ′ and R

a−→ R′ then P |R τ−→ P ′ |R′;

(par) if P
µ−→ P ′ then P |R µ−→ P ′ |R and R | P µ−→ R | P ′;

(hid) if P
µ−→ P ′ and a ∈ N does not appear in µ then P \n a

µ−→ P ′ \n a;

(hidOut) if P
a−→ P ′ then P \n a

τ−→ P ′ \n+1 a;

(hidAt) if P
µ−→ P ′ and µ = θ ] {am}, where a ∈ N does not appear in the label

θ, then P \n+m a
θ−→ P ′ \n a.

Proof: In each case, we have a transition of the form P
µ−→ P ′. By definition,

there are states σ and σ′ such that P ;σ → P ′ ;σ′. The property is obtained by a simple
induction on this reduction (a case analysis on the last reduction rule is enough). 2

Notations. We denote by ⇒ the weak transition relation, that is the reflexive and
transitive closure of τ−→. We denote by

µ
=⇒ the relation ⇒ if µ = τ and ⇒ µ−→⇒

otherwise. If s is a sequence of labels µ0 · · ·µn, we denote s−→ the relation such that
P

s−→ P ′ if and only if there is a process R such that P
µ0−→ R and R

µ1···µn−−−−→ P ′ and s−→
is the identity relation when s is the empty sequence ε. We also define a weak version
s=⇒ of this relation in the same way.

6.3.2 Asynchronous bisimulation

Equipped with a lts, we can define a weak asynchronous bisimulation relation,
denoted ≈a, in the style of [12].

Definition 6.3 (weak asynchronous bisimulation). A symmetric relation R is a
weak asynchronous bisimulation if whenever PRS then the following holds:

(1) if P
a−→ P ′ then there is S′ such that S

a=⇒ S′ and P ′RS′;
(2) if P

θ−→ P ′ then there is a process S′ and a block action γ such that S
γ

=⇒ S′ and(
P ′ |

∏
a∈(γ\θ) a

)
R

(
S′ |

∏
a∈(θ\γ) a

)
.

We denote with ≈a the largest weak asynchronous bisimulation.

Assume P ≈a S and P
τ−→ P ′, the (derived) case for silent action entails that there

is S′ and θ such that S
θ=⇒ S′ and P ′ |

∏
a∈θ a ≈a S′. If θ is the silent action, θ = { },

we recover the usual condition for bisimulation, that is S =⇒ S′ and P ′ ≈a S′. If θ

is an input action, θ = {a}, we recover the definition of asynchronous bisimulation
of [12]. Due to the presence of block actions γ, the definition of ≈a is slightly more
complicated than in [12], but it is also more compact – there are only two cases –
and more symmetric. Hence, we expect to be able to reuse known methods and tools
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for proving the equivalence of Atccs processes. Another indication that ≈a is a good
choice for reasoning about processes is that it is a congruence.

Theorem 6.1. Weak asynchronous bisimulation ≈a is a congruence.
Proof: It suffices to prove that ≈a is preserved by every operator of the calculus;

the proof is reported in Appendix B, Section B.1. 2

We need to define a specific equivalence relation to reason on
transactions. Indeed, the obvious choice that equates two expres-
sions M and N if atom(M) ≈a atom(N) does not lead to a congru-
ence. For instance, we have atom(rd(a). wt(a). end) ≈a atom(end) while
atom(rd(a). wt(a). end orElse wt(b). end) 6≈a atom(end orElse wt(b). end) .
The first transaction may output a message on b while the second always end silently.

We define an equivalence relation between atomic expressions w, and a weak atomic
preorder w, that relates two expressions if they end (or abort) for the same states. We
also ask that equivalent expressions should perform the same changes on the global
state when they end. We say that two logs δ, δ′ have same effects, denoted δ =σ δ′ if
σ \ rd(δ) ]wt(δ) = σ \ rd(δ′) ]wt(δ′).

Definition 6.4 (weak atomic equivalence). M wσ N if and only if
(1) either (N)σ;ε ⇒ (retry)σ,δ;
(2) or (N)σ;ε ⇒ (end)σ,δ and (M)σ;ε ⇒ (end)σ;δ′.

M wσ N if and only if
(1) either (M)σ;ε ⇒ (retry)σ,δ and (N)σ;ε ⇒ (retry)σ,δ′;
(2) or (M)σ;ε ⇒ (end)σ;δ and (N)σ;ε ⇒ (end)σ,δ′ with δ =σ δ′.

Two atomic expressions M,N are atomic equivalent, denoted M w N , if and only if
M wσ N for every state σ. Similarly, we have M w N if and only if M wσ N for
every state σ.

Note that atom(M) ≈a atom(N) does not imply M w N . E.g.
atom(rd(a). wt(a). end) ≈a atom(end) but rd(a). wt(a). end 6w end – in fact
rd(a). wt(a). end 6w∅ end . As stated by the following proposition, the vice versa
is true; the proof is reported in Appendix B, Section B.1.

Proposition 6.2. M w N implies atom(M) ≈a atom(N).

Even though of the definitions of w and w depend on a universal quantification over
states, testing the equivalence of two expressions is not expensive. First, we can rely
on a monotonicity property of reduction: if σ ⊆ σ′ then for all M the effect of (M)σ,δ is
included in those of (M)σ′,δ. Moreover, we define a normal form for expressions later in



6. Atccs: A concurrent calculus with atomic transactions 150

Laws for atomic expressions:

(comm) α.β.M w β.α.M

(dist) α.(M orElse N) w (α.M) orElse (α.N)

(ass) M1 orElse (M2 orElse M3) w (M1 orElse M2) orElse M3

(idem) M orElse M w M

(absRt1) α. retry w retry

(absRt2) retry orElse M w M w M orElse retry

(absEnd) end orElse M w end

Laws for processes:

(asy) a.a ≈a 0

(a-asy) atom(rd(a). wt(a). end) ≈a 0

(a-1) atom(rd(a). end) ≈a a.0

Table 6.5: Algebraic laws of transactions.

this section (see Proposition 6.3) that greatly simplifies the comparison of expressions.
Another indication that w is a good choice of equivalence for atomic expressions is
that it is a congruence; the proof is reported in Appendix B, Section B.1.

Theorem 6.2. Weak atomic equivalence w is a congruence.

On the Algebraic Structure of Transactions. The equivalence relations w and
≈a can be used to prove interesting laws of atomic expressions and processes. We list
some of these laws in Table 6.5, proofs are reported in Appendix B, Section B.2. The
behavioral rules for atomic expressions are particularly interesting since they exhibit
a rich algebraic structure for M. For instance, rules (comm) and (dist) state that
action prefix α.M is a commutative operation that distribute over orElse. We also
have that (M, orElse, retry) is an idempotent semigroup with identity retry, rules
(ass), (absRt2) and (idem), and that end annihilates M, rule (absEnd). Most of
these laws appear in [81] but are not formally proved.

Actually, we can show that the structure of M is close to that of a bound join-
semilattice. We assume unary function symbols a( ) and a( ) for every name a (a term
a(M) is intended to represent a prefix wt(a).M) and use the symbols t, 1, 0 instead of
orElse, end, retry. With this presentation, the behavioral laws for atomic expression
are almost those of a semilattice. By definition of w, we have that M tM ′ w M if
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and only if M w M ′ and for all M,N we have 1 w M tN w M w 0.

µ(µ′(M)) w µ′(µ(M)) µ(M tN) w µ(M) t µ(N) µ(0) w 0

0tM w M w M t 0 1tM w 1

It is possible to prove other behavioral laws to support our interpretation of orElse

as a join. However some important properties are missing, most notably, while t is
associative, it is not commutative. For instance, a(b(1)) t 1 6w 1 while 1 w 1ta(b(1)),
rule (absEnd). This observation could help improve the design of the transaction
language: it will be interesting to enrich the language so that we obtain a real lattice.

Normal Form for Transactions. Next, we show that behavioural laws can be
used to rearrange an atomic expression to put it into a simple normal form. This
procedure can be understood as a kind of compilation that transform an expression
M into a simpler form.

Informally, an atomic expression M is said to be in normal form if it does not con-
tain nested orElse – all occurrences are at top level – and if there are no redundant
branches. A redundant branch is a sequence of actions that will never be executed.
For instance, the read actions in rd(a). end are included in rd(a). rd(b). end, then the
second branch in the composition

(
rd(a). end

)
orElse

(
rd(a). rd(b). end

)
is redun-

dant: obviously, if rd(a). end fails then rd(a). rd(b). end cannot succeed. We overload
the functions defined on logs and write rd(M) for the multiset of names occurring
in read actions in M . We define wt(M) similarly. In what follows, we abbreviate
(M1 orElse · · · orElse Mn) with the expression

⊔
i=1,...,n Mi.

Definition 6.5 (normal-form). We say that an expression M is in normal form if
it is of the form

⊔
i=1,...,n Ki where it holds that

(1) Ki is a sequence of action prefixes αj1 . · · · .αjni
. end, with i = 1, . . . , n and ni >

0;
(2) rd(Ki) * rd(Kj) for all i < j, with i, j ∈ 1, . . . , n.

Condition (1) requires the absence of nested orElse and condition (2) prohibits
redundant branches, moreover it also ensures that all branches, but the last one, has
at least a read action.

Proposition 6.3. For every expression M there is a normal form M ′ such that M w

M ′.
Proof: Laws (comm), (dist) and (ass) in Table 6.5 can be applied for eliminat-

ing nested orElse. Next, we use the fact that if K is a redundant branch of M then
M w K. More details regarding the proof are reported in Section B.3. 2
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Our choice of using bisimulation for reasoning about atomic transactions may ap-
pear arbitrary. We have already debated over the need to consider asynchronous
bisimulation ≈a instead of (simple) bisimulation ≈. In the next section, we study a
testing equivalence for Atccs, more particularly an asynchronous may testing seman-
tics [65].

Example 6.3.1 (dining philosophers). In this example we give yet another solution
to the well-known dining philosophers problem. We use atomic blocks of actions in
the implementation of the system and we show that the obtained process behaves
as its specification, without using backtracking and without falling into situations of
deadlock. Suppose to have four philosophers, I = {0, 1, 2, 3} is the considered set of
indexes. In what follows we write i + i′ for the sum modulo 4 of i and i′ and in P + R

we consider + as the usual nondeterministic ccs choice between P and R. Suppose t

is a set of indexes corresponding to thinking philosophers, which are ready to eat; and
e corresponds to eating philosophers, which are ready to think. Pt;e is the specification
of the system: t ∪ e = I (each philosopher eats or thinks), t ∩ e = ∅ (none can eat
and think at the same time) and for no i ∈ I it holds that i, i + 1 ∈ e (two adjacent
philosophers cannot eat simultaneously).

Pt;e
4
=

∑
i/∈t ti.Pt∪i;e−i

+
∑

{i=0,1 if e=∅} τ.(ei.Pt−i;i + ei+2.Pt−(i+2);(i+2))

+
∑

{i∈t | i−1,i+1/∈e, i+2∈e} τ.Si

Si
4
= ei.P{i−1,i+1};{i,i+2}

+ ti+2.
(
ei+2.Si + ei.P{i−1,i+1,i+2};{i}

)
The actions of eating, ei, and thinking, ti, of the philosopher i can be observed as
inputs. There are no restrictions for eating philosophers that wants to start thinking,
first branch. If none is eating, non-deterministically philosophers with either odd or
pair indexes are allowed to eat, second branch. If philosopher i is already eating, its
neighbors i − 1 and i + 1 cannot eat, while it is allowed to its opposite i + 2, third
branch. The system specification will never fall into deadlocks and there can be at
most two simultaneously eating philosophers (with indexes i and i + 2).

A philosopher Di, for i ∈ I, can be implemented as follows:

Di
4
= atom(rd(ci−1). rd(ci). end).ei.ti.(ci−1 | ci).

Process Di attempts to get the chopsticks, on his right and left, by using an atomic
block for reading both ci−1 and ci. If the commit of the atomic block cannot be



153 6.3. Bisimulation semantics

performed, then at least one of its neighbors, Di−1 or Di+1 is already eating, because
at least one of the chopsticks is not available, thus Di will retry to get both chopsticks.
Otherwise he can eat, thus he will acquire the chopsticks and eat by inputting ei. After
eating, he can decide to start thinking, thus he reads ti, and after both chopsticks can
be released.

The global system is given by the parallel composition of the philosopher Di and
the output of the 4 chopsticks, which are hidden to observers.

D
4
= (D0 |D1 |D2 |D3 | c0 | c1 | c2 | c3) \0 c0, c1, c2, c3.

In what follows we show that PI;∅ ≈a D holds. Before we define a useful ab-
breviation. Suppose A, B, C, D, E ⊆ {0, 1, 2, 3}, are sets of indexes such that
A ∪B ∪C = {0, 1, 2, 3}, A ∩B = A ∩C = B ∩C = ∅ and D ∪E ⊆ {0, 1, 2, 3} with
D ∩ E = ∅. We define D{A;B;C;D;E} as follows:

D{A;B;C;D;E} 4
= (

∏
{i∈A} Di |

∏
{i∈B} ei.ti.(ci−1 | ci)

|
∏

{i∈C} ti.(ci−1 | ci)

|
∏

{i∈D} ci) \1 ci, i∈E \0 ci, i∈I\E .

That is a system where the philosophers in A are in the initial state; philosophers in
B are ready to eat (they have already acquired both chopsticks); philosophers in C

are ready to think (they have already eaten); indexes in D correspond to available
chopsticks not yet outputted; indexes in E correspond to chopsticks outputted, thus
chopsticks that are available (part of the actual state).

In the following P(S) represents the powerset of S. PI;∅ R D{I; ∅; ∅; I; ∅} where
the bisimulation R is defined as follows:

R=
{(

PI;∅, D{I; ∅; ∅; I \ S;S}
) ∣∣ S ∈ P(I)

}
∪

{(
PI−i;i, D{I − i; ∅; {i}; {i + 1, i + 2} \ S;S}

)∣∣ S ∈ P({i + 1, i + 2}), i = 0, 1, 2, 3
}

∪
{(

Si+2, D{{i− 1, i + 1}; {i + 2}; {i}; ∅; ∅}
) ∣∣ i = 0, 1, 2, 3

}
∪

{(
P{i−1,i+1};{i,i+2}, D{{i− 1, i + 1}; ∅; {i, i + 2}; ∅; ∅}

) ∣∣ i = 0, 1
}

∪
{(

(ei.PI−i;i + ei+2.PI−(i+2);(i+2)), D{{i− 1, i + 1}; {i + 2, i}; ∅; ∅; ∅}
) ∣∣ i = 0, 1

}
∪

{(
(ei.PI−i;i + ei+2.PI−(i+2);(i+2)), D{{i− 1, i, i + 1}; {i + 2}; ∅; {i− 1, i} \ S;S}

)
∣∣ S ∈ P({i− 1, i}), i = 0, 1, 2, 3

}
.
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6.4 May-testing semantics

Using a testing equivalence instead of bisimulation is sometimes more convenient.
Nonetheless, testing equivalences have the drawback that their definition depends on
a universal quantification over arbitrarily many processes. We define a may-testing
equivalence for Atccs and give an alternative characterization using a trace-based
equivalence. We also expose some shortcomings of may testing related to the (folklore)
fact that it cannot distinguish the points of choice in a process. Actually, we define
for every atomic block atom(M) a corresponding process without transactions, but
using choice, that is (may-testing) indistinguishable from atom(M).

We define the notion of observers and successful computations. An observer O is a
particular type of process which does not contain atomic blocks and that can perform
a distinct output w (the success action). We denote Obs the set of all observers. A
computation from a process P and an observer O is a sequence of transitions of the
form P | O = P0 | O0

τ−→ · · · τ−→ Pk |Ok
τ−→ · · · , which is of either infinite or finite size,

say n, such that Pn |On cannot evolve. A computation from P |O is successful if there
is an index m such that Om has a success action, that is Om

w−→. In this case, we
say that P may O. Two processes are may testing equivalent if they have the same
successful observers.

Definition 6.6 (may-testing preorder). Given two processes P and R, we write
P <∼may

R if for every observer O in Obs we have P may O implies R may O. We

use 'may to denote the equivalence obtained as the kernel of the preorder <∼may
.

Universal quantification on observers make it difficult to work with the operational
definition of the may preorder. Following [30], we study a trace-based characterization
for our calculus. The following preorder over traces will be used for defining the alter-
native characterization of the may-testing preorder. Proofs of this section are almost
standard (see e.g. [30]) and for the sake of completeness are reported in Section B.4.

In what follows, a trace s is an element of (Out ∪ Ib)∗, that is a sequence of actions
µ1 · · ·µn where we only consider outputs and block actions and leave aside τ and input
actions, which are derivable.

Definition 6.7 (preorder over traces). Let 40 be the least relation on traces that
satisfies the following laws:

(to1) s1 s2 40 s1 {|a|} s2 (to2) s1 s2 {|a|}s3 40 s1 {|a|} s2 s3

(to3) s1 s2 40 s1 {|a|} a s2 (to4) {|a1, . . . , an|} 0<40 {|a1|} · · · {|an|}

The preorder 4 is the reflexive and transitive closure of 40.
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Following the terminology of [30], (to1), (to2) and (to3) are the laws for deletion,
postponement and annihilation of input action. We add rule (to4) which allows to
substitute block actions with the corresponding sequences of inputs. The preorder 4

is preserved by prefixing. We can now define a preorder over processes.

Definition 6.8 (alternative preorder). For processes P and Q, we set P �may Q

if for all weak transition P
s=⇒ P ′ there is a trace s′ and a process Q′ such that s′ 4 s

and Q
s′=⇒ Q′.

We now prove coincidence of �may and <∼may
. Some definitions and preliminary

results are needed. For every label µ we define the complement µ such that: the
complement of an output action a is a block action {|a|} and the complement of a
block action {|a1, . . . , an|} is a trace a1 · · · an. For every trace s = µ1 · · ·µn, the cotrace
s = µ1 · · ·µn is obtained by concatenating the complements of the actions in s. The
following lemma relates the preorder 4 with the operational semantics of processes.

Lemma 6.1. Assume that s′ 4 s and P
s=⇒ P ′, then there is a process P ′′ such that

P
s′=⇒ P ′′.

The next step is to define a special class of observers. For every trace s, we
inductively define an observer O(s) ∈ Obs as follows:

O(ε)
4
= w, O(a s)

4
= a.O(s), O({|a1, . . . , an|} s)

4
=

( ∏
i=1,...,n

ai

)
| O(s) .

The following property shows that the sequence of visible actions from O(s) is
related to traces simulated by s.

Lemma 6.2. Consider two traces s and r. If there is a process R such that O(s) r=⇒
w=⇒ R then r 4 s.

We can now prove a full abstraction theorem between may testing <∼may
and the

alternative preorder �may.

Theorem 6.3. For all processes P and R, we have P <∼may
R if and only if P �may R.

Next, we show that may-testing semantics is not precise enough to tell apart atomic
transactions from sequences of input actions. We consider an atomic expression M in
normal form. Assume M =

⊔
i=1,...,n Ki, the following lemma state that the observing

behavior of M is obtained by considering, for every branch Ki, a transition labeled
by the block action containing rd(Ki) followed by output transitions on the names in
wt(Ki).
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Lemma 6.3. Assume M =
⊔

i=1,...,n Ki is an expression in normal form. For every
index i in {1, . . . , n} we have atom(M) ;σi →∗ {|(end)σi;δ|}M ;σi where σi = rd(Ki) =
rd(δ) and wt(δ) = wt(Ki).

As a corollary of Lemma 6.3, we obtain that the possible behavior of atom(M)

can be described as atom(M)
rd(Ki)====⇒

∏
b∈wt(Ki)

b for every i = 1, . . . , n.
We now prove that for every atomic transaction atom(M) there is a ccs process

[[M ]] that is may-testing equivalent to M . By ccs process, we intend a term of Atccs

without atomic transactions that may include occurrences of the choice operator P+R.
By Proposition 6.3, we can assume that M is in normal form, that is M =

⊔
i=1,...,n Ki.

The interpretation of a sequence of actions K = α1. · · · .αn. end is the process [[K]] =
a1. · · · .ak.

(
b1 | · · · | bl

)
where {a1, . . . , ak} = rd(K) and {b1, . . . , bl} = wt(K). (In

particular we have [[end]] = 0.) The translated of M , denoted [[M ]], is the process
[[K1]]+· · ·+[[Kn]]. The following theorem proves that may-testing semantics is not able
to distinguish the behavior of an atomic process from the behavior of its translation,
which means that may-testing is blind to the presence of transactions.

Proposition 6.4. For every expression M in normal form we have atom(M) 'may

[[M ]].
Proof: The proof uses the characterization of may testing in term of the al-

ternative preorder. We show separately that atom(M) �may [[M ]] and [[M ]] �may

atom(M). A complete proof can be found at the end of Section B.4. 2

We observe that a process [[M ]] is a choice between processes of the form a.P or(∏
i∈I bi

)
. Therefore, using internal choice and a slightly more convoluted encoding,

it is possible to use only input guarded choice a.P + b.R in place of full choice in the
definition of [[M ]].
Example 6.4.1. Consider the atomic process M = rd(a). rd(b). wt(d). rd(c) and its
translation [[M ]] = a.b.c.d; atom(M) 'may [[M ]] because:
(⇒): atom(M) �may [[M ]] (that is atom(M) <∼may

[[M ]]): atom(M) s=⇒ with either

s = {|a, b, c|} or s = {|a, b, c|}d and [[M ]] s′=⇒ with either s′ = {|a|}{|b|}{|c|} 4

{|a, b, c|} or s′ = {|a|}{|b|}{|c|}d 4 {|a, b, c|}d, (to4);
(⇐): [[M ]] �may atom(M) (that is [[M ]] <∼may

atom(M)): [[M ]] s=⇒ with s ∈

{{|a|}, {|a|}{|b|}, {|a|}{|b|}{|c|}, {|a|}{|b|}{|c|}d} and atom(M) s′−→ with either s′ =
ε 4 {|a|}, {|a|}{|b|}, (to1), or s′ = {|abc|} 4 {|a|}{|b|}{|c|} or s′ = {|abc|}d 4

{|a|}{|b|}{|c|}d, (to4).
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6.5 Conclusions

In this chapter we have studied a formal model for atomicity based on logs. We
have defined Atccs, a process calculus based on a shared memory system, which ex-
tends the asynchronous ccs by adding atomic blocks of actions. The calculus deals
with atomicity constraints by checking logs consistency at commit time instead of
by using locks. We have shown that the calculus is expressive enough to encode in-
teresting concurrency primitives, such as preemptive versions of guarded-choice and
multiset-synchronization. We have also introduced new solutions to the well-known
leader election and dining philosophers problems. We have defined two equivalences,
for processes and atomic expressions, and we have shown that both are congruences.
These equivalences are used to prove the correctness of the encodings, to prove inter-
esting “behavioral laws” and to define a simple normal-form for transactions. Atccs

can be viewed as a starting point in the definition of a transactional calculus for ws.
A relevant limitation of the calculus is that it allows only “basic” atomic processes,
which are simple sequences of actions. Only the orElse construct can add complexity
to atomic blocks: neither concurrency, nor restriction and nesting are allowed. In the
future, it would be interesting to overcome these limitations and to enrich the language
with parallel composition and synchronization of atomic expressions and compensating
and nested transactions. The final calculus would allow to completely modelize and
analize the transactional behavior of ws, as described by using the ws-Transaction
specification [91].
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Chapter

SEVEN

Conclusions

We have attempted to give a process-algebraic account of some important aspects
of soa and ws.

In XPi we target communication. We model ws as communication-centered appli-
cations. We focus our attention on message exchange and processing and on services
interaction. The type system we define is actually very basic, but sufficient to regulate
messaging and ensuring that communications never produce typing errors. In other
words, that clients and servers always understand with each other.

In Astuce we deal with the problems related to rest ws, and in particular we focus
on distribution of resources (documents). Our intent is to study the approach usually
followed in search engines by considering some of its basic aspects. To this end, we
propose a process calculus based on distribution of documents and concurrent pattern-
matching evaluations. Again, our attention is focused on the processing model. The
type system we propose is inspired by existing works and is based on regular expression
types. The presence of a type system here is less fundamental than in XPi. In fact,
since pattern-matching, by definition, can fail, the type system cannot be used for
ensuring the absence of failures. Its aim is to guarantee the validity of documents and
of retrieved information.

Finally, we study two relevant non-functional aspects of ws: responsiveness and
transactionality. The type systems introduced for ensuring responsiveness of services
allow one to analyze the behavior of processes and statically guarantee that a reply
will eventually follow each request. That is, they guarantee users that the required
service will be supplied. The definition and implementation of inference systems
for both proposals are left as future works. In Atccs we address the problem of
dealing with failures by guaranteeing the atomic execution of transactions. We define

159
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transactions as (basic) blocks of actions where only the orElse construct can add
complexity: neither concurrency, nor restriction and nesting are allowed. We have
chosen to follow this simple approach with the aim of defining a powerful operational
semantics for stm and a “clean” notion of equivalence for processes and atomic
transactions.

In this thesis we have focused only on some important aspects of ws, and we have
defined formal methods for reasoning on them. But there are still a lot of aspects we
have not considered and a lot of work to do in this direction.

For instance, we have not directly addressed neither the coordination and orches-
tration aspects, nor the security-related problems. A great deal of these aspects is
expressible as liveness and safety properties written in suitable temporal logics. For
example, we can use logics for guaranteeing that a certain order in a sequence of calls
and communications is respected – hence for coreography – , for guaranteeing that
each access to confidential information is preceded by authentication of the user and
so on. At present, we are investigating this possibility. We would like to introduce
methods for guaranteeing (behavioral) properties of services more involved than just
responsiveness, lock-freedom and termination. For instance, it would be useful to
guarantee that a service operation, let us say ship good , will be invoked only after a
call to another operation, let us say get money (a safety property), or that a call to a
service, let us say pay , is always followed by a notification get good (a liveness prop-
erty). In this respect, behavioral types come into play. Taking inspiration from the
type system of Igarashi and Kobayashi [92], the idea is to define methods for statically
abstracting “propositional” approximations (in terms of ccs, Petri Nets, and so on)
of “first-order” process calculi, such as π-calculus and Join-calculus. More precisely,
let us consider a context associating values and free names of processes with tags be-
longing to a finite set. Tags may represent particular events an external observer is
interested in. If we observe the behavior of a process “through” this context – e.g. by
substituting values and names in transition labels with the corresponding tags – we
obtain an abstraction of the behavior of the whole initial system under this context.
Our aim is to define means to statically compute these abstractions. In particular
we would like to obtain suitable (over-)approximations of the behavior of processes
and to verify certain properties on these approximations, being assured that the same
properties also hold for the abstracted processes.

We have already started working in this direction in [9], where we propose be-
havioral type systems for abstracting π-calculus and Join-calculus processes. Further
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studies could aim at defining suitable combinations of type checking and model check-
ing techniques for property verification and at defining suitable inference systems. It
would also be worthwhile to study this problems in terms of abstract interpretation [60]
and comparing this approach to the one we follow in [9].
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[105] B. Ludäscher, P. Mukhopadhyay and Y. Papakonstantinou. A Tranducer-Based XML
Query Processor. In Proceedings of VLDB, 227–238, Morgan Kaufmann, 2002.

[106] M. Mecella, F. Parisi-Presicce and B. Pernici. Modeling E -service Orchestration through
Petri Nets. In Proceedings of TES, Lecture Notes in Computer Science, 2444:38–47,
Springer-Verlag, 2002.

[107] M. Merro. Locality and polyadicity in asynchronous name-passing calculi. In Proceedings
of FoSSaCS, Lecture Notes in Computer Science, 1784:238–251. Springer-Verlag, 2000.

[108] M. Merro and D. Sangiorgi. On asynchrony in name-passing calculi. In Proceedings of
ICALP, Lecture Notes in Computer Science, 1443:856-867, Springer-Verlag, 1998. Full
version in Mathematical Structures in Computer Science, 14(5):715–767, 2004.

[109] R. Milner. The polyadic π-calculus: a tutorial. Logic and Algebra of Specification,
203–246, Springer-Verlag, 1993.

[110] R. Milner. Calculi for Synchrony and Asynchrony. Theoretical Computer Science,
25:267–310, Elsevier, 1983.

[111] R. Milner, J. Parrow and D. Walker. A calculus of Mobile Processes, part I and II.
Information and Computation, 100:1–40 and 41–78, 1992.

[112] K. Nakano. An implementation scheme for XML transformation languages through
derivation stream processors. In Proceedings of ASIAN, Lecture Notes in Computer Sci-
ence, 3302:74–90, Springer-Verlag, 2004.

[113] K. Nakano. Streamlining functional XML processing. In Proceedings of 1st DIKU-IST
Joint Workshop on Foundations of Software, 2005.

[114] K. Nakano and S-C. Mu. A Pushdown Machine for Recursive XML Processing. In Pro-
ceedings of APLAS, Lecture Notes in Computer Science, 4279:340–356, Springer-Verlag,
2006.

[115] D. Olteanu, T. Furche and F. Bry. An efficient single-pass query evaluator for XML
data structure. In Proceedings of SAC, 627–631, ACM Press, 2004.

[116] C. Palamidessi. Comparing the Expressive Power of the Synchronous and the Asynchro-
nous pi-calculus. Mathematical Structures in Computer Science, 13(5):685–719, 2003.

[117] B. Pierce and D. Sangiorgi. Typing and Subtyping for Mobile Process. Mathematical
Structures in Computer Science, 6(5):409–453, 1996.



171 References

[118] J. Ponge. A New Model For Web Services Timed Business Protocols. In Proceedings of
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Appendix

A

Proofs of Chapter 5

A.1 Proof of Theorem 5.1

Proof of the subject reduction theorem for the type system `1 is quite standard;
as usual a preliminary result on substitution is needed. In what follows, recall that
variables cannot appear in input subject position.

Proposition A.1.1 (substitution). Suppose Γ;∆, x `1 P , x, b : T and b /∈ Γ then
(1) b /∈ ∆ imply Γ;∆, b `1 P [b/x];
(2) b ∈ ∆ and b is either ω-receptive or inert name imply Γ;∆ `1 P [b/x].

Proof: In both cases the proof proceeds by induction on the derivation of
Γ;∆, x `1 P .

(1) Consider the last typing rule applied in the derivation. The interesting case
is (T-Out), in the other cases the proof proceeds by applying the inductive
hypothesis. Concerning rule (T-Par), b /∈ Γ ∪ ∆ in the premis ensures that
acyclicity of the graph and disjointness of ∆ρ

i , for i = 1, . . . , n, are preserved.

(T-Out) ∅;∆, x `1 a〈c〉 implies a : SU, c : S and (∆, x)ρ � {a, c} = ∅. We
distinguish the following cases:

a, c 6= x: (∆, b)ρ � {a, c} = ∅;
a = x: x〈c〉[b/x] = b〈c〉, T = SU and (∆, b)ρ � {b, c} = ∅;
c = x: a〈x〉[b/x] = a〈b〉, T = S and (∆, b)ρ � {a, b} = ∅;

in each case, by (T-Out), ∅;∆, b `1 a〈c〉[b/x].

(2) The result follows by a straightforward induction on typing rules. Recall that
rule (T-Par) does not impose linearity on the usage of ω-receptive and inert
names in output.

173
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2

The following lemma ensures that structural congruent processes have the same
behavior. Note that the presence of (T-Str) spares us from introducing a subject
congruence proposition.

Lemma A.1.1. If P ≡ R is deduced without applying alpha-equivalence and P
α−→ P ′

then R
α−→ R′ and P ′ ≡ R′.

Proof: The proof is straightforward by induction on the derivation of P ≡ R. 2

The following proposition makes a step forward in proving the subject reduction
theorem.

Proposition A.1.2. Suppose Γ;∆ `1 P ; then

(1) P
a(b)−−→ P ′, a : TU and

(a) if b : T and b /∈ ∆ then Γ � {a};∆, b `1 P ′;

(b) if b : T with either T = S[ω,k] or T = I and b ∈ ∆ then Γ � {a};∆ `1 P ′;

(2) P
a〈b〉−−→ P ′ implies Γ;∆ � {a, b} `1 P ′;

(3) P
a(b)−−→ P ′ implies either Γ, b; (∆, b)�{a, b} `1 P ′ if b : TU or Γ; (∆, b)�{a, b} `1

P ′ if b : I .
Proof:

(1) By induction on the derivation of P
a(b)−−→ P ′; the proof proceeds by distinguishing

the last transition rule applied:

(in): a(x).P
a(b)−−→ P [b/x]. a;∆ `1 a(x).P implies, by (T-Inp), ∅;∆, x `1 P and

(a): if b /∈ ∆, by Proposition A.1.1 (1) (substitution), it follows that
∅;∆, b `1 P [b/x];

(b): otherwise, if b : T with either T = S[ω,k] or T = I and b ∈ ∆, by
Proposition A.1.1 (2) (substitution), it follows that ∅;∆ `1 P [b/x].

(rep): !a(x).P
a(b)−−→!a(x).P |P [b/x]. Γ;∆ `1!a(x).P , with Γ = {a}, implies, by

rule (T-Rep), ∆ρ = ∅, a : T[ω,k], x : T and ∅;∆, x `1 P . As previously
seen, Proposition A.1.1 (1,2) (substitution) can be applied (depending on
b ∈ ∆ or not) for deducing ∅;∆′ `1 P [b/x], with either ∆′ = ∆, b or ∆′ = ∆.
Γ � {a} = Γ, hence Γ � {a};∆ `1!a(x).P ; finally, by either (T-Par) (if
P is in normal-form) or (T-Str), (T-Res), (T-Res-i), (T-Res-

T

) and
(T-Par) (otherwise), Γ � {a};∆′ `1!a(x).P |P [b/x], because Γρ = ∆ρ = ∅;

(alpha): the proof proceeds by applying the inductive hypothesis;

(par1): P |R a(b)−−→ P ′|R implies P
a(b)−−→ P ′. We distinguish two cases:
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• if P |R is not in normal-form rule (T-Str) is applied on the last step of
the normal derivation of Γ; ∆ `1 P |R. The proof proceeds by applying
Lemma A.1.1, (alpha) and the inductive hypothesis.

• If P |R is in normal-form rule (T-Par) is applied for deducing Γ; ∆ `1

P |R. Suppose for simplicity that P and R are both prime, in the
general case P = P1| . . . |Pn and R = R1| . . . |Rm, with each Pi and Rj

prime, the proof proceeds similarly.
By (T-Par), Γ = ΓP ∪ΓR , ∆ = ∆P ∪∆R, ΓP ;∆P `1 P and ΓR;∆R `1

R. Moreover, the dependency graph is acyclic and the sets Γρ
P ,Γρ

R and

∆ρ
P ,∆ρ

R are disjoint. By inductive hypothesis, P
a(b)−−→ P ′ implies that

ΓP � {a};∆′
P `1 P ′ with either ∆′

P = ∆P , b or ∆′
P = ∆P .

Suppose P ′ prime. In this case, Γ � {a};∆′ `1 P ′ |R, with either
∆′ = ∆, b or ∆′ = ∆, in fact in both cases (1a) and (1b) acyclicity of the
graph is preserved: nested free inputs are not allowed and no new arcs
from b can be added to the graph. Moreover, disjointness of ∆′

P
ρ, ∆R

ρ

and Γ′
P

ρ,ΓR
ρ is guaranteed (if b is responsive then b /∈ ∆ = ∆R ∪∆P ).

If P ′ is not prime, rules (T-Str), (T-Res), (T-Res-i), (T-Res-

T

)

and (T-Par) are applied for achieving the same result.

(res): (ν c)P
a(b)−−→ (ν c)P ′ implies P

a(b)−−→ P ′ with a, b 6= c. Suppose c : TU (in
the other cases the proof proceeds similarly). By (T-Res), Γ, c;∆, c `1 P

and by induction hypothesis, P
a(b)−−→ P ′ implies (Γ, c) � {a};∆′, c `1 P ′,

with either ∆′ = ∆, b or ∆′ = ∆. Γ�{a};∆′ `1 (ν c)P ′ follows by (T-Res)

and c 6= a.

(2) By induction on the derivation of P
a〈b〉−−→ P ′, the proof proceeds by distinguishing

the last transition rule applied:

(out): a〈b〉 a〈b〉−−→ 0. ∅;∆ `1 a〈b〉 implies, by rule (T-Out), (∆ � {a, b})ρ = ∅
and ∅;∆ � {a, b} `1 0 by rule (T-Nil);

(alpha): the proof proceeds by applying the inductive hypothesis by applying
rule (T-Str);

(par1): P |R a〈b〉−−→ P ′|R implies P
a〈b〉−−→ P ′. The proof proceeds as already seen

for (1), by distinguishing the last rule applied in the normal derivation of
Γ;∆ `1 P |R. Note that in case (T-Par), acyclicity of the dependency
graph and disjointness of input and output contexts are preserved because
the new contexts are obtained by subtracting both a and b (if responsive);
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(res): (ν c)P
a〈b〉−−→ (ν c)P ′ implies P

a〈b〉−−→ P ′ with a, b 6= c. Suppose c : TU (in
the other cases the proof proceeds similarly). In the normal derivation of
Γ;∆ `1 (ν c)P rule (T-Res) is the last applied with premise Γ, c;∆, c `1 P ,

hence by applying the inductive hypothesis, P
a〈b〉−−→ P ′ implies Γ, c; (∆, c)�

{a, b} `1 P ′. Γ;∆ � {a, b} `1 (ν c)P ′ follows by (T-Res) and c 6= a, b.

(3) By induction on the derivation of P
a(b)−−→ P ′, the proof proceeds by distinguishing

the last transition rule applied. The interesting case is (open), in the other cases
the proof proceeds by induction as already seen for (2).

(ν b)P
a(b)−−→ P ′ implies P

a〈b〉−−→ P ′ and a 6= b. Consider the normal derivation
of Γ;∆ `1 (ν b)P and suppose rule (T-Res) is applied in the last step of the
derivation (the case (T-Res-i) can be proved similarly and it cannot be the case
that (T-Res-t) is applied, because b ∈ on(P ).) Hence, Γ, b;∆, b `1 P and by

inductive hypothesis, P
a〈b〉−−→ P ′ implies Γ, b; (∆, b) � {a, b} `1 P ′.

2

Theorem A.1.1 (Theorem 5.1). Suppose Γ;∆ `1 P and P
[a]−→ P ′. Then Γ �

{a};∆ � {a} `1 P ′.

Proof: By induction on the derivation of P
[a]−→ P ′; we consider the last reduction

rule applied:
(alpha): the proof proceeds by applying the inductive hypothesis by applying rule

(T-Str);

(com1): P |R τ〈a,b〉−−−→ P ′|R′ implies P
a〈b〉−−→ P ′ and R

a(b)−−→ R′. We distinguish two
cases, depending on the last rule applied in the normal derivation of Γ;∆ `1 P |R:

(T-Str): the proof proceeds by applying the inductive hypothesis and relies
on Lemma A.1.1 and (alpha);

(T-Par): suppose, for simplicity, that P and R are prime. In the most general
case where both are the parallel composition of prime sub-processes the
proof proceeds similarly. Γ;∆ `1 P |R implies that Γ = ΓP ∪ ΓR, ∆ =
∆P∪∆R, ΓP ;∆P `1 P and ΓR;∆R `1 R. Moreover Γρ

P∩Γρ
R = ∆ρ

P∩∆ρ
R = ∅

and the dependency graph is acyclic. By Proposition A.1.2 (2,1), P
a〈b〉−−→ P ′

and R
a(b)−−→ R′ imply that ΓP ;∆P � {a, b} `1 P ′ and ΓR � {a};∆′

R `1 R′,
with either ∆′

R = ∆R, b, if b /∈ ∆R, or ∆′
R = ∆R and b is either a ω-receptive

or a inert name.

Suppose P ′ and R′ are both prime. It is easy to see that the premises of
(T-Par) are still satisfied: the graph is acyclic because nested inputs are
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not allowed hence no new arcs from b can be added to the graph; and if b is
responsive b /∈ ∆R and b /∈ (∆P �{a, b}). Hence Γ�{a};∆�{a} `1 P ′ |R′.

If P ′ and R′ are not prime, rules (T-Str), (T-Res), (T-Res-i),
(T-Res-

T

) and (T-Par) can be applied for achieving the same result;

(par1): P |R [a]−→ P ′|R implies P
[a]−→ P ′. We distinguish two cases, depending on the

last typing rules applied in the normal derivation of Γ;∆ `1 P |R:

(T-Str): the proof proceeds by applying the inductive hypothesis and relies
on Lemma A.1.1 and (alpha);

(T-Par): the proof proceeds by applying the inductive hypothesis and ei-
ther (T-Par), if P ′ and R are prime, or (T-Str), (T-Res), (T-Res-i),
(T-Res-

T

) and (T-Par), otherwise;

(close1): P |R τ〈a,b〉−−−→ (ν b)(P ′|R′) implies P
a(b)−−→ P ′, R

a(b)−−→ R′ and b /∈ fn(R).
(T-Str) is the last rule applied in the normal derivation of Γ;∆ `1 P |R. Process
P is not prime (it contains a restriction on b), hence there exists S in normal-form
such that: P |R ≡ S, Γ;∆ `1 S and S = (ν b)(ν d̃P )(ν d̃R)(P1 |R1), with P1 and
R1 parallel compositions of prime processes, such that (ν b)(ν d̃P )P1 ≡ P and

(ν d̃R)R1 ≡ R. The result follows by observing that (ν b)(ν d̃P )P1
a(b)−−→ (ν d̃P )P ′

1

and (ν d̃P )P ′
1 ≡ P ′ (Lemma A.1.1), (ν d̃R)R1

a(b)−−→ (ν d̃R)R′
1 and (ν d̃R)R′

1 ≡ R′

(Lemma A.1.1), S′ = (ν b)(ν d̃P )(ν d̃R)(R′
1 |P ′

1) (close1), S′ ≡ (ν b)(P ′ |R′) and
by applying Proposition A.1.2 (1a,3) and rules (T-Par), (T-Str), (T-Res),
(T-Res-i) and (T-Res-t);

(res): (ν a)P
τ〈b,c〉−−−→ (ν a)P ′ implies P

τ〈b,c〉−−−→ P ′ with either a = b and a ω-receptive
or a 6= b. In the normal derivation of Γ;∆ `1 (ν a)P the premise of the last step
is either Γ;∆, a `1 P , if a : I (by (T-Res-i)), or Γ, a;∆, a `1 P , if a : TU (by
(T-Res)).
We distinguish the following cases:

U = [ω, k] and a = b: by induction P
τ〈a,c〉−−−→ P ′ implies (Γ, a) � {a}; (∆, a) �

{a} `1 P ′, but a is ω-receptive, hence (Γ, a)�{a} = Γ and (∆, a)�{a} = ∆;
by (T-Res), Γ;∆ `1 (ν a)P ′;

otherwise: suppose a 6= b and a : TU (the cases a : I and a :

T

are similar). By
induction (Γ, a)�{b}; (∆, a)�{b} `1 P ′; b 6= a, thus (Γ, a)�{b} = Γ�{b}, a
and (∆, a)�{b} = ∆�{b}, a. Hence, by rule (T-Res), Γ�{b};∆�{b} `1

(ν a)P ′;
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(res-ρ): (ν a)P
τ〈a,b〉−−−→ (ν c)P ′[c/a], with c :

T

, implies P
τ〈a,b〉−−−→ P ′ and a : T[ρ,k].

Γ;∆ `1 (ν a)P implies, by rule (T-Res), Γ, a;∆, a `1 P ; by induction (Γ, a) �

{a}; (∆, a) � {a} `1 P ′ that is Γ;∆ `1 P ′ with a /∈ fn(P ′). Moreover, c fresh
implies c /∈ fn(P ′[c/a]) and by (T-Res-

T

) and c :

T

we have Γ;∆ `1 (ν c)P ′[c/a].
2

A.2 Proof of Theorem 5.2

In this section we prove the intermediary results needed for proving Theorem 5.2
(responsiveness).

Lemma A.2.1 (Lemma 5.2). Suppose Γ;∆ `1 P , then there exists a normal deriva-
tion of Γ;∆ `1 P .

Proof: The proof is straightforward by induction on the length of the derivation
of Γ;∆ `1 P . We distinguish the last typing rule applied.

The base cases are (T-Out) and (T-Nil). Rules (T-Inp) and (T-Rep) relies on
the inductive hypothesis for deriving a normal derivation of the well-typedness of the
continuation processes. Similar comments for the typing rules for restriction and for
(T-Par).

The more involved case is when (T-Str) is the last rule applied. Suppose the
premises are P ≡ R and Γ;∆ `1 R, and the conclusion is Γ;∆ `1 P .

If P is not in normal-form and R is, then, by inductive hypothesis, well-typedness of
R can be deduced by using a normal derivation and by further applying rule (T-Str)

we obtain a normal derivation of Γ;∆ `1 P .
Suppose R is not in normal-form and P is, then, rule (T-Str) has been applied for

deducing Γ;∆ `1 R; suppose the process in the premise of this step is R′. R′ ≡ R and
R ≡ P implies that P ≡ R′. Hence, if we consider the initial derivation of Γ; ∆ `1 P

and we substitute the last two steps (which are applications of (T-Str)) with a single
application with premise P ≡ R′, we obtain a derivation of Γ; ∆ `1 P smaller than the
initial one, hence by inductive hypothesis there exists a normal derivation of Γ;∆ `1 P .

Finally, suppose both P and R are in normal-form, with P 6= R. By inductive
hypothesis a normal derivation of Γ; ∆ `1 R exists. Suppose P ≡ R is deduced by
applying a single structural rule (hence without applying the transitivity of ≡); we
distinguish the following cases (it is easy to generalize to the case where ≡ have been
applied n > 1 times):

• if P is obtained from R by applying either commutativity/associativity of parallel
composition or by commutating restrictions then it is easy to obtain a normal
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derivation for Γ;∆ `1 P from the normal derivation of Γ;∆ `1 R;
• scope extrusion cannot be applied because both P and R are in normal form;
• if alpha-renaming is applied, then we can obtain a normal derivation of Γ;∆ `1 P

by considering the “alpha-renaming of the normal derivation” of Γ;∆ `1 R;
• if P = (ν a)R, with either a : I or a :

T

, then a normal derivation for Γ;∆ `1 P

can be obtained by the normal derivation of Γ; ∆ `1 R followed by the applica-
tion of either (T-Res-i) or (T-Res-

T

) instead of (T-Str);
• if R = (ν a)P , with either a : I or a :

T

, then a normal derivation of Γ; ∆ `1 P

is obtained from the normal derivation of Γ;∆ `1 R by removing the last step
(that is the step used for bounding a in P).

2

Proposition A.2.1 (Proposition 5.1). Suppose that Γ;∆ `1 P , with Γ, ∆ and P

satisfying the conditions in the premise of rule (T-Par) and Γρ = ∆ρ. Then for some
j in 1, . . . , n we have Pj = a〈b〉 with either a or b responsive.

Proof: P = P1 | · · · |Pn, for each i process Pi is prime, Γi;∆i `1 Pi, Γρ
i ∩ Γρ

j =
∅ and ∆ρ

i ∩ ∆ρ
j = ∅ for i 6= j. Moreover, Γ =

⋃
i=1...n Γi, ∆ =

⋃
i=1...n ∆i; and

DG(Γρ
i ,∆

ρ
i )i=1,...,n is acyclic.

The acyclicity of the graph implies that there is at least one node c with no outgoing
arcs. By construction of the graph and Γρ = ∆ρ we have that ∃j ∈ 1, . . . , n s.t. c ∈ ∆ρ

j

and Γρ
j = ∅. Consider the process Pj . By hypothesis Pj is prime and Γj ;∆j `1 Pj .

By contradiction, assume Pj =!a(b).R. Γj ;∆j `1!a(b).R and rule (T-Rep) imply
∆j

ρ = ∅, but this is in contradiction with the hypothesis c ∈ ∆ρ
j , thus Pj 6=!a(b).R.

Again by contradiction, assume Pj = a(b).P . Γj ;∆j `1 a(b).P and rule (T-Inp)

imply Γρ
j = {a}, but this is in contradiction with the hypothesis Γρ

j = ∅, thus Pj 6=
a(b).P .

In conclusion, Pj prime implies that Pj = a〈b〉 with either a = c or b = c, thus at
least one of the two names is responsive. 2

Substitutions preserve wt(·):

Lemma A.2.2. Suppose Γ;∆, x `1 P and x, b : T. Then wt(P ) = wt(P [b/x]).
Proof: The proof is straightforward by induction on the definition of wt(·) (note

that x, b : T implies that lev(x) = lev(b)). 2

The following proposition ensures that the weight of a process (Table 5.7) is a
good measure when considering responsive reductions, in fact it decreases after each
communication involving responsive names. This thanks to the constraints on levels
in the premises of rule (T-Rep) and to the linearity of responsive names. The lemma
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below is useful for proving this result.

Lemma A.2.3. Suppose Γ;∆ `1 P , then:

(1) if a ∈ Γ, a : TU and b : T then P
a(b)−−→ P ′ and, if either a or b is responsive,

wt(P ′) ≺ wt(P ) + 0lev(a);

(2) if P
a〈b〉−−→ P ′ (or P

a(b)−−→ P ′) then wt(P ′) 4 wt(P )− 0lev(a).
Proof: In both cases the proof proceeds by induction on the derivation of Γ; ∆ `1

P .
(1) Consider the last typing rule applied in the derivation; the most interesting

cases are rules (T-Inp) and (T-Rep). The other cases can be easily proved by
applying the inductive hypothesis.

(T-Inp): Suppose P = a(x).R. By rule (in), a(x).R
a(b)−−→ R[b/x] and by

(T-Inp), x : T. wt(a(x).R)+0lev(a) = wt(R)+0lev(a) � wt(R[b/x]) = wt(R),
by Lemma A.2.2.

(T-Rep): Suppose P =!a(x).R. a;∆ `1!a(x).R implies that ∀c ∈ os(R) :

lev(c) < lev(a). By rule (rep), !a(x).R
a(b)−−→!a(x).R|R[b/x]. If b is ω-

receptive, there is nothing to prove. Otherwise, from ∀c ∈ os(R) :
lev(c) < lev(a), we have wt(!a(x).R) + 0lev(a) = 0lev(a) � wt(R[b/x]) =
wt(!a(x).R|R[b/x]);

(2) Consider the last typing rule applied in the derivation; the most interesting
cases are rules (T-Out) and (T-Res). The other cases can be easily proved by
applying the inductive hypothesis.

(T-Out): Suppose P = a〈b〉. By (out), a〈b〉 a〈b〉−−→ 0 and wt(0) = wt(a〈b〉) −
0lev(a);

(T-Res): Suppose P = (ν d)R and d : T (the cases d : I and d :

T

are
proved similarly.) By (T-Res), Γ; ∆ `1 (ν d)R implies Γ, d;∆, d `1 R. We
distinguish two cases considering the transition rule applied:

(open): (ν d)R
a(d)−−→ R′ implies R

a〈d〉−−→ R′ and, by inductive hypothesis,
wt(R′) 4 wt(R)− 0lev(a) = wt((ν d)R)− 0lev(a);

(res): (ν d)R
a〈b〉−−→ (ν d)R′ implies R

a〈b〉−−→ R′, a, b 6= d and, by induc-
tive hypothesis, wt(R′) 4 wt(R) − 0lev(a). By definition of wt(·),
wt((ν d)R′) = wt(R′) 4 wt(R)− 0lev(a) = wt((ν d)R)− 0lev(a).

2

Proposition A.2.2 (Proposition 5.2). Suppose Γ;∆ `1 P and P
τ〈a,b〉−−−→ P ′, with

either a or b responsive. Then wt(P ′) ≺ wt(P ).
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Proof: By induction on the derivation of Γ;∆ `1 P , we distinguish the last
typing rule applied. The interesting case is rule (T-Par), the other cases can be
easily proved by applying the inductive hypothesis.

Γ;∆ `1 P implies that P = P1| · · · |Pn, with Pi prime and Γi;∆i `1 Pi, for

i = 1, . . . , n. P
τ〈a,b〉−−−→ P ′ implies (by rule (com1−2)) that we can divide the Pis into

two groups called S and R respectively, such that S contains Pj such that Pj
a〈b〉−−→

and R contains Pk such that Pk
a(b)−−→. Thus, by (par1) and (par2), S

a〈b〉−−→ S′ and

R
a(b)−−→ R′. In the same manner we group all contexts Γi and ∆i into the contexts

ΓS , ∆S , ΓR and ∆R such that ΓS ;∆S `1 S and ΓR;∆R `1 R. By Lemma A.2.3 (1,2)
we have that wt(R′) ≺ wt(R) + 0lev(a) and wt(S′) 4 wt(S)− 0lev(a), that is wt(P ′) =
wt(R′) + wt(S′) ≺ wt(S)− 0lev(a) + wt(R) + 0lev(a) = wt(P ). 2

A.3 Proof of Theorem 5.3

In what follows we introduce some notations and prove some preliminary results
useful for giving a detailed proof of Theorem 5.3, which is only sketched in [64].

We denote by O(P ) the set of all output actions of P that are active, that is, not
underneath a replication; O(P ) is formally defined as follows

O(0) = ∅ O(a(b).P ) = O(P ) O(a〈b〉) = {a〈b〉}

O(!a(b).P ) = ∅ O((ν a)P ) = O(P ) O(P |R) = O(P ) ∪O(R) .

We indicate with Oρ(P ) the set containing all output actions in O(P ) involving
a responsive name. We also write |Oρ(P ) | and |O(P ) | for the size of Oρ(P ) and
O(P ), respectively. The height of P , written h(P ), is defined as the greatest size of a
replicated term in P . E.g. h(!a(x).P ) = 1 + |P |.

First of all, we prove that weight and height of a process and the number of outputs
it contains are preserved by structural congruence. Moreover we prove that the number
of outputs in a process P is upper bounded by |P |. After, in Proposition A.3.1, we
show that the number of output actions in P and its size may grow only after a
reduction where the subject is an ω-receptive name, but this grown is limited by
h(P ).

Lemma A.3.1. If P ≡ R then wt(P ) = wt(R), |Oρ(P ) | = |Oρ(R) | and h(P ) =
h(R).

Proof: The proof is straightforward by induction on the derivation of P ≡ R.
2
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Lemma A.3.2. If Γ;∆ `1 P then |Oρ(P ) | 6 |P |.
Proof: By definition of |Oρ(P ) |. 2

Proposition A.3.1. If Γ;∆ `1 P then:

(1) if either P
a〈b〉−−→ P ′ or P

a(b)−−→ P ′ and either a or b is responsive then |Oρ(P ′) | =
|Oρ(P ) | − 1;

(2) if P
a(b)−−→ P ′, with a responsive name, then |Oρ(P ′) | = |Oρ(P ) |;

(3) if P
a(b)−−→ P ′, with a ω-receptive name, then |Oρ(P ′) | 6 |Oρ(P ) |+ h(P );

(4) if P
[a]−→ P ′, with a responsive name, then |Oρ(P ′) | 6 |Oρ(P ) | − 1;

(5) if P
[a]−→ P ′, with a ω-receptive name carrying responsive names, then

|Oρ(P ′) | 6 |Oρ(P ) |+ h(P )− 1.
Proof: In all cases the proof proceeds by induction on the derivation of P

µ−→ P ′;
in each case we distinguish the last transition rule applied:

(1) the interesting case is (out); case (alpha) relies on Lemma A.3.1 and the
other cases ((par1), (open) and (res)) can be proved by applying the inductive
hypothesis.

By (out), a〈b〉 a〈b〉−−→ 0 with a or b responsive, and |Oρ(a〈b〉) |−1 = 0 = |Oρ(0) |;
(2) the interesting case is (in); case (alpha) relies on Lemma A.3.1 and the other

cases ((par1) and (res)) can be proved by applying the inductive hypothesis.

By (in), a(x).P
a(b)−−→ P [b/x], Oρ(a(x).P ) = Oρ(P ), thus |Oρ(a(x).P ) | =

|Oρ(P ) | and |Oρ(P ) | = |Oρ(P [b/x]) |;
(3) the interesting case is (rep); case (alpha) relies on Lemma A.3.1 and the other

cases ((par1) and (res)) can be proved by applying the inductive hypothesis.

By (rep), !a(x).P
a(b)−−→!a(x).P |P [b/x], Oρ(!a(x).P ) = ∅, h(!a(x).P ) = 1 + |P |

and |Oρ(!a(x).P |P [b/x]) | = |Oρ(P [b/x]) |. By Lemma A.3.2, |Oρ(P ) | 6 |P |,
hence |Oρ(P [b/x]) | 6 h(!a(x).P ) and |Oρ(!a(x).P |P [b/x]) | 6 |Oρ(!a(x).P ) | +
h(!a(x).P );

(4) the interesting cases are rules (com1) and (close1); case (alpha) relies on
Lemma A.3.1 and the other cases ((par1), (res) and (res-ρ)) can be proved
by applying the inductive hypothesis.

(com1): R|S τ〈a,b〉−−−→R′|S′, with a responsive name, implies R
a〈b〉−−→ R′ and

S
a(b)−−→ S′. Γ;∆ `1 R|S implies, that there are suitable contexts Γ1,∆1,Γ2

and ∆2, such that Γ1;∆1 `1 R and Γ2;∆2 `1 S.

By Proposition A.3.1 (1,2) we have |Oρ(R′) | = |Oρ(R) |−1 and |Oρ(S′) | =
|Oρ(S) |, thus |Oρ(P ′) | = |Oρ(R′|S′) | = |Oρ(R′) |+|Oρ(S′) | = |Oρ(R) |−
1 + |Oρ(S) | = |Oρ(P ) | − 1;
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(close1): this case is similar to the previous one;

(5) the interesting cases are rules (com1) and (close1); case (alpha) relies on
Lemma A.3.1 and the other cases ((par1) and (res)) can be proved by applying
the inductive hypothesis.

(com1): R|S τ〈a,b〉−−−→ R′|S′, with a ω-receptive name, implies R
a〈b〉−−→ R′ and

S
a(b)−−→ S′. Γ;∆ `1 R|S implies that there are suitable contexts Γ1,∆1,Γ2

and ∆2, such that Γ1;∆1 `1 R and Γ2;∆2 `1 S.

By Proposition A.3.1 (1,3) we have |Oρ(R′) | = |Oρ(R) |−1 and |Oρ(S′) | 6
|Oρ(S) | + h(S), thus |Oρ(P ′) | = |Oρ(R′|S′) | = |Oρ(R′) | + |Oρ(S′) | 6

|Oρ(P ) | − 1 + |Oρ(S) |+ h(S) 6 |Oρ(P ) |+ h(P )− 1;

(close1): this case is similar to the previous one.

2

The height of a process is preserved by transitions:

Proposition A.3.2. If P
µ−→ P ′ then h(P ′) = h(P ).

Proof: The proof is straightforward by induction on the derivation of P
µ−→ P ′.

2

Each component of the weight vector of a process P gives us the number of active
outputs in P of the corresponding level.

Proposition A.3.3. If Γ;∆ `1 P and wt(P ) = 〈wk, . . . , w0〉 then in Oρ(P ) there are
at most wi output of level i for i in 0, . . . , k.

Proof: By induction on the structure of P :
P = 0, P =!a(x).P ′: Oρ(P ) = ∅ and wt(P ) = 0;
P = a(x).P ′: wt(a(x).P ′) = wt(P ′) and Oρ(a(x).P ′) = Oρ(P ′). Γ;∆ `1 a(x).P ′

implies ∅;∆, x `1 P ′; the result follows by applying the inductive hypotesis;
P = a〈b〉: wt(a〈b〉) = 0lev(a) and Oρ(a〈b〉) = {a〈b〉}. In Oρ(P ) there is one output of

level lev(a) and wlev(a) = 1;
P = P1|P2: wt(P1|P2) = wt(P1) + wt(P2); Oρ(P1|P2) = Oρ(P1) ∪ Oρ(P2). Γ;∆ `1

P1|P2 can be derived by using a normal derivation (Lemma 5.2) and from this
derivation it can be deduced that Γj ;∆j `1 Pj for j = 1, 2 and suitables Γj and
∆j . By inductive hypothesis, if wt(Pj) = 〈wkj

, . . . , w0j 〉, in Oρ(Pj) there are at
most wij outputs of level i, thus in Oρ(P1|P2) there are at most wi1 + wi2 = wi

outputs of level i;
P = (ν c)P ′: wt((ν c)P ′) = wt(P ′) = 〈wk, . . . , w0〉. Suppose c : TU, the other cases

can be proved similarly. In the normal derivation of Γ;∆ `1 (ν c)P ′ rule (T-Res)
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is applied in the last step with premise Γ, c;∆, c `1 P ′. Moreover, Oρ((ν c)P ′) =
Oρ(P ′), by definition of Oρ(·). The result follows by applying the inductive
hypotesis.

2

We introduce now the notion of graph of the responsive scheduling. Given a re-
sponsive scheduling S, this graph contains a node for every reduction step of S, and
an arc from one node to another if the execution of the first reduction “activate” the
second. More formally:

Definition A.3.1 (graph of the responsive scheduling). Consider a responsive

scheduling S = P0
τ〈a1,b1〉−−−−−→ P1

τ〈a2,b2〉−−−−−→ P2 · · · . We construct a graph G(S) where the
nodes are the pairs (ai, bi) and there is an arc from (ai, bi) to (aj , bj) if j > i, ai is an
ω-receptive name and

(a) aj〈bj〉 /∈ Oρ(R) for every process R such that Pi−1
τ〈c1,d1〉−−−−−→ · · · τ〈ck,dk〉−−−−−→ R, with

k > 0 and each ci responsive name;

(b) aj〈bj〉 ∈ Oρ(R′) for a process R′ such that Pi
τ〈c1,d1〉−−−−−→ · · · τ〈ck,dk〉−−−−−→ R′, with k > 0

and each ci responsive name.

As an example, consider the process (where c and d are ω-receptive and the other
names responsive)

P = a〈b〉 | a(x).x〈c〉 | b(y).y〈e〉 | !c(z).(ν f)(f.d〈z〉 | f) | !d(w).w | e

and the responsive scheduling P
τ〈a,b〉−−−→ τ〈b,c〉−−−→ τ〈c,e〉−−−→ τ〈f, 〉−−−→ τ〈d,e〉−−−→ τ〈e, 〉−−−→. The correspond-

ing graph is depicted below.

In what follows, we define the level of a node as the level of the subject of the
corresponding reduction and we say a node responsive (resp. ω-receptive) if the subject
of the corresponding reduction is responsive (resp. ω-receptive).

Proposition A.3.4. Suppose Γ;∆ `1 P , S is a responsive scheduling from P and
G(S) is the graph associated to S. For every vertex v of G(S) we have:

(1) the subgraph with root v contains only vertexes with level lower than v;
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(2) if v is a responsive node then the subgraph with root v contains only the node
itself;

(3) v has at most h(P ) outgoing arcs.
Proof:

(1) By definition of graph of the responsive scheduling (Definition A.3.1) definition
of active output (O(P )) and rule (T-Rep).

(2) By Definition A.3.1.
(3) By Proposition A.3.4 (2), if v is a responsive node it has not outgoing arcs.

Suppose v is ω-receptive and let be v = (ai, bi). By Proposition A.3.1 (5), if

Pi−1
τ〈ai,bi〉−−−−→ Pi then |Oρ(Pi) | 6 |Oρ(Pi−1) | + h(P ) − 1. Moreover, by Propo-

sition A.3.1 (4), each reduction with responsive subject decreases |Oρ(·) | by 1
and it does not add new pairs to Oρ(·), but possibly substitute names in already
existing pairs. Hence |Oρ(Pi) | > |Oρ(R1) | > · · · > |Oρ(Rn) | with Rn = R′ and
each Ri reachable from Pi by a sequence of reductions with responsive subjects.
Hence, by definition of active output, there can be at most h(P ) nodes (aj , bj)
in the scheduling such that j > i and directly connected with v by an incoming
arc.

2

Theorem A.3.1 (Theorem 5.3). Let P be (Γ;∆)-balanced and r ∈ ∆ρ and let k

be the maximal level of names appearing in active output actions of P , O(P ). Then
there is at least one responsive scheduling that contains a reduction with r as subject.
Moreover, in all such schedulings, the number n of reductions preceding the reduction
on r is upper-bounded by |P |k+1.

Proof: By Theorem 5.2 (responsiveness) P
[r]−→. For defining an upper bound for

n, the length of the longest responsive scheduling that does not contains r as subject
(which is finite because of Koenig’s Lemma) can be estimated.

Suppose that S = P0
τ〈a1,b1〉−−−−−→ P1

τ〈a2,b2〉−−−−−→ P2 · · · is this scheduling (note that
every process in S is well typed by Theorem 5.1 (subject reduction)). The number
of reductions in S is bounded above by the size of G(S). For each i, the function
f(i) is defined as the greatest size of a subgraph of G(S) that has exactly one root
of level i. From Proposition A.3.4, every node in the subgraph has level < i. By
Proposition A.3.4 (3), every node in G(S) has at most h(P ) outgoing arcs; considering
that h(P ) 6 |P |:

f(i) 6 1 + |P | ∗ f(i− 1) 6
i∑

j=0

|P |j =
|P |i+1 − 1
|P | − 1

.
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Note that f(i) is monotone on i by definition.
By Proposition A.3.3, there are at most wi roots of level i in G(S), thus:

n 6
k∑

i=0

wi ∗ f(i) hence f(i) 6 f(k) ∗ (w0 + · · ·+ wk)

the last inequation because of the monotonicity of f(·). f(k) = |P |k+1−1
|P |−1 and wk + · · ·+

w0 6 |P |, thus
n 6 f(k) ∗ (wk + · · ·+ w0) 6 |P |k+1

in other words n is O(|P |k+1). 2

A.4 Proofs of Section 5.4

In this section we prove that the subject reduction theorem is satisfied by type sys-
tem `2 and the intermediary results needed for proving Theorem 5.5 (responsiveness).
Firstly we introduce some preliminary results.

Proposition A.4.1 (substitution). Suppose Γ;∆, xt `2 P , with t 6= p, n and x, b : T,
then

(1) b /∈ ∆ and bm /∈ Γ imply Γ;∆, bt `2 P [b/x];
(2) bt ∈ ∆, bm /∈ Γ and T 6= S[ρ,k], imply Γ;∆ `2 P [b/x].

Proof: In both cases the proof is straightforward by induction on the derivation of
Γ;∆, xt `2 P . The additional constraints on b and t ensure that, in case P is a parallel
composition, the premises of rule (T+-Par) are still satisfied after substitution. 2

Lemma A.4.1. P >α,ρ R and Γ;∆ `2 P imply Γ;∆ `2 R.
Proof: The result follows recalling that alpha-renaming is sort-respecting. 2

Proposition A.4.2. Γ;∆ `2 P implies:

(1) if P
a(c)−−→ P ′, with a : TU and c : T then

(a) if c /∈ ∆ and cm /∈ Γ then Γ �+ ({a} \ in(P ′));∆, ct `2 P ′ with t 6= n, p;

(b) if ct ∈ ∆, cm /∈ Γ, with t 6= n, p and T 6= S[ρ,k], then Γ�+({a}\in(P ′));∆ `2

P ′;

(2) if P
a〈b〉−−→ P ′ then Γ;∆ �+ ({a, b} \ on(P ′)) `2 P ′;

(3) if P
a(b)−−→ P ′ then Γ;∆ �+ ({a} \ on(P ′)), b `2 P ′ if b : I and Γ, b; (∆, b) �+

({a, b} \ on(P ′)) `2 P ′ otherwise.
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Proof: The proof proceeds by induction on the derivation of P
µ−→ P ′. In each

case we distinguish the last transition rule applied. Omitted cases can be easily proved
by applying the inductive hypothesis; case (alpha) relies on Lemma A.4.1.

(1) (in): a(b).P
a(c)−−→ P [c/b]. By (T+-Inp), Γ, at′′ ;∆ `2 a(b).P implies a : T[u,k]

with u 6= ω, b : T and Γ;∆, bt `2 P with t 6= n, p.

Suppose cm /∈ Γ and c /∈ ∆. By c : T and by Proposition A.4.1 (1)
(substitution), Γ;∆, ct `2 P [c/b] with t 6= n, p (note that Γ = (Γ, a) �+

({a} \ in(P [c/b])) because a /∈ in(P [c/b]) by (T+-Inp)).

Suppose cm /∈ Γ, ct′ ∈ ∆, with t′ 6= n, p, and T 6= S[ρ,k]. Thus, the capabili-
ties t and t′ are univocally determined by T, hence, by b, c : T, t = t′ and,
by Proposition A.4.1 (2) (substitution), Γ;∆ `2 P [c/b].

(rep): !a(b).P
a(c)−−→!a(b).P | P [c/b]. Suppose a +-responsive, if a is an ω-

receptive name the proof proceeds similarly.

By (T+-Repp), Γ, ap;∆ `2!a(b).P implies a : T[ρ+,k], b : T, ∆ρ = ∆p =
Γρ = Γs = Γω = Γp = ∅ and Γ;∆, bt `2 P with t 6= n, p.

Suppose cm /∈ Γ and c /∈ ∆. By c : T and by Proposition A.4.1 (1)
(substitution), Γ;∆, ct `2 P [c/b] with t 6= n, p. Rule (T+-Par) can
be applied for deducing Γ, ap;∆, ct `2!a(b).P | P [c/b] (note that Γ, ap =
(Γ, ap) �+ ({a} \ in(!a(b).P | P [c/b]))).

Suppose cm /∈ Γ and ct′ ∈ ∆ with t′ 6= n, p, depending on T, and T 6= S[ρ,k].
By c : T, t = t′ and, by Proposition A.4.1 (2) (substitution), Γ; ∆ `2 P [c/b].
Rule (T+-Par) can be applied for deducing Γ, ap;∆ `2!a(b).P | P [c/b].

Note that in case (par1) the premises of the rule are guaranteed by the additional
constraints t 6= n, p and cm /∈ Γ.

(2) (out): a〈b〉 a〈b〉−−→ 0; by (T+-Out) ∅;∆, at, bt′ `2 a〈b〉 implies ∆ρ = ∆ρ+
= ∅;

hence, by (T+-Nil), ∅; (∆, at, bt′) �+ {a, b} `2 0;

(outp): !a〈b〉 a〈b〉−−→!a〈b〉; and ∅;∆, at, bt′ `2!a〈b〉 ((∆, at, bt′) �+ ({a, b} \
on(!a〈b〉)) = (∆, at, bt′)).

(3) (open): (ν b)P
a(b)−−→ P ′ implies P

a〈b〉−−→ P ′. Suppose b : TU, if b : I the proof
proceeds in a similar way and it cannot be b :

T

because b ∈ on(P ). By
(T+-Res), Γ, bt;∆, bt′ `2 P and by Proposition A.4.2 (2) Γ, bt; (∆, bt′) �+

({a, b} \ on(P ′)) `2 P ′.
2

Lemma A.4.2. Suppose Γ;∆ `2 P . P
a〈b〉−−→ P ′ and b responsive name imply that

b /∈ on(P ′).
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Proof: The proof is straightforward by induction on the derivation of Γ; ∆ `2 P .
2

Theorem A.4.1 (Theorem 5.4). Γ;∆ `2 P and P
[a]−→ P ′ imply Γ′;∆′ `2 P ′, with

Γ′ = Γ �+ ({a} \ in(P ′)) and ∆′ = ∆ �+ ({a} \ on(P ′)).

Proof: The proof proceeds by induction on the derivation of P
[a]−→ P ′; we

distinguish the last transition rule applied:

(com1): P |R [a]−→ P ′|R′ implies P
a〈b〉−−→ P ′ and R

a(b)−−→ R′. Γ;∆ `2 P |R implies
Γ = ΓP ∪ ΓR, ∆ = ∆P ∪ ∆R, ΓP ;∆P `2 P , ΓR;∆R `2 R, Γ`

P ∩ Γ`
R = ∅

for ` = ρ, s, p and ∆`′
P ∩ ∆`′

R = ∅ for `′ = ρ, p. Moreover, Γm ∩ ∆m = ∅ and
Γp ∩∆p = ∅.
By P

a〈b〉−−→ P ′, ΓP ;∆P `2 P and Proposition A.4.2 (2), ΓP ;∆P �+ ({a, b} \
on(P ′)) `2 P ′. bt ∈ ∆P with t 6= n, p (because b is used as object of an output
and because of (T+-Out), (T+-Outp)), thus either t = − or t = m and by
Γm ∩∆m = ∅ we have bm /∈ Γ.
Suppose b /∈ ∆R. By R

a(b)−−→ R′, ΓR;∆R `2 R, bm /∈ ΓR ⊆ Γ and Proposi-
tion A.4.2 (1), ΓR �+ ({a} \ in(R′));∆R, bt′ `2 R′ with t′ 6= n, p.
Let be Γ′

P = ΓP , Γ′
R = ΓR �+ ({a} \ in(R′)), ∆′

P = ∆P �+ ({a, b} \ on(P ′))
(by Lemma A.4.2 if b is a responsive name then b /∈ on(P ′)) and ∆′

R = ∆R, bt′ .
Note that t = t′ because both are different from n and p, hence univocally
determined by the type of b. By (T+-Par), Γ′;∆′ `2 P ′|R′ with Γ′ = Γ′

P ∪Γ′
R =

Γ �+ ({a} \ in(P ′|R′)) and ∆′ = ∆ �+ ({a} \ on(P ′|R′)).
Similar proof if bt ∈ ∆R. Note that it cannot be bt′ ∈ ∆R with t 6= t′ because
otherwise ∆R ∪∆P would not be defined;

(close1): the proof proceeds similarly. Note that in this case b /∈ ∆R because b is
bound in P ;

(res), (res-ρ), (alpha), (par1): the proof is straightforward by induction hypoth-
esis.

2

We now prove the intermediary results needed for proving the responsiveness the-
orem. Firstly, we show that each name carrying (+-)responsive objects has level
greather than the carried object’s.

Lemma A.4.3. Suppose P is (Γ;∆)-strongly balanced and a〈b〉 ∈ O(P ), with b

(+-)responsive name, then lev(a) > lev(b).
Proof: P (Γ;∆)-strongly balanced imply that Γρ = ∆ρ, ∆ω ⊆ Γω, Γρ+ ⊆ ∆ρ+

and (∆ρ+
)
† ⊆ (Γρ+

)
†

(similar comments for bound +-responsive names). Hence, a is
used as input subject in P .
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Suppose the (perhaps guarded) subprocess that use a as subject of an input in P

is (!)a(x).R. By well-typedness of P , lev(b) = lev(x). From (T+-Nil), (T+-Out),
(T+-Outp) and (T+-Par), x is used in R in output either as subject or object.
Moreover, this output cannot be guarded by an ω-receptive input, (T+-Rep).

First of all, we prove that P (Γ;∆)-strongly balanced implies that each name in
P carrying (+-)responsive names cannot have level equals to 0.

Consider a and, by contradiction, suppose lev(a) = 0. By well typedness of P there
are suitable Γ′ and ∆′ such that Γ′;∆′, xt `2 R, with t 6= n, p. Moreover, by the typing
rules for input, ∀c ∈ os(R) ∪ is(R) it holds that lev(c) < lev(a). Suppose R = 0, by
rule (T+-Nil), R wouldn’t be well typed because x is (+-)responsive: contradiction.
If either R = (!)d(y).R′ or R = d〈e〉, it would be lev(d) < lev(a) = 0, and this is
not possible because levels are positive integers: contradiction. This reasoning can be
extended to the cases R = R1 |R2 and R = (ν t)(R′). Hence lev(a) > 0.

We continue by proving that lev(b) < lev(a); the proof proceeds by induction on
lev(a).

lev(a) = 1: by (T+-Inp), (T+-Rep) and (T+-Repp), for each c ∈ (os(R) ∪ is(R))
it holds that lev(c) < lev(a), hence lev(c) = 0. The output action involving
x cannot be guarded by an input (because otherwise the subject of the output
would have a negative level, by typing rules for input). Moreover, x is the
subject of such an action, because as discussed before the level of a name carrying
(+-)responsive names cannot be 0. In conclusion, lev(x) = 0 < lev(a).

lev(a) = n: Suppose x is used as subject and the output is not guarded by a replicated
input (x ∈ os(R)). By (T+-Inp), (T+-Rep) and (T+-Repp), for each c ∈
(os(R) ∪ is(R)) it holds that lev(c) < lev(a), that is lev(b) = lev(x) < lev(a).
Suppose the output is guarded by a replicated input, let’s say on d (which is +-
responsive because x is free in R). d ∈ is(R) and lev(d) < lev(a). By (T+-Repp),
lev(b) = lev(x) < lev(d) < lev(a).
Suppose x is used as object of an output action, let’s say e〈x〉. As previously
seen, we have lev(e) < lev(a), and by applying the inductive hypothesis lev(b) =
lev(x) < lev(e) < lev(a).

2

The following proposition ensures that each process strongly balanced – under
nontrivial contexts – always has an enabled reduction involving a (+-)responsive name.

Proposition A.4.3. Suppose P is (Γ;∆)-strongly balanced with ∆ρ ∪Γρ+ 6= ∅. Then

P
τ〈a,b〉−−−→ with either a or b (+-)responsive name.
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Proof: Suppose c is the (either free or bound) (+-)responsive name with highest
level appearing as input subject in P (non-guarded by a replicated input on a ω-
receptive name). P is (Γ;∆)-strongly balanced, hence c is used in output in P and all
names carrying (+-)responsive names are used both in input and output in P .

By contradiction, suppose that P cannot reduce using c as subject or object of the
communication and consider the normal-form (Lemma 5.1) of P ≡ (νd̃)(P1| · · · |Pn).

If P cannot reduce using c as subject or object of the communication then at least
every output action (!)ai〈bi〉 (with i = 1, . . . , n) involving c, or every corresponding
input (!)ai(x).Ri, are guarded.

Suppose that all outputs (!)ai〈bi〉, with ai or bi equal to c, are guarded. By
rule (T+-Rep), they cannot be guarded by a replicated input on an ω-receptive
name. By rules (T+-Inp) and (T+-Repp), (!)ai〈bi〉 can be guarded by an input
on a (+-)responsive name, say d, but only if lev(d) > lev(ai) > lev(c), Lemma A.4.3.
But this is a contradiction, because c has the highest level among the (+-)responsive
(free or bound) names used in input in P . Hence each output (!)ai〈bi〉 involving c

cannot be guarded.
Let’s look at the inputs.
Suppose ai 6= c and the input is not available because guarded. ai cannot be an

ω-receptive name because otherwise the input is immediately available, (T+-Inp),
(T+-Rep) and (T+-Repp). Moreover, ai cannot be (+-)responsive because, by
Lemma A.4.3, lev(ai) > lev(c) and c has the highest level among the (+-)responsive
free or bound names used in input in P .

Suppose ai = c and the input on c is guarded. As previously seen, by rule
(T+-Rep), it cannot be guarded by a replicated input on an ω-receptive name and by
rules (T+-Inp) and (T+-Repp), c(x) can be guarded by an input on a (+-)responsive
name, say d. But from the well-typedness of P , it would be lev(d) > lev(c), but c has
the highest level among the (+-)responsive free or bound names used in input in P .

In both cases we have a contradiction. In conclusion, there are Pi and Pj such

that Pi
ai〈bi〉−−−→ and Pj

ai(bi)−−−→, with either ai or bi equals to c; hence P
τ〈ai,bi〉−−−−→ with

either ai or bi equals to c. 2

Lemma A.4.4. Suppose Γ;∆ `2 P , then:

(1) P
a(b)−−→ P ′, with either a or b (+-)responsive name, a : TU and b : T, implies

(a) wt+(P ′) ≺ wt+(P ) if the input on a is not replicated;

(b) wt+(P ′) ≺ wt+(P ) + 0lev(a) if the input on a is replicated;

(2) P
a〈b〉−−→ P ′ (P

a(b)−−→ P ′) implies
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(a) wt+(P ′) 4 wt+(P )− 0lev(a) if the output on a is not replicated;

(b) wt+(P ′) = wt+(P ) if the output on a is replicated.

Proof: In each case the proof proceeds by induction on the derivation of P
µ−→ P ′;

we consider the last transition rule applied.

(1) (a),(in): a(x).P
a(b)−−→ P [b/x]; wt+(a(x).P ) = wt+(P ) + 0lev(a) and wt+(P ) =

wt+(P [b/x]) (because x, b : T). Thus, wt+(P [b/x]) ≺ wt+(P ) + 0lev(a) =
wt+(a(x).P );

(b),(rep): !a(x).P
a(b)−−→!a(x).P |P [b/x]; wt+(!a(x).P ) = 0 and

wt+(!a(x).P |P [b/x]) ≺ 0lev(a) = wt+(!a(x).P ) + 0lev(a) because
of the definition of wt+(·) and rule (T+-Repp) or (T+-Rep)

(∀c ∈ (os(P ) ∪ is(P )) : lev(c) < lev(a)).
(2) (a):

(out): a〈b〉 a〈b〉−−→ 0, wt+(a〈b〉) = 0lev(a) and wt+(0) = 0 = wt+(a〈b〉) −
0lev(a);

(open): (νb)P
a(b)−−→ P ′ implies P

a〈b〉−−→ P ′; by induction wt+(P ′) 4

wt+(P )− 0lev(a) = wt+((νb)P )− 0lev(a);

(b):

(outp): !a〈b〉 a〈b〉−−→!a〈b〉;

(open): (νb)P
a(b)−−→ P ′ implies P

a〈b〉−−→ P ′ and by induction wt+(P ′) =
wt+(P ) = wt+((νb)P ).

Omitted cases can be easily proved by applying the inductive hypothesis. 2

The following proposition is the analog of Proposition 5.2 adapted to system `2

and show that wt+(·) is a good measure because decreases after each (+-)responsive
reduction.

Proposition A.4.4 (Proposition 5.5). Γ;∆ `2 P and P
τ〈a,b〉−−−→ P ′ with either a or

b (+-)responsive, implies wt+(P ′) ≺ wt+(P ).

Proof: By induction on the derivation of P
τ〈a,b〉−−−→ P ′, the proof proceeds by

distinguishing the last transition rule applied:

(com1): P |R τ〈a,b〉−−−→ P ′|R′ implies P
a〈b〉−−→ P ′ and R

a(b)−−→ R′. Γ; ∆ `2 P |R implies,
(T+-Par), Γ1;∆1 `2 P and Γ2;∆2 `2 R for suitable Γ1,Γ2,∆1 and ∆2. We
consider the following cases:

both input and output are non-replicated: by Lemma A.4.4 (1a,2a),
wt+(R′) ≺ wt+(R) and wt+(P ′) 4 wt+(P ) − 0lev(a); that is wt+(P ′|R′) =
wt+(P ′) + wt+(R′) ≺ wt+(P ) + wt+(R) = wt+(P |R);
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the input is replicated: by Lemma A.4.4 (1b,2a), wt+(R′) ≺ wt+(R)+0lev(a)

and wt+(P ′) 4 wt+(P )−0lev(a); that is wt+(P ′|R′) = wt+(P ′)+wt+(R′) ≺
wt+(P ) + wt+(R) = wt+(P |R);

the output is replicated: by Lemma A.4.4 (1a,2b), wt+(R′) ≺ wt+(R) and
wt+(P ′) = wt+(P ); hence, wt+(P ′|R′) = wt+(P ′) + wt+(R′) ≺ wt+(P ) +
wt+(R) = wt+(P |R);

(close1): in this case the proof proceeds in a similar way.
Omitted cases can be easily proved by applying the inductive hypothesis. 2

The following lemma states that strong balancing is always preserved by responsive
and ω-receptive reductions, while can be violated by +-responsive reductions, but only
if the input is replicated. Moreover, strong balancing can be re-established by erasing
the subprocess guarded by this input, without affecting well-typedness.

Lemma A.4.5 (Lemma 5.3). Suppose P is (Γ;∆)-strongly balanced and P
τ〈a,b〉−−−→ P ′

with P ′ non strongly balanced. Let be Γ′;∆′ `2 P ′. Then
(1) a ∈ (Γ′ρ+

\∆′ρ+

) ∪ (r+i (P ′) \ r+o (P ′));
(2) P ≡ (ν d̃)(!a(x).R |R′) and a /∈ in(R,R′);
(3) P ′ ≡ (ν d̃)(!a(x).R |R[b/x] |R′′) and a /∈ in(R,R[b/x], R′′);
(4) P ′′ = (ν d̃)(R[b/x] |R′′) is strongly balanced.

Proof: Recall that by Theorem 5.4 (subject reduction) we have Γ′;∆′ `2 P ′,
with Γ′ = Γ �+ ({a} \ in(P ′)) and ∆′ = ∆ �+ ({a} \ on(P ′)).

(1) P ′ non strongly balanced means that Definition 5.10 is not satisfied, hence at
least one of its three points does not hold.
It cannot be Γ′ρ 6= ∆′ρ because of the linearity of responsive names (rules
(T+-Par), (T+-Inp), (T+-Rep) and (T+-Repp)) and Γρ = ∆ρ.
It cannot be ∆′ω 6⊆ Γ′ω because ω-receptive names are used as subject of repli-
cated inputs (rules (T+-Rep), (T+-Inp) and (T+-Repp)), which cannot disap-
pear, and ∆ω ⊆ Γω.
Similarly, it cannot be neither (∆ρ+

)
† 6⊆ (Γρ+

)
†

nor (r+o (P ))† 6⊆ (r+i (P ))†, be-
cause +-responsive names carrying (+)-responsive objects are used as subject of
replicated inputs, (T+-Inp), which cannot disappear.
In conclusion, a ∈ (Γ′ρ+

\∆′ρ+

) ∪ (r+i (P ′) \ r+o (P ′)).
(2) We firstly prove that a is used as subject of a replicated input. By contradiction,

assume a used as subject of non-replicated inputs. The are at least two of such
inputs in P , because otherwise it cannot be a ∈ (Γ′ρ+

\∆′ρ+

)∪ (r+i (P ′)\ r+o (P ′)).
Hence, by rule (T+-Par) a has to be used as subject of a replicated output
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(which cannot disappear), hence a ∈ ∆′ρ+

∪r+o (P ′) and this is not the case. Thus,
a is used as subject of a replicated input in P , hence in P ′. By (T+-Par) and

(T+-Repp), a is used once in input subject position. Moreover, P
[a]−→ implies

that such input cannot be guarded. In conclusion, P ≡ (ν d̃)(!a(x).R |R′) and
by (T+-Par) and (T+-Repp) a /∈ in(R,R′).

(3) By point (2) and the reduction P
τ〈a,b〉−−−→ P ′.

(4) By points (1,2,3), Γ;∆ �+ {a} `2 P ′ ≡ (ν d̃)(!a(x).R |R[b/x] |R′′).
Suppose a ∈ fn(P ) (hence a ∈ fn(P ′)). By the typing rules for restriction (sup-
pose d̃ does not contain inert names) Γ, d̃c;∆ �+ {a}, d̃c′ `2!a(x).R |R[b/x] |R′′.
By (T+-Par), Γ, d̃c = Γ1 ∪ {a} ∪ Γ2 and ∆ �+ {a}, d̃c′ = ∆1 ∪ ∆2 with
Γ1, a;∆1 `2!a(x).R and Γ2;∆2 `2 R[b/x] |R′′. Moreover, Γ1 ⊆ Γ2 and ∆1 ⊆ ∆2,
hence Γ2 = Γ �+ {a}, d̃c and ∆2 = ∆ �+ {a}, d̃c. Again by the typing rules for
restriction, Γ �+ {a};∆ �+ {a} `2 (ν d̃)(R[b/x] |R′′) = P ′′ and P ′′ is strongly
balanced.
The proof proceeds similarly in case a ∈ d̃. Note that in this case Γ; ∆ `2

(ν d̃)(R[b/x] |R′′) follows by applying (T+-Weak-Γ) and (T+-Weak-∆).
2

A.5 Proof of Proposition 5.6

In this section, the encoding of orc introduced in Table 5.12 is shown to be correct.
In what follows, given an orc term f , we write fv(f) for the set of free variables
in f and

µ̂−→ stands for
µ−→ if µ 6= τ or a possible τ reduction if µ = τ . We borrow

from [14] the definition of expansion preorder, &, and from [111] the definition of strong
bisimulation relation, ∼. For the sake of completeness, we recall both definitions.

Definition A.5.1 (expansion preorder). A relation R ⊆ P × P is an expansion
preorder if SRP implies:

(1) whenever S
µ−→ S′, there exists P ′ s.t. P

µ̂−→ P ′ and S′RP ′;
(2) whenever P

µ−→ P ′, there exists S′ s.t. S
µ

=⇒ S′ and S′RP ′.
We say that S expands P , written S & P , if SRP for some expansion R.

Definition A.5.2 (strong bisimulation). A symmetric relation R ⊆ P × P is a
strong bisimulation if SRP implies that whenever S

µ−→ S′, there exists P ′ such that
P

µ−→ P ′ and S′RP ′. We say that S is strongly bisimilar to P , written S ∼ P , if SRP

for some strong bisimulation R.

The following lemmata introduce some properties of ∼ and & that are useful for
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proving the correctness of the encoding. The (omitted) proofs rely on asynchrony and
input locality of the calculus.

Lemma A.5.1.

(1) (νx)(!x〈c〉 |P1 |P2) ∼ (νx)(!x〈c〉 |P1) | (νx)(!x〈c〉 |P2) if x /∈ O(P1, P2);
(2) (νa)(!a(y).P |P1 |P2) ∼ (νa)(!a(y).P |P1) | (νa)(!a(y).P |P2) if a /∈ in(P1, P2);
(3) (νx)(!x〈c〉 | !a(y).P ) ∼!a(y).(νx)(!x〈c〉 |P ) if a, y 6= x;
(4) (νx)(!x(z).P ′ | !a(y).P ) ∼!a(y).(νx)(!x(z).P ′ |P ) if a, y 6= x and a, y /∈ fn(P ′).

Lemma A.5.2. P ′ & P implies:
(1) P ′ |R & P |R;
(2) (νd̃)P ′ & (νd̃)P ;
(3) α.P ′ & α.P with either α =!a(y) or α = a(y).

In the following proofs, recall that given an orc term f , in [[f ]]s all site and
expression names are used only in output subject position and all variables only in
input subject position. Moreover, if f is a closed term [[f ]]s can interact with the
environment only by calling sites or expressions or by publishing (outputting) on s.

Proposition A.5.1. (νd̃)(D | (νx)(!x〈c〉 | [[g]]s)) & (νd̃)(D | [[g[c/x]]]s).
Proof: The proof proceeds by induction on the structure of g:

g = M(p), g = E(p) or g = let(p): with p 6= x. M(p)[c/x] = M(p) and
(νd̃)(D | (νx)(!x〈c〉 | [[M(p)]]s)) ∼ (νd̃)(D | [[M(p)]]s) because x /∈ fn([[M(p)]]s)
(similarly for g = E(p) and g = let(p));

g = let(x):

(νd̃)(D | (νx)(!x〈c〉 | [[let(x)]]s)) = (by definition of [[f ]]s)

(νd̃)(D | (νx)(!x〈c〉 |x(y).s〈y〉)) τ−→

(νd̃)(D | (νx)(!x〈c〉 | s〈c〉)) ∼ (x 6= s, c)

(νd̃)(D | s〈c〉) = (by definition of [[f ]]s)

(νd̃)(D | [[let(x)[c/x]]]s) .

g = E(x):

(νd̃)(D | (νx)(!x〈c〉 | [[E(x)]]s)) = (by definition of [[f ]]s)

(νd̃)(D | (νx)(!x〈c〉 |x(y).E〈y, s〉)) τ−→

(νd̃)(D | (νx)(!x〈c〉 |E〈c, s〉)) ∼ (x 6= E, c, s)

(νd̃)(D |E〈c, s〉) = (by definition of [[f ]]s)

(νd̃)(D | [[E(x)[c/x]]]s) .
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g = M(x):

(νd̃)(D | (νx)(!x〈c〉 | [[M(x)]]s)) = (by definition of [[f ]]s)

(νd̃)(D | (νx)(!x〈c〉 |x(y).[[M(y)]]s))
τ−→

(νd̃)(D | (νx)(!x〈c〉 | [[M(c)]]s)) ∼ (x /∈ fv([[M(c)]]s))

(νd̃)(D | [[M(x)[c/x]]]s) .

g = f | f ′:

(νd̃)(D | (νx)(!x〈c〉 | [[f | f ′]]s))

= (by definition of [[f ]]s)

(νd̃)(D | (νx)(!x〈c〉 | [[f ]]s | [[f ′]]s))

∼ (by Lemma A.5.1 (1,2))

(νd̃)(D | (νx)(!x〈c〉 | [[f ]]s)) | (νd̃)(D | (νx)(!x〈c〉 | [[f ′]]s))

& (by induction and Lemma A.5.2 (1)

(νd̃)(D | [[f [c/x]]]s) | (νd̃)(D | [[f ′[c/x]]]s)

∼ (by def. of [[f ]]s and Lemma A.5.1 (1,2))

(νd̃)(D | [[(f | f ′)[c/x]]]s) .

g = f > y > f ′:

(νd̃)
(
D | (νx)(!x〈c〉 | [[f > y > f ′]]s)

)
= (by definition of [[f ]]s)

(νd̃)
(
D | (νx)

(
!x〈c〉 | (νw)([[f ]]w | !w(z).(νy)(!y〈z〉 | [[f ′]]s))

))
∼ (by Lemma A.5.1 (1,2))

(νw)
(
(νd̃)

(
D | (νx)(!x〈c〉|[[f ]]w)

)
| (νd̃)

(
D | (νx)(!x〈c〉 | !w(z).(νy)(!y〈z〉|[[f ′]]s))

))
∼ (by Lemma A.5.1 (3,4))

(νw)
(
(νd̃)

(
D | (νx)(!x〈c〉 | [[f ]]w)

)
| !w(z).(νd̃, y)

(
!y〈z〉 |D | (νx)(!x〈c〉 | [[f ′]]s)

))
& (by induction and Lemma A.5.2)

(νw)
(
(νd̃)(D | [[f [c/x]]]w) | !w(z).(νd̃, y)(!y〈z〉 |D | [[f ′[c/x]]]s)

)
∼ (by Lemma A.5.1 (2))

(νd̃)(D | (νw)([[f [c/x]]]w | !w(z).(νy)(!y〈z〉 | [[f ′[c/x]]]s)))

= (by definition of [[f ]]s)

(νd̃)(D | [[(f > y > f ′)[c/x]]]s .
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g = f where y :∈ f ′:

(νd̃)
(
D | (νx)(!x〈c〉 | [[f where y :∈ f ′]]s)

)
= (by definition of [[f ]]s)

(νd̃)
(
D | (νx)

(
!x〈c〉 | (νw)([[f ′]]w | (νy)(w(z).!y〈z〉 | [[f ]]s))

))
∼ (by Lemma A.5.1 (1,2))

(νw)
(
(νd̃)

(
D | (νx)(!x〈c〉 | [[f ′]]w)

)
| (νd̃)

(
D | (νx, y)(!x〈c〉 |w(z).!y〈z〉 | [[f ]]s)

))
∼ (fn(w(z).!y〈z〉) ∩ {d̃, x} = ∅)

(νw)
(
(νd̃)

(
D | (νx)(!x〈c〉|[[f ′]]w)

)
| (νy)

(
w(z).!y〈z〉 | (νd̃)(D | (νx)(!x〈c〉|[[f ]]s))

))
& (by induction hp. and Lemma A.5.2 (1,2)

(νw)
(
(νd̃)

(
D | [[f ′[c/x]]]w | (νy)(w(z).!y〈z〉 | (νd̃)(D | [[f [c/x]]]s))

))
∼ (by Lemma A.5.1 (2))

(νd̃)
(
D | (νw)([[f ′[c/x]]]w | (νy)(w(z).!y〈z〉 | [[f [c/x]]]s))

)
= (by definition of [[f ]]s)

(νd̃)(D | [[(f where y :∈ f ′)[c/x]]]s) .

2

Proposition A.5.2. Suppose D is a set of function and site definitions.
(νd̃, y)(D|[[f ]]y|P ) & (νd̃)(D|P ) if y /∈ fn(P ), d̃ = in(D), d̃ ∩ in(P ) = ∅ and f is
closed.

Proof: By Lemma A.5.1 (2) (νd̃, y)(D|[[f ]]y|P ) ∼ (νd̃, y)(D|[[f ]]y) | (νd̃)(D|P ).
Moreover, (νd̃, y)(D|[[f ]]y) & 0 because fn([[f ]]y) ⊆ {d̃, y} and, by definition of [[·]]y,
name y cannot be extruded. Hence, by Lemma A.5.1 (2), (νd̃, y)(D|[[f ]]y|P ) &

(νd̃)(D|P ). 2

The following proposition is a first step towards proving the correctness of the
encoding.

In what follows λ represents a generic orc’s label and can be either !c or τ . We
define [[λ]]s and [[µ]]−1 as follows: [[!c]]s = s〈c〉, [[τ ]]s = τ , [[s〈c〉]]−1 =!c and [[τ ]]−1 = τ .

Proposition A.5.3. Let f be a closed orc term.

(1) f
λ
↪→ g implies (νd̃)(D | [[f ]]s)

[[λ]]s−−→& (νd̃)(D | [[g]]s);

(2) (νd̃)(D | [[f ]]s)
µ−→ (νd̃)(D |P ) implies f

[[µ]]−1

↪→ g, with (νd̃)(D |P ) &

(νd̃)(D | [[g]]s);

(3) f
!c
↪→ implies [[f ]]s

s〈c〉−−→;

(4) [[f ]]s
s〈c〉−−→ implies f

!c
↪→.



197 A.5. Proof of Proposition 5.6

Proof:

(1) This case is straightforward by induction on the derivation of f
λ
↪→ g. The base

cases are (pub), (site) and (def). In the other cases the result is obtained by
applying the inductive hypothesis and Lemma A.5.2. Moreover, in cases (seq2)

and (wh2) also Proposition A.5.1 and A.5.2 are applied.
(2) The proof proceeds by induction on the derivation of

µ−→, by considering only
closed orc terms. The most interesting cases are sequential composition and
asymmetric parallel composition. In the other cases the proof proceeds by ap-
plying the inductive hypothesis and Lemma A.5.2.

[[f > x > g]]s: (νd̃)
(
D | (νy)([[f ]]y | !y(z).(νx)(!x〈z〉 | [[g]]s))

) µ−→ (νd̃)(D |P ) im-

plies (νd̃)(D | [[f ]]y)
µ′−→ (νd̃)(D |P ′). By induction, f

[[µ′]]−1

↪→ f ′ and
(νd̃)(D |P ′) & (νd̃)(D | [[f ′]]y). We distinguish two cases depending on µ′:

µ′ 6= y〈c〉: in this case f
[[µ′]]−1

↪→ f ′ implies, by (seq1),

f > x > g
[[µ′]]−1

↪→ f ′ > x > g; moreover,
(νd̃)(D |P ) = (νd̃)

(
D | (νy)

(
P ′ | !y(z).(νx)(!x〈z〉 | [[g]]s)

))
&

(νd̃)
(
D | (νy)

(
[[f ′]]y | !y(z).(νx)(!x〈z〉 | [[g]]s)

))
= (νd̃)(D | [[f ′ > x > g]]s)

(Lemma A.5.2);

µ′ = y〈c〉: in this case, by induction, f
!c
↪→ f ′ and, by (seq2), f > x > g

τ
↪→

(f ′ > x > g) | g[c/x]. By (νd̃)(D |P ′) & (νd̃)(D | [[f ′]]y), Lemma A.5.2
and Proposition A.5.1:

(νd̃)(D |P )

= (νd̃)
(
D | (νy)

(
P ′ | !y(z).(νx)(!x〈z〉 | [[g]]s) | (νx)(!x〈c〉 | [[g]]s)

))
& (νd̃)

(
D | (νy)

(
[[f ′]]y | !y(z).(νx)(!x〈z〉 | [[g]]s) | (νx)(!x〈c〉 | [[g]]s)

))
= (νd̃)(D | [[f ′ > x > g]]s | (νx)(!x〈c〉 | [[g]]s))

& (νd̃)(D | [[f ′ > x > g]]s | [[g[c/x]]]s) ;

[[f where x :∈ g]]s: (νd̃)
(
D | (νy)

(
[[g]]y | (νx)(y(z).!x〈z〉 | [[f ]]s)

)) µ−→ (νd̃)(D |P );
we distinguish the following cases:

(νd̃)(D | [[g]]y)
µ−→ (νd̃)(D |P ′) with µ 6= y〈c〉: by applying the inductive

hypothesis, g
[[µ]]−1

↪→ g′ and (νd̃)(D |P ′) & (νd̃)(D | [[g′]]y).
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Moreover, by Lemma A.5.2:

(νd̃)(D |P )

= (νd̃)
(
D | (νy)

(
P ′ | (νx)(y(z).!x〈z〉 | [[f ]]s)

))
& (νd̃)

(
D | (νy)

(
[[g′]]y | (νx)(y(z).!x〈z〉 | [[f ]]s)

))
= (νd̃)(D | [[f where x :∈ g′]]s)

and g
[[µ]]−1

↪→ g′ implies, by (wh1), f where x :∈ g
[[µ]]−1

↪→ f where x :∈
g′;

(νd̃)(D | [[f ]]s)
µ−→ (νd̃)(D |P ′): in this case the proof proceeds in a similar

way;

(νd̃)(D | [[g]]y)
y〈c〉−−→ (νd̃)(D |P ′): by induction, g

!c
↪→ g′, (νd̃)(D |P ′) &

(νd̃)(D | [[g′]]y) and f where x :∈ g
τ

↪→ f [c/x], by (wh2).
Moreover, (νd̃)(D |P ) = (νd̃)

(
D | (νy)

(
P ′ | (νx)(!x〈c〉 | [[f ]]s)

))
&

(νd̃)
(
D | (νy)

(
[[g′]]y | (νx)(!x〈c〉 | [[f ]]s)

))
& (νd̃)(D | [[f [c/x]]]s) by Propo-

sition A.5.1 and Proposition A.5.2 (recall that f is a closed term and
y /∈ fn([[f ]]s).)

(3) By induction on transitions, we distinguish the following cases:

let(c)
!c
↪→ : [[let(c)]]s = s〈c〉 s〈c〉−−→;

f | g !c
↪→ : implies, by either (par1) or (par2), either f

!c
↪→ or g

!c
↪→; by induction

either [[f ]]s
s〈c〉−−→ or [[g]]s

s〈c〉−−→ and [[f | g]]s = [[f ]]s | [[g]]s
s〈c〉−−→;

g where x :∈ f
!c
↪→ : implies, (wh3), g

!c
↪→, and by induction [[g]]s

s〈c〉−−→.
[[g where x :∈ f ]]s = (νy)

(
[[f ]]y | (νx)(y(z).!x〈z〉 | [[g]]s)

)
and

(νy)
(
[[f ]]y | (νx)(y(z).!x〈z〉 | [[g]]s)

) s〈c〉−−→.

(4) We distinguish the following cases:

[[let(c)]]s
s〈c〉−−→: [[let(c)]]s = s〈c〉 s〈c〉−−→ and let(c)

!c
↪→, (pub);

[[f | g]]s
s〈c〉−−→: [[f | g]]s

s〈c〉−−→ implies either [[f ]]s
s〈c〉−−→ or [[g]]s

s〈c〉−−→. By induction,

either f
!c
↪→ or g

!c
↪→, hence f | g !c

↪→, by either (par1) or (par2);

[[g where x :∈ f ]]s
s〈c〉−−→: (νy)

(
[[f ]]y | (νx)(y(z).!x〈z〉 | [[g]]s)

) s〈c〉−−→ implies

[[g]]s
s〈c〉−−→ and by induction g

!c
↪→, that is g where x :∈ f

!c
↪→, (wh3).

2
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Proposition A.5.4. Consider an orc term f and suppose Df well typed. If fv(f) =
x̃, then F = (νd̃, x̃)([[f ]]s |

∏
x∈ex!x〈c〉 | Df | !s(x).0), with fn(F ) = {s}, c inert and d̃,

x̃ and s +-responsive names, is strongly balanced.
Proof: Well typedness of [[f ]]s is easy to prove by induction on the structure of

f . In particular Γ;∆ `2 [[f ]]s, for suitable Γ and ∆ such that Γρ = ∅, dom(Γ) = fv(f)
(annotated with capability m) and dom(∆) contains only s and some expression and
site names, annotated with m. Hence well-typedness of F is ensured. Balancing of F

may be proved by induction on the structure of f .
As an example, suppose f = g2 where y :∈ g1. In this case

F = (ν x̃, d̃)
(
(ν r)

(
[[g1]]r|(ν y)(r(z).!y〈z〉|[[g2]]s)

)
|
∏
x∈ex!x〈c〉|Df |!s(x)

)
where x̃ = x̃1 ∪ x̃2, with x̃1 = fv(g1) and x̃2 = fv(g2) \ {y}, and d̃ = d̃1 ∪ d̃2, with d̃1

and d̃2 containing all names corresponding to sites and expressions called respectively
by g1 and g2.

By induction, G1 = (νd̃1, x̃1)([[g1]]r |
∏

x∈ex1
!x〈c〉 | D1 | !r(z).0) and G2 =

(νd̃2, x̃2, y)([[g2]]s |
∏

x∈ex2
!x〈c〉 | !y〈c〉 | D2 | !s(x).0) are strongly balanced.

Note that channel r is +-responsive and does not carry (+-)responsive names,
hence if we substitute !r(z).0 with r(z).0 then G1 is still strongly-balanced. Thus,
given that g1 and g2 can share only site, expression names and variables (which are
used only in output – resp. input – in [[g1]]r and [[g2]]s and replicated in input in D –
resp. replicated output in

∏
!x〈c〉):

(ν d̃, x̃, y)
(
[[g1]]r |

∏
x∈ex1

!x〈c〉 | Df | r(z).0 | [[g2]]s |
∏

x∈ex2

!x〈c〉 | !y〈c〉 | !s(x).0
)

can be rewritten as

(ν d̃, x̃)
(
(ν r, y)

(
[[g1]]r | r(z).0 | !y〈c〉 | [[g2]]s

)
|

∏
x∈ex!x〈c〉 | Df | !s(x).0

)
.

Given that G1 and G2 are strongly balanced, the process below is strongly balanced
too

(ν d̃, x̃)
(
(ν r)

(
[[g1]]r | (ν y)(r(z).!y〈z〉 | [[g2]]s)

)
|

∏
x∈ex!x〈c〉 | Df | !s(x).0

)
= F .

2

Proposition A.5.5 (Proposition 5.6). Let f be a closed orc term and suppose Df

is well typed.
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(1) [[f ]]s is well-typed and F
4
= (νd̃)([[f ]]s |Df | !s(x).0), with s and d̃ +-responsive,

is strongly balanced;

(2) f
!c=⇒ if and only if F

τ〈s,c〉
===⇒.

Proof:

(1) Well-typedness of [[f ]]s and balancing of F follow by Proposition A.5.4.

(2) (⇒): f
!c=⇒ means that f

τ
↪→∗g

!c
↪→; by Proposition A.5.3 (1), f

τ
↪→ f ′ im-

plies (νd̃)(Df | [[f ]]s)
τ−→ (νd̃)(Df |P ′) & (νd̃)(Df | [[f ′]]s), f ′ τ

↪→ f ′′ implies
(νd̃)(Df | [[f ′]]s)

τ−→ (νd̃)(Df |P ′′) & (νd̃)(Df | [[f ′′]]s), and so on. Thus,
f

τ
↪→ ∗g implies (νd̃)(Df | [[f ]]s)

τ−→ ∗(νd̃)(Df |P ) & (νd̃)(Df | [[g]]s) and

g
!c
↪→ implies, by Proposition A.5.3 (3), (νd̃)(Df | [[g]]s)

s〈c〉−−→; thus by “&”,

(νd̃)(Df |P )
s〈c〉
==⇒ and (νd̃)(Df | [[f ]]s | !s(x).0)

τ〈s,c〉
===⇒;

(⇐): in this case we can proceed similarly, the result follows by applying Propo-
sition A.5.3 (2,4).

2



Appendix

B

Proofs of Chapter 6

B.1 Proofs of Section 6.3

Before proving the validity of Theorem 6.1 and Theorem 6.2, it is necessary to
introduce some preliminary results.

The following proposition reminds an important property of asynchronous calculi:
no behavior causally depends on the execution of output actions. Relation ∼ stands
for the usual strong bisimulation relation (see e.g. Definition A.5.2).

Proposition B.1.1. P
a−→ P ′ implies P ∼ P ′ | a.

Proof: By observing that outputs are non-blocking actions, a suitable strong
bisimulation can be defined. 2

As direct consequences of the previous proposition, we get the results enunciated
in the following lemma: (1) output actions can always be delayed and (2) a diamond
property involving outputs.

Lemma B.1.1. Let µ be a generic action (µ ::= b | θ):
(1) P

a−→ µ−→ P ′ implies P
µ−→ a−→ P ′ ; similarly P

a−→ µ
=⇒ P ′ implies P

µ
=⇒ a−→ P ′;

(2) P
a−→ P ′ and P

µ−→ P ′′ imply that there is a P ′′′ such that P ′ µ−→ P ′′′ and
P ′′ a−→ P ′′′; similarly P

a−→ P ′ and P
µ

=⇒ P ′′ imply that there is a P ′′′ such that
P ′ µ

=⇒ P ′′′ and P ′′ a−→ P ′′′.
Proof: In both cases, the result follows by applying Proposition B.1.1. 2

The following propositions enunciate two relevant properties of the hiding operator.

Proposition B.1.2. (P | a) \n b ∼ (P \n b | a) if a 6= b.
Proof: By Proposition 6.1 (hid), and definition of

µ−→. 2

201
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Proposition B.1.3. (P | a) \n a ≈a P \n+1 a.
Proof: It suffices to note that (P | a) \n a

τ−→ P \n+1 a, Proposition 6.1 (hidAt).
2

In the following propositions we prove that ≈a and w are closed under contexts;
as a consequence we obtain that both are congruences.

Proposition B.1.4. P ≈a R implies ∀a : a.P ≈a a.R.
Proof: It is enough to show that the relation R =≈a ∪{(a.P, a.R)} is a weak

asynchronous bisimulation. 2

Proposition B.1.5. P ≈a R implies ∀a : !a.P ≈a!a.R.
Proof: It is enough to show that the relation

R = {((
∏

i

Pni
i | !a.P ), (

∏
i

Rni
i | !a.R))

∣∣ ni > 0, (Pi, Ri) ∈≈a}

where Pn is a shorthand for the parallel composition of n copies of P and
∏

i Pi stands
for P1| · · · |Pn| · · · , is a weak asynchronous bisimulation up to ∼.

The proof proceeds as usual, by showing that every transition of the left term can
be matched by a transition of the right one (and vice-versa), and the pair composed
by the arrival processes is in R. The proof is straightforward by a simple case analysis
of transitions, as defined in Proposition 6.1. The most involved case is when a com-

munication occurs between two subprocesses, let’s say Pj and Pk. Suppose Pj
{|a|}−−→ P ′

j

and Pk
a−→ P ′

k. This means that, by Proposition 6.1 (com):

(
∏

i

Pni
i | !a.P ) τ−→ (

∏
i6=j,k

Pni
i |Pnj−1

j |Pnk−1
k |P ′

j |P ′
k | !a.P ) = S1 .

By Pk ≈a Rk we know that Rk
a=⇒ R′

k with P ′
k ≈a R′

k. We distinguish the following
cases for Rj :

Rj
{|a|}

==⇒ R′
j: in this case R′

j ≈a P ′
j and, by Proposition 6.1 (com):

(
∏

i

Rni
i | !a.R) τ=⇒ (

∏
i6=j,k

Rni
i |Rnj−1

j |Rnk−1
k |R′

j |R′
k | !a.R) = S2

and (S1, S2) ∈ R by definition of R.
Rj

θ=⇒ R′
j: this means that, by Proposition 6.1 (par):

(
∏

i

Rni
i | !a.R) θ=⇒ (

∏
i6=j

Rni
i |Rnj−1

j |R′
j | !a.R) = S2

and we have to show that S1 |
∏

b∈θ b ≈a S2. We distinguish two cases:
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a ∈ θ: from Pj ≈a Rj we obtain that P ′
j |

∏
b∈θ\a b ≈a R′

j . Moreover, from
P ′

k ≈a R′
k, we have (by definition of R):

(
∏

i6=j,k Pni
i |Pnj−1

j |Pnk−1
k |P ′

j |
∏

b∈θ\a b |P ′
k | !a.P )

R

(
∏

i6=j,k Rni
i |Rnj−1

j |Rnk−1
k |R′

j |R′
k | !a.R)

but a ≈a a, thus we also have (again by definition of R)

(
∏

i6=j,k Pni
i |Pnj−1

j |Pnk−1
k |P ′

j |
∏

b∈θ\a b |P ′
k | a | !a.P )

R

(
∏

i6=j,k Rni
i |Rnj−1

j |Rnk−1
k |R′

j |R′
k | a | !a.R)

by Proposition B.1.1, a |R′
k ∼ Rk, thus

(
∏

i6=j,k

Pni
i |Pnj−1

j |Pnk−1
k |P ′

j |
∏
b∈θ

b |P ′
k | !a.P )R ∼ (

∏
i6=j

Rni
i |R

nj−1
j |R′

j | !a.R)

that is (S1 |
∏

b∈θ b)R ∼ S2.

a /∈ θ: from Pj ≈a Rj we obtain that P ′
j |

∏
b∈θ b ≈a R′

j | a. Moreover, from
P ′

k ≈a R′
k, we have (by definition of R):

(
∏

i6=j,k Pni
i |Pnj−1

j |Pnk−1
k |P ′

j |
∏

b∈θ b |P ′
k | !a.P )

R

(
∏

i6=j,k Rni
i |Rnj−1

j |Rnk−1
k |R′

j | a |R′
k | !a.R)

by Proposition B.1.1, a |R′
k ∼ Rk, thus

(
∏

i6=j,k

Pni
i |Pnj−1

j |Pnk−1
k |P ′

j |
∏
b∈θ

b|P ′
k|!a.P )R ∼ (

∏
i6=j

Rni
i |R

nj−1
j |R′

j |!a.R)

that is (S1 |
∏

b∈θ b)R ∼ S2.

2

Proposition B.1.6. P ≈a S implies ∀R : P |R ≈a S |R.
Proof: The proof proceeds by showing that the relation

R = {(P |R, S |R) | (P, S) ∈≈a}

is a weak asynchronous bisimulation up to ∼.
Suppose P |R µ−→ P ′′; by applying Proposition 6.1, we can distinguish the following

cases obtained by applying Proposition 6.1 (par) or (com):
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R
µ−→ R′: P ′′ = P |R′; by Proposition 6.1 (par), S |R µ−→ S |R′ and (P |R′)R(S |R′)

by definition of R;
P

a−→ P ′: µ = a and P ′′ = P ′ |R. By P ≈a S we have S
a=⇒ S′ with P ′ ≈a S′. By

Proposition 6.1 (par), S |R a=⇒ S′ |R and (P ′ |R)R(S′ |R) by definition of R;
P

θ−→ P ′: µ = θ and P ′′ = P ′ |R. By P ≈a S we have S
θ′=⇒ S′ and

(
P ′ |

∏
a∈θ′\θ a

)
≈a(

S′ |
∏

a∈θ\θ′ a
)
.

By Proposition 6.1 (par), S |R θ′=⇒ S′ |R and(
P ′ |

∏
a∈θ′\θ a |R

)
R

(
S′ |

∏
a∈θ\θ′ a |R

)
follows from

(
P ′ |

∏
a∈θ′\θ a

)
≈a(

S′ |
∏

a∈θ\θ′ a
)

and definition of R;

P
a−→ P ′ and R

{|a|}−−→ R′: µ = τ and P ′′ = P ′ |R′. P ≈a S implies S
a=⇒ S′ and

P ′ ≈a S′. By Proposition 6.1 (com), S |R ⇒ S′ |R′ and, by definition of R,
(P ′ |R′)R(S′ |R′);

P
{|a|}−−→ P ′ and R

a−→ R′: µ = τ and P ′′ = P ′ |R′. P ≈a S implies that S
θ=⇒ S′. We

consider the following cases by distinguishing the possible values of θ:

θ = {|a|}: in this case P ′ ≈a S′. By Proposition 6.1 (com), S |R ⇒ S′ |R′ and,
by definition of R, (P ′ |R′)R(S′ |R′);

otherwise: S |R θ=⇒ S′ |R by Proposition 6.1 (par); we have to prove that
P ′ |R′ |

∏
b∈θ bRS′ |R. We distinguish the following cases:

a ∈ θ: from P ≈a S we obtain P ′ |
∏

b∈θ\a b ≈a S′ and by definition of R:

(P ′ |
∏

b∈θ\a

b |R) R (S′ |R)

and by Proposition B.1.1, R ∼ R′ | a, thus

(P ′ |R′ |
∏
b∈θ

b) ∼ R (S′ |R) ;

a /∈ θ: from P ≈a S we obtain P ′ |
∏

b∈θ b ≈a S′ | a, by definition of R:

(P ′ |
∏
b∈θ

b |R′) R (S′ | a |R′)

and by Proposition B.1.1, R ∼ R′ | a, thus

(P ′ |R′ |
∏
b∈θ

b) R ∼ (S′ |R) .

2

In what follows, we denote an

−→ the relation a−→ · · · a−→, that is the composition of
n copies of a−→.
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Proposition B.1.7. P ≈a R implies ∀a, n > 0 : P \n a ≈a R \n a.
Proof: The proof proceeds by showing that the relation:

R = {(Pi \n+i a,Rj \n+j a) |n > 0, (P,R) ∈≈a, P
ai

−→ Pi, R
aj

−→ Rj}

is a weak asynchronous bisimulation up to ∼. We distinguish the following cases:
(hid): Pi \n+i a

µ−→ P ′
i \n+i a is derived by Pi

µ−→ P ′
i , if a does not appear in µ.

By Lemma B.1.1 (1), P
ai

−→ Pi
µ−→ P ′

i implies P
µ−→ P ′ ai

−→ P ′
i . From P ≈a R

we obtain R
µ

=⇒ R′ with P ′ ≈a R′ and by R
aj

−→ Rj and Lemma B.1.1 (2),

R′ aj

−→ R′
j and Rj

µ
=⇒ R′

j ; by Proposition 6.1 (hid), Rj \n+j a
µ

=⇒ R′
j \n+j a.

Finally, (P ′
i \n+i a)R(R′

j \n+j a) because P ′ ≈a R′, P ′ ai

−→ P ′
i , R′ aj

−→ R′
j and by

definition of R;
(hidAt): Pi \n+i a

θ−→ P ′
i \n′ a is derived by Pi

θ′−→ P ′
i with θ′ = θ ] am and n′ =

n + i −m. By Lemma B.1.1 (1), P
ai

−→ Pi
θ′−→ P ′

i implies P
θ′−→ P ′ ai

−→ P ′
i . By

P ≈a R, R
γ′

=⇒ R′ with (P ′ |
∏

b∈γ′\θ′ b) ≈a (R′ |
∏

b∈θ′\γ′ b). Suppose γ′ = γ]am′

and, without loss of generality, that m′ > m. We can rewrite P ′ |
∏

b∈γ′\θ′ b as
P ′ | am′−m |

∏
b∈γ\θ b and R′ |

∏
b∈θ′\γ′ b as R′ |

∏
b∈θ\γ b, thus

(P ′ | am′−m |
∏

b∈γ\θ

b) ≈a (R′ |
∏

b∈θ\γ

b) .

Moreover, by Lemma B.1.1 (2), R
γ′

=⇒ R′ and R
aj

−→ Rj imply Rj
γ′

=⇒ R′
j and

R′ aj

−→ R′
j ; by Proposition 6.1 (hidAt), Rj \n+j a

γ
=⇒ R′

j \n+j−m′
a.

We have to relate the processes P ′
i\n+i−ma |

∏
b∈γ\θ b and R′

j\n+j−m′
a |

∏
b∈θ\γ b.

By Proposition 6.1 (hidOut), (P ′ | am′−m |
∏

b∈γ\θ b) \n−m′
a

τ−→
(P ′

i |
∏

b∈γ\θ b)\n+i−m a and (R′ |
∏

b∈θ\γ b)\n−m′
a

τ−→ (R′
j |

∏
b∈θ\γ b)\n+j−m′

a;
thus from (P ′ | am′−m |

∏
b∈γ\θ b) ≈a (R′ |

∏
b∈θ\γ b) we obtain(

(P ′
i |

∏
b∈γ\θ

b) \n+i−m a
)
R

(
(R′

j |
∏

b∈θ\γ

b) \n+j−m′
a
)

that is, by Proposition B.1.2, (P ′
i \n+i−m a |

∏
b∈γ\θ b) ∼ R ∼ (R′

j \n+j−m′

a |
∏

b∈θ\γ b).

(hidOut): Pi \n+i a
τ−→ P ′

i \n+i+1 a is derived by Pi
a−→ P ′

i ; P ′
i = Pi+1 and by

definition of R we have (Pi+1 \n+i+1 a)R (Rj \n+j a).
2

Proposition B.1.8. Suppose α = rd(a) or α = wt(a). If M w N then α.M w α.N .
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Proof: Let be α = rd(a). For each σ such that a /∈ σ we have (rd(a).M)σ;ε →
(retry)σ;ε and (rd(a).N)σ;ε → (retry)σ;ε.

Moreover, for every σ such that a ∈ σ, by Definition 6.4 (w), we have
• (M)σ\{a};ε ⇒ (retry)σ\{a};δM

and (N)σ\{a};ε ⇒ (retry)σ\{a};δN
imply

(rd(a).M)σ;ε ⇒ (retry)σ;rd(a).δM
and (rd(a).N)σ;ε ⇒ (retry)σ;rd(a).δN

• (M)σ\{a};ε ⇒ (end)σ\{a};δM
, (N)σ\{a};ε ⇒ (end)σ\{a};δN

and δM =σ\{a} δN imply
(rd(a).M)σ;ε ⇒ (end)σ;rd(a).δM

, (rd(a).N)σ;ε ⇒ (end)σ;rd(a).δN
and rd(a).δM =σ

rd(a).δN .
Hence, by Definition 6.4 (w), α.M w α.N 2

Proposition B.1.9. If M1 w N1 and M2 w N2 then M1 orElse M2 w

N1 orElse N2.
Proof: By Definition 6.4 (w), M1 w N1 implies
• for each σ such that (M1)σ;ε ⇒ (end)σ;δM

then (N1)σ;ε ⇒ (end)σ;δN
and δM =σ

δN (and vice versa). Hence, by (AOE), (M1 orElse M2)σ;ε ⇒ (end)σ;δM
,

(N1 orElse N2)σ;ε ⇒ (end)σ;δN
and δM =σ δN ;

• for each σ such that (M1)σ;ε ⇒ (retry)σ;δ it holds that (N1)σ;ε ⇒ (retry)σ;δ′ ; we
distinguish two cases (recall that M2 w N2):

– if (M2)σ;ε ⇒ (end)σ;δM
then (N2)σ;ε ⇒ (end)σ;δN

, δM =σ δN and,
by (AOF): (M1 orElse M2)σ;ε ⇒ (end)σ;δM

and (N1 orElse N2)σ;ε ⇒
(end)σ;δN

with δM =σ δN ;

– if (M2)σ;ε ⇒ (retry)σ;δM
then (N2)σ;ε ⇒ (retry)σ;δN

and, again by (AOF):
(M1 orElse M2)σ;ε ⇒ (retry)σ;δM

with (N1 orElse N2)σ;ε ⇒ (retry)σ;δN
.

Hence, by Definition 6.4 (w), M1 orElse M2 w N1 orElse N2. 2

We can now prove the main results of Section 6.3.

Theorem B.1.1 (Theorem 6.1). Weak asynchronous bisimulation ≈a is a congru-
ence.

Proof: The result follows by Propositions B.1.4–B.1.7. 2

Theorem B.1.2 (Theorem 6.2). Weak atomic equivalence w is a congruence.
Proof: The result follows by Propositions B.1.8 and B.1.9. 2

Proposition B.1.10 (Proposition 6.2). M w N implies atom(M) ≈a atom(N).
Proof: The proof proceeds by contradiction. Suppose that M w N and

atom(M) 6≈a atom(N). This means that there is a δ such that atom(M)
rd(δ)
===⇒ P , with

P =
∏

b∈wt(δ) b, and for every δ′ such that atom(N)
rd(δ′)
====⇒ R, with R =

∏
b∈wt(δ′) b,
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we have (P |
∏

b∈(rd(δ′)\rd(δ)) b) 6≈a (R |
∏

b∈(rd(δ)\rd(δ′)) b). This means that there is an

a such that (P |
∏

b∈(rd(δ′)\rd(δ)) b) a−→ and (R |
∏

b∈(rd(δ)\rd(δ′)) b) 6 a−→ (or vice versa).

By rules (atPass) and (atOk) and definition of
µ−→, atom(M)

rd(δ)
===⇒ P implies

that there is a σ such that (M)σ;ε ⇒ (end)σ;δ
rd(δ)−−−→ P . By definition of w there is a

δ′′ such that (N)σ;ε ⇒ (end)σ;δ′′ , with δ =σ δ′′, that is σ\rd(δ)]wt(δ) = σ\rd(δ′′)]

wt(δ′′). Thus by rules (atPass) and (atOk) and Proposition 6.1 atom(N)
rd(δ′′)

====⇒ R

with R =
∏

b∈wt(δ′′) b.

Suppose P =
∏

b∈wt(δ) b
a−→; this means that a ∈ wt(δ). From σ \ rd(δ) ]

wt(δ) = σ \ rd(δ′′) ] wt(δ′′) we obtain wt(δ) = (wt(δ′′) ] rd(δ)) \ rd(δ′′), hence
a ∈ (wt(δ′′)]rd(δ)) \rd(δ′′) and either R =

∏
b∈wt(δ′′) b

a−→ or
∏

b∈(rd(δ)\rd(δ′′)) b
a−→.

Suppose a ∈ (rd(δ′′) \ rd(δ)), then wt(δ′′) = (wt(δ) ] rd(δ′′)) \ rd(δ) implies
that a ∈ wt(δ′′), that is R

a−→.
In both cases we have a contradiction because we have assumed that

(R |
∏

b∈(rd(δ)\rd(δ′′)) b) 6 a−→. Hence atom(M) ≈a atom(N). 2

B.2 Proofs of laws in Table 6.5

In this section we prove the correctness of laws in Table 6.5. In what follows a /∈ σ

means that the name a does not appear in σ and an ∈ σ means that σ contains n

copies of a.

(comm) α.α′.M w α′.α.M : Suppose α = rd(a) and α′ = rd(b) (the other cases are
similar.) For each state σ we distinguish the following cases:

a, b /∈ σ: (rd(a). rd(b).M)σ;ε → (retry)σ;ε and (rd(b). rd(a).M)σ;ε → (retry)σ;ε;

an, bm ∈ σ and (M)σ\{a,b};ε ⇒ (end)σ\{a,b};δ: (rd(a). rd(b).M)σ;ε ⇒
(end)σ;rd(a). rd(b).δ, (rd(b). rd(a).M)σ;ε ⇒ (end)σ;rd(b). rd(a).δ and
rd(a). rd(b).δ =σ rd(b). rd(a).δ;

an, bm ∈ σ and (M)σ\{a,b};ε ⇒ (retry)σ\{a,b};δ: (rd(a). rd(b).M)σ;ε ⇒
(retry)σ;rd(a). rd(b).δ and (rd(b). rd(a).M)σ;ε ⇒ (retry)σ;rd(b). rd(a).δ;

a /∈ σ and bm ∈ σ (or vice versa): (rd(a). rd(b).M)σ;ε → (retry)σ;ε and
(rd(b). rd(a).M)σ;ε → (rd(a).M)σ;rd(b) → (retry)σ;rd(b).

Hence α.α′.M w α′.α.M by Definition 6.4 (w).
(dist) α.(M orElse N) w (α.M) orElse (α.N): Suppose M ′ =

rd(a).(M orElse N) and N ′ = (rd(a).M) orElse (rd(a).N). For each state σ

we distinguish the following cases:
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a /∈ σ: (rd(a).(M orElse N))σ;ε → (retry)σ;ε and
((rd(a).M) orElse (rd(a).N))σ;ε ⇒ (retry)σ;ε, (ARdF) and (AOF);

an ∈ σ and (M)σ\{a};ε → (end)σ\{a};δ: (rd(a).(M orElse N))σ;ε ⇒
(end)σ;rd(a).δ and ((rd(a).M) orElse (rd(a).N))σ;ε ⇒ (end)σ;rd(a).δ,
in both cases by (ARdOk) and (AOE);

an ∈ σ and (M)σ\{a};ε → (retry)σ\{a};δ: (rd(a).(M orElse N))σ;ε ⇒
(N ′)σ;rd(a).δ and ((rd(a).M) orElse (rd(a).N))σ;ε ⇒ (N ′)σ;rd(a).δ, in
both cases by (AOF), where (N)σ\{a};ε ⇒ (N ′)σ\{a};δ with either
N ′ = end or N ′ = retry.

Hence α.(M orElse N) w (α.M) orElse (α.N) by Definition 6.4 (w).
(ass) M1 orElse (M2 orElse M3) w (M1 orElse M2) orElse M3 follows by re-

calling that orElse is a left preemptive operator ((AOF) and (AOE)).
(idem) M orElse M w M can be shown by observing that (M)σ;ε ⇒ (end)σ;δ

implies (M orElse M)σ;ε ⇒ (end)σ;δ, by (AOE), and (M)σ;ε ⇒ (retry)σ;δ

implies (M orElse M)σ;ε ⇒ (retry)σ;δ, by (AOF).
(absRt1) α. retry w retry. Suppose α = rd(a). The result follows by observing

that either if a ∈ σ or a /∈ σ (rd(a). retry)σ;ε ⇒ (retry)σ;δ with either δ = rd(a)
or δ = ε.

(absRt2) retry orElse M w M w M orElse retry follows by (AOF) and left
preemption of orElse.

(absEnd) end orElse M w end follows by (AOE).
(asy) a.a ≈a 0:

R =
{
(a.a,0), (a, a), (0,0)

}
.

(a-asy) atom(rd(a). wt(a). end) ≈a 0:

R=
{
(atom(rd(a). wt(a). end),0), ({|(rd(a). wt(a). end)σ;ε|}rd(a). wt(a). end,0)

}
∪

{
({|(wt(a). end)σ;rd(a)|}rd(a). wt(a). end,0),

({|(end)σ;rd(a). wt(a)|}rd(a). wt(a). end,0)
∣∣an ∈ σ, n > 0

}
∪

{
({|(retry)σ;ε|}rd(a). wt(a). end,0)

∣∣a /∈ σ
}
∪

{
(a, a), (0,0)

}
.

(a-1) atom(rd(a). end) ≈a a:

R =
{
(atom(rd(a). end), a), ({|(rd(a). end)σ;ε|}rd(a). end, a)

}
∪

{
({|(end)σ;rd(a)|}rd(a). end, a), (0,0)

∣∣an ∈ σ, n > 0
}

∪
{
({|(retry)σ;ε|}rd(a). end, a)

∣∣a /∈ σ
}

.
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B.3 Proof of Proposition 6.3

In this section we show that laws in Table 6.5 can be used for eliminating redundant
branches from an atomic expression and obtaining an equivalent expression in normal
form (see proof of Proposition 6.3.) Some preliminary results are needed.

The next proposition states that if K ′’s reads include K’s then K ′ is bigger than
K in our weak atomic preorder.

Proposition B.3.1. Suppose K = α1. · · · .αn and K ′ = β1. · · · .βm. If rd(K) ⊆
rd(K ′) then K w K ′.

Proof: It is enough to observe that if (K ′)σ;ε ⇒ (end)σ;δ then rd(K ′) ⊆ σ

(rules (ARdOk) and (ARdF)); thus rd(K) ⊆ σ, and by (ARdOk) we get (K)σ;ε ⇒
(end)σ;δ′ . 2

As a consequence of the previous proposition, we obtain that, in an orElse

expression, a redundant branch, that is a branch which includes the reads of at least
one of its preceding branches, can be eliminated.

Proposition B.3.2. Consider the expressions K1, . . . ,Kn where, for i = 1, . . . , n, Ki

is of the form αi1 . · · · .αini
. If rd(Kj) ⊆ rd(Kn), for a j such that 0 < j < n, then

K1 orElse · · · orElse Kn−1 orElse Kn w K1 orElse · · · orElse Kn−1 .

Proof: The proof proceeds by applying Proposition B.3.1, the fact that MtM ′ w

M if and only if M w M ′ (see pag. 145) and orElse ’s rules in Table 6.4. 2

As previously said, the proof of the following theorem show how to apply rules in
Table 6.5 for rearranging an atomic expression into an equivalent one in normal form.

Proposition B.3.3 (Proposition 6.3). For every expression M there is an expres-
sion M ′ in normal form such that M w M ′.

Proof: The proof proceeds by induction on the structure of M :
M = end: M ′ = M = end;
M = retry: M ′ = M = retry;
M = α.N : by induction hypothesis, there is an N ′ in normal form such that N w N ′.

By Proposition B.1.8, α.N w α.N ′. Rule (dist) can be applied for distributing
α among the orElses in N ′ in such a manner to obtain an M ′ in normal-form
such that M w M ′;

M = N orElse N ′: by induction hypothesis, there are N0 and N ′
0, in normal form,

such that N w N0 and N ′ w N ′
0. By Proposition B.1.9, M = N orElse N ′ w

N0 orElse N ′
0. We choose M ′ by considering the following cases:
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• if N0 = retry we choose M ′ = N ′
0, because, by (absRt),

retry orElse N ′
0 w N ′

0;

• if N0 = N01 orElse . . . orElse N0n and N ′
0 =

N ′
01

orElse · · · orElse N ′
0m

, consider I = {j | k ∈ {1, . . . , n} :
rd(N0k

) ⊆ rd(N ′
0j

)}. If I = ∅ this means that M ′ = N0 orElse N ′
0 is in

normal form.

Otherwise, suppose I = {j1, . . . , jl} with ji < jw for i < w; by applying
Proposition B.3.2, B.1.9 and (ass) at every step, we have

N0 orElse N ′
0

w (by removing N ′
0j1

)

N0 orElse · · · orElse N ′
0j1−1

orElse N ′
0j1+1

orElse · · · orElse N ′
0m

w (by removing N ′
0j2

)

N0 orElse · · · orElse N ′
0j1−1

orElse N ′
0j1+1

orElse · · ·

orElse N ′
0j2−1

orElse N ′
0j2+1

orElse · · · orElse N ′
0m

w (by removing N ′
0j3

)
...

w (by removing N ′
0jl

)

N0 orElse · · · orElse N ′
0j1−1

orElse N ′
0j1+1

orElse · · ·

orElse N ′
0j2−1

orElse N ′
0j2+1

orElse · · · orElse N ′
0jl−1

orElse N ′
0jl+1

orElse · · · orElse N ′
0m

= M ′ (that is in normal form.)

In each case, N0 orElse N ′
0 w M ′, thus M w M ′.

2

B.4 Proofs of Section 6.4

Lemma B.4.1 (Lemma 6.1). Assume that s′ 4 s and P
s=⇒ P ′, then there is a

process P ′′ such that P
s′=⇒ P ′′.

Proof: s′ 4 s means s′ 4n
0 s, for some n > 0. The proof proceeds by induction

on n. For n = 0 we have s = s′. Suppose n > 0 and s′ 4n−1
0 s′′ 40 s. The result

follows by induction hypothesis if we show that P
s′′=⇒. We proceed by distinguishing

the possible cases for s′′ 40 s according to laws (to1)-(to4).
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(to1): s′′ = rr′ and s = r{|a|}r′, thus s′′ = rr′ and s = rar′. P
s=⇒ P ′ implies

P
r=⇒ P1

a=⇒ P2
r′=⇒ P ′, and by Proposition B.1.1, P1 ∼ P2 | a, that is P

r=⇒
P2 | a

r′=⇒ P ′ | a, hence P
s′′=⇒ P ′ | a;

(to2): s′′ = rl{|a|}r′ and s = r{|a|}lr′, thus s′′ = rlar′ and s = ralr′. P
s=⇒ P ′

implies P
r=⇒ P1

a=⇒ P2
l=⇒ P3

r′=⇒ P ′, and by Proposition B.1.1, P1 ∼ P2 | a, that

is P
r=⇒ P2 | a

l=⇒ P3 | a
a=⇒ P3

r′=⇒ P ′, hence P
s′′=⇒ P ′;

(to3): s′′ = rr′ and s = r{|a|}ar′, thus s′′ = rr′ and s = ra{|a|}r′. P
s=⇒ P ′ implies

P
r=⇒ P1

a=⇒ P2
a=⇒ P3

r′=⇒ P ′, hence, by Proposition B.1.1, P1 ∼ P2 | a, that is P2

can synchronize with a (Proposition 6.1 (com)) and P
r=⇒ P2 | a ⇒ P3

r′=⇒ P ′,
that is P

s′′=⇒ P ′;
(to4): s′′ = {|a1|} · · · {|an|} and s = {|a1, . . . , an|}, or vice versa; in this case s = s′′

by definition of ·.
2

Lemma B.4.2 (Lemma 6.2). Consider two traces s and r. If there is a process R

such that O(s) r=⇒ w=⇒ R then r 4 s.
Proof: The proof proceeds by induction on s.

s = as′: O(s) = a.O(s′) and O(s) rw=⇒ implies r = {|a|}r′ such that O(s)
{|a|}−−→

O(s′) r′=⇒. By induction hypothesis, r′ 4 s′, hence by prefixing, r = ar′ 4

as′ = s;
s = {|a1, . . . , an|}s′: O(s) =

( ∏
a∈{a1,...,an} a

)
| O(s′). We have O(s) rw=⇒, we can dis-

tinguish the following cases depending on r:

ai /∈ r: by induction hypothesis, O(s′) rw=⇒ implies r 4 s′ and by (to1) and
(to4), r 4 s′ 4 {|a1|} · · · {|an|}s′ 0<40 {|a1, . . . , an|}s′ = s;

ai1 , . . . aik ∈ r for {ai1 , . . . , aik} ⊆ {a1, . . . , an}: in this case r =

r1ai1 · · · rkaikrk+1 and O(s′)
r1···rk+1w

======⇒. By induction hypothesis,
r1 · · · rk+1 4 s′:

r = r1{|ai1 |} · · · rk{|aik |}rk+1

4 {|ai1 |} · · · {|aik |}r1 · · · rk+1 (by (to2))

4 {|ai1 |} · · · {|aik |}s′ (by induction and prefixing)

4 {|a1|} · · · {|an|}s′ (by (to1) and (to2))

0<40 {|a1, · · · , an|}s′ (by (to4))

= s;
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r = r1 · · · rk+1 and O(s′)
r1{|ai1

|}···rk{|aik
|}rk+1

==============⇒ for {ai1 , . . . , aik} ⊆ {a1, . . . , an}:
by induction hypothesis, r1ai1 · · · rkaikrk+1 4 s′ and:

r = r1 · · · rk

4 r1{|ai1 |}ai1 · · · rk{|aik |}aikrk+1 (by (to3))

4 {|ai1 |} · · · {|aik |}r1ai1 · · · rkaikrk+1 (by (to2))

4 {|ai1 |} · · · {|aik |}s′ (by induction)

4 {|a1|} · · · {|an|}s′ (by (to1) and (to2))

0<40 {|a1, . . . , an|}s′ (by (to4))

= s.

2

The proof of the full-abstraction theorem is standard (see e.g. [30]).

Theorem B.4.1 (Theorem 6.3). For all processes P and R, P <∼may
R if and only

if P �may R.
Proof:

(⇒): Suppose P �may R and P may O for any observer O we have to show that
R may O. P may O means that P |O w=⇒, that is there exists a trace s such
that P

s=⇒ and O
sw=⇒. P �may R implies that there exists s′ 4 s such that

R
s′=⇒. s′ 4 s implies s′w 4 sw. By Lemma B.4.1 and O

sw=⇒ we get that O
s′w==⇒.

Hence, from R
s′=⇒ we obtain R |O w=⇒, that is R may O (P <∼may

R).

(⇐): Suppose P <∼may
R and P

s=⇒, we have to show that there exists s′ 4 s such

that R
s′=⇒. From P

s=⇒ and O(s) sw=⇒ we have P | O(s) w=⇒, that is P may O(s).
It follows that R may O(s), that is R | O(s) w=⇒. Thus, there exists s′ such that
R

s′=⇒ and O(s) s′w==⇒, and, by Lemma B.4.2 and O(s) s′w==⇒ we have s′ 4 s, that
is P �may R.

2

Lemma B.4.3 (Lemma 6.3). Assume M =
⊔

i=1,...,n Ki is an expression in normal
form. For every index i in {1, . . . , n} we have atom(M) ;σi →∗ {|(end)σi;δ|}M ;σi

where σi = rd(Ki) = rd(δ) and wt(δ) = wt(Ki).
Proof: By definition of normal form. 2

Corollary B.4.1. Assume M =
⊔

i=1,...,n Ki is an expression in normal form. The

possible behavior of atom(M) can be described as atom(M)
rd(Ki)====⇒

∏
b∈wt(Ki)

b for
every i ∈ 1, . . . , n.
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Proof: By Lemma B.4.3, rule (atOk) and definition of
µ−→. 2

We can prove now the main result of Section 6.4, that is that may-testing semantics
is not able to distinguish the behaviour of an atomic expression from the behaviour
of the corresponding ccs process.

Theorem B.4.2 (Theorem 6.4). For every expression M in normal form we have
atom(M) 'may [[M ]].

Proof: The proof proceeds by using the alternative preorder instead of the may
preorder; in what follows it is shown that:

(1) atom(M) �may [[M ]];
(2) [[M ]] �may atom(M).

Recall that M is in normal-form, thus M =
⊔

i=1,...,n Ki and [[M ]] =
∑

i=1,...,n[[Ki]].
(1) For proving that atom(M) �may [[M ]], we have to show that ∀s such that

atom(M) s=⇒ there exists s′ 4 s such that [[M ]] s′=⇒. We distinguish the following
cases for s:

s = ε: in this case we can choose s′ = ε;

s = θai1 · · · ail with l > 0: by Corollary B.4.1, there is a j ∈ {1, . . . , n} such
that θ = rd(Kj),

atom(M)
rd(Kj)====⇒ a1 | · · · | am

ai1
···ail=====⇒

with {ai1 , . . . , ail} ⊆ {a1, . . . , am} = wt(Kj).

Suppose rd(Kj) = {b1, . . . , bk}. By definition, [[Kj ]] =
b1. · · · .bk.(a1 | · · · | am). That is, if we choose the j-th addend of
[[M ]], we have [[M ]] s′=⇒ with s′ = {|b1|} · · · {|bk|}ai1 · · · ail , and by (to4)

s′ 0<40 s;

(2) For proving that [[M ]] �may atom(M), we have to show that ∀s such that [[M ]] s=⇒
there exists s′ 4 s such that atom(M) s′=⇒. We distinguish the following cases
for s:

s = {|b1|} · · · {|bk|}: s contains only input actions, thus we can choose s′ = ε 4 s,
(to1), and atom(M) s′=⇒;

s = {|b1|} · · · {|bk|}a1 · · · am with m > 0: in this case there is a j ∈ {1, . . . , n}
such that [[Kj ]]

s=⇒, {b1, . . . , bk} = rd(Kj) and {a1, . . . , am} ⊆ wt(Kj) (by
definition of [[·]]). Suppose σ = rd(Kj), by Lemma B.4.3, atom(M);σ ⇒
{|(end)σ;δ|}M with rd(δ) = rd(Kj) and wt(δ) = wt(Kj). This means
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that atom(M)
rd(Kj)====⇒

∏
a∈wt(Kj)

a, that is (by (to4)) there is an s′ =

rd(Kj)a1 · · · am 0<40 {|b1|} · · · {|bk|}a1 · · · am = s such that atom(M) s′=⇒.

2


