UNIVERSITA DEGLI STUDI DI FIRENZE
Dipartimento di Sistemi e Informatica

Dottorato di Ricerca in Informatica e Applicazioni

XXII Ciclo
Settore disciplinare INF/01

DYNAMIC NETWORKS:
ALGORITHMS, SIMULATION, AND EXPERIMENTS

CARLO NOCENTINI

Supervisor: Pierluigi Crescenzi

PhD Coordinator: prof. Rocco De Nicola

April, 2010

Carlo Nocentini: Dynamic Networks: algorithms, simulation, and experiments, Dot-
torato di Ricerca in Informatica e Applicazioni, © April, 2010

ABSTRACT

A dynamic network is a network in which nodes and links vary with respect
to time because of events different from failures. In this thesis we deal with
algorithmic aspects of dynamic networks. In particular, we have chosen two
specific kind of dynamic networks which have become very popular in the last
years: peer-to-peer (in short, P2P) networks and mobile ad hoc networks (most
commonly known as MANET:).

Contribution to the P2P field. P2P networks are implemented by means
of the overlay network concept, which is a logical abstraction of the physical
network in which a direct logical link between two nodes might correspond to a
multi-hop physical path. One of the most challenging issue in P2P networking
is how to organize and retrieve the resources shared by the overlay network:
distributed hash tables (in short, DHT) are a common solution to this problem.
On the other hand, the growing popularity of P2P applications has determined
the need of environments helping the programmers to develop them. One of
the most popular such environment is JXTA, a framework developed by Sun
to give to developers an instrument to build their P2P applications. As a first
result of this thesis, we propose the integration of a popular DHT algorithm
(Chord) within the JXTA framework. Indeed, JXTA provide the developers
with a resource sharing protocol producing a structure similar to a DHT, but
not as good as a pure DHT. The resulting new JXTA implementation, called
JXTACH, is experimentally compared with the original one: the results give
strong evidence to the fact that the JXTA resource sharing protocol performances
can be improved up to one order of magnitude by replacing it with a pure DHT.

Contribution to the MANET field. Mobile ad hoc networks are wireless
networks where connectivity relies totally on wireless mobile devices. Two
nodes are connected if they fall inside each other transmission (visibility) range.
A possible way to build MANETs is using Bluetooth technology. Part of this
thesis is dedicated to the device discovery Bluetooth protocol, according to which
each device tries to connect to other devices within its visibility range in order
to establish reliable communication channels yielding a connected topology. We
report analytical and experimental proofs that when the transmission range of
a node is a vanishing function of the number of devices, full connectivity can
be obtained by letting each node to connect to a constant-size subset of visible
neighbors. Finally, MANETs dynamic behavior raises up many issues due to
their mobile feature: it is then important to have instruments to model such a
feature. The last part of this thesis is dedicated to MOMOSE, an environment for
the simulation of mobility models. MOMOSE already contains the most popular
mobility models, but it also offers the possibility to add new mobility models

iii

iv ABSTRACT

and to record data to evaluate the performances of the protocols executed during
the simulation.

ACKNOWLEDGMENTS

I would like to thank my supervisor Prof. Pierluigi Crescenzi who introduced
me to the research giving me the possibility to appreciate it.

I would like also to thank Dr. Michele Loreti who supported and encouraged
me during the whole PhD program period.

My thanks go also to all the people I met at Mathematics Departement of
Tor Vergata University in Rome, which supported my research activity through
the FP6 project AEOLUS. Thanks a lot to Prof. Miriam Di lanni, Dr. Gianluca
Rossi, Prof. Andrea Clementi, and finally to Dr. Francesco Pasquale with whom
I shared very pleasant moments during the AEOLUS meetings and schools.

I thank very much Prof. Andrea Pietracaprina and Prof. Geppino Pucci, their
contribution to my research activity was very important.

Many thanks to the reviewers of the thesis, Prof. Roger Wattenhofer and Prof.
Giuseppe Persiano for their helpful and constructive comments.

I sincerely thank the Coordinator of my PhD program Prof. Rocco De Nicola
for the encouragement and the suggestions he gave me during these years.

Furthermore, there has been a group of people which had a very important
role during my period as a PhD student: people I met in the PhD student
office. It is in general an hard problem finding real friends, my experience
there has been a wonderful exception. Thanks Carlotta, Elena, Liliana, Lucia,
Maddalena, Sara, Tania, Alessandro (both), Andrea, Francesco (the three of
you), Leo, Massimiliano, Stefano, you know exactly how much I value your
contribution and above all your Friendship.

Finally, thanks to my family for their encouragement and to Alicja, who is my
first supporter and shares with me successes and failures.

CONTENTS

T DYNAMIC NETWORKS! 1
2
[1.2 Wireless Networks| 5
1.2.1__Infrastr I n r 6
[1.2.2 Infrastructureless networks: Ad hoc networks| 7

[1.2.3 Mobile Ad hoc networks| 9
11
[.1 Introduction to P2P overlay networks| 11
[2.2 Unstructured P2P Overlay Networks| 13
[2.2.1 Communicating in an unstructured network] 13
[2.2.2 Modeling unstructured networks| 15
[2.2.3 Applications based on unstructured overlay networks| 16
[2.3 Structured P2P Overlay Networks| 20
[2.3.1 A taxonomy for structured P2P overlay networks| 20
[2.3.2 Examples of structured P2P overlay networks| 23
B_JXTACH 47
[3.1 Introduction] 47
[3.2 Related work] 48
[3.3 Understanding JXTA and Chord] 49

3.3.1 JXTA| 49
3.2 ord 60

[3.4 JXTA rendezvous service reverse engineering| 67
[3.4.1 The Rendezvous Peer View| 67
[3.4.2 The Shared Resource Distributed Index] 7o
[3.4.3 The Walker| 72

[3.5 JXTACh design and implementation| 78
[3.5.1 The distributed hash table|] 78
[3.5.2 The distributed index| 87
[3.5.3 The walker] 9o
[3.5.4 A simple utility class| 92

[3.6 Experimentation phase| 92
[3.6.1 Static case] 98
[3.6.2 Dynamic case with gentle disconnections| 99
[3.6.3 Dynamic case with abrupt disconnections| 100
[3.6.4 Incidence of negative queries| 101

[3.7 Conclusions| 102

[f T MOBILE AD HOC NETWORKS SIMULATION:. MOMOSE| 105
4.1 Introduction| 105

vii

viii

CONTENTS

l4.2

Mobility models overview| 107

l4.2.1 Random based mobility models| 107

l4.2.2 Mobility models with temporal dependency| 109
l4.2.3 Mobility models with spatial dependency| 111
l4.2.4 Mobility models with geographical restrictions| 114

4.3

A Description of MOMOSE Features| 119

-4

The Software Architecture and the Simulation Execution Flow| 125

l4.4.1 Extending MOMOSE| 127

4.5

Java and C++ Performance Comparison, 128

6

Related Work and Performance Comparison| 129

4.7

Two Case Studies| 132

8

Conclusions| 134

[_BLUETOOTH AD HOC NETWORKS| 135

[5.1 Bluetooth overview| 135
[5.1.1 Bluetooth architecture] 136
[5.1.2 From piconets to scatternets, the Bluetooth topology| 141
[5.1.3 From constantr to r(n) 159
[5.2 Connectivity of BT(r(n),c(n))| 161
b.z.l Case y1y/Inn/n < r(n) < n*€| 162
22 Casen € <r(n) <1 164
[5.3 Achieving c(n) = 3 using a double choice protocol| 166
[5.4 Experiments| 167
[5.5 Conclusions| 171

b CONCLUSIONS| 173

[BTBLTOGRATHY] 179

DYNAMIC NETWORKS

In the course of the last century the need of information has become a major
challenge in human society. As a consequence the necessity of having a mean to
gather, process and distribute information as fast as possible and, in many cases,
to the largest possible number of people, has arisen. At first, the response to
this need was provided by the telephone network, which gave the possibility to
communicate instantaneously even with people located thousand of kilometers
away. This kind of network answered to the need of fast communication; the
latter need, instead, was satisfied by radio and television networks, which were
able to communicate with a huge number of people at the same time. Finally,
thanks to the computer evolution, the mutual connection of many computers in
order to form a computer network, was made possible.

Thus, we can say that this kind of network puts together the features of
telephone, radio and television networks. Indeed, it takes the interactivity from
the first one, while it takes the possibility to reach a lot of people at the same
time (especially with the recent growth of personal computers technology and
the explosion of Internet) from the others. Still, computer networks are not a
mere intersection of old technologies; they opened up a new wide perspective
which gave birth to an entire new field of computer science. It is also worth
observing that, in the present days all the technologies are converging into a big
internetwork (which is Internet). Indeed, classic telephone might be substituted
by Voice over IP (VoIP) technology, whereas radio and television networks have
their counterpart in streaming on the Internet.

A network is composed by nodes and links. As a dynamic network we
consider a network in which nodes and links vary with respect to time. If we
limit ourselves to this definition it is clear that it would be impossible to observe
a non dynamic network in the real world. We then eliminate from the set of
dynamic networks those in which the dynamism is due mostly to the failures.
Specifically, we consider that a network is dynamic when the dynamism is
caused by the nature of the network itself.

In the remainder of this chapter, we will give a brief overview of the computer
networks, including those which are not dynamic according to the previous
definition. For each network described, we will indicate if it can be considered
dynamic or not, giving the reason of what was stated. We divided our description
into two big subclasses, wired networks and wireless networks.

DYNAMIC NETWORKS

1.1 WIRED NETWORKS

There are many ways of classifying computer networks, one of the most popular
is a classification based on their geographical distribution. When we talk about
a Personal Area Nertwork (in short, PAN) we mean a small network limited to a
single machine connected with its peripherals (i.e. printers, scanners).

If the network is limited to a single office or to a small company located in
a single building then it is classified as a Local Area Network (in short, LAN).
The purpose of such a network is mainly to connect personal computers and
workstations in order to share resources and exchange information. The most
popular architecture for LANs is Ethernet (IEEE 802.3), which is a bus-based
broadcast network. In a bus-based broadcast network, the devices connected to
it share the same channel to communicate, and each of them can send whenever
it wants to. Conflicts are resolved in the following way: if two or more packets
collide, each computer waits a random period of time after which it transmits
again.

If the network is located in a city it is classified a Metropolitan Area Network
(in short, MAN). An example of a metropolitan area network is the cable
television network which is frequent in many cities in United States. This kind
of architecture was intended to be used in places in which the antenna signal
could not arrive. After the Internet explosion, cable TV operators added the
possibility of having a bidirectional connection to the Web using a part of the
spectrum which was unused by the TV signal. In such manner, the cable TV
network was transformed into a metropolitan area network.

When a network spreads into a large geographical area we talk about a Wide
Area Network (in short, WAN). A wide area network is composed of many LANs
or of single machines interconnected via a communication subnet. Computers
attached to the LANs are usually called hosts, while the communication subnet
is composed of switching elements named routers, which are responsible for
the routing of messages sent through the network by hosts.

Since there exist many different kinds of networks, and since a world wide
communication is what is needed, therefore devices under a type of network
shall be able to communicate with devices under a different type of network. To
fulfill this need we have to connect different networks through machines called
gateways which are in charge of the necessary translation. What we get is an
internetwork, or more synthetically an internet. The most common configuration
of an internet is formed as a set of LANs interconnected via a WAN. The most
popular implementation of an internet is Internet (the convention to differ the
two concepts is by writing the implementation with a capital letter).

In Figure [1.1) we represent the classification of the above described networks.
All of those networks belong to the class of static networks; indeed, their
dynamism is mostly due to the failures of the devices connected to them.

1.1 WIRED NETWORKS

Distance Area
™
im Square meter
> PAN
10m Room J/
100 m Building > LAN
1 km Campus
—
10 km City > MAN
—
100 km Country
> WAN
1000 km Continent
_<
10000 km Planet > Internet

Figure 1.1: Network classification according size.

As an example we can take Internet, intended as the physical internetwork
composing it. When we talk about Internet, an activity which depends largely
on the network structure is routing. In works like [, 2} [3] there is the description
of the dynamics of Internet routing through the analysis of the Autonomous
Systems (AS) topology evolution. In particular, in [1] the authors describe a set
of routing pathologies, and observe that the most likely pathology that occurs in
end-to-end routing is an infrastructure failure or a temporary outage (at least 30
seconds).

A different case is seen when a logical network built over the networks
we have just seen is provided. In such networks, called overlay networks, links
interconnecting nodes at the logical level correspond to paths at the physical
level. The World Wide Web is an example of an overlay network built on top
of the Internet, where links between pages are the logical links which in the
physical level become long paths crossing even continents.

Another example of an overlay network is constituted by peer-to-peer net-
works (in short, P2P). In this kind of networks the nodes are at the same time
providing and using shared resources (i.e. CPU, memory, storage space) inside
the network. The topology of a P2P network is built over the physical network,
and the links between peers are logical. In this case as well, the proximity of two
peers does not imply the geographic proximity between the machines hosting
the peers in the physical network.

In Figure|1.2) we show a graphical representation of a simple overlay network,
a dashed line means that the logical node is physically contained in the machine
to which it is connected (e.g. logical node a is in the machine M1), while a thick
line highlights the correspondence between the logical link connecting a to e

DYNAMIC NETWORKS

and the path (M1, M2, M4, M5, M6) which is one of the possible physical paths
connecting M1 with Meé.

Overlay networks dynamism is due not only to the underlying physical
network failures. Indeed, there are many others causes which usually depends
on the purposes of the logical network. Let us consider the World Wide Web:
in [4] the authors present a classification of Web dynamics that should be taken
into consideration by search engine designers. Three of these dynamics are the
following ones.

* Dynamics of Web size: the need of information presentation and information
exchange in the commercial, government and educational sectors, causes
the growth of the Web size at an exponential rate.

* Dynamics of Web pages: the increasing Web usage and the need of keeping
the information on the web pages valuable, have the effect of creating a
situation in which new pages come into existence, others are removed
for a short time or forever, some, instead, are modified or migrated to a
different URL.

* Dynamics of Web link structures: links between Web pages are continuously
appearing and disappearing because of various reasons.

In P2P systems a source of dynamism could be generated by the intrinsic
nature of these systems, which are usually used by peers to cooperate in order to
provide a service which should result in an improved benefit (with respect to the
same service implemented by a single node) to the whole network. This would
be true in a perfect world: in a real P2P application, however, there exists a
phenomenon called free riding. A free rider is a node which uses the P2P network
to get the maximum benefit without giving support to the network in return.
This can be described as a peer which remains connected to the network just
for the time necessary to get the service and, when finished, disconnects from
the P2P network. This kind of nodes are, unfortunately, a vast majority in a P2P
network. In [5] it was observed that in 2006 more than 70% of nodes participating
to the eDonkey P2P network were free riders. This kind of percentage results
in various problems, such as the high dynamism introduced by the high churn
of free riders connection and disconnection. The problem of how to limit the
incidence of the free riders phenomenon is not the object of this thesis: we limit
ourselves to observe that one of the most popular solutions is to create incentive
mechanisms in order to persuade the free riders to cooperate (a short review
can be found in [6]).

When we have to deal with a high dynamism, it is important to find proper
protocols and data structures to face it. In P2P networks, a largely studied and
used instrument to manage the resource sharing task is the distributed hash
table (in short DHT). This kind of distributed data structures defines a way to

1.2 WIRELESS NETWORKS

decentralize the resource storage in a distributed system and a way to retrieve
it. Indeed, the basic operations that a DHT provide are a store operation and
a retrieve operation. There exist many DHT protocols such as Chord, CAN,
Kademlia, Pastry, Tapestry. All the DHT protocols are based on the idea of
mapping resource identifiers and nodes identifiers into the same space through
an hash function XK. In this way we can define a relation (3{(n), 7(id)) where
node n is said to be responsible for the resource identified by the identifier id.
In Chapter |2 we will delve deeper into the case of P2P networks, while in
Chapter [3{ we will show how the application of a DHT algorithm like Chord, can
improve the performances in a resource discovery protocol of a P2P platform.

| Overlay network

| Physical network

Figure 1.2: A small example of overlay network.

1.2 WIRELESS NETWORKS

In the last few years there was an increase of the use of wireless technology, based
on infra-red or radio signals, substantially different from networks described
in the previous section, in which links are obtained by cables.” This is due to
several reasons: the fast development and the price reduction of increasingly
small devices equipped with wireless capability (i.e. mobile phones, PDAs,
laptops, netbooks, sensors); the fact that a wireless network is easier to implant
in places in which it would be difficult or impossible to install cables; finally,
wireless networks are a perfect way to provide connectivity to portable devices
in public places like airports, coffee bars, campus and so on.

1 Digital wireless communication is not a new idea, in fact Guglielmo Marconi’s wireless telegraph
used the Morse code.

DYNAMIC NETWORKS

We can apply to the wireless networks the same classification we have seen in
the previous section: Wireless Personal Area Network (WPAN), Wireless Local Area
Network (WLAN), Wireless Metropolitan Area Network (WMAN) and Wireless Wide
Area Network (WWAN). However, the wireless nature of the devices give to these
networks different characteristics with respect to their wired versions, such as:

* Interference: infra-red signals suffer from interference of sunlight and heat
sources, radio signals are more difficult to interfere with, but there are
some possibilities of interference with other electronic devices or with
other wireless devices using the same frequency.

e Slower transfer rate due to a smaller bandwidth.

¢ Considerable changes of network conditions, because of for example:
- Higher data loss due to interference.

- Frequent disconnections which can be caused by users” movement.
¢ Limited computing and energy resources.
¢ Limited service coverage.
¢ Limited transmission resources.

* Weaker security, because of an easier interception of radio signals on behalf
of attackers, which results in a much more difficult implementation of
security.

However, there exists another way of classifying wireless networks worth
mentioning: by network formation and underlying architecture. Following this
classification we can divide wireless networks into two big classes: infrastructure
based network and infrastructureless network.

1.2.1 Infrastructure based networks

This first class of wireless networks is composed by wired devices forming the
network backbone providing services to the wireless devices. An example of this
network is a wireless local area network where a wireless access point connected
via cable provide wireless connectivity, this could be the case of a university
department, in which the wireless network provides the possibility to have a
connection to the visiting people (without being forced to use a cable). This kind
of network falls into our definition of static network, in fact here we just add
the failures due to the wireless nature of the devices. Figure [1.3|shows a simple
graphical representation of a WLAN.

1.2 WIRELESS NETWORKS

Figure 1.3: An infrastructured WLAN, continuous lines represent wired links, dashed
ones represent wireless links.

1.2.2 Infrastructureless networks: Ad hoc networks

An infrastructureless network lacks the wired backbone. Connectivity is de-
manded to the wireless devices in a point-to-point manner only. These networks
are called ad hoc networks and they are formed dynamically through the coopera-
tion of an arbitrary set of independent nodes, where two nodes communicate if
they are within each other transmission range. A technology building ad hoc
networks is the Bluetooth technology. Ad hoc networks are designed to have an
existence limited on time for extemporaneous services or applications.

In this kind of network there are a lot of sources of dynamism. Let us take the
example of a sensor network: we can enumerate at least two principal case of
dynamism,

* Battery consumption: sensing devices are equipped with a battery and
the energy saving policy has a direct effect on the topology created by
the devices. Indeed, to decrease energy consumption of sensors, they
are usually put in a sleeping state, in which they stop to communicate,
therefore it is obviously translated into a high degree of dynamism.

* External events: sensor networks are deployed in many different environ-
ments. A classical example could be a fire sensing network in buildings or
in open-air (e.g. forests). In these environments there is a high possibility
of damages leading to the destruction of sensors, therefore, the sensor
network have to deal with this kind of dynamism.

The two cases shall be enough to classify ad hoc networks as a part of the
class of dynamic networks. These networks raise a larger number of challenges
with respect to their wired counterpart, which are, as well, directly connected to

8 DYNAMIC NETWORKS

the two above mentioned issues. We list below the most popular, as it shall be
clear, they are not completely independent one from another.

Energy Saving: as we have already said, nodes are equipped with batteries
and every algorithm designed for this kind of network should take it into
account. The main objective is to save as much energy as possible. In other
words, algorithm must be energy-efficient.

Coverage: this is the problem of determining the area covered by either the
sensors or the signal of the nodes.

Localization: in many applications it is important for a node to know its
geometric position in the network area.

Node Placement: in some application we have to take into consideration the
places in which to put nodes, mostly because of environmental reasons or
need of a thorough coverage.

Neighbor discovery: this is the first operation to be performed in order to
build a network and it highly influences the network performance. It is
important for a node to know its neighborhood, hence, a routing protocol
can benefit from a well designed neighbor discovery algorithm.

Density Control: this is directly connected with energy saving, in fact a
density control algorithm should manage the process which determines
when a node should be operable (awake) and when inoperable (asleep).
This should be done while keeping the network connectivity and the
coverage.

Security: when we talk about wireless networks, security is a much more
challenging problem, since radio signals are easier to be intercepted by
attackers.

Topology control: an ad hoc network lacks of a central infrastructure, there-
fore its topology is not fixed. Thus, the network needs to be able to self
configure in an appropriate topology for which routing protocols are
implemented. The quality of the topology can be measured in terms of
connectivity, energy-efficiency and throughput. The first two are connected
to the number of edges and to the maximum degree of any node (for this
concept we will see more in Chapter [5). The last one is a measure that says
how much information can be transported over the network.

Routing: Routing is directly connected to topology control, indeed, routing
algorithm should take advantage of the connectivity, the energy-efficiency
and the throughput provided by the underlying topology.

1.2 WIRELESS NETWORKS

Figure 1.4: A schematic representation of an ad hoc network.

1.2.3 Mobile Ad hoc networks

A great possibility given by the wireless devices, which can not be provided by
the wired ones, is mobility. Wireless technology, in fact, is directly connected
to portable technology which is, by definition, capable of movement. Ad hoc
networks in which the devices are moving are named Mobile Ad hoc networks
(in short MANET).

Mobility adds far more dynamism to a wireless network. Indeed, the prop-
erties and challenges described above are still valid in this context although
they have also to take into consideration the mobility. Furthermore, the mobility
property adds new possible applications.

A motionless ad hoc network is quite limited from a practical point of view. It
could be used just to connect devices which are not intended to change their
location, like for example a workstation connected to other workstations or to
its peripherals.

When we add mobility, the number of ways a network can be deployed
increases dramatically. As an example, we can list four different applications for
MANETs

* Community Networks: a MANET could be deployed to form a communi-
cation channel between group of friends traveling together in a touristic
site.

* Emergency response networks: a MANET could be deployed in areas in
which a natural disaster has destroyed the wired infrastructure, like an
earthquake or a fire, to establish connection between rescue forces.

e Vehicle networks: a MANET could be created through the installation of
wireless devices on vehicles like cars or trucks to implement a distributed
traffic monitoring system which dynamically informs the drivers about

9

10 DYNAMIC NETWORKS

the situation along their routes (this kind of network is known as VANET,
Vehicular Ad Hoc Network).

Sensor networks: sensors networks can be composed by mobile devices, the
motion of the sensors can be determined either by the environment (e.g. if
we deploy a sensor network in water, sensors are subject to the water flow),
or by the fact that the sensors themselves might be capable of movement.

All the challenges are affected by the mobility, but those which are directly
connected to the network topology have now to deal with its dynamic nature of
it. The topology of MANET is in fact, because of its intrinsic nature, continu-
ously changing. There exists a lot of protocols facing the issues raised up by the
mobility, it is then important to have both instruments to model the behavior
of MANETs and good metrics to measure the most important parameters influ-
encing the system. Furthermore, it is useful to have the possibility to test the
correctness or efficiency of protocols using these instruments, through a simula-
tion environment. In Chapter [we will go deeper into the field of simulation of
MANETs, showing an overview of the field and presenting a simulation tool as
an example.

The remainder of this thesis is structured in the following way

Chapter |2 gives an overview of P2P overlay networks, describing the most
popular protocols developed to organize such networks.

Chapter 3| describes how the injection of Chord, a well known DHT proto-
col, to JXTA, a popular framework for the implementation of P2P applica-
tions, have resulted into a remarkable increase of performances in terms
of lookup of resources in the system.

Chapter |4/ move from wired networks to wireless networks, specifically to
the MANETSs context. It gives, in the first part, an overview of the literature
produced in the mobility models field. Then, in the second part, describes
MOMOSE, a highly flexible and easily extensible environment for the
simulation of mobility models.

Chapter [5| describe a technology which is used to build mobile ad hoc
networks: the Bluetooth technology. Specifically, it will be considered the
problem of the device discovery phase, which in mobile context, acquires
particular importance.

PEER TO PEER NETWORKS

In this Chapter we will give an overview of P2P overlay networks and their inner
organization, which can be structured or unstructured. Unstructured network
does not have any topology constraint, they evolve as general graphs, while
the structured P2P networks are organized through a special distributed data
structure called distributed hash tables (in short DHT), which give to the overlay
network a specific topology.

2.1 INTRODUCTION TO P2P OVERLAY NETWORKS

The most popular architecture in network systems has been, in the first years of
development, the client-server model, a model in which the roles of the service
provider and of the service user were clearly defined and distinguishable. In
the last years the structure of the networks has become more complex. This
phenomenon has resulted in many consequences, one of which is that the client-
server model has turned to be less effective when by itself. That’s why many
different kinds of architectures have been created in order to support the old
model in a way which allow exploiting the increased complexity of the networks.
P2P is one of these new architectures. Sometimes people make a mistake and
watch P2P systems as alternatives to the client-server based systems. This is not
a correct way of perceiving it, P2P should be watched as a technology intended
to exist in parallel to the old model.

In P2P networks nodes are spread in a flat mode (almost) without any hier-
archical structure. The peers are not only server or client, the two figures are
merged into the same node, called peer. Peers are at the same time providers
and users of services available on the network, furthermore peers cooperate to
provide services with a higher performance taking advantage of their distributed
nature.

In [7] the authors give an abstraction of a P2P overlay network architecture,
we (see in Figure [2.1|for a graphical representation of this scheme). Five layers
are used to describe the components of the P2P overlay network structure

¢ Network Communication Layer: describes the hardware and software con-
cerning the network of the devices attached to the P2P network. Such
devices might be PCs, PDAs, cellphones, sensors. Namely it threats the
network interface of each physical node.

11

12

PEER TO PEER NETWORKS

Application-level Layer

Services-specific Layer

Features Management Layer

Overlay Nodes Management Layer

Network Communications Layer

Figure 2.1: Abstraction of the P2P overlay network architecture.

* Qverlay Nodes Management Layer: in this layer we already talk about peers,
here reside mechanisms which enable to find peers and to route messages
among peers in the overlay network.

* Features Management Layer: deals with the robustness and security of the
system (availability, reliability, fault resilience).

e Services-Specific Layer: is the layer acting as an interface between the appli-
cations and the P2P’s low level infrastructure, hiding to the upper level
the management of messages, task scheduling, and real organization of
data (through meta-data).

» Application-level Layer: in this layer reside all the applications, tools and
services exploiting the underneath layers.

P2P overlay networks can be subdivided into two subclasses, according to the
fact if they have or not some sort of internal organization among peers. When
the peers are spread over the physical network without a determined topology
and the contents are placed without a specific policy, the overlay network is
said Unstructured. If, otherwise, the overlay network formed by peers, has a
predetermined topology and there exists rules for the content storage, it is called
Structured. We will give a brief description of the first type, and then we will
concentrate on the second type as it contains what we have called distributed
hash tables.

2.2 UNSTRUCTURED P2P OVERLAY NETWORKS

2.2 UNSTRUCTURED P2P OVERLAY NETWORKS

In this kind of overlay networks, the peers does not have a deterministic topology,
in Figure [2.2| we show a graphical representation of an unstructured topology.
This means that there are no particular rules to establish a connection between
two peers.

Figure 2.2: Unstructured topology of an overlay network.

2.2.1 Communicating in an unstructured network

In an unstructured topology, peers have informations only about the peers
which are directly connected to them, namely about their neighbors. Then, when
an information has to be propagated through the network (e.g. a query), the
simplest way to do it is by using the flooding approach. The node that originates
the information to be spread, sends it to each of its neighbors, which, in turn,
propagate the information to their neighborhood (Figure [2.3). Each message
used during the flood is associated with a time to live. When the time to live
expires, the propagation of the message ceases as well. The time to live is used
to avoid an unnecessary propagation of the flooded message. When we think
about a search algorithm, a way to alleviate the problem of redundant messages
is to assign a low time to live to each message. If the search is successful, then
the algorithm terminates. If it is not, the search is restarted with a greater time
to live (of course there is an upper bound over which the search is considered
failed). This strategy is known as iterative deepening or expanding ring.

A different approach is the random walk policy. A peer initiating the propaga-
tion chooses at random a neighbor to which the message is sent, the process is
repeated for each peer until a time to live expires. If we are performing a search
operation, the search is successful if we encounter the object of the research
along the random walk, otherwise the last node receiving the query has to send
a failure message (see Figure [2.4). To raise the probability of having a success,
more than one random walk messages can be sent through the network.

13

e
a%y
yaedl

—

1 4
o

oy

SO

A
shedl
%

2.2 UNSTRUCTURED P2P OVERLAY NETWORKS

We presented just two of the most simple examples of message routing policy
in unstructured overlay networks, focusing on the search problem. However, we
can cite other strategies, such as guided search which is based on the concept of
“goodness” of a neighbor, which is measured in various ways keeping track of
network statistics.

The unstructured P2P overlay networks are good if we have to search contents
which are highly replicated. Indeed, if a resource is rare, a lot of peers will
have to be contacted. In this case, then, the unstructured approach looses in
performances.

2.2.2 Modeling unstructured networks

We give a brief description of the ways used to model the unstructured topolo-
gies. The natural structure used to model a network is a graph. In case of an
overlay network, peers are the vertices of the graph while the logical connection
between them are the edges.

When we consider the graph modeling an overlay network, we are interested
in many of its properties, among which we cite the degree distribution and the
diameter. The degree of a vertex in a graph is the number of vertices connected
to it through the edges, while the diameter is the maximum among the lengths
of shortest paths between pairs of vertices of the graph. The degree affects the
load distribution, while the diameter is connected to the message routing.

The most popular graph used to model an unstructured network is the random
graph, in which the edges are generated uniformly at random given the set of
vertices, each edge exists with a given probability p. The advantage of these
graph are is in its exceptional analytical properties which make them good
instruments to measure some important characteristics of the network. However,
they are not able to capture two important aspects of a real network, the clustering
property and the real distribution of node degrees.

The clustering is the property of a network such that two nodes are more likely
to be connected if they have a common neighbor. This property is measured by
the clustering coefficient. If we think about the definition of a random graph we
see that this property is not modeled.

If we study the real distribution of the nodes” degrees we find that they follow
a power-law distribution. In case of a random graph, instead, we observe a node
distribution following a Poisson distribution.

It is mainly because of these two reasons that there has been an effort to find
graphs capturing these two important properties. Power-law random graphs
and scale-free graphs are solutions which goes this direction ([8, g]).

15

16

PEER TO PEER NETWORKS

2.2.3 Applications based on unstructured overlay networks

The reason why peer-to-peer has become so popular is surely the use of this
approach to implement file sharing applications. The majority of this kind of
instruments are based on an unstructured overlay network. In the followings we
describe shortly the main characteristics of the most popular applications.

Gnutella

Gnutella was the first file-sharing system implementing a real P2P architecture.
In this application peers are embedded in an unstructured network. Peers, which
are called servent, communicate with each other using a pure flooding approach
limited to a certain radius and the data placement does not follow any particular
rule. This structure suffers from the drawbacks we have seen in the flooding
description. To help with the improvement of the routing performance and
with the scalability of the system, the latest versions of Gnutella implement the
concept of ultra-peers which are peers with a higher bandwidth used to process
query on behalf of normal peers called leaf (see Figure [2.5). In this approach the
queries travel through the ultra-peers network and the leaf peers are merely a
starting or an arrival point.

Y 4

ultra peers leaf fru‘rs

. .
tu -
Y .

Figure 2.5: Gnutella ultra-peers structure.

2.2 UNSTRUCTURED P2P OVERLAY NETWORKS

Freenet

Freenet was proposed by Clark in [10] as a file-sharing application with security,
anonymity and deniability features. Each user shares a part of its storage
space, therefore the system can be considered as a cooperative distributed file
system incorporating location independence and transparent lazy replication.
The routing algorithm is designed in an adaptive way in order to gradually
improve over time the route with a specified content using only local knowledge
of the network. Each query is routed through a chain of proxy peers in a similar
way to the IP’s routing mechanism. A message is given an hop-to-live counter
to avoid its indefinite propagation. A mechanism to avoid loops is provided.

The search for a key follows a steepest-ascent hill climbing with backtrack-
ing algorithm. We give an example of a Freenet search query propagation in
Figure To enhance the lookup response time, Freenet implements the fol-
lowing replication mechanism: every time a content is searched and found, it is
replicated along the path returning to the peer who generated the request (if we
consider Figure the content will be replicated at node c).

Request
>
Failure

Reply
-

Figure 2.6: Routing of a search query in Freenet.

BitTorrent

BitTorrent is a centralized P2P system, it is mainly used for file-sharing purposes
and it is based on an unstructured overlay network. However, it relies on some
powerful servers called trackers, which manage the communication among peers.
In a file-sharing context, the communication is formed by part of files, thus, in
BitTorrent files are sliced into pieces of fixed size. When a peer is searching for a
file, it needs to know a tracker URL and some other information about the file.

17

18

PEER TO PEER NETWORKS

These data are contained inside a file .torrent which the peer has to download
from a website. The tracker owns information (literally keeps track) about peers
containing the file, both those who have the entire file, called seeds, and those
who have only some part of it, called downloaders.

The tracker serves as a landmark, sending to peers asking for downloads
a random list of peers containing the file. At this point the communication is
managed directly by peers in a flat manner. Each peer connects via TCP to
the peers contained in the list received from the tracker, but it is allowed to
upload only up to five peers at the same time, choking the other connections
(the upload operation is called unchoke). The connections are bidirectional. The
limited number of communication channels is set to let the peers use a tit-for-tat
algorithm to achieve a consistent download rate adjusting the set of peers to
which it is uploading. Moreover, the use of a tit-for-tat approach is useful to
limit the free-riders problem. In Figure 2.7l we represent the main phases of the
peer request for a file b.torrent from peer pl.

It is clear that this system has a bottleneck and a single point of failure into
the tracker servers system. As a first step to solve this problem, the latest version
of some BitTorrent clients (Vuze, pTorrent) have added the possibility to use
a DHT protocol (Kademlia) to avoid the use of the trackers. It is important to
highlight the fact that it does not lead to a decentralized version of BitTorrent,
but it could be a path to follow.

eDonkey2000/Overnet

eDonkey2000 is probably the most popular file-sharing P2P overlay network, on
which the well know client e-mule is based. It uses an hybrid approach, in fact it
is both a client-server application and a P2P application.

It is a client-server application in the way it manages the lookup of a file,
the network is in fact constituted by a small number of peers which have
indexing responsibilities (the servers) and by a large number of peers sharing
and searching resources (the clients). A client firstly connects to a server and
then sends to it all the information about itself and about the contents it shares.
It is important to state that servers do not contain any data, they just serve
as dictionaries for the resources stored inside the clients. When a client peer
performs a lookup for a file, it contacts the server which replies with a list of
peers owning that file. Then, as it happens in BitTorrent, the communication
continues in a P2P manner.

In fact eDonkey2000 network is a P2P application from the moment in which
peers start sending to each other files or parts of files. Similarly to BitTorrent,
servers are bottlenecks and single points of failures, for that reason, the devel-
opers added in this protocol as well, the possibility to decentralize the network
through a DHT (e-mule implements a personal version of Kademlia, called
KAD).

2.2 UNSTRUCTURED P2P OVERLAY NETWORKS

Jorrent server

a.torrent

Tracker
I

download

(a) p1 downloads b.torrent which points to Tracker II

Tracker pt
%

(b) Tracker II sends the list of peers owning the file
or a part of it

ip2p3ptps.po]

(c) The overlay network is created

Figure 2.7: Phases of connection of BitTorrent.

19

20

PEER TO PEER NETWORKS

2.3 STRUCTURED P2P OVERLAY NETWORKS

The first P2P systems followed the unstructured approach. This approach, as
we already stated, is not efficient in case of rare resources retrieval, because of
the use of flooding. Furthermore, as we have seen in the cases of BitTorrent
and eDonkey2000 networks, when there is a trial to solve the problem of flood-
ing introducing a level of hierarchy, the system looses in robustness because
of the presence of single point of failures (trackers in BitTorrent, servers in
eDonkey2000).

We have already seen that the solution adopted by those two systems is the ap-
plication of a DHT approach, which is one of the most popular implementations
of a structured P2P overlay network.

The structured P2P overlay networks are born to address the problems of
unstructured overlays, providing the network topology with a particular geome-
try in order to take advantage from it for routing and maintenance. The word
structured, indeed, states a tightly controlled topology. Furthermore, differently
from the unstructured overlays, they support key-based routing in which object
identifiers and node identifiers are mapped into the same address space. The
routing of the lookup query for an object toward a node which should contain
it, is guided by a structure defined on the address space.

2.3.1 A taxonomy for structured P2P overlay networks

The structured overlay P2P networks can be classified according to many differ-
ent dimensions. We use and report the list of dimensions enumerated in [11]

* Maximum number of hops taken by a request given an overlay of N
nodes: there exist multi-hop, one-hop and variable-hop. The first category
encloses the overlays where the number of hops performed by a request
message is usually O(log N). The second category contains overlay net-
works where the number of hops is O(1). It is obtained at expense of
memory used to maintain the routing structure and it is feasible (and
reasonable) at certain conditions concerning bandwidth, churn rate and
number of peers. In [12] there is an evaluation of these parameters which
enables to compare the two approaches. To give an idea, we report in
Figure [2.8|a graphical representation of the zones formed by the values of
the parameters where one-hop and multi-hop have their own application.®

The last category contains overlay networks usually used in highly dy-
namic environments, such as systems where nodes are mobile. In these
kind of overlays, each node adapts its behavior in response to the dynamic
change of bandwidth, essentially a peer dynamically changes its routing

1 The figure is similar to the one in [12].

2.3 STRUCTURED P2P OVERLAY NETWORKS 21

I~ I
24 months -~
12 months |~ e A
One-h
o, Gmonths - N . N _I'[" Ve
5 \ “casible
S 3months N canbie
- o
g . - p
2 1month |- . S]
2 - e /
£ 2, %/ Multi-hop
e~ £ e
W ", A 7 Matters
S lday > N/ :
,:.6 /,-‘-‘. : N
= 8 hr — " A —
- ., / \
/ B
o “
3 hr — s “
1 hr =l | s I | N

w w1 1wt 1y 100 1w

#Peers

Figure 2.8: Regions where one-hop and multi-hop approaches should be used ([12]).

table size. This results in a variable number of hops to be performed by a
message in order to reach its destination.

¢ Organization of the peer address space: there exist two categories for
the way the address space is organized, flat and hierarchical. The first
one contains the overlay networks that have a single flat address space
where nodes are spread in an almost uniform way. The latter category [13]
contains networks which organize themselves in two layers. At the bottom
level peers are divided into disjoints groups. Each group is organized in
an intra-group DHT, while at the top level the groups are organized in an
inter-group DHT. Hence, to find a peer, firstly a top-level DHT is used to
determine the right group and then the right peer is found through the
bottom level DHT (see Figure [2.9).

Top-level DHT

Figure 2.9: Hierachical overlay P2P network. The g; are the bottom-level groups

22

PEER TO PEER NETWORKS

¢ Next-hop decision criteria: the criteria of where to route the message

from a peer to another is defined by the distance metric used in the overlay
network. At each step of the routing process, the distance from the target
peer has to decrease. Then a metric which converge is needed. Converging
metrics used in DHTs include prefix matching, XOR metric, Euclidean
distance in a d-dimensioned space, linear distance in a ring and modulo
bit shifting in De Bruijn graphs.

Geometry of the overlay: the overlay network topology is a very important
characteristic. Each choice influences the properties of the system, such
as scalability and performances in terms of number of hops. The main
topologies are the following(as listed in [14]):

- Ring

— Tree

Multi-dimensional Cartesian space
XOR-ring
Butterfly

De Bruijn graphs

Another important feature concerning the overlay geometry is the node
degree variation as the the network size increases. Among the most im-
portant categories we can cite the logarithmic degree graphs (see examples
further in the chapter) and the constant degree graphs like butterflies and De
Bruijn graphs. Both of the mentioned properties determine the dimension
and, in some cases, the growth of the routing tables, as well as the way the
overlay maintenance is managed.

Overlay maintenance: a P2P overlay network has to deal with the problem
of joining and unjoining peers, known as peer churn. A strategy that allows
to manage this dynamism in order to keep the overlay topology, has to be
defined. There exist many different approaches to overlay maintenance.
We can group them into three classes, active, opportunistic and passive. In
a system following the active strategy, when a peer detects a failure or a
departure of one of its neighbors, it sends to all the peers the updated list
of its neighbors. In a system following the opportunistic strategy, each peer
periodically sends its neighbor set to a randomly chosen member of this
set itself. Finally, a system following a passive strategy, leaves the structure
maintenance to take place as a side effect of the other basic operations
such as queries and responses forwarding.

Locality and topology awareness: some overlay networks take into con-
sideration the locality of the underlay, in particular, they try to exploit the
knowledge of the geographic position of the physical nodes.

2.3 STRUCTURED P2P OVERLAY NETWORKS 23

2.3.2 Examples of structured P2P overlay networks

In this section we are going to summarize the main features of some of the
most popular structured P2P overlay networks. We will not cover all the existing
systems, but we will limit ourselves to present a subset of work done so far in
this field. Our aim is to give an overview of these systems showing different
policies.

In this set we will not cover the Chord DHT algorithm, which will be treated
in a proper section of the next Chapter because of its fundamental role in this
thesis.

In the first place, we will firstly give a description of the work done by Plaxton
Rajaraman and Richa (PRR) in [15], which can be considered the first theoretical
definition of a structured overlay network.

PRR

In [15] the problem of accessing shared objects in a distributed network is dealt
with. The solution is given through a randomized algorithm that tends to satisfy
each access request with a nearby copy. Authors show that under a particular
cost model

* the expected cost of an individual access is asymptotically optimal

¢ if the objects are sufficiently large, with high probability,> the memory used
for objects store dominates the memory used for the algorithm execution.

The cost model used is based on the consideration that obtaining an optimal modelling cost and
bound in a given network (in any metric of interest, like throughput or latency) network
depends on a large set of parameters, like edge delays, edge capacities, buffer
space, communication overhead, patterns of user communication, and so on.

Then the cost model is simplified considering the combined effect of such
parameters as a unique function, specifying the cost of communication of a
fixed-length message between any given pair of nodes.

In PRR the network is modeled as a graph G where a set A of m objects
is shared among a set V of n nodes, where m = poly(n). Each node u € V
and each object A € A are identified by, respectively, (logn)-bit and (log m)-bit
identifiers. The authors assume that n = (2°)* where b,k € N, b define the
number of bits read at time and k is the number of bits used to represent an
identifier. Namely, b determines the base used to represent the identifiers and
each group of b bits is a digit. Furthermore, each node x is assigned a (log n)-bit
label €(x) uniformly at random.

The cost of communication is modeled by a function ¢ : V2 + R. Given
u,v €V, c(u,v) is the cost of transmitting a single-word message from u to v.

2 with probability at least 1 — ﬁ where p(n) is a polynomial function on n.

24 PEER TO PEER NETWORKS

The cost of transmitting a message of | words from u to v is f(1)(c(u,v)), where
f:IN — R™" is a non decreasing function such that f(1) = 1.

prefix - The random labels are used to build a neighbor table at each node. Before
describing the neighbor table, we need to define the concept of prefix of a digit

sequence y = (y1---vk).3
prefixi(v) =vi---vi

neighbor table The neighbor table is defined in the following way, it has k rows called levels,
each level contains 2° entries corresponding to each possible digit. Let us
call N the neighbor table of node x and N(i,j) the j-th entry of the i-th level
of the table. In N(i,j) it is stored the node y such that c(x,y) is minimum,
prefixi—1(L(y)) = prefixi_1(£(x)) and {(y); = j. Node y is said the primary
(1,j)-neighbor of x. In Figure we represent a neighbor table with k level and
b =1, in this case, then, k = log, (1).

0 1

level (k-1})

. modey sichihat ¢xy) s minimum,
- prefi 4y - prefix, (0x) and iy, - 0

level i Yy z,

Te. node z such that ¢fxz) Is minimum,
prefiv, 4z = prefis d0x) and fz),= 1

level 0

Figure 2.10: PRR neighbor table with b =1

Each entry maintains other two kind of information, the secondary (i,j)-
neighbors set and the reverse (1,j)-neighbor. Fixed d € IN, the set U of secondary
(1,j)neighbors is defined as follows.

Let us define the set

Wi; = {weV\{y}
| prefix; 1 ({(w)) = prefixi 1 (€(x)) A
ANtw)y =3 A
Ac(x,w) <d-c(x,y)}

3 In [15] the authors use the suffix concept, here we use a later equivalent definition used by Richa
in [16] because it is used in real systems like Pastry.

2.3 STRUCTURED P2P OVERLAY NETWORKS

Then U C W;; is defined as the set of nodes u € Wj; such that c(x,u) is
minimal.

A node v is a reverse (i,j)-neighbor of node x if and only if x is a primary
(1,j)-neighbor of v.

Together with the neighbor table, each node maintains as well a pointer list
to the object which has been shared into the network. Ptr(x) is a set of triple
(A,y,1) where A € A, y is a node holding a copy of A and 1 is an upper bound
on the cost c(x,y).

A node r € V is defined the root node of an object A € A if 3i € IN with i <k
such that

i) prefixi(r) = prefix;(A)
ii) if i < k—1 Py € V such that prefix; 1(y) = prefixi,1(A)

The notation («); indicates the sequence of nodes &g - - - oy (of length 1+ 1). A
primary neighbor sequence for A is a maximal sequence (u); such that uy € V, uy
is the root node for A and Vi < 1, ui1 is a primary (i, A;)-neighbor of ;.

The routing of a request for object A from node x follows the primary neighbor
sequence (x) where xo = x. At each hop i, node x;_1, besides forwarding the

request, informs x; of the cost of the path followed to forward the request to it.

At this point the following actions can be performed by x;:
e If x; is the root node of A, it sends directly to x the copy of A

e If x; is not the root node of A, let us call w the cost of the path followed to
forward the request to x;, it is then

i1

w = Z c(xj,%j4+1),

j=0

xi contacts its primary and secondary (i, Aj)-neighbors to check whether
they have in their pointer lists a triple (A, z, w’) such that w’ < w. If yes
the neighbor with the lower cost is contacted to use the pointer to ask
node z to send the object A to x.

¢ Otherwise x; forwards the request to x;1

In Figure we represent the search tree, followed by the request for the
object A = 2E3F?2C5. As we can see, at each hop, the node label shares a larger
prefix with the object identifier. In the figure the pointer lists are not represented,
in order to simplify the search process.

The sharing of a new object follows the same pattern, it is essentially the
search of the root node and the insertion of a new pointer in each node visited
by the insertion message. The unsharing (delete) of an object generated by a

25

pointer list

root node

sequence

routing

share & unshare

26 PEER TO PEER NETWORKS

searching object A = 2E3F9C5

— primary
— - - —» secondary

------ reverse

root node for object A

Figure 2.11: PRR search tree with b =4 and k =6

2.3 STRUCTURED P2P OVERLAY NETWORKS

node y consists of the removal of all the pointers (A, y,) along the sequence (y)
with yo = vy.
In [15] the authors prove four theorems about bounds on some metrics

e cost of a search operation,
e cost of an insertion,
* size of the auxiliary memory,

¢ adaptability: number of nodes which auxiliary memory is updated upon
an addition or a removal of a node.

It is worth to cite them, but we do not give the proof as it goes beyond the aim
of this overview of structured overlay networks.
Given a constant C = max{c(u,v) | u,v € V}

Theorem 2.1 Let x € V and let A € A. If y is the nearest node to x that holds a shared
copy of A, then the expected cost of a read operation is O(f(1(A))c(x,y)), where L(A)
is the number of words composing A.

When a node x tries to read an object A which has currently no shared copy in
the network, then the expected cost of the associated operation is O(C).

Theorem 2.2 The expected cost of an insert operation is O(C), and that of a delete
operation is O(Clogn).

Theorem 2.3 Let q be the number of objects that can be stored in the main memory of
each node. The size of the auxiliary memory at each node is O(qlog® n) words w.h.p..

Theorem 2.4 The adaptability of the access scheme is O(log n) expected and O (log? n)
w.h.p..

Following the taxonomy presented in the previous section, PRR is a structured
overlay network with logarithmic multi-hop strategy, flat address space, using a
prefix matching criteria. Each node is associated with a tree and the resulting
graph has a O(logn) degree. The algorithm takes into consideration the locality
through the use of function c. In [15] the authors do not define an overlay
maintenance policy.

CAN

In [17] Ratsanamy et all present a DHT algorithm based on a scalable content-
addressable network. CAN projects nodes and key into a d-dimensional Cartesian
coordinate space on a d-torus. Each node is deterministically assigned a zone of
the d-dimensional space and each key is deterministically assigned a point into
the space. In a d-dimension CAN two nodes are neighbors if their coordinates

27

28

routing

PEER TO PEER NETWORKS

1
/8 a f) t m
344
n
ss| r e 1 d
k Ky(5/8;9/16)
12
38 g h b i
1/4 -
K,(3/8; 3/16)
s u
18 q) c P
t v
0 18 14 38 12 58 34 /8 1

Figure 2.12: Example of CAN in a 2-dimensional space [0, 1] x [0, 1]

spans overlap along d-1 dimension and they border on one dimension. Given
a key K mapped into a point P(x1,...,x4) and a node n assigned to the zone
[x1,,%1,] X ... x [xq,,%xq,] if and only if x;, <x; <xi, withi=1,...,d.

In Figure we represent an example of CAN in a 2-dimensional space,
node e set of neighbors is {n, k, h, 1, f}.

Each node in CAN maintains the list of its neighbors associated with their
virtual coordinates, which constitute the routing table of the node itself. In
Table [2.1] we report the routing table of node e from Figure

Node Zone coordinates

-~ = & 3
S
S
— B N[= co|n
—

Table 2.1: CAN routing table of node e

Given a key K associated with point P and a node x looking for this key, the
routing algorithm followed by the search query greedy proceeds towards the
point P. In Figure we report a graphical representation of the route towards
node j followed by a search query, generated by node d, for a key associated
with point Kj.

2.3 STRUCTURED P2P OVERLAY NETWORKS

1
18 a f s t m
3/4
n
sl r e 1 d
k Ky(5/8;9/16) .
112 :
;
3/8 g h | R EES ERREED i
14 . :
K,(3/8;3/16) i
S " H u
. '
18 q J Rl cotes ¢ p
t v
0 8 14 38 12 58 34 /8 1

Figure 2.13: CAN routing in a 2-dimensional space

A node x has to discover a node which is already in the CAN to join the
network. This is done through special bootstrap nodes which maintain a list of
part of nodes currently in the system. Node x contact one of those and receive
from it a random list of nodes which have already joined the CAN. The first
operation to be performed consists in finding a zone for the new node. Node
x chooses at random a point P in the d-dimensional space and sends to one of
the nodes inside the CAN a join request associated with P. At this point the
routing algorithm towards P is executed. Once the zone containing P is reached,
it has to be split in half to create a new zone for node x. This process needs a
policy ruling the sequence of the dimensions along which the split has to be
done. In Figure we represent the join of a node x which has been associated
with a point P located in the zone of node f, j is the node chosen by x in the list
received by the bootstrap node.

The list of neighbors of node f passes from {a, ¢, s} to {a, e, x} and the list of
neighbors of node x, received from node f, is {f, e, s}.

When a node y leaves the CAN, two different situation may occur. Firstly,
it is possible to merge the y zone with the zone of one of its neighbors, this is
possible when the two zones are part of a previously split zone. In Figure
node s leaves the network, its zone is merged with the t one and all the keys
owned by s pass to t.

Secondly, it is not possible to merge the zone left unowned by a node departure
to a neighbor zone in order to form a valid zone. The neighbor responsible
for the smaller zone handles temporarily both the zones. In Figure the
departure of node r cannot be managed through the merge of any neighbor

29

node join

node departure

30

7/8

3/4

1/2

3/8

1/4

1/8

PEER TO PEER NETWORKS

n
k
u
q P
v

7/8

0

q

m
n
d
k
i
u

p

7/8

Figure 2.14: Join of a new node x associated with point P, node j is the introducer

718

3/4

1/2

3/8

1/4

/8

q

p

u

v

0

7/8

3/8

1/4

1/8

0

q

u

P
v

7/8

Figure 2.15: Departure of node s, the zone of node t is merged with the unowned zone

2.3 STRUCTURED P2P OVERLAY NETWORKS 31

zones, then node n handles temporarily the zone until it is possible the creation
of a valid zone.

1 i
7/8 a f s |t m 7/8 a f s |t m
3/4 34 .
n ‘n
58| r e 1 d 58 i e | d
k k
12 12
w| g h b i w| g h b i
14 1/4
s _ u s
18 q j C P /8 i c
t v t q J P v
0 Us U4 38 Uz 58 34 78 1 0 US U4 38 12z 58 32 78 1

Figure 2.16: Departure of node r, node n temporary takes care of the unowned zone
(the merge is not possible)

Another way for nodes to depart from the CAN is to fail. In CAN each failures
node informs periodically its neighbors about its list of neighbors, when this management
communication ceases (a threshold is defined to decide when the communication
can be considered ceased), the node is considered failed by the neighbors. A
node detecting a neighbor’s failure starts a takeover algorithm, it initializes a
timer proportional to the dimension of its zone, when the timer expires the node
sends a TAKEOVER message to all the failed node neighbors, enclosing in the
message the size of its own zone. When a node receives a TAKEOVER message,
it cancels its timer in case in which its zone is smaller than the one of he sender,
otherwise it sends back a TAKEOVER message. At the end of the process a node
with a small zone will be responsible for the unowned zone.

As a consequence of a large number of departures it is possible that the CAN
could result in a very unbalanced structure, with many nodes taking care of
multiple zones. This problem is handled by a mechanism which periodically
reassigns the zones to the nodes.

The cost of a search operation in a CAN depends on the dimensions used
and on the nodes present in the network. The average length of a pathina d
dimensional space divided into n equal zones is in fact (d/4) (n'/4). Then, for a
fixed dimension d the cost of routing a message is O(n'/4).

CAN is a structured overlay network with a multi-hop o(n'/4) strategy. The
peer address space is flat, the distance metric used is an Euclidean distance in a
d-dimensioned space. Its topology is a multi-dimensional Cartesian space. The
maintenance mechanism is opportunistic and, finally, in the basic version of the
protocol, the locality of the underlay network is not considered.

32

node state

routing

PEER TO PEER NETWORKS

Pastry

Pastry [18] was designed in the context of project PAST [19, 20] as a middleware
for object location and routing scheme in a P2P environment. This DHT protocol
takes inspiration directly from PRR, the routing phase is in fact based on a prefix
matching criteria.

Nodes are randomly associated to 128-bit identifiers called nodeld, then the IDs
circular space spans from 0 to (2'%8 —1). In the same way, objects are mapped
into keys in the same space. Both nodeld and keys are expressed in base 2°
where b € IN states the number of bits read at time (exactly like it was for PRR).

In Pastry nodes maintain three different structures to represent their partial
knowledge of the network, the routing table, the neighborhood set and the leaf set.

The routing table follows the same scheme of PRR neighbor table. A routing
table R of a node A embedded in an N nodes network is composed of [log,. N]|
rows and 2° — 1 columns. Hence, each row corresponds to the length of the
prefix shared by the nodelds maintained in it and the local nodeld, each column
correspond to the first digit which is different. Formally, adopting the notation
used in [18]], if we call R{ the entry at row | and column 1, it contains the
information (IP address and nodeld) about the node having a nodeld X such
that:

¢ nodeld A and nodeld X share the same prefix long 1 digit and digit at
place 1+ 1 is equal to i, where i is the i-th digit of the base.

e among nodelds satisfying the first property, X is the closest node to A
according to a proximity metric defined in the underlay network (Pastry
uses the IP hops).

The neighborhood set M contains the information about the M| nodes which
are the closest to node A according the proximity metric.

The leaf set £ contains the information about the |£|/2 nodes having the
numerically closest nodelds lower than A and the |£|/2 nodes having the closest
nodelds greater than A. Usually M| and |£| are equal to 2° or 2+, In Figure
we represent the state of a node with nodeld 100231. In the followings with £;
we refer to the i-th closest node in the leaf set.

A message sent in order to search for the key K is routed through a node X
following the next mechanism. Firstly, node X checks if £_ ;|2 < K < Lz, If
yes the message is routed to the node in £ with nodeld numerically closest to
K. Otherwise, the routing table is used and the message is routed to the node
sharing the longest prefix with K (like it was for PRR). It could happen, in some
rare cases, that the cell of the routing table is empty or the node is unreachable.
Then the message is routed to a node Y € £L UM U R such that

e the prefix it shares with K is at least long as the one shared between K and
X,

2.3 STRUCTURED P2P OVERLAY NETWORKS

Nodeld: 100231
lower leaf set ' greater leaf set

'
‘ 100221 ‘ ‘ 100222 ‘ . ‘ 100232 ‘ ‘ 100233 ‘

1

'
100223 ‘ ‘ 100230 ‘ : ‘ 100300 ‘ ‘ 100301 ‘

1

routing table
‘ 023213 ‘ ‘ 1 ‘ ‘ 203213 ‘ ‘ 323332 ‘
‘ 0 ‘ ‘ 113332 ‘ ‘ 123321 ‘ ‘ 131221 ‘
‘ 0 ‘ ‘ 101001 ‘ ‘ 102221 ‘ ‘ 103221 ‘
‘ 100012 ‘ ‘ 100123 ‘ ‘ 2 ‘ ‘ 100322 ‘
‘ 100201 ‘ ‘ 100211 ‘ ‘ 100223 ‘ ‘ 3 ‘
‘ 100230 ‘ ‘ 1 ‘ ‘ 100232 ‘ ‘ 100233 ‘
neighborhood set

‘ 321222 ‘ ‘ 223322 ‘ ‘ 321111 ‘ ‘ 300121 ‘
‘ 001231 ‘ ‘ 211111 ‘ ‘ 233121 ‘ ‘ 000321 ‘

Figure 2.17: A state of a node in Pastry where b = 2 and 1 = 6, the red digit is the
position relative to the level, the underlined text is the prefix shared with
the nodeld

* Y is numerically closer to K than X.

Whenever a node X wants to enter the Pastry network, it has to find a node A
already set inside Pastry. This is done through a search for A in the surroundings
of the node X, namely, A is searched among nodes, which are near to X with
respect to the proximity metric. Once A is found, a message containing the join
request is sent to it. The message is routed to a node Z by means of the routing
algorithm described earlier. Each node in the path followed by the routing, sends
back to X its state tables, then X computes its personal state tables through the
information received.

The X’s neighborhood set is created through A’s neighborhood set (please
note that A was a node near to X according to the proximity metric).

The X’s leaf set is created through Z’s leaf set, as Z is the node numerically
closest to X.

The routing table is built through each node Y traversed by the join message.

Using the notation from the description of PRR, let us call (Y); the sequence
traveled by the join message with Yo = A and Y; = Z and let us assume that
A does not share any prefix with X (it is the most general case). We call R(X)
the routing table of node X, with R;(X) we refer to the i-th row of X’s routing
table. R;(X) is created using R;(Yi), its elements in fact share with X i digit, then
they are suitable to be used for R;i(X). This is done for alli =1,...,1. At the

33

node join

34

node departure

PEER TO PEER NETWORKS

end of the process X has its own state tables and sends it back to all the nodes
contained in it (£(X) UM(X) U R(X)).

The procedure used to replace a node X, departed from the Pastry network,
is the same in both cases of node leaving with or without warning. In the latter
case the departure is discovered when a node does not respond to the messages.

A node Y such that X € £(Y), replaces it observing the following strategy: it
contacts the numerically farther node Z in the direction of the departed node to
get its leaf set (observe that £(Y) N L(Z) # &), a live node is chosen in £(Z) to
take the place of X.

Let us consider now the case in which node X is such that X € R(Y) and let
us assume that X = Rl-d(Y), a new entry for that cell has to be found. We need
a node sharing with Y a prefix of j digits, thus nodes appearing in the same
row should have in their j-th row a node suitable for RJ@(Y). Therefore, nodes in
R}(Y) with i # d are contacted until a live node for fR]d(Y) is found. If the nodes
at row j do not have a live node in their routing table suitable for lei(Y), the
procedure continues with row j + 1 and so on.

In case X € M(Y), each node Z € M(Y) is contacted to get its neighborhood
set M(Z). Among the newly discovered nodes, Y chooses the closest ones and
updates its neighborhood set accordingly.

Pastry’s performances are similar to PRR ones. If we assume accurate routing
tables, indeed, the cost of routing a message is O(log,, N) hops. In fact, if
the message follows the routing table of a node at each step, the search space
decreases of a factor of 2° until we reach the destination. As long as we use a
node from the leaf set, the route is one step away to finish. In case of an empty
cell in the routing table, as we saw during the routing description, the additive
cost is of just one hop. Finally, the messages sent during the join phase are
O(log,s N).

Like PRR, Pastry uses a logarithmic multi-hop strategy, a flat address space
and a prefix matching criteria. The resulting graph has a O(log,, N) degree and
the locality is considered through the proximity metric of the IP hops distance.
In [18]], the authors claim that the nodes inside the state tables are maintained
relatively close to the local node, this results in a better performance, especially
in terms of routing.

With respect to PRR, Pastry adds the information contained in £ and M.
Furthermore, there exists a specific overlay maintenance strategy, an active one.
Indeed, the communication of the state tables happens only after the detection
of a node departure.

Kademlia

Kademlia [21] defines a structured overlay P2P network based on a bitwise
exclusive or metric (XOR). Each node in Kademlia is identified by a m-bit string,
chosen at random when the node joins the network. The objects to be shared are

2.3 STRUCTURED P2P OVERLAY NETWORKS

assigned m-bit keys (in [21] m = 160). As usual in DHTs, the keys are assigned

to nodes which have an identifier near to them according to a distance function.

Kademlia uses the XOR (&) operation as a distance function, given two nodes x
and y, d(x,y) =xdvy.

A node x in Kademlia stores a routing table which is formed by m sets of
nodes called k-buckets. Let us call B;, with 0 < 1 < m, the i-th k-bucket. B;
contains at most k nodes {z1,...z} with 1 < k such that d(x,z;) € [2},2'1)
with j =1,..., L For each node, Kademlia maintains a triple (IP address, UDP
port, Node ID). The k-buckets are sorted chronologically according to the last
time a message was received from a node. It is done in order to use a LRU policy
for the bucket maintenance. As a consequence, the last added node is always at
the tail of the list representing the bucket.

interval k-buckets

[20,27) 6
27,2%) 5.4
[22,23) 3,2,1
[23,2%) 14,12,10
[24,2°) 23,21,19

Table 2.2: Kademlia routing table of node x =7, with m = 32 and k =3

In Table [2.2) we represent an example of Kademlia routing table for a node
x =7, m =32 and k = 3 (we represented only the node ids translated into base
10). In Kademlia the node state maintenance procedure does not use any special
message. The routing tables in fact are updated each time a message of any kind
(request or response) is received by the node. The node identifier of the sender
is examined and three possible cases emerge. Let us call x the local node and y
the sender node. Let us suppose that B; is the k-bucket suitable for y.

e Ify € By, y is moved to the tail of the list, otherwise
e If [Bi| < k, y is inserted at the tail in B;, otherwise

e If |Bi| = k, the node a, which was least-recently seen, is contacted. If it

does not respond, it is removed and y is inserted at the tail of the list.

Otherwise, a is moved to the tail and y is discarded.

It is important to list the four primitives defined by Kademlia. The primitives
are ping, store, find_node and find_value, all of them are remote procedure calls
(in short, RPC).

The ping RPC contacts a node to probe if it is still alive. The store RPC is
used to store a new shared object in a node. The find_node RPC takes an m-bit

35

node state

primitives

36

node lookup

node join

node departure

PEER TO PEER NETWORKS

identifier as an input argument and returns the k triples relative to nodes which
are closest to the identifier (they can be contained in different k-buckets of the
RPC recipient). The find_value RPC performs the same operation of find_node
with the difference that if the recipient has a key stored with the id of the input
argument, then the object relative to that key is returned.

As almost all of the DHT protocols, the basic operation of Kademlia is the
search of a node. In Kademlia it is called node lookup and it is based on the
find_node primitive.

Initially, a node x looking for a node y sends, in parallel and asynchronously, a
find_node RPC to o nodes picked up from the k-bucket closest to y, where o is
a system-wide concurrency parameter, usually set to 3. The procedure continues
recursively, once x receives the results, it chooses again o« nodes among the
closest nodes to y, and sends to them the find_node RPC. If a find_node round
returns nodes which are not closer with respect to the closest already seen, x
sends the RPC to all the nodes among the k closest ones not yet contacted. The
procedure terminates when x has queried and received responses from the k
closest nodes seen by it. In Figure we represent a node lookup i Kademlia
network where m =5, k = 3 and « = 3. Node 30 sends the request to the three
node 12, 14 and 15 which are the closest to 8 in its routing table. The nodes
reply to 30 with, respectively, (8,9,10), (8,10,11) and (2,10, 11). Node 8 can be
found in two of the messages received, hence the lookup finishes.

All the operations in Kademlia are based on the node lookup mechanism. To
store an object associated with the key a, the node lookup is performed with
argument a and a store RPC is sent to the k closest node. To get an object
associated with key b the same procedure of node lookup is performed, with
the difference that here the find_value primitive is used and the procedure is
interrupted when the key is found.

Keys in Kademlia are periodically refreshed by re-publication performed
by nodes at a fixed rate. If a key is not refreshed, it is considered expired. To
maintain consistency in the search process, if a node w where a key a is stored
discovers a node v which is closest to a, it replicates the key to v.

To join the Kademlia network a node x has to know a node y already set in
the system. The first step for x is to insert y in the right k-bucket. Then x starts a
node lookup having its identifier as input parameter. In this way it has an initial
version of the routing table and at the same time it is inserted in the k-buckets of
the nodes traversed by the node lookup. The routing table will be refined during
the refreshes which are performed as long as the node receives messages.

There is no a specific mechanism to manage a node departure, in fact the
consequences of a node departure affect the network as a side effect of the
k-buckets LRU policy. A node which is not anymore participating to Kademlia
will not be seen by the others or will not reply to direct requests. Then, gradually,
it will be removed from all k-buckets.

2.3 STRUCTURED P2P OVERLAY NETWORKS 37

s
89,10
91011 : .
810,11 ._‘
12°) [2%2) 13
[2';2%) 14,15
o [2%2%) 8,9,10
15..:"- : [2%2% 4,5,6
[2%2%) 28,29,30
[2%2" 15
[2%2" 14 [2::2;] 12,13
[2;2% 13,12 [2%2%) 10,11,8
53,91 —
[2%27) 11,10,9 [2%2%) 6,74
[2%2") 7,6,5 [2%2%) 30,31,28
[2%2%) 31,30,29

Figure 2.18: Example of node lookup in a Kademlia network where k = 3, m =5 and
o = 3, node 30 looks for node 8

38

node state

PEER TO PEER NETWORKS

In [21] the authors give a sketch of a proof that the cost of a node lookup is
O(logn) where n is the number of nodes in the network. We do not report the
proof here, though it can be intuitively seen from the fact that at each step of
the node lookup process, the space of research is at least halved.

With respect to the taxonomy, Kademlia follows a logarithmic multi-hop
strategy, the address space is flat and it uses the bitwise XOR as a (non Euclidean)
distance metric. The topology can be seen as a ring based on the XOR operation.
The overlay network maintenance is performed through a passive strategy,
Kademlia is oblivious with respect to the locality of the underlay network.

Kelips

So far, we have described systems with a multi-hop routing strategy, now we
talk about Kelips [22], a DHT in which resource lookup times are reduced and
stability to failures and churn is increased at the expense of increased memory
(Oy/n) and bandwidth usage. In Kelips in fact, a resource lookup is resolved, in
normal conditions, with O(1) time. Furthermore, changes on membership in the
overlay network are detected and disseminated to the system quickly. Kelips is
born as a file sharing system, then, from now we will talk about files instead of
general resources.

In Kelips the nodes are distributed into k virtual sets, called affinity groups,
numbered from o to k — 1. The way the nodes are spread follows the consistent
hashing policy, introduced in [23]. We will describe consistent hashing in the next
Chapter, in which we deal with Chord. Herein we limit ourselves to say that IP
address and port number of nodes are used together to obtain the argument of
an hash function H which will map it to the integer interval [0, k —1]. A node
x such that H(IP,, PORT,) = 1, with 0 < 1 < k— 1, will be inserted to the i-th
affinity group.

The affinity groups’ structure is used to build the node state which is com-
posed of three parts

¢ Affinity group view: a set containing the view of the rest of the affinity
group in which the node is embedded (the view can be partial)

* Contacts: each foreign affinity group is represented in the local node state
with a small set (of fixed cardinality c) of nodes contained in it.

¢ Filetuples: is a set enclosing references to the files contained in the nodes
of the affinity group including the local node. The reference is composed
of the file name and the IP address of the node containing the file, this
node is said the homenode of the file.

All the entities contained in the node state are associated to a heartbeat count,
used to detect if the entry has to be deleted or not. The nodes contained in the

2.3 STRUCTURED P2P OVERLAY NETWORKS

affinity groups and in the sets of contacts are associated to a round trip time to
establish a preference criterion in the lookup phase.

In Figure [2.19| we show a graphical representation of a single node state and in
Table [2.3| we report the relative tables containing the affinity group (Table [2.3a),
the contact sets (Table and the filetuples (Table [2.3d). In the last two tables
we omitted the heartbeat and the rtt for the contact set and the heartbeat for the

filetuples.

589

Figure 2.19: Kelips structure from the point of view of node 105 contained in the i-th
affinity group, here ¢ = 3. On the right we represented the k — 1 foreign
affinity groups. Observe that we reported only the contacts of the node.

The memory usage resulting from this structure is easy to compute. Assuming
that J(is an hash function ensuring a uniform distribution of the nodes into the

affinity set (such as SHA-1), the cardinality of each affinity group is around 3.

39

40

lookup

insertion

PEER TO PEER NETWORKS

id hbeat rtt

group contacts

178 1232 2ms name homenode

o 461,456,489
132 3201 7ms : : a.txt 102
102 1211 10mMS
i1 767,781,711 b.pdf 145
122 2044 23ms .))
i+1 212,231,243
145 2134 30ms)
167 2155 42ms ' ' i 99
k-1 555,512,589 (c) Filetuples

199 4566 77ms
(a) Affinity group view

(b) Contact sets

Table 2.3: Kelips state of node 105

Space occupied by the contact sets is equal to c(k — 1). Space occupied by the
Filetuples is % where F is the number of files shared in the system, therefore
assuming that files are uniformly spread over the nodes. Finally, the total space
occupied by a node state is a function in two variables:

F

S(k,n) :%+c(k—1)+i.

Fixing n the function is minimized in k = “jF, assuming F proportional to

n and observing that c is constant, it can be stated that the optimal k varies as
O(y/n). Consequently S(k,n) varies as O(y/n).

It is important to observe that the one-hop property has been reached at
an expense of the increase of space used to maintain the routing information,
thus we passed from O(logn) of (almost all) previously described protocols, to
O(y/n). Furthermore, the maintenance of such a structure, performed through an
heartbeating mechanism based on a gossip-style protocol [24]], requires a higher
bandwidth with respect to the previous protocols. Briefly, each node periodically
selects a subset of nodes from its state and multicasts them information about
its personal state (this is done intra-affinity groups and inter-affinity groups).

When a node x search for a file, it has to map it to the right affinity group
through the application of the same hash function 3 used to build the affinity
groups system. The request is sent to the node which is closest according to the
round trip time in the affinity group selected. The node receiving the request
checks amonyg its filetuples and sends back to x the homenode address. At this
point x sends the request to get the file directly to the homenode.

The insertion of a new file f follows the same scheme of the file lookup, when
a node of the right affinity group is contacted, it chooses at random a node h
into its affinity group. The node h will be the homenode for f and it is sent to it.

2.3 STRUCTURED P2P OVERLAY NETWORKS

A filetuple is created for f and it is inserted in the gossip stream to be spread
among the members of the affinity group.

A new node x joins the Kelips network through a node y already located
inside the system. Node y sends back to x its state, x initializes its state with
the one received and starts to gossip the network to fill its state with the right
information. The departure of a node is automatically detected by the gossiping
system, its heart beat won’t be updated any more and its entry will be gradually
deleted from other nodes’ states.

Kelips overlay network follows a one-hop strategy for the resource retrieval,
the address space is flat, the next-hop decision’s criteria is based on the consistent
hashing policy and on the round trip time stored in each entry referring to a
node. The graph resulting from the Kelips structure has a O(/n) degree, the
strategy for the node’s state’s maintenance is active and the locality of the
underlay is kept into consideration through the usage of the round trip time.

MADPastry

As a last example we report MADPastry [25], a DHT substrate explicitly designed
for the use in a MANET. Applying the DHT concept to a MANET is a challenging
problem, in fact there are many issues to take into consideration before designing
such a system in a highly dynamic mobile environment.

In [25], the authors list three main problems opposing the possibility to use a
DHT in a MANET:

* The connection between the overlay network and the underlay network
is not sufficient. A DHT, as we have already seen is almost oblivious of
the physical layer. In a MANET context, instead, it is important to have
enough knowledge of the physical network, for instance to minimize hop
counts, as in a long path over a mobile ad hoc network a message loss is
very probable.

* In a MANET, the routing problem is solved usually by the use of broadcast
because of the lack of a central infrastructure and the mobility of the nodes.
Such a strategy makes the adoption of an overlay completely useless, if
not harmful.

¢ The cost of maintenance of the routing table in a DHT appears unbearable
in a MANET context. In fact a MANET does not have enough bandwidth
to manage traffic generated by nodes in order to keep the tables consistent.

The above mentioned reasons show clearly that the application of any of the
overlay structured P2P networks to a MANET is unfeasible. The solution is to
find a compromise, thus MADPastry is a possible candidate. In fact, it combines
Pastry with a well known reactive routing protocol for mobile ad hoc networks,

41

node join

42

Random
landmarking

PEER TO PEER NETWORKS

AODV [26]], ad hoc on demand distance vector. The objective is to limit, as far as
possible, the use of broadcast, thanks to the overlay structure.

The way MADPastry tries to solve the problem connected to the DHT
low knowledge of the physical layer is the usage of the random landmarking
concept [27]. In this strategy, the set of nodes is divided into clusters through the
usage of landmark keys. Landmark keys are overlay identifiers, a node responsible
for a landmark key becomes a temporary landmark node. Nodes inside a cluster
share the same prefix, the one of the landmark key. Landmark keys are chosen
to divide the address space in equal-sized segments. In Figure we report
an example of a random landmarking in a mobile ad hoc network composed
of 128 nodes and four landmark keys. In we represent only the nodes,
in we added the links. The two figures have been obtained through the
implementation of the random landmarking policy in MOMOSE, a mobility
models simulator which will be described in Chapter 4]

L] ™ ee L
° °
) - »e
b ° L] . L
® e O ®
.. e® ® 33
. s * 3 89
3 ® > 9 pe
® o i ? &
. ®e . 4 . (1] .
& °
L]
* o
o % o3 e ®
®
° " s *® e @
L L L] .‘. ™
L] ® P
E.
a7 ™ o §

(@) (b)

Figure 2.20: An example of random landmarking in a MANET with N = 128 and K = 4,
each color is relative to a different cluster, the numbers are written over the
current landmark node

The overlay id assumed by a node is of course changing over time, it depends
on the places through which the node goes during its movement. Once the node
detects that it is closer to a new landmark node (with a different landmark key)
with respect to its current one, it changes its id (choosing a random one and
concatenating it with the new landmark key prefix) and joins a new cluster. The
distance metric used here is the hop count.

A node detects its current affiliation thanks to a beacon which is sent through
broadcast by the landmark nodes. To limit the impact of this broadcast, the

2.3 STRUCTURED P2P OVERLAY NETWORKS

beacon message is propagated only to the nodes which are inside the cluster
and to the neighbors which are one hop away from them.

MADPastry node state is composed from three different routing tables
inherited from Pastry and AODV. From the first one it takes the routing table
and the leaf set making them “lightweight”, while from the latter the standard
routing table.

We have already seen the Pastry routing table and the leaf set. MADPastry
modifies these two structures to make them usable also in a low-bandwidth
context.

The MADPastry routing table passes from the [log,, N| rows to [log,. K],
where K is the number of the landmark keys. For example, if K is chosen to be
equal to 2°, then the Pastry routing table degenerates to a table having only one
row and each entry contains a node inside each cluster (in [27] the authors show
an example with b =4 and K = 16). The reduction of the routing table implies
a less expensive maintenance cost, but at the same time, the O(log N) lookup
time is lost.

The leaf set maintains the same structure as in Pastry, the difference here is
that the only entries which are kept updated are the closest in both the directions,
namely the predecessor and the successor with respect to the ids order. Each
node proactively pings both of them either to check if they are alive or if another
node has to be selected as new successor(predecessor).

Each node in the cluster broadcasts periodically its id inside the cluster,
observing that the leaf set is composed by nodes numerically close to each other,
this should be enough to keep a loose consistence of the set.

The AODV routing table is the standard one with no modifications. It is used
to perform the physical routing: it maintains the next hop address for each route
and a sequence number to keep it updated. The same sequence number is used
in order to decide when the route will become obsolete.

As we have already said, MADPastry integrates a modified version of Pastry
with AODV routing protocol, a node can indeed act in two different ways

1. If the node receives a message because it is a destination of a Pastry
forwarding, it decides its next hop following the Pastry protocol, namely
it consult its routing table or leaf set to choose the target node.

2. If the node receives a message because it is a physical hop of the AODV
protocol, which means that it is a part of one overlay hop, it uses the AODV
routing table to decide the next hop, behaving exactly like a classical AODV
node.

While a message is routed in the AODV manner, each node inspects the destina-
tion overlay id. If a node discovers that its id is closer to the destination one with
respect to the next hop one, it intercepts the packet and the next hop is carried

43

node state

routing

44

maintenance

PEER TO PEER NETWORKS

out following the Pastry policy. The reason of that is limiting the network traffic
optimizing, at the same time, the length of the path to the destination.

Another issue is how to find a route to a target node when there is no known
path for the specific destination. This can happen either when a node selects
an entry on its Pastry routing table for which it has not AODV known path, or
when an intermediate node of a physical path does not have a valid next hop
for a route to the destination.

If the destination is in the same cluster of the node where the problem has
arisen, the overlay packet will be broadcast inside the cluster. Otherwise, the
standard AODV expanding ring broadcast is performed to discover the right
route to the destination.

In MADPastry the maintenance strategy is hybrid, in fact it is active in the
part regarding the leaf set and the landmark cluster membership, while it is
passive for the rest of the structures. Indeed, the information about other nodes
is known thanks to the overhearing of the packets passing through a node
during a routing operation.

That’s the reason why each packet propagated over the network contains the
following information

¢ the AODV sequence number of the packet’s source,

¢ the AODV sequence number of the node visited by the packet in the
previous hop,

e the Pastry id of the packet’s source,
¢ the Pastry id of the node visited in the previous hop by the packet.

Each node then extracts this information from the packet and, if necessary,
updates or creates the routes. The policy states that if the packet contains new
information about an existing route, the old data needs to be always overwritten
by the new ones.

MADPastry is quite different from a usual DHT because of the particular
environment for which it has been designed, however we can still apply the
taxonomy, with some exceptions. MADPastry follows a multi-hop strategy, i
which the logarithmic cost is lost, the address space is flat, the distance metric is
obtained following the prefix matching criterion. The topology of the overlay
network is a stretched version of the Pastry one. The maintenance, as we have
seen, is active when it goes to keeping the leaf set consistent and passive for the
rest of the routing structures. Finally, the locality is taken into consideration as
it is not possible to be completely oblivious in a MANET context.

In Table [2.4] we resume the classification of the DHTs that was described in
the present chapter. An observation about the geometry of CAN shall be made:
the graph resulting is O(d) assuming a d-dimensional space divided in n equal

2.3 STRUCTURED P2P OVERLAY NETWORKS

zones as stated in [17]. Indeed, in such a situation, each node has at most 2d
neighbors. We remind that in the case of MADPastry, K is the number of clusters
generated by the random landmarking mechanism. Furthermore we observe
that the lookup hops cost is given considering the overlay hops.

45

PEER TO PEER NETWORKS

46

DHT # hops address space next-hop geometry(graph degree order) maintenance locality
PRR O(logn) flat prefix-match O(logn) X Vv
CAN om k) flat Euclidean distance O(d) opportunistic X
Pastry O(logn) flat prefix-match O(logn) active Vv
Kademlia O(logn) flat XOR-distance O(logn) passive X
Kelips o(n flat cons.hashing and rrt O(vn) active Vv
MADPastry O(logK) flat prefix-match O(logK) hybrid vV

Table 2.4: DHT comparison according to the taxonomy

JXTACH

In this chapter we will describe a way to deal with the dynamism in P2P
networks. As we already introduced in Chapter [1, P2P networks can be consid-
ered highly dynamic and there exist a lot of mechanisms which deal with this
problem.

In Chapter 2| we have introduced the basic notions concerning P2P overlay
networks. In this Chapter we are going to describe our results in this area.

The growth of popularity of P2P networks has raised up the need to have
the proper instruments to develop services and application over this kind of
structure. Sun Microsystem tried to provide users with such an instrument
beginning project JXTA in 2001. The aim was to provide a general framework
for developing P2P applications. The present work covers the description of this
framework as it is the starting point of the result we intend to describe in this
chapter.

This result is a pure DHT based version of JXTA framework, we called it
JXTACh [28]. We say pure because in JXTA there is a mechanism resembling
a DHT, but its characteristics are not respecting the properties of DHTs. JXTA
developers explain the use of such a mechanism with the expensive maintenance
costs of DHTs. In our opinion, instead, the framework could benefit from such a
structure. That is why we decided to replace the old mechanism with Chord,
which is one of the several DHT protocols available in the literature.

This work was done as a part of the integrated project IST-015964 AEOLUS:
Algorithmic Principles for Building Efficient Overlay Computers [29]. Project
AEOLUS has chosen JXTA as a platform over which the overlay computer
has been built. We will describe the steps we followed in order to achieve the
objective of improving the underlying JXTA framework resource management.

3.1 INTRODUCTION

JXTA is an open source project begun by Sun Microsystem in 2001, in order
to provide a general framework for developing Peer-To-Peer (in short, P2P)
applications. To this aim, JXTA defines and implements a set of protocol specifi-
cations which supply the developer with the basic services necessary to build
P2P applications.

One of these protocols, that is, the rendezvous protocol, determines the way
JXTA-based applications announce that a new resource is available and look
for existing resources. In particular, this protocol manages a sub-network of the

47

48

JXTACH

JXTA overlay network by means of a loosely-consistent Distributed Hash Table (in
short, DHT) mechanism, whose main component is the rendezvous peer view, that
is, an ordered table in which each node of the sub-network maintains its partial
knowledge of the sub-network itself. The “loosely-consistent” term comes from
the fact that JXTA does not guarantee the consistency of all peer views: this may
cause much more search misses during a resource lookup process with respect
to a “pure” DHT. JXTA tries to solve this problem by using a walker mechanism
based on a limited range replication performed during the resource publication
process.

The JXTA designers justify the choice of this approach by emphasizing the
high maintenance cost that a pure DHT would require in order to manage a
resource publication/research process. In particular, in [30] it is said that “the
cost of maintaining a consistent distributed index is likely to outweigh the
advantages of having one, as we may spend most of our time updating indices”.

Our work started from this point, as we wanted to check if the use of a pure
DHT could improve the performances of JXTA. To this aim we have chosen
a DHT protocol, Chord, and we replaced the current implementation of the
rendezvous service with it.

The process of this work has gone through many phases

1. Understanding JXTA

2. Understanding Chord

3. Reverse engineering JXTA

4. Designing how to implement Chord into JXTA
5. Implementing JXTACh

6. Testing JXTACh against JXTA

A great majority of time was spent on points 1, 3 and 4. It was due to the
almost complete lack of the bibliography about JXTA 2.x at the time we started to
work on JXTACh (except for the programming guide, which was unfortunately
useless for the purpose of understanding the core of JXTA). The only source
of documentation available was the source code and some technical papers
found on the JAVA webpage. The remainder of this Chapter will continue with
a brief overview of the related work followed by the description of the path we
represented in the list above.

3.2 RELATED WORK

As far as we know there are very few projects which involve JXTA and “pure”
DHTs. One is the JXTA subproject jxta-meteor 31, 32] which intends to pro-
vide a platform to develop DHTs (as for now the project includes Chord and

3.3 UNDERSTANDING JXTA AND CHORD

CAN [z7]) over JXTA protocols (as services). Another project about DHT in
JXTA is GISP [33] (Global Information Sharing Protocol): this is a proposal for a
new DHT protocol, which is intended as a service to be put over JXTA.

The main difference between our JXTA implementation and the above two
projects consists in the fact that our project is a new version of JXTA with a new
implementation of the rendezvous protocol based on the Chord protocol: this
means that our work is placed at a lower level, since our goal is to improve
the publication/research process of every resource available within the overlay
network. It is worth citing [34], which is the first attempt to give a formal
description of a DHT-based routing and discovery policy within JXTA.

At the end of this Chapter we will present an experimental evaluation of the
performances of JXTACh, by comparing it with the original JXTA version. To this
aim we adopted the performance model introduced in [35| [36| 37], where the
authors study the JXTA rendezvous protocol performances, by comparing it with
the policy of older versions of JXTA, and by using a JXTA subproject benchmark
suite [38]]. These studies cover average response time, percentage of dropped
query and RAM usage: our tests cover the same measures, by significantly
increasing the number of peers involved in the simulation.

3.3 UNDERSTANDING JXTA AND CHORD

As we have previously said, the first step of our work was to understand the
two technologies we were going to merge together, The JXTA framework and
the Chord protocol.

3.3.1 JXTA

JXTA is an open source project which aims to develop a general framework
for peer-to-peer applications. It was designed by Sun Microsystems and later
extended thanks to a large number of experts coming from academic and
industry institutions. The name JXTA comes from the word juxtaposed and
intends to emphasize the concept of collaboration with the client-server model
rather than its replacement by means of the peer-to-peer model. JXTA provides a
common platform which contains the following features, that are recommended
by a general peer-to-peer network.

e [nteroperability: different peer-to-peer systems and communities have to be
able to operate together.

e Platform independence: the system has to function independently from the
programming language, the operating system and the network architec-
tures.

* Ubiquity: the system has to operate on any device (not only PCs).

49

50

peergroups

services

JXTACH

JXTA peers and basic concepts

Peers in JXTA can be subdivided into three categories, each of which reflects the
heterogeneity of the devices which can assume the role of a peer (varying from
small sensors, cellular phones and PDA, to personal computers, workstations
and super computers).

* Minimal edge peer: these peers implement only the required core services
and use other peers as proxies to access to other services; they can send
and receive messages but they don’t store advertisements; this role is
usually played by devices with limited resources such as sensors or home
automation devices.

 Full-featured edge peer: these peers implement all the JXTA services; they
can send and receive messages and they store advertisements; this is the
most common role played in JXTA network by all kind of devices.

* Super-peer: these special peers perform some key services for the deploy-
ment and functionality of a JXTA network; there are three types of super-
peer.

- Rendezvous peer: these peers maintain an index of references to the
advertisements published by edge peers; they are also responsible
for the propagation of the query and response messages during the
advertisement lookup process.

- Relay peer: these peers are used by peers which cannot be reached
because of firewalls or NATs.

— Proxy peer: these peers are used by minimal edge peers in order to
get access to all JXTA functionalities.

Peers in JXTA organize themselves in peer groups, which have the same set
of services and common interests. Each group, in fact, defines a set of services
which are available to all the peer members of the group: in JXTA, there exist
two core groups, that are the World Peer Group and the Net Peer Group. The first
one is responsible only for the management of physical network connections,
physical network (generally broadcast) discovery and physical network topology
management. The second core group is the base peer group for applications and
services within the JXTA network: most applications and services will instantiate
their own peer groups using the Net Peer Group as a base.

A service can be offered either by a single peer (Peer Service) or by a set of
peers which collaborate to provide it (Peer Group Service). Services are described
through modules, which are generic abstractions of each service or function
implemented in JXTA. Services and applications communicate with each other
through JXTA Messages, which are the basic units of data exchanged between

O 00Nl ONUl B W N R

W W W W WL WW NNNDNNDNDNNDNDNRRRRRH R R R A
N Ul W N R OOV 0N Ul &~ W N R OV N U1 &~ W N B O

3.3 UNDERSTANDING JXTA AND CHORD 51

peers. Messages are sent through pipes, virtual communication channels estab-
lished between two or more peers.
In JXTA, each resource (such as peers, groups, pipes and services) is repre- advertisements

sented by an advertisement. By means of the advertisement, which is an XML

document of a specified format, each resource communicates to the network that

it exists. When a peer needs to find a resource, it has to look for its advertisement

in the first place: the advertisement contains the information useful in order

to describe the resource it refers to. In Listing [3.1 we report an example of an
advertisement, which is relative to a peer.

Listing 3.1: The A Peer Advertisement

<?xml version="1.0" encoding="UTF-8"7?>
<!DOCTYPE jxta:PA>
<jxta:PA xmlns:jxta="http://jxta.org">
<PID>
urn:jxta:uuid-59616261646162614A78746150325033
AB718A7A3BED463D9559CEB1A618085B03
</PID>
<GID>
urn:jxta:jxta-NetGroup
</GID>
<Name>
RdvCarlo02
</Name>
<Desc>
Platform Config Advertisement
created by : net.jxta.impl.peergroup.AutomaticConfigurator
</Desc>
<Svc>
<MCID>
urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABEQQO0000605
</MCID>
<Parm>
<Rdv>
true
</Rdv>
</Parm>
</Svc>
<Svc>
<MCID>
urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABEOO0O00080O5
</MCID>
<Parm>
<jxta:RA xmlns:jxta="http://jxta.org">
<Dst>
<jxta:APA xmlns:jxta="http://jxta.org">
<EA>
tcp://150.217.37.222:3046

Lines 5-6, 40-41, 44-45 and 48-49 have been split for visualization reasons, they are one unique
element.

52

55
56

JXTA IDs

messages

JXTACH

</EA>
<EA>
cbjx://uuid-59616261646162614A78746150325033
AB718A7A3BED463D9559CEB1A618085B03
</EA>
<EA>
relay://uuid-59616261646162614A78746150325033
AB718A7A3BED463D9559CEB1A618085B03
</EA>
<EA>
jxtatls://uuid-59616261646162614A78746150325033
AB718A7A3BED463D9559CEB1A618085B03
</EA>
</jxta:APA>
</Dst>
</jxta:RA>
</Parm>
</Svc>
</jxta:PA>

The most important information contained in an advertisement is the [XTA
ID, which uniquely identifies any JXTA entity. A JXTA ID is expressed by a
URN (Uniform Resource Name), a form of URI (Uniform Resource Identifier),
which is intended to be a persistent, location-independent, resource identifier.?
This identifier is a concatenation of different parts: the first one states that the
URN is a JXTA URN, while the second one distinguishes between the jxta URN
format, which is used for specific identifiers, and the uuid URN format, which
is the most frequently used within JXTA. The first two parts are followed by a
hexadecimal sequence: in case of a peer group the sequence contains 128 bits,
while in case of a single peer it contains 256 bits (the first 128 bits encode the
World Peer Group, while the second 128 bits encode the unique identifier of the
peer).

To communicate with each others, peers use messages. In JXTA a message is
structured through the XML format and each service defines its own message
structure. When needed, messages can be merged or encapsulated in other
messages, the XML format facilitates this process. We report in Listing [3.2 the
structure of the Discovery Query Message.

JXTA protocols

JXTA defines a common set of open protocols that standardize the manner in
which peers discover each other, self-organize in peer groups, advertise and
discover network resources, communicate with each other and monitor one
another.

These protocols are sub-divided into two groups: the core specification protocols
which are the protocols that are necessary to a peer in order to be considered

2 See IETF REC 2141.

3.3 UNDERSTANDING JXTA AND CHORD

Listing 3.2: The Discovery Query Message

1 <?xml version="1.0" encoding="UTF-8"?7>
2 <jxta:DiscoveryQuery>

3 <Type> . . . </Type>

4 <Threshold> . . . </Threshold>

5 <PeerAdv> . . .</PeerAdv>

6 <Attr> . . . </Attr>

7 <Value> . . .</Value>

8 </jxta:DiscoveryQuery>

a JXTA peer, and the standard service protocols, which are optional but strongly
recommended to create a complete JXTA implementation.

¢ Core specification protocols

— The Endpoint Routing Protocol (ERP) allows a peer to discover a route
to another peer, in order to send a message through such a route. In
the absence of the direct route between two peers, a peer can find an
intermediary which will route the message to the destination peer.

— The Peer Resolver Protocol (PRP) is used for sending a generic resolver
query to one or more peers, and for receiving a response (or responses)
on the query. The PRP protocol distributes the generic queries to
one or more handlers within the group and matches them with the
corresponding responses.

¢ Standard service protocols

— The Rendezvous Protocol (RVP) is the protocol by which peers can
subscribe to a propagation service or provide one. Peers can be
rendezvous peers or standard peers that are listening to rendezvous
peers. The RVP, therefore, allows rendezvous functionality and is
used by the PRP in order to propagate messages.

— The Peer Discovery Protocol (PDP) is responsible for publishing and
discovering advertisements. PDP uses the PRP for sending and prop-
agating discovery requests.

— The Peer Information Protocol (PIP) allows a peer to obtain the status
information on other peers, such as state, uptime, traffic load and
capabilities (PIP also uses the PRP).

— The Pipe Binding Protocol (PBP) is employed in order to establish a
virtual communication channel or pipe between one or more peers.
Using PBP a peer binds pipe ends to a physical endpoint address.
PBP uses the PRP for sending and propagating pipe binding requests.

53

JXTACH

A complete description of all the protocols goes beyond the purposes of
this work: for this reason we restrict ourselves to the discussion of the Ren-
dezvous Protocol which is directly responsible for the way JXTA spreads the

advertisement references.
Peer Resaver Prmtacol % Peer Discovery Protocol

Peer Resaver Protocol Peer Information Protocol

Peer Resaver Protocol Peer Binding Protocol

Peer Endpoint Routing .~’ - . Peer Endpoint Routing
Protocol i petwar: Transpor i Protocol

'.|
el
1
1
1
3
%

M [i |
B EEEEEEEEEEEEEEEEEEEEEEEEE

Network Transport Network Transport Network Transport

Figure 3.1: The JXTA protocols stack.

In Figure 3.1/ the JXTA protocols stack and the protocols used for the commu-
nication between two peers are represented.

3.3 UNDERSTANDING JXTA AND CHORD

The JXTA layer architecture
The JXTA architecture is subdivided into three layers as shown in Figure

Application sun JXTA
layer applications

Service layer

Core layer

Figure 3.2: The JXTA layer architecture.

¢ The core layer provides the basic features needed by a P2P system, such as:
— Peers and peer groups creation;
— Communication system;
- Security primitives.

The six protocols we described in Section [3.3.1are included in this layer,
indeed they form the foundations over which all the JXTA services and
applications are built.

* The service layer provides functionalities which are not necessary for a P2P
system to work, but are usually desirable, such as:
— Resource sharing (this imply a store/search system);
— Peer authentication;
— Distributed file systems.

This layer includes all the services developed by the JXTA community and
by the Project JXTA team. They are used as bricks to build any possible
P2P application.

* The application layer includes all the classical P2P applications such as:

55

56

JXTACH

— Instant messaging;
- Video streaming;
- File sharing.

Every JXTA application is built over the service layer, thus it is a combi-
nation of services. Sometimes the concepts of application and service are
hard to distinguish. Usually it is the presence of some sort of interface
which tells us that we are in presence of an application. However, the
JXTA Shell, which has an interface, is implemented as a service. That is
the reason why in Figure [3.2]it is represented like an entity over both the
layers.

JXTA rendezvous network

The earlier versions of JXTA framework (1.x) were based on the advertisement
publication and lookup by means of a flooding mechanism: each peer published
and retrieved information through propagation of query and response messages.
With the arrival of the version 2.x, JXTA passed to a new approach based on a
loosely-consistent DHT: to build this mechanism rendezvous peer were introduced
inside the JXTA structure.

When an edge peer joins the JXTA network, it establishes a lease connection
with a rendezvous peer. Each resource the peer wants to offer to the network
(including itself) will be published by means of an advertisement: a reference
to this advertisement is sent to the rendezvous peer which maintains an index
of the advertisement references. This index is called Shared Resource Distributed
Index (SRDI) and it is one of the three components of the loosely-consistent DHT
mechanism. The rendezvous service is, in fact, a set of three components.

o Rendezvous Peer View (RPV): an ordered table in which each rendezvous
peer stores its partial view of the rendezvous sub-network.3

o Shared Resource Distributed Index: the index in which each rendezvous stores
the advertisement references.

® The walker: is the mechanism used by a rendezvous peer in order to manage
the research failure.

The RPV manages all the mechanisms to maintain the minimum level of
consistency (loosely) among the peer view of the rendezvous peers. This is done
through a periodic exchange of peer view entries between rendezvous peers.
Each rendezvous selects a set of entries in its peer view, following a certain
strategy which by default is set to be random. This set of entries is sent to all

Every kind of peers maintains a RPV, in fact there is a possibility for a peer to switch its mode
from edge to rendezvous and vice-versa.

3.3 UNDERSTANDING JXTA AND CHORD

e L adv
<odv.E0x" = <oy, E0>"

<, Hfadv)=4

<oy, B> -

7 codv,£05",
R ' .

Figure 3.3: JXTA publication process

the rendezvous known by the local peer. If the changes in the network does
not occur at a high rate, we can expect that the various RPVs can converge to a
consistent common RPV. The assertion of a low rate of changes is anyway too
strong in a P2P system, that is one of the reasons why JXTA needs the walker
mechanism.

Actually, the word “loosely-consistent” is used because the main difference
between JXTA rendezvous service and a pure DHT is that JXTA does not
maintain the consistency among peers RPV. It causes much more search misses
during the lookup process with respect to a pure DHT. JXTA tries to solve the
problem of search misses by using the walker, which is based on the replication
performed during the publication process. JXTA, indeed, replicates a reference
to an advertisement into a predefined number of neighbors of the rendezvous
chosen to keep the reference.

When a peer publishes an advertisement, it contacts the rendezvous it is
connected to and sends to it a key to be used in order to build a reference to the
advertisement (together with the publisher ID). The rendezvous applies an hash
function (SHA-1) to the key and uses the result of the function in order to select
a rendezvous within its RPV to which the reference will be sent. As mentioned
before, the reference will be replicated also in the neighborhood of the target
rendezvous.

In Figure 3.3/ EO publishes an advertisement through its rendezvous R1, the
advertisement reference is propagated to R4 and replicated to R3 and R5.

When a peer looks for an advertisement, it contacts the rendezvous it is
connected to and sends to it a discovery query containing the advertisement
key. The rendezvous applies the same hash function used for the publication
process in order to select the rendezvous where the reference should be stored
and propagates the query to it. If the target rendezvous contains the reference
inside its index, it then propagates the query directly to the peer owning the

57

58

JXTACH

advertisement. The latter will send the advertisement directly to the peer looking
for it. If the rendezvous does not contain the advertisement in its index (because
of the inconsistency of the RPVs), it starts the limited range walker process
which consists of the propagation of the discovery query to the rendezvous
neighborhood until the reference is found or a predefined number of hops has
been performed by the message (causing a search miss).

In Figure [3.4] the network did not suffer any change, peer E1 looks for the
advertisement published by EQ contacting its rendezvous R2, the discovery query
is propagated to R4 owning the reference, R4 contacts E0 which, in turn, sends
the advertisement directly to E1.

@
. 2.9

L | Response
. . - .‘ﬂuery!aavj
= W]
| | Hiadv)=4 |
<ot E0> L il

Figure 3.4: JXTA search process

In Figure [3.5| the network suffered a small change, a single peer failure, in this
case R4. As we can see, in the new configuration of the network, the old R5 now
becomes R4. Then when the discovery query is propagated by R2 to R4, it can
be still satisfied thanks to the replication. Determining the number of replicas to
spread is a challenging problem, because a too small value could bring as an
outcome an excessive use of the walker, a too large value could result in a too
heavy load on peers indexes instead.

In Figure [3.6| the network suffered a massive change due to the join of new
peers into the system The figure represents the new view of the system. E1 still
contacts its rendezvous, now having an inconsistent view of the network and
the discovery query is propagated again to the current R4 (one of the new peers)
which does not have the reference. This triggers the walker process, the query
is propagated to both the direction (up and down in the peer view), until it
reaches the current R6 which corresponds to the old R3. The reference is found
and the query is forwarded to E1,which in turn sends the advertisement to EO.

According to the JXTA developers, the purpose of such an hybrid approach is
to avoid the cost of maintaining the consistency of a pure DHT. Indeed, the RPVs

3.3 UNDERSTANDING JXTA AND CHORD

<odv,E0>" . 9

Rﬁ.‘ i
i - :Rr.'spurrsr.'

S, weryfady)

N
. . i

Figure 3.5: JXTA search process having success thanks to replication

<odv,E0>"

Figure 3.6: JXTA search process using the limited range walker

59

60

JXTACH

are maintained loosely consistent through an occasional exchange of information
between rendezvous.

This is the question we want to check by the implementation of a pure DHT
such as Chord serving as the rendezvous service.

3.3.2 Chord

Chord [39, 140] is a scalable protocol for the lookup in a dynamic peer-to-peer
system with frequent node arrivals and departures, which uses a variant of
consistent hashing.

Consistent hashing

Consistent hashing [23] maps nodes and keys into the same set of values through
an hash function (i.e. SHA-1): nodes and keys are named through m-bit identifiers
forming a circular domain modulo 2™ (essentially, Z,m). An active node n is
responsible for a key k if and only if n follows or is equal to k and there is no
other active node between k and n. In this case, node n is called the successor
node of k. In consistent hashing nodes can join and leave the system without
harming the key distribution: in fact, when a new node enters the network, it
receives from its successor the keys it should be responsible for. Instead, when a
node leaves the network, it gives all the keys it is responsible for to its successor.
To perform a research in such an environment, it can be enough to let a node
maintain a pointer to its successor: a lookup would follow the ring until the
node identifier is greater than or equal to the key identifier. This is correct but
not efficient.

Scalable key location: the finger table

Chord implements a scalable key location: this is done by means of a particular
structure called finger table, which is a routing table added to the information
about successor and predecessor.

The finger table of node n has m entries, called fingers, and three fields for
each entry i, with 1 <i<m:

e fingerli].start: it contains the identifier (n +2~") mod 2™;

e finger[il.interval: it is the interval [finger[i].start, finger[i+ 1].start), by
convention we assume that ﬁnger[m 4+ 1l.start =n;

e finger[il.node: it is the first active node n’ such that n’ > fingerli].start.

In Figure a Chord ring with m = 3 is represented (each active node
is accompanied with its finger table). This kind of structure has two main
characteristics: the first one is that each node knows only a small part of the

3.3 UNDERSTANDING JXTA AND CHORD

entire network and its knowledge decreases while going farther in the ring,
whereas the second one is that the information contained in a single node
is usually not sufficient to retrieve an arbitrary key (for example node p3 in
Figure [3.7/does not know the successor of key 1, because node p1 is not present
in its finger table).

When a node does not know the successor of a key Xk, it has to inquire about
it the closest node preceding k: in this case, p3 has to contact p5, which knows
pl. In general, this process is repeated until the active successor of the key is
found: in [39, [40] the next result is proven.

Theorem 3.1 With high probability, the number of nodes that must be contacted in
order to find a successor in a N-node network is O(log N).

Finger Table
4 |[45)| 5
5 [[57)] 5
7 |[73)] ©

Figure 3.7: Finger tables for a chord ring with m = 3, green nodes are active.

Chord main processes

In this section we describe the main operations of the Chord protocol. The
procedures implementing such operations are described using a pseudo-code.

THE FIND SUCESSOR PROCESS This procedure is the core of the Chord pro-
tocol, as every operation needs to know the successor of a key. It shall become
apparent in the rest of our description. Procedure find_successor is described in
Algorithm

In Algorithm 1} id is the key of which successor we are searching, n represents
the local node, in line 2| the check if the interval currently considered contains

61

62

JXTACH

Algorithm 1 Successor search: find_successor(id)

= n’ =n;
2: while (id ¢ (n’, n’.successor)) do

32 n/ =n'.closest_preceding_finger(id);
4: end while

5: return n’.successor;

the key is made. If yes we return the right successor, otherwise in line 3| we call
the closest_preceding_finger procedure which is described in Algorithm

Algorithm 2 Preceding finger search: closest_preceding_finger(id)

1: for i = m downto 1 do
2: if (finger[i].successor € (n, id)) then
3 return finger[i].successor;

4 end if

5. end for

6: return n;

The closest_preceding_finger procedure visits in decreasing order the finger
table to find the node which is the closest to the key we are looking for. Once
such a node is found, it is returned as a result of the procedure.

It is clear that the procedure to find the successor of a node is a multi-hop
process, at each iteration (line [2| of Algorithm [1) a new node is contacted.

THE STORE PROCESS When a node stores a new data, its hash value has to be
computed. Then, the peer responsible for the key generated by the hash function
has to be found. This is done through the find_successor procedure, described
above. In Figure [3.8/ we report the store process which proceeds in the following
way: peer p5 is going to store key k; supposing that H(k) = 1 (where J is the
chosen hash function), k is sent to peer p1. Indeed, peer p5 knows directly the
successor of 1 from its finger table (the information is in the third row).

THE SEARCH PROCESS The search process follows the same steps of the store
one. The only difference is the last step in which the peer owning the data
sends it to the peer requesting it. To be more precise, a lookup in a Chord
ring for a certain key k consists essentially of searching the node n such that
n = successor(k). In Figure 3.9/ we report the search process in which peer p3
looks for key k This time p3 does not know directly the successor of k, in fact,
after consulting its finger table, p3 can at most send the query to peer p0 which
is the closest preceding node to the key. Upon receiving the query, p0 discovers
that the successor of k coincides with its successor, that is p1. Thus, the query is
forwarded to p1 which, in turn, replies to p3 with the researched key.

3.3 UNDERSTANDING JXTA AND CHORD 63

Figure 3.8: Chord store process

Figure 3.9: Chord search process

64

JXTACH

NODES JOIN AND LEAVE When a node n wants to join the network, it has
to ask node n’, already inside the ring (if it exists), to find the successor of n
and to build a finger table for it: this is done by the join procedure. The join
procedure is described in Algorithm

Algorithm 3 Initialization: join(n’)
1: if (n’) then
init_finger_table(n’);
update_others();

else
fori=1tomdo

finger[il.node = n;

end for
successor = n;

9: predecessor = n;

10: end if

The first check (line [1) is performed in order to control whether there is a node
n’ available to build the finger table for the local node n. If not, n initializes
the ring. Then all the fields of the finger table and both the successor and the
predecessor, are initialized with node n itself (lines and [g). Otherwise,
the local node has to contact the node already located in the ring in order to
“introduce” it (line[2). This means that the remote node n’ has to compute both
the finger table and the successor for node n. This has to be done on the basis
of the information that n’ has about the network (through its personal finger
table). The init_finger_table procedure is described in Algorithm E} The next
step to be performed is updating the finger tables of the nodes preceding n in
the ring, this is done through the procedure update_others which is described
in Algorithm

Algorithm 4 Finger Table creation: init_finger_table(n’)

finger[1].node = n’.find_successor(finger[1].start);

=

2: successor = finger[1].node;

3: predecessor = successor.predecessor;

4 successor.predecessor = 1n;

5: fori=1tom—1do

6: if finger[i+ 1].start € [n, finger[il.node) then

7: finger[i+ 1].node = finger[i]l.node;

8 else

o: finger[i+ 1].node = n’.find_successor(finger[i+ 1].start);
10: end if

: end for

[
[

3.3 UNDERSTANDING JXTA AND CHORD

The init_finger_table procedure initializes all the successor fields in the
finger table entries. The first node field is found separately (line [1) as it will be
used to set the successor and the predecessor of the local node (lines [2] and [3).
Furthermore the successor is informed that its predecessor has been changed
into the local node (line [4). The for statement (line [5) visits the rest of the finger
table checking if the node field of the i-th entry is valid also for the (i+ 1)-th
one (line[6). In that case the value is maintained (line 7). Otherwise we use the
find_successor procedure to find the right node field for the entry (line [g).

Algorithm 5 Updating other nodes: update_others

1: fori=1tomdo

2 p =find_predecessor(n — 2i-1);
32 p.update_finger_table(n,i);

4: end for

The update_others procedure updates the finger tables of nodes that could
have n as node field in some of their entries. It is essentially a for loop which
visit backward the ring calling a find_predecessor procedure.* In Algorithm [6]
we describe the update_finger_table procedure.

Algorithm 6 Updating finger table entries: update_finger_table(s,1)

1: if s € [n, finger[il.node) then
2: finger[il.node = s;

3: p =predecessor;

4 p.update_finger_table(s,1i);
5. end if

The last event of a node join is the transfer of the keys for which it will be
responsible. This operation has to be done by the successor of the entering node.
Let n be the id of the joining node, s the id of the successor determined for n
and p the predecessor determined for n (which was the old predecessor of s).
All the keys k such that p < k < n has to be transferred to n.

The leave of a node corresponds to the change of the information in its
predecessor and in its successor (essentially the first becomes the predecessor of
the second one). The update of the finger tables of the nodes that could contain
a leaving node is managed by the stabilization protocol that we are going to
present in the following section.

STABILIZING THE RING In a P2P system peers can join and leave the network
whenever they want. Such “freedom” causes unpredictable network environment

4 The find_predecessor just search for the predecessor of a key, it is similar to the find_successor
procedure, we do not show its pseudo-code.

65

66

JXTACH

which leads to the most complex design challenge of a P2P protocol: how to
make P2P service available under high churn? The Chord protocol is optimized
in a way which manages this high churn and grants the best degree of coherence
among finger tables.

The way Chord manages the high dynamism of the ring is obtained by two
main procedures, stabilize and fix_fingers. The first one is described in
Algorithm [7]and the second in Algorithm gl

Algorithm 7 Checking the successor: stabilize()

1: X = successor.predecessor;
2: if (x € (n, successor)) then
31 SUCCessOor = X;

4. successor.notify(n);

5. end if

The stabilize procedure is executed periodically at a fixed rate. It is simply
a check if our successor is still valid or if there is a need to upgrade it because
of the entrance in the ring of a new node which has become our successor. Once
the successor is changed we have to inform the new one that the local node has
become its new predecessor. It is done by the notify procedure, described in
Algorithm

Algorithm 8 Notifying: notify(n’)

1: if ((predecessor = null) or (n’ € (predecessor, n))) then

2. predecessor = n’;

3: end if

The fix_fingers procedure is also executed periodically at a fixed rate in
each node. It chooses randomly an entry of the finger table and calls the
find_successor procedure with its start field as a parameter. The purpose
of such a mechanism is to keep the finger table of the local node as consistent as
possible with respect to the finger tables of remote nodes.

Algorithm 9 Upgrading entries: fix_fingers()

1: 1= random(1, m);
2: finger[il.node = find_successor(finger[il.start);

In Chord it is very important for the successor pointer to be always updated.
That is the aim of the stabilize procedure. However, the stabilize can be
used also to detect nodes failures. In fact, if the successor does not reply to the
local node after a given threshold, the local node can infer that the node has
failed and it can inform the rest of the ring of its failure.

3.4 JXTA RENDEZVOUS SERVICE REVERSE ENGINEERING

To be more efficient we could apply as well a procedure which checks if the
predecessor is still up. For that reason in Chord a check_Predecessor procedure
has been defined (Algorithm [10). This procedure performs the same operation,
described above for the successor, this time with respect to the predecessor.>

Algorithm 10 Checking the predecessor: check_Predecessor

1: if (predecessor has failed) then
2: predecessor = null;
3: end if

According to the taxonomy we described in Section Chord is an overlay
structured P2P network following a logarithmic multi-hop strategy: its address
space is flat and the distance metric used for the next-hop decision criteria is
the linear distance in the ring. The topology, as we have seen, has a form of a
ring, the graph obtained from the structure of the finger table has a logarithmic
degree. The overlay network maintenance described is opportunistic and there
is no cognition of the underlay network locality.

3.4 JXTA RENDEZVOUS SERVICE REVERSE ENGINEERING

The issues described in section are a result of a selection of information
both from books [41} 42, 43| [44] pertaining to the first versions of JXTA (1.x) and
from papers and reports [30, 45] discussing its latest versions (2.x) written by
the JXTA developers. What was completely missing was a guide which could
enable us to move easily inside the JXTA code. We had to examine in details the
code in order to understand in which way the things we learned from the above
mentioned sources were implemented. We were able to understand thanks to
the Javadoc and the comments disposed by the developers.

In the present chapter we will describe the elements we discovered during
the reverse engineering process on which we spent a considerable amount of
time. We will limit our description to the parts which were modified by us.
The analysis concerned almost all the framework, nonetheless, for the purpose
of this work it is enough to describe the three parts of the rendezvous service
already shown in section [3.3.1}

3.4.1 The Rendezvous Peer View

The Rendezvous Peer View (RPV) is implemented in the package listed below.

¢ Package net.jxta.impl.rendezvous. rpv

In the condition at line |2 we hide the procedure based on a threshold we explained for the
stabilize.

67

68

JXTACH

1. PeerView

PeerViewDestination

N

PeerViewElement
PeerViewEvent
PeerViewlListener
PeerViewRandomStrategy

PeerViewRandomWithReplaceStrategy

® N U e»

PeerViewSequentialStrategy

9. PeerViewStrategy

All the classes inside this package aim at making the peer view work. The classes
from 1 to 3 are responsible for the structure of the peer view, while classes 4 and
5 manage the events which can be generated by the view. Finally the last four
classes manage the strategy thanks to which the peer view is visited.

The PeerView class is the central class of this package, all the other classes
are auxiliary. In Figure we represent a pseudo-UML class diagram of the
package rpv,® we decided to give a different pattern to each group of classes and
to represent the PeerView class with a different style to underline its importance.

PeerViewEvent ko—— - PeerViewlistener e Peer\fiew — PeerViewDestination
PeerViewStrategy ——e{ - PeerViewElement
T oW
PeerViewRandom\WithReplace Strategy PeerViewSequentialStrategy PeerViewRandomStrategy

Figure 3.10: Pseudo-UML representation of the rpv package

The PeerViewElement class and the PeerViewDestination class implement
the elements composing the peer view. As we can see from the class diagram,

6 This class diagram is a portion of the whole class diagram. The PeerView class, for instance, has
other relations which are omitted.

3.4 JXTA RENDEZVOUS SERVICE REVERSE ENGINEERING

the first one is the extension of the second one. This is justified by the fact that
the JXTA peer view is an ordered table and PeerViewDestination implements
the comparable part of an element of the peer view, which is the ID of the peer

(see Figure [3.11).

PeerViewDestination

comparable part

(1D of the peer) element informations

~~
PeerViewElement

Figure 3.11: PeerViewElement schema

The attributes added by the PeerViewElement class consist of the following
parameters:

e the time of creation of the element,

the last update of the element,

the Endpoint Service used by the element,

the rendezvous advertisement of the peer represented by this element,

the known state of the peer (alive or not),
* a messenger to send message to this peer.

The PeerViewStrategy class is an interface which defines the general strategy
for iterating over the values in a peer view, in other words, it delineates the way
the structure is visited. As we can see from the class diagram, JXTA defines three
different types of iteration over the peer view. The PeerViewSequentialStrategy
class implements a sequential iteration over the peer view elements,

¢ the PeerViewRandomStrategy class,
¢ the PeerViewRandomWithReplaceStrategy class,

both implement a random strategy, the first one by using a support data struc-
ture, the second one by using directly the peer view.

The PeerViewEvent class and the PeerViewListener class implement the event
system in order to manage the dynamics of the peer view. Elements of the event
system are the add, the remove and the failure of a rendezvous inside the view.

As we have mentioned above, the PeerView class is the main class of the
package and it implements all the features described in Section The
description of each method can be found in the Javadoc furnished with the

69

70

JXTACH

JXTA framework. Thus, we will bring the description of some of it only when
necessary.

The periodic exchange of information is implemented by a TimerTask which
uses a PeerViewStrategy to implement the policy used for choosing the elements
which shall be sent to the rendezvous peers known by the local peer. To be more
precise, this operation is performed through a method named kick() which is
periodically called by the KickerTask, an inner class extending TimerTask, in its
run() method.

The KickerTask is not the only TimerTask used in PeerView. All the operations
in need of a periodic execution are indeed implemented through the extension
of this class. The TimedSendTask performs the periodic send of an advertisement
to a specific destination peer. This operation has a limited duration in time and
it is performed in the course of the initialization, if seed peers are used.

The WhatchdogTask checks periodically the availability of the up peer and
of the down peer. The AdvertisingGroupQueryTask sends periodically a query
request regarding the advertising group, a group in which the peer view ad-
vertises and broadcasts its existence. The OpenPipesTask makes sure that the
peer view changes its behavior properly when switching from edge mode to
rendezvous mode, and vice-versa.

3.4.2 The Shared Resource Distributed Index

The Rendezvous Shared Resource Distributed Index (SRDI) is implemented in
the package listed below

¢ Package net.jxta.impl.cm
1. Cm
2. Indexer
3. Srdi
4. SrdiCache
5. SrdiIndex

This package contains the implementation of the whole cache system (cm
stands for cache manager). The interesting class here is Srdi, which contains
the implementation of the mechanisms both to distribute and replicate the
advertisements published by peers and, at the same time, to search for them. It
is at this point that the system computes the hash function which decides where
to send the replicas of the advertisements published or propagates a research
query to the proper rendezvous.

In order to better describe the Srdi class, it is necessary to make a further
step and to show the structure of the messages used by the SRDL7 An SRDI

7 SRDI is indeed a service, this means that it defines its personal message format.

O 00N ONUT AW N R

(S
= O

3.4 JXTA RENDEZVOUS SERVICE REVERSE ENGINEERING

message has the structure represented in Listing [3.3{it is implemented in the
SrdiMessage class which is a part of the package net.jxta.protocol). We give

Listing 3.3: The Srdi Message

<?xml version="1.0" encoding="UTF-8"?7>
<jxta:GenSRDI xmlns:jxta="http://jxta.org">

<PeerID> . . . </PeerID>

<TTL> . . . </TTL>

<PrimaryKey> . . . </PrimaryKey>

<Entries key="" value="" expiration=""> . . . </Entries>
<Entries key="" value="" expiration=""> . . . </Entries>

</jxta:GenSRDI>

a brief description of the fields of the message,

* PeerlID: contains the ID of the peer which is the source of the message.

* TTL: the time to live of this message, this is a limit to the propagation
jumps of the message.

* PrimaryKey: the primary key of an Srdi message is the type of advertise-
ment to be published or researched.

* Entries: this field is a list, as an advertisement can have multiple refer-
ences: it is caused by the fact that we can search for an advertisement using
different keys such as its name or its ID (possible keys depend on the kind
of the advertisement). The attributes of this field are:

— key: the attribute used for this publication (name, ID,...)
— value: the value assumed by the attribute

- expiration: the expiration time after which this reference will cease
to be valid.

Each element of the list formed by the Entries fields is used to form the index
which will be used as an argument for the hash function in the following way

index = (PrimaryKey + key + value) (3.1)

During the publication process, the reference < index, peerID > is firstly
published in the rendezvous directly connected to the publishing peer, where
the peerID element is the ID of the peer which published the reference. Then
the SRDI has to select the right one to which it will send the reference, among

71

72 JXTACH

the rendezvous peers contained in the peer view. This is done by selecting the
position of the element in the peer view through the following formula:

_hePW

pos = THS[(3-2)

where

e h = H(index), where H is the hash function used (JXTA uses SHA-1)
* [PW]|is the cardinality of the peer view

e |HS| = 2P is the cardinality of the codomain of the hash function, b is the
number of bits used to represent index.

This computation is performed by a single method in the Srdi class, the
method getReplicaPeer, which is used in both the processes, publication and
search. Due to its importance, we report the whole code of the method in
Listing

As we can see from the listing, the method is assigned as an input parameter a
String called expression: this is the implementation of index (epression [3.1). At
lines 7-10 we can find the computation of H(index), at lines 15-17 expression 3.2]
is computed, finally at line 18 the method selects the element at position pos.

Each entry of the SRDI message is processed by getReplicaPeer, this is
executed by the method replicateEntries. This method prepares a set of bins
each of which is associated to a single destination peer. Once the bins are ready,
replicateEntries uses the method pushSrdi to propagate each reference to its
proper peer.

We will describe the search process in the following section, as it involves the
walker mechanism.

3.4.3 The Walker

The Walker is implemented in the packages listed below:
¢ Package net.jxta.impl.rendezvous
1. PeerConnection
2. RdvGreeter
. RdvWa'lk

3

4. RdvWalker
5. RendezVousPropagateMessage
6

. RendezvousServiceImpl

O 00Nl ONUl W N R

R R R R R R R R R R
O o ol B~ W N R O

20
21
22
23
24
25
26
27
28

3.4 JXTA RENDEZVOUS SERVICE REVERSE ENGINEERING

Listing 3.4: The getReplicaPeer method

public PeerID getReplicaPeer(String expression) {
PeerID pid = null;
Vector rpv = getGlobalPeerView () ;

}

i

}
}

f (rpv.size () >= RPV_REPLICATION_THRESHOLD) ({
Biginteger digest = null;
synchronized (jxtaHash) {
jxtaHash .update (expression);
digest = jxtaHash.getDigestInteger () .abs();
}
Biginteger sizeOfSpace =
java.math. Biginteger.valueOf(rpv.size ());
Biginteger sizeOfHashSpace =
Biglnteger .ONE. shiftLeft(8 » digest.toByteArray().length);
int pos =
(digest.multiply (sizeOfSpace))
.divide (sizeOfHashSpace) .intValue () ;
pid = (PeerID) rpv.elementAt(pos);
if (LOG.isEnabledFor (Level .DEBUG)) ({
LOG.debug("[" + group.getPeerGroupName () +
+ "/ " + handlername +
+ "] Found a direct peer

+ pid);
}

return pid;

else {

return null;

73

74

JXTACH

7. RendezvousServicelnterface
8. RendezvousServiceProvider

9. StdRendezvousService

¢ Package net.jxta.impl.rendezvous.limited
1. LimitedRangeGreeter
2. LimitedRangeWalk
3. LimitedRangeWalker

The first package is a general package implementing the rendezvous service.
In this section we are focusing on the walker, thus we will describe just the
classes implementing it. The classes implementing the walker mechanism in
the rendezvous package are RdvGreeter, RdvWalker and RdvWalk. The limited
package is entirely dedicated to the walker. Specifically, it implements the limited
range walker described in Section [3.3.1}

RdvWalker Rdv\Walk RdvwGreeter

i

F LimitedRangeWalk - [—

iy
i
i
i
i
i
i
|
|
i
:
i
i
i

LimitedRangeWalker . »— —= LimitedRangeGreeter

Figure 3.12: Pseudo-UML representation of the walker implementation.

In Figure we represent a pseudo-UML class diagram of the walker
implementation: in the upper part the classes which are a part of the rendezvous
package can be found. They represent the general classes to be extended (or
implemented in the case of RdvWalker) in order to obtain any policy we want
to define for the walker mechanism. We will show in the next chapter how the
chord policy was implemented as an extension of these classes (we created, in
fact, a ChordWalk, a ChordwWalker and a ChordGreeter). In the original JXTA, it
was the limited range walker to be implemented.

3.4 JXTA RENDEZVOUS SERVICE REVERSE ENGINEERING

The classes are structured in such a way because the walker mechanism is
divided into two parts, the sending one and the receiving one: the sending
one is RdvWalker (LimitedRangeWalker) while the receiving one is RdvGreeter
(LimitedRangeGreeter). The RdvWalk (LimitedRangeWalk) is used as a container
for those two parts. In Figure we represent a high level schema of the walk
structure.

Walk

Greeter Walker

AN]

Receive .~ Send

Figure 3.13: A walk schema.

As we said right above, the walker is responsible for the send operation of the
propagated query, in Figure we represent the interaction between the SRDI
and the walker in the query resolution mechanism. All the following operations
are invoked by the Discovery Service, such invocations are implemented in class
DiscoveryServiceImpl.

1. A peer generates a query for an advertisement and sends it to the ren-
dezvous it is connected to.

2. The rendezvous peer receiving the query checks if the advertisement is
contained inside its cache: if yes: it replies with the advertisement directly
to the sending peer, otherwise, a passage to the next step is needed, in
which the work of the SRDI starts.

3. Firstly, we check the local instance of the SRDI in order to control whether
it contains some references < adv, peer > to the advertisement: if yes the
rendezvous peer propagates the query to the peer which, in turn, sends
the advertisement to the peer that generated that query, otherwise, the
next step follows.

4. This step consists of the computing the expression if the result is
different from the local peer we go to step 5, otherwise step 6 follows.

5. The query is forwarded to the peer contained at the position equal to the
result of expression [3.2|in the peer view (the receiving rendezvous start
from step 2).

75

76

JXTACH

6. The walker mechanism is invoked and we start to linearly propagate the
message along the peer view.

| CM
Yes, reply | (Check in the Cache if there is some positive result)

. Srdi (1)
Yes, reply (Check if there are some pair <adv,peer>)

Srdi (2)
(Is this peer the right starting point? True if the getReplicaPeer() returns this peer)

o e
= >
Srdi (3) Walk
(5end the gquery to the right starting point, (There are no info so the walker
found through getReplicaPeer()) mechanism has to be invoked)

Figure 3.14: Query schema.

When a rendezvous peer contacts the walker for the first time, in order to
propagate a query, the first operation performed by the walker consists in
attaching a LimitedRangeRdvMessage to the message containing the query (a
DiscoveryQueryMessage). This message is realized through two classes, the ab-
stract class LimitedRangeRdvMessage in the package net.jxta.protocol and its
extension LimitedRangeRdvMsg inside the package net.jxta.impl.protocol. It
adds information which will be used during the walking phase. For the purpose
of the description we report the structure of the LimitedRangeRdvMessage in
Listing

The message is composed by the fields below:

3.4 JXTA RENDEZVOUS SERVICE REVERSE ENGINEERING 77

Listing 3.5: The Limited Range Rdv Message

<?xml version="1.0" encoding="UTF-8"7?>
<jxta:LimitedRangeRdvMessage xmlns:jxta="http://jxta.org">

<TTL> . . . </TTL>

<DIR> . . . </DIR>

<SrcPeerID> . . .</SrcPeerID>
<SrcSvcName> . . .</SrcSvcName>
<SrcSvcParams> . . .</SrcSvcParams>
<SrcRouteAdv> . . .</SrcRouteAdv>

</jxta:LimitedRangeRdvMessage>

® TTL: this element contains the time to live of the message. The value allows
JXTA to limit the number of propagation jumps of the query during the
walker phase. At each jump of the message, in fact, the walker decreases
the value. The operation is performed by the checkMessage method in
class LimitedRangeGreeter.

* DIR: this element contains a numeric value which indicates the direction
the message shall follow along the peer view propagation. There exist
three possibilities:

— UP: the message has to be propagated to the up peer with respect to
the peer view order (the numeric value is 1)

— DOWN: the message has to be propagated to the down peer with
respect to the peer view order (the numeric value is 2)

— BOTH: the message has to be propagated to both the peers the up and
the down one, with respect to the peer view order (the numeric value
is 3). The field assume this value at the beginning of the walker phase
as we saw in section After the first step this field is modified
into UP or DOWN according to the position of the receiving peer
with respect to the sending one.

These fields are used by the method walkMessage of the LimitedRangeWalker
class, which is directly responsible for the propagation of the messages.

® SrcPeerlID: this element contains the peer ID of the peer from which the
query was originated.

® SrcSvcName and SrcSvcParams are the name and the parameters of the
service which has to analyze the message when it is delivered.

* SrcRouteAdv: this optional element contains the route advertisement of
the peer requesting the advertisement and is used in case in which target
node do not know a route to the requesting peer.

78

JXTACH

This message will be analyzed by the LimitedRangeGreeter. This class, in
addition to extending the RdvGreeter class, implements the EndpointListener
interface (like all the classes in JXTA intended to be a “message receiver”). The
message analysis is performed by the processIncomingMessage method which
checks the LimitedRangeRdvMessage and then delivers the message to the proper
service (through a chain of listener calls).

3.5 JXTACH DESIGN AND IMPLEMENTATION

After the reverse engineering process, we started the design process of a new
version of the framework. In this work we limited ourselves to describe the
rendezvous service. The reason of such a choice is that our change touched
almost only this service®, the rest of the framework remained unchanged.

In this section we give the reasons on the basis of which we designed the
injection of the Chord DHT protocol inside the JXTA framework and, at the
same time, we describe how we implemented it, on the basis of the information
we collected during the previous phases.

In order to describe the design and the implementation of the rendezvous
service in JXTACh, we will follow the chapter schema. Each section will
contain the design description and the implementation description.

The last section is dedicated to the description of an utility class implementing
the check operations regarding the inclusion of a value in a certain interval
embedded in a circular domain.

3.5.1 The distributed hash table

Design

As we have seen, the table in JXTA is implemented through the rendezvous
peer view, an ordered table containing information about the rendezvous peers
known by the local peer.

Our work begun from here. Indeed, the first step to take was to think of how
to operate on the package rpv (see Section [3.4.1). The package maintained the
same name but we decreased the number of classes, indeed some of the old
classes were useless to the new implementation. We list below the new package:

1. PeerView
2. PeerViewElement

3. PeerViewlListener

We had to modify small portions of Discovery service implementation as well. Is has not been
reported here due to its little importance.

3.5 JXTACH DESIGN AND IMPLEMENTATION

The new PeerView class is the implementation of the Chord Finger Table. We
maintained the same name just for the reason of transparency with respect to
the other parts of the JXTA framework. We have decided then to drop six of
the existing classes, each of which supported by its valid reason. The removed
classes are:

* PeerViewDestination: has been removed because because a comparable
part in the elements of the table is no longer needed. As we saw in
Section the Chord finger table follows a different strategy, it is not
just an ordered table according to the IDs order, it has a fixed infrastructure
(the start fields structure seen in Section [3.3.2).

* PeerViewEvent: was used by the original JXTA to handle the add, remove
and failure in the peer view. In Chord the table dimension is fixed according
to the number of bits used to represent the IDs, then in JXTACh we do not
have a concept of add and remove of elements. We have the concept of the
change of an entry, which can be seen in three cases:

— In case in which a new peer entering the Chord ring has to become
its new node field (see Section [3.3.2).

— In case in which a peer contained in the finger table leaves the ring.
— In case in which a peer contained in the finger table fails.

We have chosen not to use a special listener to deal with these events,
but to handle directly with the PeerView class which is an extension of
EndpointListener and RendezvousListener.®

e PeerViewRandomStrategy,
PeerViewRandomWithReplaceStrategy,
PeerViewSequentialStrategy,
PeerViewStrategy: are used essentially to choose elements which are sent
to other rendezvous peers in order to try to guarantee the consistence
among the peer views (see Section [3.4.1). As we use the Chord protocol
in JXTACh such a strategy is not needed. We apply instead the processes
analyzed in Section [3.3.2

Implementation

Before describing the classes of package rpv we have to describe a small change
performed on the class which creates a new instance of the finger table/peer
view. This class is RendezVousServiceImpl. We have had to postpone the creation
of the finger table with respect to the procedure followed in the original JXTA.
It appeared necessary, because during the testing phase, we have realized that
in a high dynamic environment, with many peers entering together, we have

9 We left PeerViewListener for transparency reasons, the drop of this class is under evaluation.

79

8o JXTACH

encountered some communication problem. From our first experiments results,
that was due to the lack of the routing information, particularly the Route
Advertisement in some cases could not be created. The solution adopted was to
wait for the termination of the route advertisement creation.

The PeerViewElement class implements an entry of the finger table. To give
a complete description of the fields we refer to the Javadoc which is available
together with the source code. Here we add a description to the added fields in
order to obtain a finger table entry.

e rdv)xtalD: contains the start field of a finger table entry.™®
* radv: contains the advertisement of the peer contained in the node field.
* successor: contains the ID of the peer contained in the node field."*

e destAddress: consists of the EdpointAddress contained in the node field.

In Figure we give a graphic representation of the theoretical design of
a finger table entry (top) with the relative practical realization (bottom). In
the figure we also point out that the implementation of the interval field is
useless because this information can be obtained without an explicit field (ith
it" interval is equal to [fingerTable.start(i), fingerTable.start(i+ 1))).

Interval

rdv]xtallD) radv SlCCessor destAddress

Figure 3.15: Finger table entry implementation.

The PeerView class is a class implementing the Chord finger table. The imple-
mentation starts directly from its JXTA counter part. That gives a possibility to
maintain an higher level of compatibility with the rest of the framework.

10 The name is temporary.
11 It has this name because in some papers the node field is also referred to as successor.

3.5 JXTACH DESIGN AND IMPLEMENTATION

processRdvRequest processRdvResponse waitingFingerTable

processFtRequest processEdgeFtRequest receiveAck

processFtResponse processFsRequest processFsResponse
processStabilizeRequest processStabilizeResponse processNotify

processFixFingersRequest

processFixFingersResponse

processPredecessorNotify

processKeysMessage

processRoutelUpdate

Table 3.1: Message processing methods.

We have left some ideas from the original PeerView class, some of the code is
unchanged, but the greatest part of the original code has been replaced with a
new code.

Here we have implemented all the processes described in section Below,
follows the classification of the methods implemented by us:

¢ Initialization methods
* Maintenance methods
¢ Termination methods
* General or utility methods

In the remaining part of this section we will describe the PeerView class
through these categories. Before arriving to that process, it is important to
give a description of the communication system used in this class. This is
an EndpointListener interface implementation, thus the messages used for
the initialization, the maintenance and the termination of the finger table are
managed through the characteristics inherited from it.

The EndpointListener interface defines a method which manages the in-
coming messages, called processIncomingMessage. In our implementation, this
method is used as a dispatcher: it checks the fields of the message received
and, on the base of the one present, it chooses the right method to call in
order to process the message. In Table [3.1| we report all the methods, each of
which is responsible for a specific message (the name of the method is quite
self-explanatory). While describing the PeerView class we will point out the
actual use of these messages.

INITIALIZATION (JOIN OF A NEW NODE INTO THE NETWORK) When a
new peer enters the system, it has to be initialized in order to participate in
the protocol. In Figure we represent the join procedure from the message
exchange point of view. For the remainder of this section, we will refer to the
entering node as a local peer and to the introducing peer as a remote peer. In our
implementation, the first operation performed by a new peer in order to join
the network is to check for existing rendezvous peers. These rendezvous peers

81

82

The join
communication
protocol

JXTACH

are responsible for giving to the new peer all the necessary information so that
it follows the protocol (they are the potential introducing peers as shown in

Section [3.3.2).
~ < &
Revuger _
onse_@cﬂ"
AuRESP=
if no other rdv replied 4:"_:'
. "En‘lélugg -
; ‘ab;{__“‘:h Finger table creation
.o fnge =
enfireE=
d\seﬂ-‘x-t-'e e
FIReEP
Finger table received o
~ 4c
wggge‘h‘
T~ Back to freedom

Figure 3.16: The join process, in the boxes there are the operations performed when the
message is received.

The check performed by the new peer follows a specific procedure, At first,
the new peer searches for seed peers (if they are defined), which are special peers
that should be placed into “always-on” machines. Their name derives from
their function being the roots over which the protocol grows up. Together with
the seed peers check, the local peer tries to find rendezvous peers in its local
network broadcasting a message.

This process is implemented through an inner class RdvMessageTask, an ex-
tension of the TimerTask class. This task sends periodically (the period is set
through a static attribute of the class) a message (RdvRequest) to the seed peers
and broadcasts the same message to the local network. The message contains a
request to join the network, namely the request to find a remote peer available
for introducing the local peer into the network.”> When it goes to receiving,
the message is managed by the PeerView class itself (the processRdvRequest
method), if the remote peer is free (it has not already accepted another peer’s
request), it accepts to introduce the local peer into the network through sending
to it an acknowledge message (RdvResponse). When the local peer receives the
acknowledge (the processRdvResponse method), it sends the real request for
a finger table (FTRequest) to the remote peer if and only if there was not any
prior reply from another rendezvous peer (we remind that the request is sent

12 This is done by both the main type of peers, rendezvous and edge.

13

3.5 JXTACH DESIGN AND IMPLEMENTATION

to all the seed peers and to the local network as well). Now the remote peer
can start the finger table creation procedure (the processFTRequest method).
Once finished the finger table is sent back to the local peer, which, in turn (the
processFTResponse method), sends back an acknowledge message (Acknowl-
edge) to the remote peer. Finally, the remote peer can go back to a free state. At
the end of this process the local peer becomes a part of the Chord ring.

We have just described the communication protocol which allows to add a
new node into the ring. We have left undefined the issue of building the finger
table for the local peer by the remote peer. This mechanism surely deserves a
proper description.

The method createFingerTable is responsible for the finger table creation. At
first, the method checks if the finger table of the remote peer should be updated
as a consequence of the join of the new node. It is done through visiting the
finger table and updating the node information if needed. Let ID; be the ID of
the local peer, we call F7; the i-th entry of the finger table of the remote peer.
We use the point notation to refer to the fields of the entry. Below we have given
its formal description:

F7Ti is updated < IDy € [FT;.start, FTi.node) (3.3)

where with start and node we refer respectively to the ID contained in the field
rdvIxtaID and to the ID contained in the field successor (see Section [3.5.1).

Once the remote peer has updated its finger table, it can start to create the
finger table of the local peer. The remote peer builds a new finger table (through
findStartSuccessor method) on the basis of its personal information, namely
its finger table, and, if it is necessary, contacts the other rendezvous peers with
the find_Successor method for the finger table creation purpose.’

There are in fact two cases for each of the considered start field. Let us call
start; the i-th start field considered during the finger table construction, where
m is the dimension of the finger table. The two cases are

1. start; € (FTy.start, FT,,—1.start]
2. starty € (FTo.start, FT_q.start]

In Figure we graphically represent the visibility of the remote peer which
generates the two cases listed above. The dashed line represents the visibility
interval and the start fields falling in this range correspond to case 1, while the
dot-dashed line represents the invisible interval and the start fields falling in this
interval correspond to case 2.

In the first case the node; field can be determined solely with the informa-
tion contained in the remote peer finger table (this is done with use of the

There exist multiple versions of find_successor process in our implementation. It is due to the fact
that there are multiple moments in which this process is needed, each of which has some special
requirements.

83

The finger table
construction

84

JXTACH

i,

Figure 3.17: Finger table visibility interval.

checkFingerTableEntry method). At first, we have given a temporary value to
the node; field, chosen among the ID of the remote peer, the ID of the local peer
and the ID of the predecessor of the remote peer. Then the finger table is visited
and when the condition

FTj.node € [starty, node;)

is verified, the J7j.node becomes the new node;.

In the other case, the finger table of the remote peer does not have the
necessary information to determine the node; field. One solution to this problem
could be to set the field with the remote node id, we have decided to follow a
different approach. We observed that the peer contained in the last node field
has surely more information about the current start field taken into consideration.
Hence, we contact the last node and we use its finger table in order to determine
the right node;, with use of the same process described above (the search of
the right node; is done by searchSuccessorIntoFingerTable method). Any
inconsistency can be corrected by the fix fingers process which will be described
later on.

The communication process is managed through a TimerTask extension,
FindSuccessorTimerTask. The last node is contacted and a message is sent
periodically to minimize the probability of the request to be lost.

There remains the last operation to be done after a peer join: the keys transfer.
As we have seen in Section the keys (in JXTACh case the references to the
advertisements) for which the local peer should be responsible of, have to be
transferred to it from the successor assigned to the local peer.

3.5 JXTACH DESIGN AND IMPLEMENTATION

This operation is performed by the sendKeysInterval method. This method
selects from the Srdi the references that have to be maintained by the new peer.
This is done visiting the Srdi and for each reference r which is of the form
< peery, adv; > we apply the following:

k = H(r) (3-4)

and then we have

sent ifp<k<n,
T—

not sent otherwise.

where n is the new peer and p is the successor of n.

MAINTENANCE A DHT needs to be maintained consistent in order to achieve
its best performances. We have seen in Section that there are some pro-
cedures that guarantee the consistency of distributed hash table. Here we are
going to describe how these processes are implemented in JXTACh. All these
three procedures are periodic and the best way to implement it has been, in
our opinion, by using a TimerTask extension for each procedure. Below we have
listed the name of each process with its respective timer task:

* stabilize — StabilizeMessageTask (see Algorithm [7)
* fix_fingers — FixFingersMessageTask (see Algorithm [g)
® check_predecessor — CheckPredecessorMessageTask (see Algorithm

The stabilize timer task sends periodically a message to the local peer successor
to check if any new node entered the network. It means that the local peer has
to update its successor with any new entered node. The message could be
expressed in a question “who’s your predecessor?”: if the reply contains the
local peer ID, nothing changes, otherwise the successor has to be modified
by adding the peer ID contained in the reply message (if it’s correct) and the
local node has to notify the new successor that it has become his predecessor
(Algorithm . Formally, let us call id,, the ID of the local node 1, ids the ID of
the successor s, idy, the ID of the current predecessor p of s and finally, s’ is the
new successor after a stabilize run, we have

;)P if id,, <id, < ids, and n has to notify p
s ifid, = idy.
At the same time the stabilize process is used to check if the successor is
still alive. The local peer maintains a counter to remember how many times

the stabilize message did not receive an answer. This is done to decide when a
peer considers its successor failed. Of course, it is not possible for a single peer

85

Stabilize process

86

The fix fingers
process

The check
predecessor process

14

JXTACH

in a distributed environment to distinguish between a failed peer and a very
slow peer. For this reason we decided to give a time threshold over which we
consider the peer failed. This limit states how many times the peer can send the
same stabilize message to its successor without receiving a reply. For example,
the current value for the number of stabilize messages which does not receive a
reply is set to 20. The message is sent each 15 seconds. So the total period of
time we give to a peer for giving a sign of life before retaining it failed, is 300
seconds (i.e. 5 minutes).™#

When a peer is considered failed, the local peer sends a notification to the
other peers to let them know that the peer is failed then it chooses the first node
field in its finger table, different from the failed one, as its new successor. This
node probably will not be the right one, but the stabilize mechanism finds the
right successor in few steps.

All these operations are performed in the run method of the timer task imple-
menting the stabilize process. The messages are managed by two of the methods
shown in Table processStabilizeRequest and processStabilizeResponse.
In case of a successor update instead, a notify message is sent and it is processed
by the processNotify method.

The fix fingers process checks periodically if the fingers of the finger table
are correct or need to be updated. This is done by choosing randomly a finger
in the table and starting the find successor procedure for the start value. In
our implementation there is an on-purpose method which implements the find
successor mechanism for the fix fingers process, it is the findSuccessorFix
method. The message receiving, for requests and for responses, is managed
respectively by processFixFingersRequest and processFixFingersResponse
methods. At the end of the chain of calls for the find successor process, when
the response is processed, the peer which generated the call can check if the
randomly chosen finger has to be updated or not.

The check predecessor process checks periodically if the predecessor is alive. As
in the stabilize process, we have set a threshold to define when the predecessor
peer can be considered failed, the default threshold is set to 20 messages without
a reply and the interval of message send is set at the same level of the stabilize
one (15 seconds). To simplify this process management we have decided to leave
the responsibility for that directly to the processIncomingMessage method. Let
us observe that the check does not announce its predecessor’s failure as it is
performed by the stabilize of the predecessor of the failed node.

TERMINATION When a peer voluntarily exits from the network, there are
some operations which have to be performed in order to let it go. First of all,
the peer has to warn its successor and its predecessor about its leaving. This is

This time is totally customizable, due to the fact that we have released all the source code,
maintaining the JXTA philosophy.

15

3.5 JXTACH DESIGN AND IMPLEMENTATION

getRadv getSelfID getPredecessor
setPredecessor getSuccessor setSuccessor
getLocalFinger publishRadv publishRouteAdv
publishRouteFromRdv translateAddr translateID
translateIDfromString updateSelfFTEntries updateFTEntry
addSeed getFingerTableElement getView
getRelayPeers checkValue

Table 3.2: General or utility methods.

done through a simple message exchange in which the exiting peer sends to its
successor a message “here is your new predecessor” referring to its predecessor
and symmetrically, communicates to its predecessor “here is your new successor”
referring to its successor. In our implementation this is implemented through
the leave method.

The leave method is responsible as well for the second operation which has
to be performed before the peer is able to leave. The keys it was responsible
for have to be transferred to its successor. This is done by the method sendKeys
which is called by leave. The method has a direct access to the SRDI*> from
which it collects the stored keys. Upon completion, the keys are sent to the
successor which will process the message through the processKeysMessage
method.

After these two operations the peer has to stop all the tasks active at the
moment, the leave method is part of the method which does all such things
which it is method stop.

GENERAL OR UTILITY The last set of methods implement getters and setters
for some of the attributes of the PeerView class and a set of operations which are
useful but not necessary to the implementation of the protocol. For a complete
description of such methods, we address the reader to the Javadoc of the
framework. A list of them can be found in Table

3.5.2 The distributed index

Design

The class structure of the package cm has not changed. In fact, it was perfectly
feasible to modify directly the source code of the class in order to obtain the
Chord behavior. We had to modify some methods and to add some new ones.
They will be described in the next section.

to permit this access we added some methods in the cm package, for the description see the next
section

87

88

JXTACH

Implementation

In Section we have seen how the SRDI is implemented. We have stated as
well that the most important class was the Srdi class, in which distribution and
replication of keys take place. For that reason, the main modifications performed
by us have been related to this class. The following methods have been modified:

* replicateEntries

¢ all the three forwardQuery
® getReplicaPeer

® getGlobalPeerView

and the following methods have been added
e closestPrecedingFingers
e deleteKey

As it was for the original Srdi class, the central method used in the new version
is getReplicaPeer This time, of course, the method has to deal with a peer view
which is implemented as a finger table, hence, it behaves quite differently. We
underline the fact that the method interface has not changed, it still receives a
String (see expression [3.1]in Section and returns a PeerID. We report the
entire code in Listing

As we have seen, the old getReplicaPeer is limited to computing the position
of the rendezvous peer responsible for the key processed currently. In the new
version of the method, after the hash function has been calculated, we have to
check if the local peer is the right successor for the key processed (lines 20-24). If
this is the case the method returns the local peer ID, otherwise we have to find the
closest preceding finger for the key (line 30, method closestPrecedingFinger).
If the local peer is the closest preceding finger, we directly return the successor
ID. We have to remember that this process is embedded in both the main
operations involving the Srdi, the publication and the search.

The replicateEntries method was modified as well. In fact in the old version
of the Srdi, a publication could not jump through the rendezvous network. Here
we have the Chord ring and, as we have already seen, the publication process
follows the same behavior of the search one. Then in the new version of the
method we added the ttl decrement to limit jumps of the Srdi message (it is set
to m = 128).

As listed above we have changed four other methods: the three versions of
forwardQuery and the getGlobalPeerView method. The first three were slightly
changed, we have just modified the time to live, we have set it to m = 128, the
latter one returns the elements of the PeerView and it has been modified to deal
with the new structure of the class.

O O\ ONUl b~ WN R

G W W W W W NNNDNDNDNDNNDNNDNR®RRBRRRBRRHR A A R B R
U~ W N B OO0 0N Ul & W N B OOV N Ul &~ W N B O

36

38
39
40

3.5 JXTACH DESIGN AND IMPLEMENTATION

Listing 3.6: The new getReplicaPeer method

public PeerID getReplicaPeer(String expression) {
Biglnteger bigDig;
PeerID pid = null;
Vector rpv = getGlobalPeerView () ;
RendezVousService rvs = group.getRendezVousService() ;
PeerView fingerTable = rvs.getFingerTable ();
synchronized (jxtaHash) {//hash computation
jxtaHash.update (expression);
Biginteger bigDig = jxtaHash.getDigestInteger ().abs();
bigDig = bigDig.mod(modulo) ;
}
Biginteger a =
new Biglnteger (fingerTable.
getSelfID () . toString () . substring (46, 78) ,16);
BigInteger b = null;
if (fingerTable.getPredecessor()!=null)
b =
new Biglnteger(fingerTable.getPredecessor ().
toString () . substring (46, 78),16);
if (b!l=null &&
&& CircularDomain.inCloseDx (bigDig.mod(modulo) ,
b .mod (modulo) ,
a.mod(modulo) ,
modulo))
{
return fingerTable.getRadv () .getPeerID () ;
}
else |{
// let’s search the closest preceding finger
PeerID pidRes = closestPrecedingFinger (bigDig) .getPeerID () ;
if (pidRes.toString ().
equals(fingerTable. getSelfID (). toString()))
{
pidRes = ((PeerViewElement)fingerTable.
getLocalFinger () . get(0)).getRadv () . getPeerID () ;
return pidRes;
}
return pidRes;
}
}

89

90

The Chord Rdv
Message

JXTACH

3.5.3 The walker

Design

We decided to maintain the walker structure of the original JXTA. The structure
of the new walker mechanism is the same as the one of the limited range walker.
There is a new package, net.jxta.impl.rendezvous.chord, which replaces the
limited package described in Section The new package contains the
following classes:

¢ ChordWalk

® ChordWalker
® ChordGreeter
* ChordMsg

® ChordMessage

As we have already anticipated in Section the class structure of the old
walking policy was maintained. We added here the implementation of the
message used for the Chord policy as, in our opinion, it is more logical to have
included all the classes in the same package. Again, it has been easy to reuse

the pre-existing structure in order to design the message propagating policy of
Chord.

Implementation

We followed the JXTA style implementation, indeed the Chordwalk class is an ex-
tension of the RdvWalk interface and it has the same role of the LimitedRangeWalk
in the old version of JXTA. It is a container for the two classes which takes care
of the input and output of the messages.

Before describing the two main classes we have to describe the new kind
of message we implemented for JXTACh, the ChordMessage. In Listing [3.7]we
report the new message structure. If we compare it with the old version (the
limitedRangeMessage), we can see that there are two new fields: the Jump field
and the Hash field, where the latter in some sense replaces the DIR field of the
old message (see Listing[3.5).

The Jump field signals to the processing class that this message has arrived to
the destination and that it has to be processed by the local peer. To be precise,
the field can assume two values, true or false. In the first case, the result is the
one described above, in the second case the message has to jump, following the
Chord policy.

The Hash field is used for storing the hash value which is used for the propa-
gation during the find successor process. We maintained the possibility to use

O 00N ONUl W N R

[
o]

3.5 JXTACH DESIGN AND IMPLEMENTATION 91

Listing 3.7: The Chord Rdv Message

<?xml version="1.0" encoding="UTF-8"7?>
<jxta:ChordMessage xmlns:jxta="http://jxta.org">
<TTL> . . . </TTL>
<Hash> . . . </Hash>
<Jump> . . . </Jump>
<SrcPeerID> . . .</SrcPeerID>
<SrcSvcName> . . .</SrcSvcName>
<SrcSvcParams> . . .</SrcSvcParams>
<SrcRouteAdv> . . .</SrcRouteAdv>

</jxta:ChordMessage>

the old direction, defining new values for the UP, DOWN and BOTH directions.
the values are, respectively, 2™, 2™ + 1 and 2™ + 2. It was necessary in order to
maintain the compatibility with the old version and that is why we have stated
above that this field replaces the old DIR field.

The rest of the message remains unchanged, we point out that the TTL is set
when the message is created, to m = 128.

The ChordWalker class is structured like the LimitedRangeWalker class, which The Chord Walker
is its counterpart in JXTA. There are new methods added and some changed, to
manage the Chord protocol. The first method we describe is the sendMessage
method, this was modified with respect to the one in LimitedRangeWalker class.
At first the method checks if the ChordMessage has been already defined (during
a propagation process) or no (beginning of the propagation process). In the
latter case we have to create a new ChordMessage which sets all the fields. The
most important one is the Hash field which will guide the message through the
propagation along the Chord ring.

To compute the hash value we have implemented the getHashFromMsgType
method. It was necessary to implement such an on-purpose method because
there are different types of messages passing through the walker: the Resolver
query message (which contains a Discovery query message) and the Resolver
response message (which contains a Discovery response message) both with a
different field to extract and to use in order to compute the hash value.

The following three methods complete the Chord walker implementation,
thus we give a brief description of each method:

¢ walkChordMessage: checks if the message has to be treated like in the old
protocol or if it has to follow the find successor mechanism,

e findSuccessor: implements the find successor process described in Sec-
tion in Algorithm

¢ closestPrecedingFinger: implements the closest preceding finger de-
scribed in Section in Algorithm

92

The Chord Greeter

JXTACH

Finally, we have implemented a new send method, which consists in sending
the message directly through the Endpoint service.
The ChordGreeter class is essentially responsible for the following tasks:

1. receiving the message containing the ChordMessage,
2. extracting the ChordMessage from the message,
3. checking if the ChordMessage has the right structure,

4. extracting the information contained in the ChordMessage, with particular
interest in the Jump field,

5. according to the value of Jump
a) propagating if the value is true.

b) delivering the message to the stack of protocols if the value is false
(the successor peer has been reached).

The main method performing this tasks is the processIncomingMessage
method. It is in fact responsible of tasks 1, 4 and 5. Tasks 2 and 3 are per-
formed by the getChordMessage and the checkMessage methods respectively
through a call in the main method.

3.5.4 A simple utility class

We have added the CircularDomain class to the framework. This class imple-
ments inclusion check in an interval embedded in a circular domain (essentially
Zywm). It was, in our opinion, the best solution in order to perform the compar-
isons requested by the Chord Protocol (see Section[3.3.2). The class is a collection
of four static methods. Each method is relative to any possible type of interval,
open, close, left close and right close. The CircularDomain class is a part of the
net.jxta.impl.rendezvous.finger package.

36 EXPERIMENTATION PHASE

In this section we will describe the results we obtained during the experimenta-
tion phase of JXTACh.

The environment for our tests was a LAN composed by 39 PCs of the same
kind: they were all AMD ATHLON X2 Dual Core 5600+ 2,9 GHz with 4GB of
RAM, running Debian Linux. In order to obtain a larger rendezvous network
we decided to run 5 rendezvous peer in each machine, while in the machines
dedicated to the edge peers we decided to run a single peer.

We have chosen to use the following metrics in order to perform our analysis
(these metrics are also proposed in [37] and are, in our opinion, the most relevant
ones for a performance comparison of this kind of protocols):

36 EXPERIMENTATION PHASE

Lookup time: the time required to get the result of an advertisement research
operation.

Memory load: the percentage of memory used by a single rendezvous peer.

CPU load: the percentage of CPU time used by a single rendezvous peer.

Dropped query percentage: the percentage of query lost.

To trace and to measure the memory and the CPU load, we used the linux
command top.

Moreover, we have distinguished between a static and a dynamic environment:
in the first case, rendezvous peers are stable and do not disconnect from the
overlay network, while in the second case rendezvous peers can disconnect
making the system unstable and forcing the protocols to react to the situation. In
particular, we have analyzed two different ways to introduce dynamism into the
network: the first one is to let the peers disconnect in a “gentle” way (that is, by
announcing their departure from the network), while the second one is to make
the peers fail, so that the protocol cannot predict when a peer will abandon the
network (we call that an “abrupt” disconnection).

Finally, we have chosen to use the following set of parameters to be varied in
order to study the network behavior under different conditions:

* Query rate: this tells us how much query load the protocol can stand.

* Presence of negative query: this tells us if the presence of negative queries
imply increasing or decreasing performance.

» Gentle or abrupt disconnections of rendezvous peers: this tells us how good is
the protocol to react to a search miss and how good is the system to solve
an “unexpected” situation.

In the remaining part of this chapter, we will use the following notation:
¢ R:set of rendezvous peers.
* E, : set of publishing peers.
* L, :set of searching peers.
* kp : number of advertisements to be published.
* Kk, : cardinality of an advertisement block to be searched.
* tq : query rate for the searching peers.
* ltmin : minimum life time of a peer.

* ltmax : maximum life time of a peer.

93

94 JXTACH

30000

25000

20000

15000

mXTA
10000 JXTACh
5000 l
, a
1 2 4 8

query per second

35000

30000 -+

25000 +

20000 -

15000 - | XTA
JXTACh

10000 -

5000 -+

1 2 4 8

query per second
80000

70000

60000
50000

40000 -
| XTA
30000 -
JXTACh
20000 -
10000 -
0 T T T
2 4

query per second

Figure 3.18: Average lookup time (milliseconds) in static, “gentle” dynamic and “abrupt”
dynamic environment.

36 EXPERIMENTATION PHASE

6
5
4
3
B XTA
2 = JXTACh
1
0
1 2 4 8
query per second
6
5 -
4 -
3 -
W XTA
2 4 u JXTACh
1 -
0 -
1 2 4 8
query per second
9
8
7
6
5
4 mXTA
3 w JXTACh
2
1
0
1 2 4 8
query per second

Figure 3.19: Average RAM usage percentage comparison in static, “gentle” dynamic
and “abrupt” dynamic environment.

95

96 JXTACH

40.1
40.05
40
39.95
W JXTA
39.9 w IXTACh
39.85 4
39.8 T T
1 2 4 8
guery per second
41.5
41
40.5
40
39.5
39
38.5 1 m IXTA
38 -
1 IXTACh
37.5
37 4
36.5 o
36 -+ T T T
1 2 4 8
query per second
44.5
44
435
43
mIXTA
425 = JXTACh
42
415 + T T
1 2 4 8
query per second

Figure 3.20: Average CPU time usage percentage in static, “gentle” dynamic and
“abrupt” dynamic environment.

36 EXPERIMENTATION PHASE

HXTA
= IXTACh

L e R € S B« -

[=]
|

14.00

1 2 4 8

query per second

12.00

10.00

8.00

6.00

4.00

mIXTA
= IXTACh

2.00

0.00 -

35.00

1 2 4 8

query per second

30.00

25.00

20.00

15.00

10.00

W XTA

5.00 +

0.00 -+

1 2 4

query per second

Figure 3.21: Average dropped query percentage comparison in static, “gentle” dynamic
and “abrupt” dynamic environment.

97

98

JXTACH

¢ rt: maximum reconnection time.

Finally, the values of all parameters which are not explicitly mentioned are
set equal to the JXTA default values.

3.6.1 Static case

In this case, we set up an overlay network with |[R| = 160, [E,| = 3 and [E,| = 3.
Each edge peer e € E, publishes k, = 1000 advertisements, while each edge
peer e € E, looks for the k;, advertisements in blocks of k; = 100: for each block,
e turns itself off and waits a small amount of time 1t to reconnect and to restart
with the next block. We experimented t4 = 1,2,4, 8.

Response time

In the left part of Figure we can observe the comparison between the
average lookup times: it is clear that, in a static situation, JXTACh is much
faster than JXTA. The main reason is likely to be the heaviest traffic load that
JXTA generates: indeed, the original protocol makes a massive use of broadcast
operations.

Memory load

The left part of Figure reports the average percentage of RAM used by the
two protocols. Even in this case, it is clear that JXTACh uses less memory than
JXTA. The first reason is likely to be the use of the finger tables, which limits
the dimension of the peer view to 128 fields, while the rendezvous peer view, in
the LAN case, might contain all the peers involved in the test (i.e. |[R|). Another
reason could be the fact that a bigger amount of messages is sent by JXTA, thus
overfilling the buffers.

CPU load

In the left part of Figure it can be seen that JXTA has a slightly better
performance with respect to JXTACh in the case of 1 and 2 query per second:
this small difference (less than 1% in each case) might be induced by the cost
of the Chord finger table maintainance. In the 4 and 8 query per second case,
instead, we can see that JXTACh has a better behaviour: this is likely to be due
to the cost of the messages sent by JXTA, that starts to influence the percentage
of CPU time used. Observe that it is anyway difficult to draw any deeper
conclusion from such small differences.

36 EXPERIMENTATION PHASE

Dropped query

In a static environment there should not be a big loss of queries, since the
rendezvous peers are always on line. The results confirm this fact, as we can
see in the left part of Figure we always have less than 9% of queries lost
(the larger value is in the case of 8 query per second). We also notice that in
JXTA case the percentage is much higher than in JXTACh: again, this is likely to
be due to the fact that JXTA uses much more messages that overfill the buffers
causing the loss of queries.

3.6.2 Dynamic case with gentle disconnections

In this case, we have chosen the following parameter values: [R| = 160, [Ep| = 3,
|Er| =3, kp = 3000, k; = 200, rt = 40 minutes. We experimented tq = 1,2,4,8.
Each rendezvous peer 1 € R connects to the overlay network, remains connected
for at least lt;in = 2 hours and for at most lt,;,qx = 6 hours.

Response time

In the middle part of Figure we can see that, even in this case, JXTACh
has a better behavior than JXTA. For each query rate, indeed, JXTACh is one
order of magnitude faster than JXTA. We can also notice that, in the case of
JXTA, the average response time decreases as we increase the query rate: this
might be surprising, but it is likely to be due to the fact that the percentage
of dropped queries increases as the query rate increases. This means that the
protocol performs better at expense of reliability.

Memory load

In a dynamic environment the percentage of memory used by the protocols
increases with respect to the static case, but, as it can be seen by comparing the
left and the middle part of Figure the increase in the case of JXTA is higher
than the one in the case of JXTACh. This is especially true as we increase the
query rate: for example, in the case of 4 query per second, in JXTA we go from
1,5% to 5, 5%, while in JXTACh we go from 1,5% to 2, 2%. It’s interesting also to
compare the behavior of the two protocols with respect to a single rendezvous
peer. In Figure we show the values of memory load sampled each 5 seconds
during the whole test in a single rendezvous peer: as we can see, JXTACh is
clearly less memory-consuming than JXTA.

99

100

JXTACH

10.00
9.00
8.00 |_I|_|

6.00 PJ - V i
c oo L[S

|
4.00 —IXTA
3.00 JIXTACh
2.00
1.00 -
0.00 II T T T T T T T

1 251 501 751 1001 1251 1501 1751
Time

Figure 3.22: RAM usage percentage in a rendezvous peer (sampled each 5 seconds) in a
“gentle” dynamic environment.

CPU load

In this case, the CPU load does not differ too much from the static case, as it
can be seen by comparing the left part of Figure and the middle part of

Figure

Dropped query

As expected, in a dynamic environment the loss of query starts to be significant,
and, again, JXTACh has a better behavior. As we can see from the middle part of
Figure the percentage of dropped queries increases with the increase of the
query rate in the case of JXTA. In the case of JXTACh, instead, the percentage
remains stable: at most, we have a 2% of queries lost.

3.6.3 Dynamic case with abrupt disconnections

In this case, the test setting is exactly the same as the one in the previous section.
This time we observe how the two protocols react to unexpected disconnections.

Response time

In this environment, the performances of the two protocols are comparable
only in the case of 1 query per second, while for the other query rates JXTACh
continues to perform better (see the right part of Figure [3.18). As we expected

36 EXPERIMENTATION PHASE

4

there is a decay of performances of both protocols with respect to the “gentle
case due to the unexpected disconnection of rendezvous peers, but there is still
a difference of one order of magnitude between the two protocols.

Memory load

The memory usage increases only in JXTA: indeed, JXTACh still uses the same
amount of RAM, while JXTA’s memory usage raises up till 8,4% in the case of 8
query per second (compare the middle and the right part of Figure [3.19). This
means that, not only in the presence of unexpected failures, JXTACh performs
better than JXTA, but also that, in the case of the first protocol, the kind of
disconnections does not affect the memory load.

CPU load

In the presence of failures the average processor time usage increases for both the
protocols (compare the middle and the right part of Figure [3.20): the difference
between the two protocols is still small (order of 1 point of percentage).

Dropped query

Like in the case of the lookup time, if we compare the middle and the right
part of Figure we notice an increment on the percentage of queries lost (as
expected the maximum query loss is in the case of 8 query per second). With
respect to this metric, we also notice that in the case of 1 query per second
there is a worst behavior in JXTACh with respect to JXTA: it is possible that the
network experienced an interval of high instability and the protocol could not
recover properly (this is witnessed also from the worse behavior in the average
lookup time).

3.6.4 Incidence of negative queries

To check the impact of negative queries on the lookup time, we set up a different
environment. We decided to have a single block of queries with k; =k, = 3000,
IRl = 160, |[Ep| = [E;] = 3, and tq = 0.2q/s. For each rendezvous, we set
ltimin = 2 hours, It qx = 6 hours, and rt = 40 minutes. We performed the tests
in both dynamic cases. Once again JXTACh performs better than JXTA, as it can
be seen from the following table (values are expressed in milliseconds):

JXTA | JXTACh
gentle | 16679.09 | 2699.92
abrupt | 1972.82 | 344.96

101

102

JXTACH

It is interesting to compare the lookup time of this case with the case of all
positive query. We notice from the previous results that the presence of negative
queries results in a lower response time: this is likely to be due to the fact that
the traffic generated by a query loss is not as costly as the response traffic.

The values shown in the table might seem surprising because the average
lookup time in the “abrupt” case is lower than the one in the “gentle” case. This
is likely to be due to the fact that in this test we have chosen a lower query
rate which allows the protocols to react to the failures in the case of “abrupt”
disconnection: this reaction does not imply any special action, so the message
load of the whole system does not change. In the “gentle” case instead, both the
protocol generate special messages either to warn the system they are logging off
(JXTA) or to pass the keys they are responsible for to their successors (JXTACh).
These messages generate higher traffic that might have an high impact on the
performances of both protocols in a LAN environment. The important result
here is that given the same environment, JXTACh performs better than JXTA
even in presence of negative queries.

3.7 CONCLUSIONS

The results obtained from our experiments on JXTACh lead us to the conclusion
that it is possible to use a pure DHT for the publication/research of advertise-
ment in JXTA: this means that the rendezvous protocol can be implemented
with a pure DHT. In fact the main result of our work is the integration of Chord
as the JXTA rendezvous protocol: this integration required a deep study of the
JXTA project and a hard work of reverse engineering. JXTACh source code is
available at its official web site [46].

In a local area network, our tests witness an improvement on every measure
we considered and in each kind of environment, static or dynamic, with “gentle”
or “abrupt” disconnections. This means that not only the injection of a pure DHT
can be performed in JXTA, but also that this would result in a better behavior
from the point of view of the response time, of the memory and CPU usage,
and of the reliability.

In the very next future, we intend to perform experiments with different pa-
rameter combinations and multiple runs, and then to proceed in an incremental
way, moving to more and more complex networks. We are ready to test JXTACh
on several subnetworks of class C of the same network of class B and, just after,
within the global Internet environment: to this aim, we will take advantage of
the fact that this project is partially funded by a European project which has
more than 20 partners. Our will is to use the project testbed to perform the same
test we did for the local environment. An alternative viable way to increase the
test scale could be also the use of distributed environments like PlanetLab. The
last step will be to test the new framework with a real application, in order to

3.7 CONCLUSIONS 103

verify the transparency with respect to the original JXTA framework. Finally, we
believe it could be interesting to perform a comparison in terms of data traffic.

MOBILE AD HOC NETWORKS SIMULATION: MOMOSE

In the previous chapters we have described algorithms which were designed
(almost all) for wired networks, in this chapter we move to the context of wireless
networks, more specifically into the context of ad hoc networks (also known as
multi-hop radio networks).

An ad hoc network is a wireless network where there is no a wired backbone
to relay on. Nodes are connected to each others only through the wireless
medium: two nodes can communicate only if they both are within each other
transmission range. The name ad hoc is because this kind of network is usually
deployed for a specific purpose.

When nodes are able to move, an ad hoc network becomes a mobile ad hoc
network (in short, MANET). In such a network the dynamism increase because
of mobility and the resulting system become more and more complex. It is then
important to have instruments to model the behavior of MANETs and good
metrics to measure the most important parameters influencing the system.

This chapter describes MOMOSE [47, |48]], a highly flexible and easily exten-
sible environment for the simulation of mobility models. MOMOSE not only
allows a programmer to easily integrate a new mobility model into the set of
models already included in its distribution, but it also allows the user to let
the nodes of the MANET move in different ways by associating any mobility
model to any subset of the nodes themselves. The environment allows the user
to define and to subsequently use configuration windows, whose content de-
pends on the mobility model, and its GUI includes a simulation window that
allows the user to manage and control the execution of a simulation. Moreover,
MOMOSE allows the user to simulate the movement of the nodes within a
“realistic” environment, where obstacles (such as buildings and barriers) are
present and limit the movement of the nodes. Finally, MOMOSE can be easily
adapted in order to record, during the simulation time, all the data necessary
for the evaluation of the performance of any communication protocol or of any
MANET-based application. As far as we know, MOMOSE is the only mobility
model simulation environment that has all these features and which is currently
available as a free software project.

4.1 INTRODUCTION

A mobile wireless ad hoc network (in short, MANET) is a computer network in
which no pre-existing communication infrastructure exists. Communication links

105

106

MOBILE AD HOC NETWORKS SIMULATION: MOMOSE

are wireless, and nodes are free to move and organize themselves in an arbitrary
fashion. These networks are expected to have several applications because of
the minimal configuration and the quick deployment they require: natural
or human-induced disasters, inter-vehicular communication, law enforcement,
military conflicts, and emergency medical situations are just a few examples of
application areas in which MANETs are expected to play an important role.

Since the nodes of a MANET are mobile, the network topology may change
rapidly and unpredictably over time. It is then important, in order to evaluate
the performance of any communication protocol or of any MANET-based ap-
plication, to be able to accurately simulate the mobility traces of the nodes that
will eventually utilize the protocol or the application. To this aim, we need a
mobility model that describes the movement pattern of mobile users, and how
their location, velocity and acceleration change over time.

We can distinguish two basic approaches in order to obtain a mobility model.
The first approach consists of constructing the mobility model on the ground of
accurate information about the mobility traces of users: however, obtaining real
mobility traces is usually a great challenge. For this reason, various researchers
proposed different kinds of mobility models that are not trace-driven and that are
called synthetic mobility models. A great variety of such mobility models have been
proposed in the literature, which differ according to at least one of the following
criteria [49]]: the geographic constraints that a mobile node has to deal with, the
scale the model is designed to work for, and the individuality which is determined
by the node aggregation level of the model. Some examples of mobility models
that have been proposed in the past are' the random walk model [50, 51, 52} 531,
the random waypoint model and its many variations [54], the random direction
model and its many variations [55) |56]], the boundless simulation area model [57],
the Gauss-Markov model [57], the city section model [57], the exponential
correlated random model [58], the column model [59], the nomadic community
model [59], the pursue model [59], the reference point group model [58], and,
more recently, the real-world environment model [60], the virtual track group
model [61], the ripple model [62], the clustered model [63], the social model [64],
and the TCP-based worm spread model [65].

Following the scheme we used in this thesis, we will give an overview of
the background of the argument of this chapter. We will focus on the synthetic
mobility models we listed above giving a general description of some of them.
Afterwards, we will describe the main topic of this chapter, the MOMOSE tool,
which is a highly flexible and easily extensible environment for the simulation
of mobility models. Indeed, MOMOSE not only allows a programmer to easily
integrate a new mobility model into the set of models already included in its
distribution, but it also allows the user to let the nodes of the MANET move

This list is certainly not exhaustive: our goal, however, is just to give a flavor of the huge quantity
of mobility models that have been proposed in the literature and of how important the mobility
simulation topic is within the MANET research area.

4.2 MOBILITY MODELS OVERVIEW

in different ways by associating any mobility model to any subset of the nodes
themselves. Moreover, MOMOSE can be easily adapted in order to record, during
the simulation time, all the data necessary for the evaluation of the performance
of any communication protocol or of any MANET-based application.

The chapter is structured as follows. In section |4.2| we describe some of the
most adopted mobility models. In section |4.3| we introduce our simulation tool
and the technical motivations behind our primary design choices. In Section
we describe the software architecture of MOMOSE and we briefly explain how
a programmer can use MOMOSE in order to develop a new mobility model
and/or a new data recorder. In Section [4.5| we present the experiments that we
have executed in order to evaluate the performance differences between the two
simulation engines included in MOMOSE. In Section [4.6] we summarize some of
the tools that, according to our opinion, are the most related to our application
and we present some experimental performance comparisons. In Section |4.7 we
briefly describe two case studies, while we conclude in Section |4.8{ by presenting
some research directions.

4.2 MOBILITY MODELS OVERVIEW

As we stated above, mobility models are an instrument to describe the mobility
pattern of mobile entities. In this section we will introduce a subset of the existing
mobility models, some of them are already implemented in the simulator, while
the others, as we will see, can be easily added to MOMOSE.

There exist many taxonomies according to which the mobility models are
classified. Here we follow the one reported in [66] where mobility models are
grouped into:

* Random based mobility models
* Mobility models with temporal dependency
¢ Mobility models with spatial dependency
* Mobility models with geographical restrictions
In all the descriptions we assume the mobile nodes represented by geometrical

points spread for simplicity in a plane.

4.2.1 Random based mobility models

In random based mobility models, the mobile nodes are free to move in an
empty simulation area. Their movement is totally random and unconstrained.
Each node chooses uniformly at random its velocity and its direction and this
choice is totally uncorrelated with the choices of the other nodes.

107

108

MOBILE AD HOC NETWORKS SIMULATION: MOMOSE

Random walk Model

The random walk mobility model (also known as Brownian motion) was first
mathematically described by Einstein in 1926, the basic idea of this model come
from the fact that movements of many entities in nature are difficult to predict,
then they appear to be completely random. In this model a node n moves at a
randomly chosen velocity v such that v € [Vinin, Vinax], where vinin and vimax
are predefined parameters, and with a randomly chosen direction o such that
o € [0,27]. Velocity and direction are maintained by n for a predetermined
constant time t or a predetermined constant distance d. When t expires or d has
been covered a new velocity and a new direction are chosen. The simulation
area is bounded and a node hitting the simulation border bounces with an angle
which depends on the incoming direction. The node continues along the new
direction determined after the bounce.

Random waypoint Model

The random waypoint mobility model [67] is based on the same idea of the
random walk but differs from it in some aspects. A node following the random
waypoint model choose at random a point P in the simulation area and starts to
move towards it with a velocity v chosen uniformly at random in Vmin, Vimax]-
Once P is reached n stays there for a predefined pause time t,. When t,, expires,
the node choose another point and another velocity and starts again to move.

The random waypoint model have a problem known as density waves in the
average number of neighbors [56| 57]. A density wave is the clustering of nodes
around certain points in the simulation area. The random waypoint model has
a density wave around the center of the simulation area. This means that the
probability for a node to pass through a point which is close to the center of the
area, during his movements, is high.

Random direction model

The random direction mobility model has been designed to overcome the density
wave phenomenon. Each node moving according to this model choose a direc-
tion « uniformly at random in [0, 27] and a velocity v uniformly at random in
Vmin, Vmax] and starts to move. Once the node reaches a border of the simu-
lation area, it stops there for a predefined pause time t,. When t, expires, the
node choose a new direction &’ uniformly at random in [0, 7] and a new velocity
v’ in the same way it was done at the first step.

There exists also a modified version of the random direction model, in which
the nodes are not forced to reach the border of the simulation area. A node
following the modified model choose the direction like in the original one, but
this time it chooses also a destination point P anywhere along the direction.
Once P is reached the node wait for a time t, and then restart the procedure.

4.2 MOBILITY MODELS OVERVIEW

Let us observe that in this version the direction ranges always in [0, 27}, as there
is no contact with the border. This model can be simulated with the random
walk model adding to it pause times.

4.2.2 Mobility models with temporal dependency

All the models considered so far have something in common, they are memory-
less: velocity and direction selection are not influenced by the previous choices.
Mobility models with temporal dependencies release this assumption. There is
a relationship between two consecutive steps of the simulation.

Boundless simulation area model

In the boundless simulation area mobility model [68, 57] (shortly BSA) the simula-
tion area does not have physical bounds, a node reaching the border appears
on the opposite side of the simulation area. In this way it is like the nodes were
traveling over the surface of a torus (Figure [4.1).

Figure 4.1: A torus

The BSA uses a vector v = (v, 0) to describe the movement of a node, where
v is the velocity and 0 is the direction. The position of the node is represented
as the coordinates pair (x,y). In this model the direction and the velocity are
updated at each 6t according to the following formulas

v(t+At) = min{max[v(t) +Av,0], Vinax},
O(t+At) = 0(t)+ A9,
x(t+At) = x(t)+v(t) -cosO(t),
y(t+At) = y(t) +v(t) sinO(t).
where,

* Viax is a predefined parameter defining the maximum velocity reachable
by the nodes,

109

110

MOBILE AD HOC NETWORKS SIMULATION: MOMOSE

e Avis chosen uniformly at random in [—Amax - At, Amax - At] where A ax
is the maximum acceleration reachable by a given node,

* AQ is the change of direction uniformly distributed in [—o - At, o - At]
where « is the maximum angular change of direction a node can perform.

Gauss-Markov model

The Gauss-Markov (in short GM) mobility model was not designed to simulate
ad hoc networks. It was first proposed in [69] to simulate a wireless personal
communication service (PCS) network. The application to a mobile ad hoc
network has been proposed later in [70].

In the Gauss-Markov model a velocity v and a direction 0 are initially assigned
to each node. The direction and the velocity of each node at the i-th time interval
are calculated on the base of their values at (i — 1)-st time interval. The update
is governed by the following equations

vi = avic1+(T—a)v+4/(1—o?)vy,
i = abi1+(1—ax)0+4/(1—0a?)0y,

The values v; and 0; are respectively the velocity and the direction of a node at
the i-th time interval; v and 6 are two constants representing the mean value of
vand 0 as i — oo; finally, vy, , and O, , are random variables from a Gaussian
distribution. However, the most important parameter in these two equations
is «. It is a tuning parameter such that 0 < o < 1 and it defines the degree of
randomness of the model. Indeed, the model ranges from totally random values
of v; and 0; when o = 0, to constant values when « = 1. In the former case
the model describe a Brownian motion, in the latter a uniform linear motion is
modeled.

The position (xi,yi) of the node at the i-th time interval is also calculated on
the base of the position, velocity and direction at the (i — 1)-st time interval. This
is done through the following equations

Xi = Xi—1+Vvi_1c080;i_1

Yi = Yi—1 +Vi—1sinbig

In the GM model nodes do not remain too long near to the border of the
simulation area. Indeed, when a node arrives close to the border, the value of 0
is changed to force the node to get away from the border. For example, if a node
arrives in the surroundings of the bottom border of the simulation area, 0 is set

to 7 (Figure[4.2).

4.2 MOBILITY MODELS OVERVIEW

T
1 1
1 1 1
~. : 1 : e
1
| ___C e gy ¥
1 . 1 //I
L. 8=TnA I 9=372 2
1 K'Y \d » 1
1 1
1 . 1
! 0=>5n/4 1
1 1
1 1
1 1
i I
1 1
1 1
1 1
1 - 1
1 6=0 1
1 I
1 1
———p——— a-=-=g=-==
1 1
1 B=m 1
1 1
1 1
1 1
1 1
1 1
1 1
1 I
1 1
1 1
1 O=n4 '
1 1
1 I A AS 1
L 6=m2 I 6 = 3n/4 o
|r’ 1 \‘I
L ——-- e ittt T P e ===
- j N
- i 1 ~
r 1 : 1 ~
1 1
1 1

Figure 4.2: The values of the mean value of 6 assumed when a node approaches to the
border of the simulation area

4.2.3 Mobility models with spatial dependency

Mobility models with spatial dependency are models where the location, di-
rection and velocity of a single node are correlated to the ones of the other
nodes. This kind of models is necessary when we want to simulate, for example,
situations in which groups of nodes collaborate to perform some task. Such
models are also knows as group mobility models [57].

Exponential correlated random model

The exponential correlated random mobility model [58, 57] is one of the first
examples of group mobility model. Indeed, it can simulate single nodes or group
of nodes movements. The movements of each group are created by a motion
function. The position at time t is referred as b(t). The position b(t+1) is
defined through the motion function and depends from b(t) deviated by a

random T
1 1\ 2
b(t+1)=b(t)e T + <o 1— (e*?) >r

where T adjust the degree of change between two subsequent instants, a small
T corresponds to a large change, and r is a random Gaussian variable with
variance o.

111

112

MOBILE AD HOC NETWORKS SIMULATION: MOMOSE

The main problem of this model is that it is difficult to define a complete set
of (T, o) for each group to obtain a given motion pattern.

Column model

The column mobility model [59, [57] simulate the movement of a group of nodes
positioned over along a line (or a column). An example in real world might be
the movement of a line of robots during an anti-personal mines deactivation
operation. The initial phase of the model is to build a reference grid, which
can be a line or a column. A set of reference point are positioned over the
grid. Each node is assigned a reference point. The column of reference points
starts to move and the nodes move around their reference point according to
an entity mobility model (e.g. the random walk). Each reference point is moved
according to an advance vector which is a predefined offset calculated via a
random distance d and a random angle « € [0, 7] (the limited angle is due to the
fact that movement is in a forward direction only). The offset is applied to all
the reference point, in this way the column structure is maintained. When the
reference points move, the nodes move together with them and subsequently
start again to move according to their personal mobility model. We report a
graphical representation of the nodes movements in Figure

Reference grid ——

+—— Reference point

O
-G

+—— Mobile node

o)
O g

O
e

>
‘_‘_._;__.,____
O

Figure 4.3: Movements of five nodes following the column model

Nomadic community model

The nomadic community mobility model [59, 57] simulate the movement of a
group of nodes around a single reference point. The model can describe a group
of tourists following the guide in a museum. In this model there is a single
reference point around which all the nodes move according to an entity mobility
model (e.g. the random walk). Each time the reference point moves, all the nodes
follow it and then restart to move according to their personal model. The entity

4.2 MOBILITY MODELS OVERVIEW

mobility model parameters define how far each node can go from the reference
point. The movement of a single node can be expressed through the following
equation:

Pi(t+1)=Q(t+1)—Pi(t) +rvi(t+ 1)

where P;(t) is the position of the i-th node at time t, Q(t) is the position of the
reference point at time t and rv;(t) is a random offset for each node obtained

through the parameter of the entity mobility model followed by the single nodes.

This model is similar to the column model, however, in this case nodes have
more freedom of movement, they do not have to keep the line order like in the
column model (see Figure [4.4).

%o
e} @]
Oe
Co
%
oe O
d00
o)

Figure 4.4: Movements of nodes following the nomadic model

Pursue model

The pursue mobility model [59, 57] simulate the movement of a group of nodes
pursuing another node moving in the simulation area. An example from real
world might be a group of police men chasing an escaping criminal. In this
model the escaping node is used as a reference point, the movement of the
chaser nodes is governed by a single equation:

Pi(t+1) =Pi(t) +a(Q(t+1) — Q(t)) +rvi(t)

where Pi(t) is the position of the i-th node at time t, a is the acceleration of
the target node, Q(t) is the position of the target node at time t and rv;(t) is
a random offset for each node obtained through the parameter of an entity
mobility model (e.g. the random walk). The random offset has to be limited in
order to maintain the nodes chasing the target (see Figure [4.5).

113

114

MOBILE AD HOC NETWORKS SIMULATION: MOMOSE

%

O
o O
OO

Figure 4.5: Movements of nodes following the pursue model

Reference point group model

The reference point group mobility model [58, 57] (in short, RPGM) can be consid-
ered the generalization of all the group mobility models we have seen so far. In
fact the other models can be easily obtained modifying the RPGM parameters.
The RPGM models both the movement of a group of nodes and the movements
of a single node within the group. The group moves along the path covered
by a logical center. The logical center change of position is defined by a group
motion vector GM. Each node have a reference point moving according to the
group motion vector. The nodes randomly move around their reference points.
The movements of each node at each time step are obtained combining the
movement of the group center (hence their reference points) with a random
motion vector RM. The vector RM represents the random motion of a node
around its reference point, its length is uniformly distributed within a certain
radius and its direction is uniformly distributed in [0, 27].

A way to implement the RPGM might be using the random waypoint model
for both the logical center and the nodes with the difference that the nodes
does not have pause times, they will stop when the logical center stops. An
example from real world might be an emergency situation like an avalanche
rescue involving men and dogs [57]. The reference points model the human
rescuer while the nodes model the dogs moving around their guides constrained
by the leashes.

4.2.4 Mobility models with geographical restrictions

In real scenarios, it is rare that moving entities can move without any physical
obstacle. For instance, people movements inside a building are constrained by
the rooms shape, cars move according to the streets surrounding the buildings,

4.2 MOBILITY MODELS OVERVIEW

O
.\R"“ RP{t+1)
® 0
RP{1) ®
o ° oM O
®) ®
i

Figure 4.6: Movements of nodes following the RPGM model

students roaming in a campus are constrained by buildings and lawns. Fur-
thermore the movements are not completely random, but they usually follow a
pattern which is common to many moving entities. The mobility models with
geographical restrictions are models trying to capture all these aspects.

City section model

The city section mobility model represents nodes moving over a grid representing
the street network of a city (or part of it). Each street have its proper characteris-
tics in term of speed limits. Each node start the simulation at some point in some
street, chooses uniformly at random a destination point and moves towards it.
To reach the destination, the node chooses the shortest path in terms of time,
taking into consideration the speed limits. In addition each node has to respect a
minimum distance from other nodes present in the same street. When the node
reaches the destination it waits for a specified pause time, another destination is
selected and the process restarts.

This model represent a better simulation of the real world, in fact people
moving in a city are usually constrained by obstacles, other nodes, streets and
speed limits.

Manhattan model

The Manhattan mobility model [71] is similar to the city section model, indeed,
it models the behavior of mobile nodes embedded in a street network. The street
network is represented with a map composed of vertical and horizontal streets.
A node can move in both the directions in a street. When a node arrives to a
crossroad, it has to choose one of the three possible direction according to a
probability distribution: in [71] the probability to turn left or right is set to 0.25,

115

116 MOBILE AD HOC NETWORKS SIMULATION: MOMOSE

Figure 4.7: Movements of nodes following the city model

while the probability to continue in the same street is set to 0.5. The velocity of
each node at time slot is dependent on its velocity at the previous time slot and
it is constrained by the node preceding it on the same street.

Figure 4.8: A graphical representation of the simulation area of the Manhattan model

Real-world environment model

The real world environment mobility model (also known as Obstacle mobility
model) was designed to increase the realism of the simulation. In this model
the nodes move in a simulation area in which there are some obstacles. The
presence of obstacle implies a different transmission model as well. Indeed,
the radio signal of a wireless device is subject to phenomena as diffraction,

4.2 MOBILITY MODELS OVERVIEW 117

reflection, scattering, multi-path propagation and attenuation due to the presence
of physical objects.
Four component are considered in the model:

1. Obstacle construction: the obstacle are modeled as arbitrarily complex polyg-
onal shapes (i.e. a list of vertices). Each object has doors which permit a
mobile node to enter inside it (this is done to model the possibility for a
mobile entity to enter inside a building).

2. Pathways construction: the pathways are constructed as a Voronoi diagram
of the obstacle corners. The nodes are forced to follow the edges of the
Voronoi diagram, eliminating in this way the randomness of the paths and
generalizing the intuitive notion that the pathways typically run in the
middle of two adjacent buildings. The corners of the Voronoi cells are the
vertices of the pathways, the intersection of an obstacle boundary with a
Voronoi diagram edge is considered a door of the obstacle.

3. Node movement: the starting point of each node is chosen uniformly at
random, at each step a node choose a destination point and a velocity
and starts to move. The route selection from a starting point to a destina-
tion point is computed through a shortest path algorithm (e.g. Dijkstra
algorithm) on the pathways graph.

4. Signal propagation model: the obstacle model computes the approximate
signal attenuation experienced by the radio wave.

Figure 4.9: An example of the simulation area of the obstacle model

118

MOBILE AD HOC NETWORKS SIMULATION: MOMOSE

Virtual track group model

The virtual track mobility model is a group mobility model simulating the
movement of groups of nodes and single nodes in the same simulation area.
This model starts from the idea that in some mobile environment there might
be both groups of node moving following a common path, and single nodes
moving independently according to a personal model. Furthermore the model
admits the possibility for a group to split in smaller groups or to merge with
other groups forming a bigger group.

At the beginning of a simulation performed through the virtual track model, a
certain number of switch stations are randomly positioned on the simulation area.
The switch stations are then interconnected through a network of virtual tracks.
A virtual track exist between two switch stations if their euclidean distance is
smaller than a predefined maximum value. Each virtual track has also a width
which can be either predefined either randomly chosen. Once this preliminary
operation is terminated, the nodes have to be spread over the simulation area.
The groups of nodes are distributed along the virtual tracks, while the single
nodes are distributed randomly without taking into account the virtual tracks.

* .\ Qe oo, % o® /.o:.
Q}} % o° %e oo® \j

Figure 4.10: The virtual track model simulation area, the big circles are the switch
stations connected through the virtual tracks, the black spots are nodes in
groups, the grey spots are the single nodes.

The group mobility is constrained by the structure formed by the switch sta-
tions and the virtual tracks in the following way: each group select as destination
one of the two switch stations connected by the virtual track containing it. The
movement towards the switch station is modeled with the random waypoint
model with two specific constraints: the first one is that at each step the destina-
tion point chosen has to be closer to the switch station than the source one, the
second one is that the destination point must be inside the same virtual track.
This movement is applied to all the members of the group. In addition, each

4.3 A DESCRIPTION OF MOMOSE FEATURES

node within the group can have a small internal mobility under the constraints
of the group and tracks. When the group reaches the switch station, it chooses a
new destination and moves towards it.

The split and merge of groups happen at switch stations. The split is modeled
using a group stability threshold. When a group arrive to a switch station, each
node check whether its stability value is below the threshold, if yes it chooses a
different direction with respect to the original group. The merge of the groups
happen if two groups choose the same track when going out from a station.

Finally, the movements of individual nodes are modeled through the random
waypoint model.

4.3 A DESCRIPTION OF MOMOSE FEATURES

While developing MOMOSE we have taken into account the following basic
principles.

extensibility. Within the MOMOSE framework, a programmer can easily im-
plement new mobility models: we believe this is an interesting feature
of the framework, since research on mobility models is still very active
and new models are continuously introduced in the literature (see, for
example, [72]). Observe that there are basically no limits on the complexity
of the mobility model the user wants to implement: for example, it is not
difficult to implement models with more complex trajectories (the authors
have already implemented a variation of the random waypoint model in
which the trajectory followed by the nodes is a Bezier curve) or in which
the nodes follow external mobility traces obtained by any trace repository.
The user can also define and easily implement appropriate data recorders,
that is, sets of data structures and methods, in order to collect, during
the simulation, the data necessary for the evaluation of a mobility model
or of a specific protocol. Observe that this feature does not really make
MOMOSE a network simulator (such as the ones cited in Section , since
many aspects of the simulation of a computer network mainly related to
the lower levels of the network architecture are not taken into account by
the MOMOSE framework.

adaptability. Two kinds of adaptability features have been mainly considered.
On one hand, we believed it was important to allow different mobility
patterns to be used within the same simulation and that it was not plausible
to assume all nodes moving according to the same mobility model. For
this reason, by using MOMOSE and without writing any line of code,
the user can easily simulate the movement of a set of nodes by using any
combination of the mobility models included in the MOMOSE distribution
and of the newly implemented mobility models. On the other hand, we

119

120

MOBILE AD HOC NETWORKS SIMULATION: MOMOSE

N5-2 simulatos

Figure 4.11: The MOMOSE flow diagram

believed that the same simulation should have been used in order to
analyze different aspects and consequences of the node mobility. For this
reason, during a simulation, one or more data recorders can be used, which
allow the user to collect the interesting data (see Figure[4.11). For example,
a data recorder could compute the distribution of the nodes during the
simulation time in a given area, while another data recorder could compute
the degree of each node (that is, the number of active connections for
each node): both data recorders could store this information into the same
output file, which could be subsequently used in order to produce statistics
or reports. The current distribution of MOMOSE includes a data recorder
that produces trace files compatible with the ns-2 network simulation
environment [73], which is one of the most popular network simulators
within the research community. As far as we know, the mobility modules
produced for this simulator include only very simple mobility models,
such as the random waypoint model [74] and the random walk model [75]:
MOMOSE can hence be used in order to produce more realistic mobility
patterns, which can be subsequently used by ns-2 while simulating and
evaluating any network protocol.

efficiency. This is quite an obvious requisite of any simulation tool. Even in

this case, two different kinds of efficiency have been identified. On one
hand, while evaluating the characteristics of a mobility model, we have
considered very important to visually and efficiently analyze the behavior
of a set of nodes moving according to the model itself. The graphical user
interface (in short, GUI) of MOMOSE is based on the Java Swing classes
and on the OpenGL standard [76]: as we will state in a later section, using
the OpenGL libraries makes our framework extremely performant for what
concerns the visualization of a simulation. On the other hand, an efficient
simulation engine turns out to be useful whenever massive simulations

4.3 A DESCRIPTION OF MOMOSE FEATURES 121

have to be performed in order to collect sufficient data for successive
elaborations. The MOMOSE simulation engine has been developed both
in Java and in C++ (see Figure[4.11): the former one is deeply integrated
with the GUI and allows the user to interactively control the simulation
and its visualization, while the latter is optimized from a performance
point of view and is accessible only by means of command lines. The
reason why we decided to include two different simulation engines is
strictly connected to the main characteristics of the two programming
languages. Java is highly portable and the Swing classes behave essentially
in the same way, independently from the used processor/operating system
platform: on the contrary, several different graphical libraries have been
developed in C++, and it does not seem that any of them can be considered
as the standard one. Hence, the Java version of the simulation engine
is particularly appropriate during the development phase of a mobility
model and/or of a data recorder: in this case, indeed, the GUI allows
the user to easily configure the simulation parameters and to observe in
real-time the node movement and the evolution of the simulation itself.
On the other hand, the C++ engine, which has to be compiled for any
possible platform/operating system platform, has the advantage of being
significantly faster than the Java engine: hence, this version of the engine
is more appropriate for the execution of simulations with a long simulation
time and/or with a huge number of nodes (as we will see in a later section,
its efficiency outperforms or at least compares with the one of similar
mobility model simulation tools).

mobility model and data recorder configurability. During each simulation,
the set of the nodes of the network is partitioned into an arbitrary num-
ber of subsets, each one corresponding to the specific mobility model
governing the movement of the nodes in the subset: however, since each
node has an own logic unit which is independent from the other nodes,
different nodes in the same subset are allowed to play different roles
within the same mobility model (for example, in the PursueModel [58]
it is necessary to allow one node to act as the leader of the subset). The
behavior of a mobility model is typically determined by the value of some
model-specific parameters: for example, in the case of the Gauss-Markov
mobility model [77] the parameter « which determines the randomness de-
gree of the model has to be specified, while in several other models typical
parameters are the acceleration value or the angular velocity value [78]. In
general, a unique set of parameters which can be used for any mobility
model does not exist: for this reason, MOMOSE allows the user to define
and to subsequently use configuration windows whose content depends on
the mobility model (see the foreground window of Figure [4.12). In this
way, it is very easy to tune all the parameters of a specific model, both

122 MOBILE AD HOC NETWORKS SIMULATION: MOMOSE
O MOVE Simulator -
Eile Yiew LUrils
] Config simulation #1 o '
Time settings | [7] Config simulation #2 o
Simulation dura} Time settings
Simulation duration (sx 00— Step time (5 11— Simulation iterations: 500+
Scaraio 13 Simulation time: :08:20,00
Load frod Scenario settings
= Empty s & Load from config file
Empty scenario it
Mumber of nodes: 100|
Eaad ol ~ Node radius 1=t Signal radius: | 10k
Load from file Is physical

Models settings Min velodity: 1 Max velocity: =~
Select models: Models settings Data- Pause time: 2,5 Group attraction: B
g Rantin WAk Select models: Select
| ?;T'::'":’wi ¥ Random walk Model A [Fiviey Close

Hot-Spot Mod f::!:‘m waypoint Model Debirgreoommer

Nomadic Mode odel ¥ ElueTooth graph recorder

Hot-Spat Model | |
Pursue Mndel
show] | Nomadic Woder]
W T pursue Madel___) =]
Show Model Config dialog Show Data-Recorder Config dialog
Run simulation Save in config-files
Close
|
Figure 4.12: The simulation and mobility model configuration windows

the parameters common to all mobility models (such as the number of
nodes moving according to the model or the maximum node transmission
range) and the parameters which are meaningful for that specific model
only (such as the attraction degree in the case of the nomadic model [;77]):
moreover, this parameter tuning can be saved in appropriate files, which
can be successively reloaded. A similar approach can be also followed in
the case of data recorders whose behavior depends on the value of specific
parameters: even in this case the user can define and subsequently use
specific configuration windows in order to set up parameters such as the
name of the file into which the collected data will be written.

simulation configurability. By means of the MOMOSE GUIJ, the user can con-

trol any aspect of a simulation both before its beginning, by interacting
with its configuration window, and during its execution, by interacting
with the simulation window. The configuration window (see the background
windows of Figure allows the user to set up the simulation time
and the simulation scenario (which can range from an empty area to any
environment specified in an appropriate file). It also allows the user to
select and configure the mobility models and the data recorders to be
used during the simulation. Starting from the simulation configuration
window, the user can directly start the simulation itself or can save the
current configuration into an appropriate file, which can be subsequently

4.3 A DESCRIPTION OF MOMOSE FEATURES 123

t’:e View Lhils

[7] config simulation #1 =1
Time settings (] Simutation #1 : L
General Info
Models loaded: 3 Data-recorders loaded: 1
Scenario settings
Time Info Scenario Info
N simulation duration (s S00.0 ¢ £08:20,00) Dimension: [S00.0:500.0)
Eorder type: Bounded
(4 Step Uime x 1.0 Number of Euilding 45
Number of Hot-spots: 13
Total iterations: 500
Simulation time (s 1380 (:0218.00)
Ieration: 138
Models settings
Select Jels l ation progress (27%) Run Paus Stop Res Show
: s . 1o simulation log
¥ Sieraiton BITE
El ing
-
e
B ing
i r
Ite
El ing
R |
| ¥erbose Mode

Close

Figure 4.13: The simulation window

used by one of the two engines previously described in order to execute
the simulation and collect the required data (clearly, a configuration file
can be reloaded and modified at any subsequent moment).

user friendly interface. The simulation window (see Figure allows the user
to manage and control the execution of a simulation: in particular, at any
moment the user can pause and restart the execution, can stop it, can
see log messages produced by the simulation engine, and can activate
a graphical window which shows, in real-time, the movement of all the
nodes within the specified scenario (along with other information related
to the simulation). Moreover, MOMOSE includes an OpenGL player which
allows the user to visualize and graphically analyze the evolution of a
simulation, which was previously saved into appropriate files by a default
data recorder included in the MOMOSE distribution. Within the main
drawing area of the player, the simulation scenario and the movement of
the nodes are shown (see Figure |4.14)): on the left of this area, some basic
information about the scenario and the simulation time is given together
with some tools for controlling the simulation itself (as with any other
player, the user is also allowed to pause and restart the simulation and to
fast advance it both forward and backward). During the simulation, some
additional information can be visualized within the drawing area, such as
the node IDs, the node transmission ranges, and the communication graph.

124

MOBILE AD HOC NETWORKS SIMULATION: MOMOSE

File View LUtils

[7] Config simulation #8 e I

_—
Time sewtingsf [simulation player (QpenGl) G |
Simulation dutaf Number of nodes: 45

Interpolation enabled: yes
Scenario Info

Dimension: [100.0;100.0]
Border type: Eounded

Fmpty s Mumber of Building: 11
Number of Hot-spots: 0

Scenario se

Time Info
Sim duration sk 60.0
pai fre ¢ 0:01:00,00)
Scenario 1l Step tme (x 0.01
Total iteration: 6000
Sim tme (55 37.47
(003747)
Meration: 3747
sale | 5

| Diraw Antennas

¥ Draw graph
| Draw Hot-spots

¥ Draw Mode ID

Animation speed: 1x

il

Figure 4.14: The OpenGL player

Since long simulations with a large number of nodes might produce huge
trace files, MOMOSE allows the user to save these files in a compressed
form (in particular, by using the gzip standard): these compressed files
can be directly loaded and visualized by the player.

adherence to reality. MOMOSE allows the user to simulate the movement

of the nodes within a “realistic” environment, where obstacles (such
as buildings and barriers) are present and limit the movement of the
nodes.” The definition of a scenario is flexible enough to allow the user
to define significantly different situations, ranging from people moving
within a building or a campus to robots moving within a disaster recovery
environment or to vehicles moving within an urban environment. Indeed,
a scenario is defined by means of an XML file which contains the list of
obstacles that are present in the simulation area. Each obstacle is formed
by one or more polygons (in particular, squares, rectangles and/or circles):
for each polygon, the XML code specifies its position, its rotation angle, its
color, its name and its attenuation factor (which is a number between o
and 1). A scenario can also contain a set of hot-spots, that is, specific points
of the simulation area which are of particular interest for the nodes: by

2 Even though this is not strictly related to the simulation of mobility models, MOMOSE also
allows the user to let the obstacles attenuate the transmission signals sent by the communication
units: this features can be useful for developing specific data recorders.

4.4 THE SOFTWARE ARCHITECTURE AND THE SIMULATION EXECUTION FLOW

means of this feature, it is possible to define within the scenario a graph,
which can be used by a mobility model while deciding the movement of
a node (such as in the case of the pathway model [79]). The XML standard
allows the user to easily define new scenarios: however, MOMOSE includes
the possibility of generating a scenario starting from a Scalable Vector
Graphics (in short, SVG) file. Hence, the user can create the scenario by
using any drawing program, in order to subsequently export it in the
SVG format and, hence, to translate it into the XML code required by the
MOMOSE simulation engine.

portability. As we already noticed, choosing Java and C++ as development
languages, makes MOMOSE easily portable both in terms of user interface
and in terms of simulation engines. It is also worth noting that, since
the simulation configuration files, the scenario definition files and the
player trace files are written by using the XML technology and they are
all independent from each other, they can be immediately ported on
different processor/operating system platforms, provided that an instance
of MOMOSE has been installed.

125

4.4 THE SOFTWARE ARCHITECTURE AND THE SIMULATION EXECUTION FLOW

Apart from the GUI, the main software components of MOMOSE are the sim-
ulation engine,? the models, the nodes and the data recorders. Each of the
latter three components is represented by means of an abstract Java class. The
MOMOSE distribution includes several template classes that can be extended by
the programmer in order to develop personalized mobility models and data
recorders.

The simulation engine contains several components managing the following
different aspects of a simulation.

* The mobility model manager is in charge of the nodes and of the mobility
models during the simulation.

* The physical engine manager computes the collisions between the nodes and
the obstacles which are present into the scenario and, hence, moves the
nodes within the simulation area.

* The scenario manager is in charge of the logical representation of the sim-
ulated environment and of all the objects which are contained in the
environment itself.

From a functional point of view, the Java and the C++ simulation engines are equivalent: all the
classes that represent the different simulator components have the same interface and do the
same task. In this way, the programmer can switch from one engine to the other without having
to modify a single line of the code.

126

MOBILE AD HOC NETWORKS SIMULATION: MOMOSE

* The data recorder manager allows the data recorders to store the data col-
lected during the simulation.

* The time manager is in charge of the advance of the simulation clock.

A simulation execution is divided into three phases: the simulation setup phase,
the simulation cycle phase, and the simulation end phase. During the setup phase
all the data structures necessary for the simulation execution are initialized: the
behavior of this phase is determined by the information read from the simulation
configuration file, produced by means of the GUI or directly written by the
user. The different components of the simulation engine are initialized one after
the other starting from the time manager data structures and, subsequently,
the scenario and all the objects that are contained within it. Successively, the
mobility models and the node generation are initialized: during this step, each
model can setup its own data structures and create the nodes that will move
into the simulation area. The nodes have some common properties (such as
the ID, the transmission range, and the velocity vector); moreover, each node
can be defined as a physical object, so that it can collide with other nodes.
During their generation, the nodes are also assigned an initial position: to this
aim, the mobility model can analyze the scenario, if necessary (for example, in
order to position a node onto an hot-spot or to avoid to position a node onto
a wall). At the end of this step, all the information concerning the models and
the nodes are passed to the initialization step of the mobility model manager
and of the physical engine manager. The last step of the setup phase consists
of the initialization of the data recorders and of their manager: similarly to the
mobility model initialization, each data recorder setup its own data structures
(such as the output file or counter variables).

Once the setup phase is done, the simulation cycle starts. At each cycle,
the time manager updates the internal clock of the simulator and checks for
the ending conditions. If the simulation is not ended up, the mobility model
manager makes each node and model choose the next operation to be performed.
Both models and nodes may perform any required operation: for instance, a
model may generate a new target for its nodes, may change the role of some or
of all its nodes and may interact with other models, while a node may switch
on or off its own transmission device, may change its own role, may change
its speed and direction, and may modify its transmission range (notice that,
by modifying the transmission range, energy saving arguments can be also
taken into account). While such operations are performed, the simulator keeps
models and nodes informed about the simulation time, the scenario and the
states of the other nodes in order to let them take the correct decisions. For
instance, a node may need information about the scenario in order to determine
whether collisions may occur while moving at a given speed and direction,
or it may need information about the hot-spot list in order to choose its next
target destination. After the mobility model manager step, the physical engine

4.4 THE SOFTWARE ARCHITECTURE AND THE SIMULATION EXECUTION FLOW

manager gets the simulation control and computes the new node positions,
taking into consideration the collisions between nodes and scenario objects
and among nodes. In order to speed up these operations, the physical engine
manager represents the simulation area by a BSP tree:* such a tree is built during
the setup phase and it allows the physical engine manager to save computational
time, since only the collisions between a node and its surrounding physical
objects are considered. At the end of any simulation cycle, each data recorder
collects the required data and records system information at current time. Data
recorders may access all simulation data (such as time, scenario, and system
state) and may access all the information about models and nodes involved in the
simulation: for instance, one data recorder might compute the communication
graph and draw its diameter, the node degrees, and the number of connected
components, while another data recorder might write the logs of node positions
and states at the current simulation cycle.

The last phase of a simulation is the simulation end, during which a procedure
is invoked for any data recorder that allows it to execute some final tasks. For
example, it is possible to close the open files, to evaluate some performance
values by using the collected data, or to create reports and the similar. During
this phase, the simulation engine erases all temporary data structures. Finally,
the simulation ends and the output files created by the data recorders can be
used for the analysis or can be exploited by other tools.

4.4.1 Extending MOMOSE

As previously stated, MOMOSE allows the programmer to create new mobility
models and new data recorders starting from a set of template classes. In order
to develop a new mobility model, the programmer has to implement three
classes, which manage the creation of the model, represent the model itself, and
represent a node moving according to the model, respectively. Optionally, the
programmer can implement two additional classes, which represent the model
configuration window and whose task is reading all the necessary information
starting from a configuration file, respectively: these two classes should allow
the user to easily manage the model parameters. The structure of the classes
that implement a data recorder is quite similar to the one of the classes that
implement a mobility model. In particular, the programmer has to define two
classes, which manage the creation of the data recorder, and actually implement
the data recorder itself, respectively. Optionally, the programmer can implement
a configuration window class and a class which collects the data recorder set
up information starting from a configuration file. More details concerning the
extension of the MOMOSE framework can be found in [47].

The Binary Space Partitioning [80] technique is a recursive partitioning of the space into convex
sub-spaces, which is described by means of a binary tree (called BSP tree).

127

128

MOBILE AD HOC NETWORKS SIMULATION: MOMOSE

250

. — . 4000 —
Java engine — Java engine —
C++ engine —=- 3500 | C++engine -

3000

150 | 2500

2000 [

100 1500 |

Execution time (s)
Execution time (s)

1000
50 -

500

0
0 200 400 600 800 1000 1200 1400 1600 1800
Number of nodes Simulation time (s)

Figure 4.15: A comparison of the average execution time of the Java and the C++ engines
with respect to the number of nodes (on the left) and with respect to the
simulation time (on the right, in a logarithmic scale).

4.5 JAVA AND C++ PERFORMANCE COMPARISON

In this section a performance comparison is presented between the Java and the
C++ simulation engines. The analysis is performed by comparing the running
times of the two engines when executing on the same simulation framework
(that is, the same simulation time and the same number of nodes). In order
to evaluate the real performances, all additional I/O components have been
removed. The simulations have been executed on a Intel Pentium 4 2.4 GHz
processor, with 512 MB of RAM running a Linux (kernel version 2.6.17-10)
operating system.

The first comparison focuses on the number n of nodes. Ten different values
of n have been considered: for each of them, twenty simulations have been
executed and the average execution time has been computed. In particular,
for each execution the simulation time has been set equal to 10800 seconds,
while the n nodes have been partitioned into three equally sized sets moving
according to the random waypoint, the random walk, and the nomadic mobility
model, respectively: in the left part of Figure the average execution time is
shown. It is evident that the C++ engine is significantly more performing than
the Java engine: it also seems that this better performance does not depend on
the number of nodes.

However, one might think that the execution time is too short and that
the initial overhead, that a Java program has usually to pay for,> cannot be
compensated in such short execution times. For this reason, we have performed
a second kind of comparison which focuses on the simulation time t. Ten
different values of t have been considered: for each of them, twenty simulations
have been executed and the average execution time has been computed. In
particular, for each execution 900 nodes have been simulated, partitioned in a

For instance, the Java interpreter usually performs a code validity check, which is done only the
first time a method is invoked.

46 RELATED WORK AND PERFORMANCE COMPARISON

way similar to the previously described one: in the right part of Figure
the average execution time is shown (in a logarithmic scale). Even in this case,
the better performance of the C++ engine is quite evident. Even though the
performance relative difference slightly decreases while the simulation time
increases, it seems that asymptotically this difference tends to a value close to
40%.

Both the Java and the C++ engine can deal with a very large number of nodes:
indeed, we have experimented up to 100000 nodes. Clearly, the simulation
execution time depends on the complexity of the used mobility models and
of the used data recorders. Moreover, this time also depends on the number
of obstacles which are present in a scenario: however, we have experimentally
verified that the ratio between the execution time with no obstacles and the
execution time with obstacles does not depend on the number of nodes (for
instance, in the case of the scenario represented in Figure this ratio is
approximately equal to 0.1).

46 RELATED WORK AND PERFORMANCE COMPARISON

Several network simulators are available on the web and most of them include
tools for the generation of node mobility patterns. Four popular examples of
such simulators are ns-2 [81]], the GloMoSim environment [82], GTNetS [83], and
OMNeT++ along with its mobility framework [84, 85]. Within these frameworks
the node mobility support is only one of their several features and not even the
most important one: indeed, these tools are mostly devoted to the simulation
of network protocols and they take into account many aspects of a protocol
execution, starting from the physical layer up to the application one. Clearly,
this makes these tools much “heavier” than a simulator like MOMOSE, which
is mainly focused on the development and the analysis of mobility models and
whose goal is allowing a user to quickly determine the characteristics of a specific
mobility pattern: this is true even in terms of the size of the software needed
to be installed (basically, MOMOSE is two orders of magnitude lighter than
the previously mentioned tools). Moreover, the complexity of these simulators
usually makes harder the task of developing and testing new mobility models,
both from a programming point of view and from a final user point of view.

For all these reasons, we believe that the natural main competitors of MO-
MOSE are CanuMoboSim, a framework for user mobility modeling [86], and
Sinalgo, one of the most recent network simulator developed in Java [87].

The CanuMoboSim framework includes a number of mobility models and
parsers of geographic data in various formats, and it is based on the notion of
extension module. In particular, a group of nodes can be extended by specifying
the mobility model according to which all nodes in the group move during the
simulation. Moreover, a simulation can be extended by specifying its spatial en-

129

130

MOBILE AD HOC NETWORKS SIMULATION: MOMOSE

12

MOMOSE/Sinalgo ——
11 4

400 -

90 T T
MOMOSE —e—
80 [CanuMoboSim —x—
70 -
60 -
50 |
40 |
30 -
20F
10 + 4
¢} 0 L L L L
10 15 20 25 30 35 40 500 1000 2000 3000 4000 5000
Number of nodes Number of nodes

Ratio

300 -

Seconds

Seconds

200 -

100 + MOMOSE —e— 4

Sinalgo ——

Figure 4.16: A comparison of CanuMoboSim, Sinalgo, and MOMOSE with respect to the
simulation execution time (7200 simulated seconds and increasing number
of nodes)

vironment (which can also be loaded from a GDF file [88] and from which points
of interests can be extracted) or the graph representation of the movement area
(which can be used in the case of a graph-based mobility model). Several other
extension modules are available in the CanuMoboSim framework: these mod-
ules, for instance, allow the user to produce different kinds of output (similarly
to the data recorders of MOMOSE) and to visualize the simulation (similarly to
the player of MOMOSE). The parameters determining the simulation behavior
and the characteristics of a mobility model are specified within a XML file and
no configuration window is available to the final user. Moreover, the simulation
window seems to be quite basic and no control buttons are available within
it. Finally, as far as we can see, the node have no communication range associ-
ated and the engine does not manage the collision between the nodes and the
obstacles which are present in the simulation area (even though, clearly, these
features can be added to the framework by defining suitable extension modules).
Most importantly, MOMOSE significantly outperforms CanuMoboSim in terms
of execution time, as we will show at the end of this section.

A more recent simulation framework for testing and validating network
algorithms is Sinalgo, which, in order to guarantee easy extensibility, offers
a set of extension points, called models: among the models included in its
distribution, the framework contains the mobility model, that describes how
the nodes change their position over time. As in the case of MOMOSE, more
than one mobility model can be used during each simulation. Moreover, the
programmer can create new mobility models by implementing a subclass of the
class MobilityModel, which must define the method getNextPos: the movement
of the nodes during the simulation is shown within a simulation window, which
allows the visualization of the simulation area that is either a two-dimensional
or a three-dimensional rectangle. The framework also allows the programmer
to refer to a simulation scenario containing obstacles by means of images
representing maps: however, it is left to the mobility model to decide how
these obstacles interfere with the movement of the nodes. In other words, there
is nothing analogous to the physical engine manager of MOMOSE (which

46 RELATED WORK AND PERFORMANCE COMPARISON

100 .
50 CanuMoboSim —— |
9 [T T 3
8l B
o Tr 1
R |
& 5¢ |
U) 4 L |
3| MOMOSE —e— |
2 Sinalgo —— |
600 1200 1800 2400 3000 360C

Number of simulated seconds

Figure 4.17: A comparison of CanuMoboSim, Sinalgo, and MOMOSE with respect to the
simulation execution time (increasing simulated time and 200 nodes)

computes the collisions between the nodes and the obstacles which are present
into the scenario) and, instead, this management is delegated to the specific
mobility model. Moreover, the parameters determining the characteristics of a
mobility model are specified within a XML file and no configuration window is
available to the final user. Finally, Sinalgo does not allow the user to use multiple
data recorders during one simulation, unless new code is written implementing
all the desired recorders.

We conclude this section by presenting some experimental results concerning
the performances of MOMOSE (with the C++ engine), CanuMoboSim, and Sinalgo:
these results are, in our opinion, particularly valuable whenever massive simula-
tion data have to be collected. In particular, we have realized the following three
experiments.

1. For a number of nodes ranging between 100 and 5000 (in the case of
MOMOSE versus Sinalgo) and between 10 and 40 (in the case of MOMOSE
versus CanuMoboSim), we let all the nodes move according to the random
waypoint mobility model for 7200 seconds: the positions of the nodes
have been recorded into a file according to the ns-2 syntax. The results of
this first experiment are shown in Figure (the values represent the
average over 10 experiment executions):® it is evident that both MOMOSE
and Sinalgo outperform CanuMoboSim by at least one order of magnitude
(observe that we were not able to deal with a much larger number of nodes
with CanuMoboSim). On the other hand, MOMOSE and Sinalgo seem to
have similar performances as it can be seen in the upper plot of the right
part of the figure: indeed, the ratio between the performances of MOMOSE

6 As one might expect, the variance of all the experiments turns out to be very low and it is not
shown.

131

132

MOBILE AD HOC NETWORKS SIMULATION: MOMOSE

and of Sinalgo tends to be a value lower than 1.1 (by computing the linear
regression for both value series, it turns out that this ratio is equal to 1.05).

2. For a simulation time ranging between 600 and 3600 seconds, we let 200
nodes move according to the random waypoint mobility model: the results
of this second experiment are shown in Figure (once again, the values
represent the average over 10 experiment executions). Even in this case,
both MOMOSE and Sinalgo clearly outperform CanuMoboSim: moreover, it
seems that for short simulation periods (that is, shorter than 40 minutes),
MOMOSE performs better than Sinalgo.

3. For a number of nodes ranging between 100 and 200, we let all nodes move
according to the random waypoint mobility model and we used MOMOSE
and Sinalgo to visualize the entire simulation. In this third experiment,
MOMOSE clearly outperforms Sinalgo: indeed, during the same execution
time MOMOSE is able to visualize a simulation time which is at least two
orders of magnitude greater than the one visualized by Sinalgo. Hence,
MOMOSE is able to visualize the simulation at a refresh rate much lower
than real-time even in the case of a large number of nodes. We believe
that this result is mainly due to the fact that MOMOSE uses the OpenGL
libraries in order to implement the visualization.

4.7 TWO CASE STUDIES

In the first case study we have replicated the experiments described in [89]]
concerning a localization algorithm based on the estimate of the received signal
power: the localization problem is one of the most important research topic
within the field of sensor networks, and it is strictly related to routing protocols
and energy consumption. In order to replicate these experiments, we used
the random waypoint model (which was already included in MOMOSE) and
we designed a new parametric data recorder, which computes, during the
simulation, the real position of a sensor, the position computed by the algorithm
proposed in [89], and the error between these two values. Our experimental
results strongly agree with the ones presented in [89], thus validating the
correctness of our simulation tool and proving the easiness of using it in order
to design and realize a new set of experiments.

The second case study has concerned the development of a new mobility
model. Considering that different nodes may move according to different mo-
bility models and that the mobility behavior of a node may vary during time
because of changes of its environment, we let the nodes of a network move
according to mobility models that are determined by the roles played by the
nodes themselves: these roles, in turn, can be determined by computing color-
ings of the graph induced by the communication network [go]. Observe that

4.7 TWO CASE STUDIES 133

r=15% r=20%
14 18
Ecological Random Waypoint —— 161 Ecological Random Waypoint ——
12 Random Waypoint —s— 1 14 Random Waypoint ——
10 - 11
x 8r x 10t
O O
= 6| = 8+
4t 6r
4L
2+ 2l
0 0
25 50 75 100 125 150 175 200 225 250 275 300 25 50 75 100 125 150 175 200 225 250 275 300

Number of nodes Number of nodes

Figure 4.18: Experimental results on the topology change rate of two different mobility
models

prior applications of social network analysis to the development of MANET
mobility models assume that the structure of the social network is known a priori
and that this structure does not change over time [64} [91]]: in the role assignment
based approach, instead, the social network structure is determined by the
topology of the MANET, which in turn changes over time due to the movement
of the nodes. Our experiments show that the combination of a role assignment
algorithm (called ecological [92])7 with a simple mobility model (that is, the
random waypoint model) produce movement patterns with significantly higher
mobility “values” with respect to some mobility metric [93] than the original
mobility model itself. For example, let us consider the Topology Change Rate (in
short, TCR) measure [94], according to which the number of link changes during
a simulation is taken into account: a mobility model is considered as more
mobile as such a number is larger. Moreover, let us assume that different nodes
may move according to different instances of the random waypoint mobility
model and the instance associated to each node may vary during time, where an
instance of the mobility model consists only of the region within which the target
point is chosen (in other words, we assume that all nodes have the same speed
characteristics). In this case, the experiments show that, for several values r of
the communication range, there exists a threshold value n, such that the pure
random waypoint model model is “more mobile” when the number of nodes is
at most equal to n,, while its combination with the ecological role assignment
is “more mobile” in the other case. Figure summarizes these results in the
case in which the communication range is equal to 15% and 25% of the side
of a square simulation area (in the experiments, the role assignment algorithm
use four roles and a quadrant of the simulation area is associated to each role).
Note that these experiments allowed us to confirm the easiness of designing and
developing new mobility models within the MOMOSE framework.

Informally, an ecological role assignment of a graph is a coloring of the nodes of the graph such
that the colors present in a particular node’s neighborhood determine the color of that node.

134

MOBILE AD HOC NETWORKS SIMULATION: MOMOSE

4.8 CONCLUSIONS

In this chapter we have described MOMOSE, a new environment for the devel-
opment and simulation of mobility models for mobile wireless ad-hoc networks,
whose main characteristics are flexibility and extensibility. MOMOSE has al-
ready been applied in three interesting and non trivial case studies. Two were
described here, the last one will be described in Chapter [5|as it involves the Blue-
tooth technology. In this way we have showed how MOMOSE can be used while
analyzing different aspects of MANETSs. These case studies seem to confirm the
flexibility and extensibility of MOMOSE: for this reason, we believe that our
framework can become a very useful tool for evaluating the effects of mobility
on the performance of a protocol for MANETs and we hope that a wide use of
the tool itself will allow us to further improve it.

The current distribution of MOMOSE [95] includes an implementation of the
random walk model, of the random waypoint model, of the nomadic community
model, of the pursue model, and of all the models necessary to analyze the case
studies described in the thesis: a first natural further step will be to integrate
the distribution with the implementation of all the mobility models referred to
the introduction and described in Section The distribution also includes a
debug data-recorder, a ns-2 data-recorder, a real-time visualizer data-recorder,
a player data-recorder, and all the data recorders necessary to analyze the
case studies described in the previous section: a second further step will be
to develop a GloMoSim data-recorder and a data-recorder that can be used for
simulations implemented within the Sinalgo framework. Moreover, we intend
to improve the SVG parser (which is currently limited to a subset of possible
figures) and to develop one or more parsers which would allow the user to
import geographic data files (such as the GDF files). Finally, as a result of the
performance comparison between MOMOSE and Sinalgo, it seems that there is
space for some improvement of our framework in terms of simulation execution
time.

BLUETOOTH AD HOC NETWORKS

In the last few years wireless networks have become increasingly popular.
As a result, many different technologies have been developed to build ad
hoc networks. Among the most important, Bluetooth, IrDA (Infrared Data
Association), HomeRF, IEEE 8o2.11. All of them can be used to build an ad hoc
network.

In this chapter we will concentrate on Bluetooth, in particular, we study the
connectivity properties of a family of random graphs which closely model the
Bluetooth’s device discovery process, where each device tries to connect to other
devices within its visibility (transmission) range in order to establish reliable
communication channels yielding a connected topology.

Specifically, we will provide both analytical and experimental evidence that
when the visibility range of each node (i.e., device) is limited to a vanishing
function of n, the total number of nodes in the system, full connectivity can still
be achieved with high probability by letting each node connect only to a “small”
number of visible neighbors. Our results have extended previous studies, where
connectivity properties were analyzed only for the case of a constant visibility
range, and provide evidence that Bluetooth can indeed be used for establishing
large ad hoc networks [96, [97].

Before showing our results, we will introduce the Bluetooth technology, focus-
ing on the network formation problem, to let the reader be more confident with
the issues we have dealt with.

5.1 BLUETOOTH OVERVIEW

A critical problem in setting up ad hoc networks is guaranteeing connectivity
while minimizing power consumption and, in some cases, the number of active
connections per node. Among others, Bluetooth [98] is a popular enabling tech-
nology for ad hoc networks, which was originally introduced in 1999 by a Special
Interest Group (Bluetooth SIG [99]) formed by more than 1800 manufacturers
for the deployment of Personal Area Networks (PANSs), typically consisting of
cellular phones, laptops, wireless peripherals and PDAs. Several arguments have
been raised to foster the use of Bluetooth for the establishment of large ad hoc
networks, due to its low cost, availability, suitability for small devices, and low
power consumption (see, for example, [100]). However, a number of challenges
arise in this context, particularly for what concerns network formation [101) 102].

135

136

BLUETOOTH AD HOC NETWORKS

5.1.1 Bluetooth architecture

In Figure we report the Bluetooth architecture as it is represented in [100], we
will not give a deep description of the layers of the stack as it goes beyond the
purpose of this chapter. We will limit ourselves to overview the main concepts,
summarizing the contents of [100] proceeding in a bottom-up fashion.

Applications I
PPP
RFCOMM I
HCI Control
Data I
L2CAP I
Audio
Link Manager Protocol I
Baseband I
;

Figure 5.1: The Bluetooth architecture.

Service Discovery Protocol

Radio Frequency (RF)

This layer takes care of the physical communication of Bluetooth nodes. Blue-
tooth devices operate in the unlicensed 2.4 GHz ISM (Industrial Scientific
Medical) band. In order to transmit radio signals, Bluetooth implements the
Frequency-hopping spread spectrum (FHSS, [103]) method using 79 frequencies (23
in countries with limitation in the ISM band). The hopping rate is set to 1600
hops per seconds, this means that the device remains in a frequency for 625us.
The frequencies sequence is pseudo-randomly decided.

Bluetooth devices are classified into three power classes based on their maxi-
mum output power. As a result each class has different transmission range. We
report the three classes in Table [5.1) with the relative transmission range.

5.1 BLUETOOTH OVERVIEW

Power Class Maximum permitted power Range

Class 1 100 mW ~ 100 m
Class 2 2.5 mW ~10m
Class 3 1 mW ~1m

Table 5.1: Bluetooth classes

e o /\o
®
(b)

Figure 5.2: Bluetooth piconets with parked nodes (b) and without (a)

(@)

Baseband

This layer specifies how the radio layer should be used to manage the commu-
nication between Bluetooth devices. In Bluetooth nodes are firstly organized
in small subnetworks, called piconets, in which two roles are possible, master
and slave. Precisely, there is only one master for each piconet connected in star
topology to multiple slaves (see Figure . Bluetooth specification establishes
that the number of slaves in a piconet must be at most seven, other slaves can be
connected to the same master but they have to be in a non operative state called
park (see Figure [5.2b).

The master operates as a router for the slaves, in fact each intra-piconet
communication passes through the master. Namely, the master can communicate
with all the slaves, but the slaves have to pass through the master to communicate
with each others.

The baseband layer defines two phases to form a piconet

* Inquiry: it is the phase in which the nodes discover their neighbors

137

138

BLUETOOTH AD HOC NETWORKS

* Paging: it is the phase in which the links between nodes are established.

Both the phases follow the same pattern, nodes alternate two states, inquiry (page)
and inquiry scan (page scan). The communication can happen only between two
nodes which are in complementary states. The basic difference between inquiry
and page is that during the inquiry phase each node operates in broadcast
mode: a node in inquiry state broadcasts the network searching for nodes in
inquiry scan state. During the page phase, instead, each device operates in a
point-to-point manner: a node in page state communicates with nodes in page
scan state which were previously discovered through the inquiry procedure.

In addition, the baseband layer defines the medium access control, thus it
determines how the nodes communicates. The communication between master
and slave is totally controlled by the first one. A master node divide the time in
time slots each of 625us (it is the same interval of time we have seen for the radio
signal, this means that each slot coincides with a different frequency, unless
we are transmitting a multi-slot packet). In this way, it creates a time division
duplex system, dividing slots in even and odd. The master transmits in the
even slots while the slaves are enabled to transmit in the odd ones. To avoid
multiple conflicting slave to master transmissions, the master assign each slot to
a specific slave. Each slave is able to transmit only in the time slots which have
been assigned to it. The sequence of frequencies adopted is the one used by the
master, the slaves in fact synchronize their frequency pattern to the one of the
master at the moment in which the piconet is created.

Power saving issues are taken into account as well. For this reason there exist
different states in which the power consumption is limited:

idle mode: a node in such a mode performs the scan operation for just 1%
of the time,

¢ park mode: a node in such a mode does not listen to the master (in fact it
is not even addressed),

* sniff mode: a node in such a mode wakes up periodically to communicate
with the master (at predefined time slots),

* hold mode: a node in such a mode “sleeps” until the master sends to it a
wake-up signal.

The last purpose of this layer is to define the type of logical links which can be
created between the nodes and to define the packets exchanged through these
channels, there exist two kinds of links

* ACL, asynchronous connectionless link, is a master-slave channel and works
in a point-to-multi-point manner. A master can communicate through an
ACL link with multiple slaves.

5.1 BLUETOOTH OVERVIEW 139

* SCO, synchronous connection-oriented, is a point-to-point connection, in each
piconet there can be up to three SCO links. It is a duplex channel which
can be used for example for voice transmission (using both even and odd
slots).

The structure of Bluetooth packets is reported in Figure It consists of an
access code (72 bits), an header (54 bits) and a payload (0 — 2745 bits).

The access code is used to identify the piconet where the packet has been
generated. A message can be received by a node only if the access code matches
with the one of the piconet master.

The header is subdivided into six fields

* Address: it is the address of the receiver of the packet.

* Type: the type of packet is determined by the type of link used to carry it
(ACL or SCO), by the number of slots the packet will cover (1, 3 or 5), and
by the type of error correcting code used.

¢ Flow: signals if the node sending the packet wants to stop the flow of
messages (e.g. because it has the buffer full).

* Acknowledgment: it is used to acknowledge the receive of a packet

* Sequence: it is a sequence number for the packet, the protocol uses a
stop-and-wait policy, thus a single bit is enough.

® Checksum: it is the error correcting code.

72 bits 54 bits 0-2745 bits
AL A AL
(_Y Header Y \
Access Code H1 H2 H3 Payload
Tlals
Address Type alcle Checksum
w q
Y S S) y
3 bits 4 bits 1bit1bit1 bit 8 bits

Figure 5.3: Bluetooth packet structure.

The header is encoded with a forward error correcting code with rate 1/3 to
obtain high transmission reliability. Essentially, each bit of the header is repeated

140

BLUETOOTH AD HOC NETWORKS

three times, hence the header field is three times the dimension of 18 bits we
described above. Referring to Figure H1, H2 and H3 contain exactly the
same data.

Let us observe that in case of multi-slot packet transmission, the frequency
remain the same as long as we are transmitting the package. If the packet is
k-slot, with k = 1, 3 or 5 and the frequency used for the transmission is fj,
withi=0,...,78, when the transmission terminates, the frequency adopted for
the next slot is f; k. The purpose of that is to keep the transmission frequency
synchronized with respect to the other slaves.

Finally, the payload contains the data transmitted with the packet. Two types
of payload are defined, according to the type of link the packet is sent through.

Link Manager Protocol and Host Controller Interface

This layer controls the baseband layer. The links are created, secured and con-
trolled in this layer. The paging phase is controlled here, the role assigned to
the node and the switch of it from master to slave and vice versa is a task of
this layer as well. Furthermore, the link manager supervises and handles the
exchanging of multi-slots packets.

The host controller interface (HCI) is present in the devices which are not
integrated with the hosts where the applications using the Bluetooth transport
protocol run. For example, devices which can be attached via an USB port. Thus,
the host controller responsibility is to interpret the information received from
the host and direct it to the right component of the Bluetooth stack.

L2CAP layer

The logical link control and adaptation protocol (L2CAP) is the frontier between
the lower levels and the upper levels of the Bluetooth architecture. The first
group is implemented via hardware, while the second group is implemented
through the software. L2CAP takes the responsibility of the segmentation of
packets received from the upper layers and of the reassembly of the packets
coming from the lower layers. In the latter case it also dispatches the packet to
the right protocol.

Service Discovery Protocol

The Service discovery protocol is used to determine which Bluetooth services are
available on a particular device. A device can act both as a service client, using
services provided by other devices, and as a service server providing services to
other devices. Each node can have only one server process active, while it can
maintain multiple client remote connections.

5.1 BLUETOOTH OVERVIEW

Applications/Profiles

The application layer is also known as profiles layer. Indeed, the applications are
defined by a set of profiles which are established by the Bluetooth specifications.
In order to use Bluetooth wireless technology, indeed, a device must be able to
interpret these profiles. Bluetooth profiles are general behaviors through which
Bluetooth enabled devices communicate with each other.

Bluetooth technology defines a wide range of profiles describing many differ-
ent types of use cases. By following a guidance provided in Bluetooth specifica-
tions, developers can create applications to work with other devices conforming
to the Bluetooth specification as well.

Each profile specification contains information on the following topics at least:

¢ Dependencies on other profiles.
* Suggested user interface formats.

* Specific parts of the Bluetooth protocol stack used by the profile. To
perform its task, each profile uses particular options and parameters at
each layer of the stack. This may include an outline of the required service
record, if appropriate.

A complete list of Bluetooth profiles can be found in [99].

5.1.2 From piconets to scatternets, the Bluetooth topology

We have seen that Bluetooth is organized hierarchically. Nodes are grouped
into piconets, with each piconet containing one master and multiple slaves The
number of active slaves can be at most seven (Figure [5.2).

To form larger networks, piconets are interconnected through special nodes
named bridge in order to form a scatternet. Bluetooth specification does not give
any common guideline on how a scatternet may be formed, tough it puts some
constraint on bridge role. A node acting as a bridge can not be a master in more

than one piconet. (Figure [5.4).
Bluetooth scatternet formation (BSF) can be decomposed into three main steps

* device discovery,
* piconet formation,
* piconet interconnection.

Each of these steps poses interesting algorithmic challenges for which several
solutions have been proposed [98]. In particular, during the first step each device
attempts at discovering other devices contained within its visibility range and
at establishing reliable communication channels with them, in order to form a

141

142 BLUETOOTH AD HOC NETWORKS

slave-slave bridge

master-slave bridge
slave-slave bridge

Figure 5.4: A Bluetooth scatternet.

5.1 BLUETOOTH OVERVIEW

connected topology, called the Bluetooth topology, which underlies the subsequent
piconet formation and piconet interconnection steps.

As we have seen, the Bluetooth stack does not have any special layer where
the scatternet formation policy is defined. The only constraints given by the
Bluetooth specification are that piconets formed by one master and up to seven
slaves should be connected only through master-slave or slave-slave bridges, and
the resulting scatternet should be connected. Then this problem is left totally
open to the researchers and to the developers. As a result, there exist a lot of BSF
protocols. We will give a brief overview of the protocols which, in our opinion,
are the most representative.

BTCP: Bluetooth Topology Construction Protocol

BTCP [104] is the first trial to define a Bluetooth scatternet formation protocol,
it works under some specific requirements:

¢ All the devices participating to the network formation fall into the trans-
mission range of each other.

¢ The number of devices participating to the network formation is at most
36.

Moreover, the authors add four properties that the network must satisfy after
the protocol termination:

* A bridge may be used to connect only two piconets

¢ Given the number of nodes N, the resulting scatternet should be composed
by the minimum number of piconets

¢ The resulting scatternet should be fully connected, each master should be
connected to each other master through a bridge

¢ Two piconets can share only one bridge

The protocol proceeds through three phases (we report a graphical represen-
tation in Figure [5.5):

- I- Coordinator election. The first phase is dedicated to the election of a
leader which will manage the creation of piconets and then of the final
scatternet. A distributed asynchronous leader election algorithm is used.
Each node maintains a counter of votes which is initialized to 1 at the
beginning of the protocol execution. During the discovery phase, each time
two nodes discover each others (during the inquiry phase), they compare
their votes counters. The node having the highest value prevail and survive
to the other which gives to it all its votes and information about nodes

143

144

BLUETOOTH AD HOC NETWORKS

which previously lost with it. If the votes counters have the same value, the
node with the higher Bluetooth identifier wins. The loser enters in the page
scan mode (in this way it eliminates itself from the leader election phase,
not being able to hear the inquiry messages). The node surviving at the
end of this process is the leader and the next phase can start (Figure [5.5p).

- II - Role determination. Now the network has a leader which knows all the
information about the nodes participating to the protocol. If the number
of nodes N is less than eight, the scatternet will be composed by a single
piconet with the leader as the unique master. If N > 8 then it is needed to
select among the other nodes the right masters to minimize the number
of piconets composing the scatternet (keeping the four properties stated
above). The protocol’s authors prove in [105] that this number P is known
for networks in which T < N < 36. That is the reason of the limitation to
36 nodes. Once P has been computed, the leader chooses itself and other
P — 1 nodes to be the masters (Figure) and P(P — 1)/2 nodes to be the
bridges of the scatternet, the rest of the nodes are assigned the role of slave.
As the last action of this phase the leader send to each master the list of
the bridges and slaves it assigned to them (Figure [5.5d).

- III - Connection establishment. The last phase is the effective formation of the
scatternet with the activation of the links of each master according to the
lists received from the leader. Once the formation of a piconet is completed
(Figure) the local master sends a notification to the leader, when all
the notifications arrive to the leader the protocol terminates (Figure [5.5f).

It is clear that the main phase of the protocol is the first one. It is important
to notice that in order to finish the election phase, the leader has to know in
some way that he won the election. In BTCP this is achieved with the use of a
timeout. Each node is assigned a timeout at the beginning of the protocol, the
timeout is reset each time a node wins a comparison. When the timeout expires
the node considers itself the leader. Finding the right timeout value is the most
challenging issue. A solution to this problem is given in [105].

This protocol has two main problems, which coincide with the constraints
we reported at the beginning of this description. Indeed, it is quite limiting to
restrict the applicability of a protocol to a configuration in which all the nodes
can see each other and, in the same wayj, it is limiting to restrict the number of
nodes to 36. A reason for such restrictions could be that this is the first attempt
to give a solution to the BSF problem. The fact that the Bluetooth technology
was intended just as a cable replacement in a personal area network could be a
reason as well.

5.1 BLUETOOTH OVERVIEW

2 D
@)
)
!‘_3 .
- © O
- @) o
O ®)
O
(@) (b)
-]
® . 6] ®
o &
° ®) o
[)
(@]
o O O]
O O
© i @)
- © ® @
@
~9
® Master
@ slave
O Bridge
(e)) no-role

Figure 5.5: The BTCP protocol execution sequence.

146

BLUETOOTH AD HOC NETWORKS

Bluetrees

Bluetrees [106] is a BSF protocol which forms a scatternet having a tree topology.
There exists two version of the algorithm, the first one is based on a single
tree, while the second one is based on a forest successively connected to form
a connected topology. Both the versions of the protocol start from the graph
formed by the visibility range of the nodes, we call it visibility graph. For both the
versions, it is required that the visibility graph is connected. In Figure [5.6/and
Figure |5.7]we report the steps of both the versions of the protocol. In both the
figures the dashed lines represent the links of the visibility graph obtained after
the device discovery phase (Figure and Figure [5.7b), while a continuous
line represents a link of a piconet or a link of the final scatternet.

The single tree approach is based on the computation of a spanning tree over
the visibility graph, the result is called bluetree. A node is selected as the root
of the spanning tree and it is called blueroot (Figure [5.6f, the black node). The
bluetree is built in the following way.

1. The role of master is assigned to the blueroot and the role of slave is
assigned to all its children. This is the first piconet created by the protocol

(Figure [5.6d).

2. Recursively, if the current node is not a leaf, it is assigned the additional
role of master (it becomes a master-slave bridge) and all its children become
its slaves in a new piconet. If the current node is a leaf, it remains a slave
and the recursive call is closed (Figure [5.6¢). The procedure ends when all
the nodes have received their role.

We observe that at the end of the protocol (Figure [5.6f) the nodes will have a
role among master (only the blueroot), master-slave (the internal nodes) and
slave (the leaves).

The protocol is based on the assumption that each node knows whether it
is the blueroot or not and each node knows all the identifiers of its neighbors
and if they already are part of a piconet. The tree formation phase is performed
through the page mode of the nodes, each step of the recursive procedure
described above correspond to a page phase of the current node considered. If a
node is neighbor of two masters (with respect to the visibility graph) it joins the
piconet of the master which paged it first.

Following this protocol, it is possible that a master could have more than
seven slaves, the authors solve this problem through the following geometrical
observation: in an open, interference-free and obstacle-free environment, if a
node n has more than five neighbors, then there are at least two nodes among
these neighbors that are neighbors themselves. Let us observe that this is true
if all the nodes have the same visibility range, which is the case of a Bluetooth
network built with devices of the same power class. Hence, the protocol is
equipped with the following procedure: when a master have more than five

5.1 BLUETOOTH OVERVIEW

o
L (D
LA 1
A
v
rm, Al
(])
L \
= Fl. - .
L P i o ==l
! i P
& i 7 L
- 20} I i -
@ o 1 b W
= - i # -
i 1
I-.r' [
L] i
Yy |
I, L
{ 1 \
_ C P, B
Bl iz] Ly -
= &’y ' N
e : &y
] S it
o
=
-
A% -
o ’
-
= ())
.
A
\
l'\
T T =
] =
1 &’ e
) . Ty
N L W
i !
£k 1
N 1
,"{. 1
] \\ -'J"-
| X .
' . -
' P
' &

{d)

i

@ Master
@ slave

O Bridge
) no-role

Figure 5.6: The Bluetrees protocol execution sequence.

147

148

BLUETOOTH AD HOC NETWORKS

slaves, it contacts its slaves in order to know which their neighborhoods. In this
way, the master can select two slaves which are neighbors each other. The node
with fewest neighbors is chosen and it becomes the master of a new piconet with
the other node as a slave, which, in turn, disconnect from its original master.

The forest approach is a two phase protocol. In the first phase some init
nodes are chosen (those having the greatest identifier among their neighbors, see
Figure [5.7c, the black nodes) and they start the formation of bluetrees following
the classical protocol with two essential modification:

¢ each time a piconet is formed the slaves node will be informed about
which node is the blueroot,

* when two nodes from two different bluetrees interact, they have to ex-
change information about their respective roots.

At the end of this phase there will be a forest of bluetrees (Figure [5.74d).

In the second phase the disjoint bluetrees have to be connected to form the
final scatternet. This is done considering each bluetree as a single virtual node
and applying to the virtual graph obtained the single tree approach. This have
to be done keeping the structure and the roles constraints (Figure). The final
scatternet is still a tree (Figure).

This protocol has a problem which is strictly correlated to its hierarchical
approach. The choice of a tree topology exposes the final scatternet to problems
of connectivity. Indeed, if just one internal node fails, the scatternet becomes
disconnected. Furthermore, the routing in a structure like this is expensive,
especially in a large system. Finally the internal nodes become easily bottlenecks.

BlueStars

BlueStars [107] has been designed to solve the problems of the previously
described protocols. The authors claim that their algorithm works for general
multihop Bluetooth networks. The resulting topology is a mesh with multiple
paths between any pair of nodes. The selection of masters node follow a best-fit
policy thanks to the fact that each node is associated with a weight (a real value)
proportional to the grade of suitability of the node to be a master. The generated
scatternet is connected if the visibility graph is connected. Finally, the nodes
does not need any further hardware (e.g. GPS units).

Like almost all the already described protocols, BlueStars is organized into
three phases which can be matched with the three steps of the scatternet forma-
tion we listed at the beginning of this section. At first, the nodes discover their
neighborhoods. At second, the piconets are formed (they are called BlueStars
because of the topology of the piconets). Finally, the BlueStars interconnect
with each others forming the final BlueConstellation which corresponds to the
scatternet.

149

5.1 BLUETOOTH OVERVIEW

(a)

12

(e)

Figure 5.7: The distributed Bluetrees protocol execution sequence.

150

BLUETOOTH AD HOC NETWORKS

In Figure 5.8/ we report a graphical representation of the steps performed
during the scatternet formation. In this figure as well, the dashed lines represent
the connections after the device discovery phase, while the continuous lines
represent the links in a piconet or the links in the final scatternet.

-1-

-I1 -

- 11 -

Topology discovery: in this phase nodes start to look for their neighbors
through the alternation of inquiry and inquiry scan modes. The aim of this
phase is to let the nodes have a complete picture of their neighborhood. To
do that, each time two nodes interact, they create a temporary piconet only
to exchange the information about themselves (identifier and weight). Once
the information has been exchanged, the piconet is disrupted (Figure [5.8p).

BlueStars formation: in this phase the formation of the piconets is per-
formed. First of all, some of the nodes are elected as init nodes (Figure|5.8p).
This is done through a mechanism which is similar to the one we saw in
the distributed version of Bluetree, the nodes having a weight which is the
highest with respect to the weights of their neighbors become init nodes.
There is the possibility that two nodes have the same weight, in this case
the node with the higher identifier is considered the greatest (in Figure
we reported only the weight which are all different just for simplicity). The
init nodes will be all masters. The init nodes enter in page mode and start
to page their neighbors (Figure [5.8k). The rest of the nodes enters in page
scan mode.

In general, a node x which is not an init node follows the next scheme. It
waits the decision of its bigger neighbors, the first bigger neighbor paging
it will become its master, if all the bigger neighbors decide to be slaves
in other piconets then x decide to become a master itself. When a node x
decides its role, it starts to page its smaller neighbors to let them take their
own decision. At each exchange of information, all the nodes inform each
others about their neighborhood, this information will be used during the
third phase of the protocol. This process is also known as pecking protocol.

At the end of this phase each node have chosen its own role and the net-
work is composed of many disjoint BlueStars, ready to be interconnected
in the following phase (Figure [5.8d).

BlueConstellation formation: the last phase is based on some preliminary
definition. Two masters having a two-hop or three-hop path connecting
them (through one or two slaves) are said neighboring masters (in short,
mNeighbors). A master is called an init master (in short, iMaster) if it has the
highest weight among its mNeighbors.

The nodes which are along the paths connecting two mNeighbors will be
used as gateways. If there are two paths or more connecting two masters,
the choice among them depends on their type. In case of two-hop paths,

5.1 BLUETOOTH OVERVIEW

the one including the node having the biggest weight is chosen (e.g. in
Figure[5.8, the path including node 6 is preferred to the one containing
node 5). In case of three-hop paths the sum of weights of the nodes
included in the paths is considered and it is chosen the one having the
greatest sum (e.g. in Figure [5.8g, the path including nodes 10 and 8 is
preferred to the one containing nodes 2 and 8).

All the information used to build such a preliminary structure have been
exchanged during the second phase (Figure 5.8, where the iMasters are
indicated through an i following the weight and the paths between the
mNeighbors are represented through a red line).

We can now describe the BlueConstellation formation. The iMasters and
the non-iMasters will perform different operations. Each iMaster contacts
its own gateways and instructs them to go to page mode to establish a link
to each of its mNeighbors. In case of a two-hop path, the gateway pages
directly the mNeighbor, it becomes its temporary master and switch the
roles just after, becoming a slave-slave bridge (in Figure this happens to
node 16 and 18). In case of a three-hop path, the gateway connected to the
iMaster pages the gateway connected to the mNeighbor in order to form a
new piconet which will be the link between the two original masters. The
master of the new piconet will become a master-slave bridge while the
slave will become a slave-slave bridge (In Figure this happens to node
6 and 3).

Each non-iMaster will instruct its gateways connected to bigger mNeigh-
bors to go to page scan, then, if there are some gateway slaves of bigger
mNeighbors to whom it has to interconnect, it goes to page mode. Once
these potential links are established, the node starts to behave like an
iMaster toward the gateways linking it with smaller mNeighbors.

At the end of these three phases the resulting scatternet is connected (Fig-
ure [5.8f). In [107] the authors formally prove it through the correctness of the
three phases.

LSBS: Li-Stojmenovic BlueStars

LSBS [108] is a BSF protocol having as principal aim the construction of a
connected scatternet in which the masters have up to seven slaves, without any
parked node. The protocol combines the Yao construction proposed in [109]
with the BlueStars protocol. Each node is associated with a weight like in the
BlueStars protocol. Furthermore, the protocol needs devices equipped with
specific hardware in order to sense their geographical position (like GPS).

The protocol starts with the same device discovery protocol we have seen in
BlueStars. In this phase it is possible that some nodes in the visibility range
might not be discovered, while the protocol needs to operate in a unit disk

151

152

BLUETOOTH AD HOC NETWORKS

17 17)
' W 1 S— 2 1
& @15 R o) @ ©-. 15 Qo 6]
1 5 ‘HQ_:- \ x\\ s :—’ [5 n.:l 1 ‘\‘\ 8 .7
1 e iy | e i ' . e gt \ ":(’Y’ ;
' AN . : . S O
| N A " & -) i iy | \ et]
| ; : Sk ‘ |) ! R :
6 g b 1 OC o g By i
A T ! oo T 10 :
; r P @ i 1 i P
L ' A5
1@ b ; n@
| ! | &
' ! e o
; A 1 s
<A b s i
e -‘f ’ !
' v s 1
1 . ol &
‘ :
‘
.

16
@ 2
@® Master @ /S Bridge @ init node
@ slave Q S/S Bridge © no-role

Figure 5.8: The BlueStars protocol execution sequence.

5.1 BLUETOOTH OVERVIEW

graph. Because of that, the LSBS adds a replenish phase aimed at adding the
undiscovered nodes. At the end of the discovery phase, the nodes exchange each
other the list of their neighbors through a process which follows the scheme of
the pecking protocol. Thanks to the location data, each node v can build a set
of nodes A, which are within v’s transmission range but were not discovered
during the inquiry phase. Upon A, construction completion, v starts to page
A,’s elements in a round robin fashion. Each node u € A, contacted by v
exchanges with it the list of neighbors, in this way A, and A, might acquire
new nodes. At the end of this process the resulting topology should coincide
with the unit disk graph.

The Yao construction is applied to the resulting topology to reduce the degree
of each node to a value k < 7. The process is the following: each node v divides
its visibility disk into k equal sectors, in each sector v selects the closest node u
according to the euclidean distance. The link with u is then a candidate to be
a link in the final structure. Indeed, it is maintained only if also u selects v as
its closer neighbor in one of its sectors. The rest of the links in the sector are
then removed (see Figure [5.9). To perform this construction, each node must

communicate with its neighborhood the information about the nodes it selected.

This is done again through the pecking protocol.

Figure 5.9: The Yao construction.

Provided that the Yao construction operates on a connected topology, the
connectivity of the resulting topology is guaranteed.

Once the connected topology is built, the protocol continues as the BlueStars
scatternet formation protocol.

The problem in this protocol is the replenish phase, which is time consuming
and leads to considerable overhead due to the exchange of neighbors lists
between neighbors. Furthermore, LSBS needs extra-hardware to operate, all the
devices has to be equipped with GPS-like components.

153

154

BLUETOOTH AD HOC NETWORKS

Blue Pleiades

Blue Pleiades [110] is a protocol which combines the BlueStars approach with
LSBS approach aiming at taking the best features from them and eliminating
their drawbacks.

As it was in LSBS, Blue Pleiades aims at building a final scatternet of limited
degree. The authors propose a new device discovery protocol modeling the
system through a geometric random graph defined in the following way:

Definition 5.1 Fixedr > 0and p > 1and 1 < ¢ < c* wherer € Rand p,c,c* € N,

GTc e+ p 18 the geometric random graph built in the following way:

® The vertex set consists of n points picked independently according the uniform
distribution in [0, 1]2.

® The edges are connections formed through the following asynchronous process:
each vertex attempts to connect to ¢ nodes chosen uniformly at random among
those within distance r. A vertex which is requested connection declines it if its
degree is already c*. A vertex attempting to connect can make p tries for each of
its ¢ connections.

This graph is clearly a sub-graph of the visibility graph, the protocol cor-
rectness is based on the fact that given a connected visibility graph, with high
probability it is possible to build a connected GI‘,C/C*,Q fixing v > 0 choosing
c>3and c* = %c and p =y [logn], with y > 0. The proof of that is given
in [T10].

During the Blue Pleiades device discovery phase, then, each node connects
to ¢ nodes falling within its visibility range. The device discovery has a time
limit to avoid undefined waiting to the nodes having less than c neighbors.
The authors optimistically set ¢ = c¢* and use a time-out instead of p, but give
experimental evidence that for increasing values of n, the topology is connected.

Once the device discovery is terminated, the protocol continues with the

BlueStars piconet and scatternet formation applied on the topology obtained.

A Blue Pleiades simulation

We have simulated Blue Pleiades as a case study for MOMOSE. The purpose of
the case study has been to evaluate the connectivity performance of part of the
protocol in order to more efficiently perform the device discovery phase.

We have then implemented the protocol and we have evaluated its connectivity
performance when used for a MANET formed by thousands of devices moving
in an environment with obstacles simulating the historic center of Florence, Italy
(see Figure|[5.10).

We have performed our experiments varying the number nodes n, the number
of neighbor c chosen to form the BT topology, and the transmission range r. For

5.1 BLUETOOTH OVERVIEW

i
Eile Yiew Utils

[Config simulation #1

[} Simutation #1

Time s [
il General info
Models loa)

Time Info
Simulation dul
Step time (s
Total iteration
o Simulation ting
Ieration: 0
Models
elect Syy

Simulation log

Save log

Scale 1=

¥ Real time

Draw Antennas | Draw graph v| Draw Hot-spots || Draw node 1D

T

Figure 5.10: The Florence’s historic center scenario used while evaluating the Blue

Pleiades

protocol

all the values of n and c we have performed 50 simulations where the nodes were
equally divided to follow three different mobility models: two of such models
were designed and implemented ad hoc for simulating the tourist movements
across the Florence center monuments. The third one was the random walk
mobility model we have seen in Section 4.2l We give a brief description of the

first two models:

* Random Waypoint Tourist mobility: it is a variation of the random waypoint

model we have described in Section This version has been designed to
simulate the movement of individual tourists. The model starts defining
a list of hot spots positioned in the simulation area. Each hot spot corre-
sponds to a point of interest of the center of Florence. The mobile nodes
are distributed uniformly at random in the simulation area. During the
simulation, each node chooses the hot spot which is the closest to it as a
destination point. If there are not obstacles between the node and the hot
spot, the node starts to move towards it. Otherwise, the node chooses a
destination point according to the random waypoint model. Once the des-
tination is reached, the procedure is repeated. Once the node has reached
a monument, it can either decide to choose another monument, or decide
to choose a random point in the simulation area.

Tourist Group: it is a variation of the Pursue model we have described in
Section This version has been designed to simulate groups of tourists
each one following its guide. In this model the hot spots we have described

155

156

BLUETOOTH AD HOC NETWORKS

in the random waypoint tourist model are connected through a graph
(see Figure[5.10). Such a graph is used to build a path followed by a node
representing a tourist guide. Each edge has a weight corresponding to
the degree of interest for the monument which is decided by the guide.
Each group is positioned along an edge connecting two hot spots. During
the simulation, each guide node decides the next hot spot to be visited
and starts to move towards it followed by its group. Once the hot spot
is reached, the nodes stop for a certain amount of time. When the wait
time expires the guide chooses another hot spot, which has not been still
visited, and the group moves towards it. Once the list of hot spots to visit
has been completed, the guide defines a new set of weights for the edges
and the “trip” can restart.

The simulation time has been set to 540 minutes (9 hours). The data extracted
from the simulations were the number of connected component and the number
of node included in the biggest connected component.

The results of the experiments are visible in Figure and Figure In all
the figures the different functions refer to different values of c.

As it is visible from the charts of Figure if the number of selected
neighbors is at least 5, the number of connected components produced, in both
the scenarios, by the Blue Pleiades protocol does not increase too much with
respect to the case in which 6 or 7 neighbors are selected. The values for ¢ = 3,
4 are instead quite higher especially in the cases of r = 10, 50, while when
we increase the transmission range, that is r = 100, 150, the values of the two
functions are closer. This is a predictable fact: indeed, increasing the transmission
range, it is more likely that more nodes fall into each others transmission range.

The results for the number of connected components are reflected also into
the charts visible in Figure In the case of the percentage of nodes included
into the biggest connected component as well, the case of ¢ = 3, 4 shows a worse
behavior with respect to the cases in which ¢ =5, 6, 7.

We have introduced the main concepts of Bluetooth technology and we gave
an overview of some of the most important scatternet formation protocols. We
have reported the protocols in a chronological order, this has been done to remark
the fact that over the years the protocols design have moved toward two main
directions. On one hand, there was an effort to limit the number of neighbors of
a node. On the other hand, there was an effort to increase the number of nodes
forming the Bluetooth scatternet. Limiting the number of neighbors results into
scatternets where the number of parked nodes is minimized (in some cases it is
equal to 0) and given the fact that the unparking phase its time-consuming, the
overall performance of the system increases. Furthermore, if we think about a
mobile environment, the less time a device discovery protocol takes, the best
such a protocol can be used in a highly dynamic environment as a MANET.

5.1 BLUETOOTH OVERVIEW 157

3
e 150k
b
o
500]
¥ @ 120 .
5 @ # W 2,
: A . £
38 b
N 2
5 w0 [b "
©] b i .
200 1
e
40]
H0a o -
S ot ke o —p
3900 500 1000 1500 2000 2500 3000 3500 3800 %o w0 08 1500 200 %0 3000 3500 3900
Nodes Nodes
(@r=10m. (b) r =50 m.
o 55 + +
=3 [3
=4 p o oo
7 " =5 — ¢=5
=B o=
=T o =7
45,
g
2 Py
£ \
g5 g '
§ g sk N
3 3 2
k] -
g4 & 3
8 8
o 8
© 2sf
3 - % -
. 2
— 5. -
2 T, sy &
“_ 15 ey -
~ .
A : \ R ._ . . i S Y
w00 500 1000 1500 2000 2500 3000 1|00 3900 0 500 1000 1800 2000 2500 2000 W00 3900
Nodes Nodes
(c) r=100 m. (d) r =150 m.

Figure 5.11: Number of connected components of the BT topology for some values of c,
as the number of nodes increases for four different values of transmission
range.

158

BLUETOOTH AD HOC NETWORKS

90
100
=3 g
80 o= 4 i
<=5
=8 I sof {
701 il 1
a0 "
50 _ -
5 ol e m
o 2 2 7
£ E 8
£2 53
83 B3
2% 2% m
Tt 23
s o
28 30} o | =
ol
20} 1
[¥
il a0
L
30 500 1000 1500 2000 2500 3000 /00 3900 o s 1000 1500 2000 %00 3000 W00 300
Nodes Nodes
(@r=10m. (b) r =50 m.
100 9]] ¥ 100 - s ¥ 0 % ¥
oSt
| =
N' o
sl
% B0t
83 sl %=
28 & =3
2 2 ag
28 ol 2z #
28 I8 =
3 g3
B3 | 248
< £ Tof =3 | 2
5§ 79 £
28 o= 55
o= E
85} =t {
et y =2
| =4
ol 5
4 =5
$ b3 c=7
55t
oo w0 1000 1500 2000 2500 3000 o0 %80 B w00 1000 1500 2000 2800 000 W00 300

Nodes Nodes

(c) r =100 m. (d) =150 m.

Figure 5.12: Percentage of nodes included into the biggest connected component for
some values of c, as the number of nodes increases for four different values
of transmission range.

5.1 BLUETOOTH OVERVIEW

The reason of increasing the number of nodes forming the scatternet is instead
aimed at proving that Bluetooth could be used to build large ad hoc networks.

Finally, in all the protocols we have described, the transmission range of
each node was assumed constant. We moved one step forward considering the
visibility range as a variable parameter.

5.1.3 From constant r to v(n)

Since requiring each device to discover all of its neighbors is too time consum-
ing [101], a crucial problem consists of deciding how many neighbors have to be
selected in order to guarantee that the resulting Bluetooth topology is connected.
Indeed, obtaining connectivity under degree limitations has been indicated in
[100] as a major challenge for the adoption of the Bluetooth technology for large
ad hoc networks.

In [111] the device discovery step has been effectively modeled as follows. The
devices are regarded as a set of n nodes randomly and uniformly distributed
in a square of unit side. Each node has a visibility range of r(n), i.e., it can
“see” all other nodes within Euclidean distance r(n). Given a function c(n), each
node selects as neighbors c(n) visible nodes at random, picking all visible nodes
if their number is less than c(n). Observe that the process is unidirectional in
nature: however, each link established in this way becomes bidirectional. As a
consequence, the final degree of each node may be much higher than c(n), in
the case that the node was selected as a neighbor by many other nodes. We refer
to BT(r(n),c(n)) as the resulting (undirected) graph (observe that BT(r(n), c(n))
is a generalization of the well-studied random geometric graph [112), 113, [114]
which can be obtained by setting c(n) > n —1).

Previous studies on the connectivity properties of BT (r(n),c(n)) have consid-
ered only the case where each node is able to see a constant fraction of all other
nodes, that is, the visibility range r(n) is a constant. For this particular case,
the experimental analysis conducted in [111] has shown that setting c(n) to a
small constant is sufficient to yield connectivity for BT (r(n),c(n)) almost always.
The experimental evidence has been later substantiated by the analysis in [115],
which shows that, for constant r(n), c(n) = 2 is sufficient to achieve connectivity
with high probability. Also, in [116] it was proved that constant c(n) (though
much larger, in the order of the millions) is also sufficient to guarantee linear
expansion of BT(r(n), c(n)). These results suggest that device discovery can be
performed efficiently whenever the network is sufficiently small (even though
not necessarily a PAN). However, the assumption of constant r(n) becomes
quickly unfeasible as the number of devices to be connected increases, which
would be the case when adopting Bluetooth for building large ad hoc networks.
A motivation rooted in the technology of the devices for studying vanishing
visibility range is the presence of the interference effect. Indeed, as the number

159

160

BLUETOOTH AD HOC NETWORKS

of devices increases, the communication between two nodes which would be
in each other visibility range becomes more difficult because of the increasing
density of transmitting sources.

We extend the above studies by providing both analytical and experimen-
tal evidence that, when the visibility range is a vanishing function of n, the
device discovery step in Bluetooth can still be performed efficiently while
guaranteeing connectivity, by letting each device discover only a“small”, al-
though non constant, number of neighbors. In particular, we prove that if
r(n) = Q(y/Inn/n), then BT(r(n), c(n)) is connected with high probability as
long as c(n) = Q(In(1/r(n))). We remark that the lower bound on r(n) cannot
be improved since it is known that when r(n) < 6/Inn/n, for some constant
0 < 8 < 1, the visibility graph where each node is connected to all nodes in its
visibility range is disconnected with high probability [112, [117]. A challenging
open question is whether the lower bound on the value of ¢(n) required for con-
nectivity is tight. We give a partial analytical answer to this question by showing
that in fact c(n) = 3 is sufficient to attain connectivity with high probability, as
long as r(n) > n~¢, for some constant 0 < € < 1/2, but each node must choose
two of the three neighbors sufficiently close to it.

We also report on a massive set of experiments conducted in order to assess
the real performance of the two previously described protocols. Quite surpris-
ingly, the experiments indicate that, even when the visibility range function
is close to the aforementioned lower bound, the number of neighbors needed
for connectivity exhibits an extremely weak dependence on r(n): in fact, for
values of n up to the hundreds of thousands c(n) = 3 suffices almost always,
independently of how the neighbors are chosen. Moreover, the experiments show
that the expected maximum total degree featured by the topologies obtained by
choosing three neighbors for each node is much smaller than the one featured
by the visibility graph, while the diameter is only slightly larger.

Even though our results are mainly motivated by the question of whether
Bluetooth is suitable as a large-scale ad hoc network technology, we believe that
they may be of interest for other wireless network scenarios [118]].

The rest of the chapter is organized as follows. Section analyzes the
connectivity of BT(r(n),c(n)) when c(n) is ©(log(1/r(n))). Section analyzes
the case of c(n) = 3 under further constraints on neighbor selection. Section
reports the results of our experiments, while in Section [5.5| we conclude with
some final considerations and proposals for further research.

5.2 CONNECTIVITY OF BT(r(n),c(n))

5.2 CONNECTIVITY OF BT(r(n),c(n))

Consider a set V of n nodes randomly and uniformly distributed in a unit-side
square. Each node v € V has a visibility range of r(n), i.e., v can “see” all nodes
u at Euclidean distance d(v,u) < r(n) < 1.1

k cells
A

1k {

0 1

Figure 5.13: The tessellated unit square with k = { V5 —‘ .

r(n)

Let the unit square be tessellated into k? square cells of side 1/k, where
k = [V/5/7(n)] (see Figure [5.13). Consequently, any two nodes residing in the

same or in adjacent cells (i.e., cells sharing a side) are at distance at most r(n):

hence, they are visible from one another. Most of our results hold with high
probability (w.h.p. for short) by which we mean that the probability of the stated
event is at least T —1/poly(n), where poly(n) denotes some polynomial function
of n. We need the following technical fact.

Proposition 5.1 Let o« = 9/10 and 3 = 11/10. There exists a constant y1 > 0 such
that for every r(n) = y1+/Inn/n the following events occur together w.h.p.

1. Every cell contains at least an/ k? and at most pn/k? nodes.

2. Every node has at least (a/4)mnr2(n) and at most Brnr2(n) other nodes in its
visibility range.

In fact, the maximum significant range in the case of the unit square is v/2. Placing an upper
bound of 1 allows us to simplify some of the proofs, however, all of the results in the chapter
would still hold up to the maximum range.

161

162

BLUETOOTH AD HOC NETWORKS

Proof. 1t is sufficient to show that any given cell contains at least an/k? and at
most fn/k? nodes with probability greater than or equal to 1—1/ (2n?), and that
any given node has at least (a/4)mmr?(n) and at most prmnr?(n) other nodes in
its visibility range, with probability greater than or equal to T —1/(2n?). Since
there are less than n cells and exactly n nodes, the proposition will follow by a
simple application of the union bound. Fix a cell Q. By using Chernoff’s bound
[119] and the fact k < 4/7(n), we obtain that the probability that Q contains
more that fn/k? nodes is less than

eﬁ_‘ vi2lnn/16
()

A symmetrical argument shows that the probability that Q contains less than
an/k?% nodes is less than

61_“ vi?lnn/16
(5=)

By choosing a suitable constant v, both upper bounds can be made smaller than
1/(4n?). Therefore, the probability that the number of nodes in Q is between
an/k? and pn/k? is at least 1 — 1/(2n?).

The probability bound regarding the number of nodes in the visibility range
of any fixed node can be proved in a similar fashion by making the further
observation that for r(n) < 1, the visibility range of any node covers an area of
the unit square which is at least (7t/4)r%(n) and at most 7tr?(n). O

The rest of the section is devoted to the proof of the following theorem.

Theorem 5.1 There exist two positive real constants y1,y2 such that, if r(n) >
vivInn/nand c(n) =vy2 In(1/r(n)) then BT(r(n),c(n)) is connected w.h.p.

Let e = 1/8. In the proof of the theorem we distinguish between the case
r(n) < n~ ¢ and the case r(n) > n~¢, which are dealt with separately in the
following subsections. Moreover, in both cases we condition on the events
expressed by Proposition which occur with high probability.

5.2.1 Caseyiy/Inn/n<r(n) <n"¢

We fix the lower bound for r(n) to be the same under which Proposition
holds. In the range of r(n) considered in this case, we have that c(n) =
Y2In(1/r(n)) = O(Inn). Let Q be an arbitrary cell and let Gg denote the
subgraph of BT (r(n),c(n)) formed by nodes and edges internal to Q. We first
show that every G is connected and then prove that for every pair of adjacent
cells there exists an edge in BT(r(n), c(n)) whose endpoints are in the two cells.

5.2 CONNECTIVITY OF BT(r(n),c(n))

Lemma 5.1 With high probability, every Gq is connected.

Proof. Fix an arbitrary cell Q and let Ag be the event that, for every partition
of the nodes in Q into two nonempty subsets, there is at least an edge with
endpoints in distinct subsets. Observe that the subgraph G C BT(r(n),c(n)) is
connected if and only if Ag occurs. Then:

pm/(2k?)
1-Pr(Ag) < (

s=1

(an/k2—s)c(n)
N L
)
2
< ﬁnfk)ex slneBn— 2sc(n) (g—s)
h = P sk2 Brmri(n) \ k2 '

Note that for the values of s in the summation range, we have that

6n/k2> <1 om/kz—s>“(“ﬁ

s ~ Brnri(n)

In(epn/(sk?)) = O (Inn)

and
((an/k?) —s)/(Bprnr?(n)) = (1),

therefore by choosing the constant v, in the expression for c(n) large enough,
the summation is dominated by its first term and can be made as small as 1/n?.
The lemma follows by applying the union bound over all k? cells. O

Lemma 5.2 With high probability, for every pair of adjacent cells Q1 and Q; there is
an edge (u,v) € BT(r(n), c(n)) such that u resides in Q1 and v resides in Q3.

Proof. Consider an arbitrary pair of adjacent cells Q7 and Q2 and let Bg, g,
denote the event that there is at least one edge in BT (r(n),c(n)) between the
two cells. Since we are conditioning on the events described in Proposition
we have that

2 2¢(n)an/k?
1-Pr(Bo,o,) < (1-- 7K
’ Brnr2(n)

oan/k? 5

< -2

exp (Bronr? (1) (2c(n)an/k))
< exp(—¢In®n),

where (is a positive constant. The lemma follows by applying the union bound

over all O(n) pairs of adjacent cells. O

For the case yi+v/Inn/n < r(n) < dn— ¢, Theorem follows by combining the
results of the above two lemmas.

163

164

BLUETOOTH AD HOC NETWORKS

522 Casen € <r(n) <1

We generalize and simplify the argument which was used in [115] for the case
r(n) = O(1). Specifically, we first show that BT(r(n),c(n)) contains a large
connected component C, and then we show that for every node v there is a path
from v to C. Again, we condition on the events stated in Proposition which
occur with high probability.

Lemma 5.3 Forn= € <r(n) < Tand c(n) > 2, BT(r(n),c(n)) contains a connected
component of size n./(8k?), w.h.p.

Proof. The argument is a simple adaptation of the one used in the proof of
Proposition 3 in [115], which we highlight in the following for the sake of
completeness. Starting from an arbitrary node u, consider a sequential discovery
procedure where each node chooses two random neighbors out of those nodes
in its visibility range. A simple application of the Chernoff bound [119] shows
that each node has at least n/(2k?%) other nodes in its visibility range with
probability at least 1 —k?e~™/ (8K*)_ This implies that the probability of reaching
a previously discovered node in the first 2log, n — 2 neighbor selections is at

1-2e 3/4

most 8k? logsn/n = O (log2 n/n) =0 (log2 n/n) Hence, by stopping

the sequential discovery after 2log, n —2 neighbor selections have been executed,
we get, with probability 1— 0O <log2 n/n3/ 4), a full binary tree rooted at u with
log, n leaves. Now, from these leaves we run log, n independent sequential
discoveries until a total of n/(8k?) nodes are discovered. By reasoning as in
[115] we argue that this process stochastically dominates a branching process
[120] beginning with log, n individuals and binomial offspring distribution
with parameters 2 and 3/4. We conclude that the probability of failing to reach
n/(8k?) nodes is bounded from above by the probability that the branching
process dies out, which is at most (1/9)1°82™.

Putting it all together, the probability that the component grown from u has
size at least n/(8k?) is at least

log®n 1
1-0 (n3/4 +n10g29> ’

which proves the lemma. O

Let C be the connected component of size at least n/ (8k?) which, by the above
lemma, exists w.h.p. By the pigeonhole principle there must exist a cell Q
containing at least n/(8k*) nodes of C. Let V(Q, C) the set of nodes residing in
Q and belonging to C. We have:

Lemma 5.4 With high probability, for each node w there exists a path in BT (r(n),c(n))
from u to some node in V(Q, C).

5.2 CONNECTIVITY OF BT(r(n),c(n))

Proof. Consider a directed version of BT(r(n),c(n)) where an edge (u,v) is
directed from u to v if u selected v during the neighbor selection process. Since
we are conditioning on the event stated in the second point of Proposition
our choice of ¢(n) implies that the outdegree of each node is exactly c(n) w.h.p.
Pick an arbitrary node u and run a sequential breadth-first exploration from
u in such a directed version of BT(r(n), c(n)). With respect to this exploration,
we say that a failure occurs whenever an edge (v1,v;) is considered during the
exploration of vy, but node v, has been already discovered. Let m be a suitable
value, to be fixed later by the analysis. We stop the exploration as soon as one
of the following events happen: (a) the c(n)-th failure occurs; or (b) m nodes
are discovered but not yet explored. We now prove an upper bound on the
probability that the exploration stops due to event (a). In this case, it is easy
to show that any time before the c(n)-th failure occurs, the tree formed by the
nodes discovered so far has at most one internal node of degree one, hence the
tree contains less than m leaves (i.e., the unexplored nodes) and less than m
internal nodes, for a total of less than 2m nodes altogether.

From the second point of Proposition [5.1|it follows that the probability that
event (a) happens prior to event (b) is at most

m-c(n) 2m c(n) - 2em? c(n)
(c(n)) <((X/4)7Tm‘2(n)—c(n)> = <(Oc/4)7mr2(n)—c(n)> , (5.1)

where the binomial coefficient bounds from above the number of ways of
fixing c(n) failures in the node explorations, which are less than m, while the
subsequent factor bounds from above the probability of a fixed configuration of
c(n) failures when less than 2m nodes have been discovered.

We will choose m so to make the upper bound given in Equation |5.1{ vanish-
ingly small in n. Therefore, we may condition on the event that m unexplored
nodes, say w1, W,..., Wy, are reached via breadth-first exploration from u
before c(n) failures occur. We now estimate the probability that BT(r(n), c(n))
contains a path from w; to a node in V(Q, C). Observe that from the cell con-
taining w; there is a sequence of at most 2k pairwise adjacent cells ending at Q.
Specifically, we estimate the probability that BT (r(n),c(n)) contains a path from
w; to V(Q, C) following such a sequence of cells, with the constraint that the
path contains one node per cell and these nodes do not belong to the set of at
most 2m nodes initially discovered from u or to the m — 1 paths constructed for
any other wj, with j # 1. This probability is at least p?*q, where p is the proba-
bility of extending the path one cell further, and q is the probability of ending,

165

166

BLUETOOTH AD HOC NETWORKS

in the last step, in a node of V(Q, C). By using the bounds in Proposition 5.1/ we
have that

oan/k? —3m c(n)
P (1_<1_ o))

n/(8k*) B 1
Brnr2(n) 8PmkAr2(n)’

Recall that ¢(n) = v, In(1/r(n)) = O(Ink). If we take m = o(n/k?) and y» large
enough, we have that

for some constant 0 < T < 1. It follows that the probability that all of the wjs
fail to reach V(Q, C) is at most

m T o T \™
1= < (-) = (o) 52)

for some positive constant o.
By combining Equations [5.1and [5.2] we get that the probability that u is not
connected to V(Q, C) is at most

2em?

c(n) T o\m
((oc/4)7rnr2(n) —c(n)) + (] N @> ’

Now, since r(n) > n—'/8, we have that k = O(n'/8). If we choose m = ©(n'/3)
we have that m = o(n/k?), as required above, and m = w(k? Inn). This, com-
bined with the choice of c(n), ensures that the above probability is smaller than
1/n?. The lemma follows by applying the union bound over all nodes w. O

For the case r(n) > n~¢, Theorem 5.1/ follows by combining the results of the
above two lemmas.

5.3 ACHIEVING c(n) =23 USING A DOUBLE CHOICE PROTOCOL

In the previous section we showed that selecting c(n) = O (In(1/r(n))) visible
neighbors at random is sufficient to enforce global connectivity for all values of
r(n) which guarantee connectivity of the visibility graph. Whether these many
neighbors are necessary remains a challenging open question. As a step towards
this objective, we show that, at least for large enough (yet non constant) radii,
c(n) = 3 always suffices under a slightly different neighbor selection protocol
where each node is required to direct the selection of some neighbors within
a certain geographical region. Such a phenomenon provides evidence that the
O (In(1/r(n))) bound on c¢(n) is not likely to be tight.

5.4 EXPERIMENTS

More formally, consider again the tessellation of the unit square into k? square
cells of side 1/k, with k = [v/5/r(n)]. Define BT(r(n),2,1) to be the undirected
graph resulting by letting each node select two neighbors at random among the
nodes residing in its cell, and another neighbor at random among all visible
nodes. Observe that if applied in a practical scenario, this double-choice protocol
would require each node to infer geographical information about its location
and the location of the nodes in its visibility range. For example, this information
could be provided by a GPS device.?

Theorem 5.2 There exists a constant €, 0 < € < 1/2 such that if r(n) = Q(n~¢),
then BT (r(n),2,1) is connected w.h.p.

Proof. We employ the same approach used in Subsection Specifically, we
first argue that, with high probability, for all cells Q the graph G induced by
the nodes in Q is connected, and that for every pair of adjacent cells there is an
edge with endpoints in the two cells. Since by the first point of Proposition
each cell Q contains Q(n'~2€) nodes w.h.p., the main result of [115] implies
that two neighbors selected by each node in Q suffice to guarantee connectivity
of Gq with probability at least 1 —1/n®1=2¢) for a suitable positive constant
d < 1. Then, choosing € smaller than 5/(2(1 + 6)) and applying the union bound,
all cells will be internally connected with high probability. In order to prove
connectivity between adjacent cells, we proceed as in the proof of Lemma In
particular, consider an arbitrary pair of adjacent cells Q7 and Q3, and let Bg, o,
denote the event that there is at least one edge in BT(r(n), 2, 1) between the two
cells. By conditioning on the events described in Proposition we have that

O(Tl/kz 2an/k?
B Bmvz(n)>

]—PI‘(BQ1,Q2) < (]

on/k?
- Brinri(n)

< exp((Zom/kz)>
< exp(—(n' %€,

where (is a positive constant. The theorem follows by applying the union bound
over all O(n) pairs of adjacent cells. 0
5.4 EXPERIMENTS

We have designed an extensive suite of experiments aimed at comparing the
connectivity and other topological properties of the graphs analyzed in the pre-

A full discussion on the feasibility of this approach is outside the scope of this thesis, since the
analysis of the double-choice protocol is mostly meant to provide evidence that the selection of
very few neighbors may suffice in order to build a connected topology.

167

168

BLUETOOTH AD HOC NETWORKS

0.026
0.025
0.024
0.023
0.022
0.021
0.020
0.019
0.018
0.017
0.016

0.015

Confidence interval

0.014

0.013

0.012

0.011

0.010

0.009

0.008

0.007

0.006

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
Number of nodes (x 1000)

Figure 5.14: The 95% confidence intervals of the minimum range of the visibility graph

vious sections.? In a first set of experiments, for values of n ranging from 10000
to 170000 with step 10000, we have performed 20 times the following binary
search of the minimum range that guarantees connectivity of the visibility graph
associated with the placement (i.e., the graph where each node connects to all
its visible neighbors).

1. Set the search interval to |:T'1eft =0.1y/In/n, Tyight = 0.99/In/ n} .
Comment: Tieg; (r€sp., Tright) is a value which guarantees, in practice, that the

corresponding visibility graph is always disconnected (resp., connected).
2. If the length of the search interval is less than 0.0057f, then return Tyjgh.

3. Generate 50 placements of n nodes in the unit square and verify whether
for all of them the range T = (Tieft + Trignt) /2 guarantees connectivity of the
visibility graph associated with the placement. If this the case, then set
Tright = T otherwise set 1t = 7. Go to step 2.

Figure plots, for each value of n, the lower (1) and upper (r,) endpoints
of the 95% confidence intervals yielded by the 20 estimates of the minimum
range provided by the above experiments.

We repeated the above procedure to estimate the minimum ranges 7¢. and 14,
which guarantee connectivity of BT(rs, 3) and BT(r4., 2, 1), respectively, so to

The implemented code makes use of the Boost Graph Libraries [121] for computing the number
of connected components and for performing a breadth first search of a graph.

5.4 EXPERIMENTS

’ n ‘ [le} Tub] ‘ Tsc Tdc

10000 | [0.0247868;0.0258708] | 0.0251758 | 0.0253024
20000 | [0.0174184;0.0182865] | 0.0178253 | 0.0177519
30000 | [0.0144605;0.0151994] | 0.0146205 | 0.0149556
40000 | [0.0126296;0.0131409] | 0.0129900 | 0.0126957
50000 | [0.0111809;0.0115222] | 0.0115894* | 0.0112902
60000 | [0.0103549;0.0106147] | 0.0105789 | 0.0108026*
70000 | [0.0095643;0.0098931] | 0.0097572 | 0.0098735
80000 | [0.0090486;0.0092731] | 0.0092001 | 0.0091857
90000 | [0.0084843;0.0088834] | 0.0087328 | 0.0087249
100000 | [0.0081272;0.0083245] | 0.0082948 | 0.0082109
110000 | [0.0077308;0.0080951] | 0.0078290 | 0.0080540
120000 | [0.0073631;0.0075985] | 0.0076215% | 0.0075632
130000 | [0.0070734;0.0072776] | 0.0072350 | 0.0072433
140000 | [0.0068810;0.0071065] | 0.0069794 | 0.0070066
150000 | [0.0066020;0.0069010] | 0.0068197 | 0.0067747
160000 | [0.0063759;0.0065772] | 0.0066330* | 0.0066525*

170000 | [0.0063293;0.0066083] | 0.0063751 | 0.0063459

Table 5.2: Comparison between the ranges 1s. and 14, which guarantee connectivity for
BT(rg,3) and BT (rgc, 2, 1), and the 95% confidence intervals for the minimum
range that guarantees connectivity for the visibility graph. Starred values
highlight outliers.

appreciate whether there is a significant discrepancy between these minimum
ranges and the one obtained for the visibility graph. As before, the binary search
procedure has been repeated 20 times. At each execution of Step 3, we check
whether connectivity is achieved for all of 50 graphs, each obtained by a random
placement of n nodes and the neighbor selection protocol, and restrict the search
interval accordingly.

Table reports, for each value of n, the confidence interval [ry,; Typ] for the
minimum range of the visibility graph, and the values of rs. and 14, averaged
over the 20 estimates. According to these experiments, 15 is very close to
T (always within 4% for all values of n) and it is almost always within the
confidence interval itself (apart from the three starred cases). Also, 4. features a
very similar similar behavior. In fact, interestingly, connectivity of BT(r(n),2,1)
does not seem to require that r(n) € Q(/1/n¢€) as implied by the analysis, since
it is attained for values of r(n) close to Ty,.

In a second set of experiments we measured the maximum degree of the
graphs BT(r(n),3) and BT(r(n),2,1), and of the visibility graph with visibility

169

170

BLUETOOTH AD HOC NETWORKS

Maximum degree

PP S— S— Sy S S
e e

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
Number of nodes (x 1000)

-®- Visibility graph -®- Single choice Double choice

Figure 5.15: Comparison of the average maximum degree of BT (r(n), 3), BT(r(n),2,1),
and of the visibility graph with range v(n)

range 1(n), where r(n) is chosen to be an approximation of the smallest value
which guarantees connectivity in all three cases. In particular, the average
maximum degrees have been computed over 50 random placements for which
the values (v + 14p)/2, Tsc, and 14, respectively, guaranteed connectivity of
the corresponding graphs. The results of these experiments are depicted in
Figure for each value of n. It can be seen that BT(r(n), 2, 1) exhibits a slightly
smaller maximum degree than BT (r(n), 3), and, clearly, both graphs have a much
smaller maximum degree than the visibility graph whose expected maximum
degree can be analytically shown to be ©(Inn) when r(n) = O(y/(Inn)/n).
One last set of experiments concerned the estimation of the average diameter
of BT(r(n),3) and BT(r(n),2,1), and of the visibility graph with visibility range
r(n), where r(n) is chosen as in the previous experiments. In order to avoid
expensive all-pairs shortest paths computations, we have chosen to approximate
the diameter as twice the maximum height of 30 breadth-first search trees rooted
at randomly chosen nodes. The results of these experiments are depicted in
Figure once again reporting, for each n the averages over 50 estimates. It
can be seen that BT(r(n),3) has a diameter which is smaller than the one of
BT(r(n),2,1), and not considerably larger than the one of the visibility graph.

5.5 CONCLUSIONS

Diameter
N
[=3
o

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
Number of nodes (x 1000)

-®- Visibility graph -®- Single choice Double choice

Figure 5.16: Comparison of the average diameter of BT(r(n),3), BT(r(n),2,1), and the
visibility graph with range r(n)

5.5 CONCLUSIONS

In this chapter we have analyzed th Bluetooth technology which is a perfect ex-
ample of ad hoc network. We have described the BSF protocols to the motivations
which have guided us to the main result contained in this chapter.

The main theoretical contribution of this chapter is a proof of connectivity
for the Bluetooth graph when the visibility range r(n) is a vanishing function
of the number n of nodes and each node selects only a logarithmic number
of neighbors with respect to 1/r(n). Also, we introduce and analyze a novel
neighbor selection protocol based on a double choice mechanism, which ensures
connectivity when a total of only three neighbors are selected by each node. In
this chapter we also reported the results of extensive experiments which validate
the theoretical findings. In fact, from the simulation results, we can conclude
that, within the range of 10000 to 170000 nodes, the three protocols seem to
be statistically indistinguishable for what concerns connectivity; on the other
hand, if the degree of a node is the main concern, then the protocols based
on the choice of fewer neighbors offer a substantial advantage, while if the
diameter is the main concern, then the visibility graph is slightly superior (recall
however that requiring each node to discover all of its visible neighbors may be
unfeasible in the practical Bluetooth scenario). From a theoretical point of view,
the experimental results substantiate that the best avenue for future research
is to tighten the bound on c(n) that guarantees connectivity of BT (r(n),c(n)),

171

172 BLUETOOTH AD HOC NETWORKS

since it appears that the double choice protocol (which is in fact of limited
practical applicability) does not provide any significant advantage in practice.

CONCLUSIONS

In this thesis we have dealt with algorithmic, simulative and experimental
aspects of dynamic networks. We have considered as dynamic all the networks in
which the dynamism is caused directly by the intrinsic nature of such networks.
Specifically, we have worked on two specific types of dynamic networks: peer-to-
peer networks and mobile ad hoc networks.

In P2P networks, the dynamism is generated by the fact that such networks
are designed to let a large number of nodes (peers) cooperate in order to perform
some kind of task. Such a task is usually giving benefits to the whole network.
However, the involvement of a peer in a P2P network is not mandatory. A peer
can freely decide to leave the network whenever it wants to. This makes the
network highly dynamic, since it may be subjected to a high churn of nodes
joining and leaving the system.

In such a scenario, it is thus important to face this dynamism with the right
instruments. Distributed hash tables (in short DHT) are one of these instruments.
DHTs are becoming more and more popular in the P2P area. In this thesis we
have given a tangible demonstration of the fact that the usage of a DHT in a P2P
system, can noticeably improve its performance. We have seen that providing a
preexisting P2P framework like JXTA with a pure DHT protocol like Chord, can
increase the overall performance in terms of lookup for shared resources up to
one order of magnitude.

In MANETs, the dynamism is generated by the capability of movement of
the devices participating in the formation of the ad hoc network. The topology
of a MANET is continuously changing, therefore studying its features is ex-
tremely challenging. It is then important to have both practical and theoretical
instruments to model the behavior of MANETs and good metrics to measure
the most important parameters influencing such systems. This thesis contains
results from both the areas of the study of MANETSs, practical and theoretical.

The most popular instruments which simulate the movement of wireless
devices composing a MANET are the mobility models. Because of the difficulty
to obtain concrete traces from the real world, there has been a lot of interest
in synthetic mobility models, which are not trace-driven. We have given an
overview of such mobility models and we have shown a practical tool, MOMOSE,
which allows to simulate the behavior of such a complex system. The importance
of having such an extensible instrument to cover the large number of existing
mobility models is twofold: at first, it gives the possibility to simulate and study
a wide range of phenomena connected to the MANETSs; at second, it gives the

173

174

CONCLUSIONS

possibility to explore the characteristics of the existing mobility models in order
to improve them and in order to design new models.

We have finally covered one of the most popular technologies used to build
MANETSs, the Bluetooth technology. Specifically, we have focused on the device
discovery phase of the construction of the Bluetooth topology. In this area
the main contribution has been theoretical and experimental. Indeed, we have
provided both analytical and experimental evidence that when the visibility
range of each node is limited to a vanishing function of the total number of
nodes in the system, full connectivity can still be achieved with high probability
by letting each node connect only to a “small” number of its visible neighbors.
The connection to the fewer number of neighbors possible means a fastest
reconfiguration of the system. This is clearly a fundamental property in a mobile
system like a MANET.

LIST OF FIGURES

[Figure 1.1 Network classification according size| 3

[Figure 1.2 A small example of overlay network,| 5

[Figure 1.3 An infrastructured WLAN, continuous lines represent |
| wired links, dashed ones represent wireless links| 7

[Figure 1.4 A schematic representation of an ad hoc network| 9

[Figure 2.1 Abstraction of the P2P overlay network architecture| 12
[Figure 2.2 Unstructured topology of an overlay network.| 13

[Figure 2.3 Flooding over unstructured topology| 14

[Figure 2.4 Random walk over unstructured topology.,| 14

[Figure 2.5 Gnutella ultra-peers structure| 16

[Figure 2.6 Routing of a search query in Freenet| 17

[Figure 2.7 Phases of connection of BitTorrent.| 19

[Figure 2.8 Regions where one-hop and multi-hop approaches should |
[be used ([12]).| 21

[Figure 2.9 Hierachical overlay P2P network. The g; are the bottom- |
| level groups| 21

[Figure 2.10 PRR neighbor table with b = 1| 24

[Figure 2.11 PRR search tree with b =4 and k =6 26

[Figure 2.12 Example of CAN in a 2-dimensional space [0, 1] x [0, 1]| 28
[Figure 2.13 CAN routing in a 2-dimensional space| 29

[Figure 2.14 Join of a new node x associated with point P, node j is the |
[introducer| 30

[Figure 2.15 Departure of node s, the zone of node t is merged with |
[the unowned zone| 30

[Figure 2.16 Departure of node 1, node n temporary takes care of the |
| unowned zone (the merge is not possible)] 31

[Figure 2.17 A state of a node in Pastry where b = 2 and | = 6, the red |
| digit is the position relative to the level, the underlined |
| text 1s the prefix shared with the nodeld| 33

[Figure 2.18 Example of node lookup in a Kademlia network where |
[k=3, m=>5and a = 3, node 30 looks for node 8§ 37

[Figure 2.19 Kelips structure from the point of view of node 105 con- |

tained in the i-th affinity group, here ¢ = 3. On the right

we represented the k — 1 foreign affinity groups. Observe

that we reported only the contacts of the node,| 39

175

176

LIST OF FIGURES

[Figure 2.20 An example of random landmarking in a MANET with
| N = 128 and K = 4, each color is relative to a different
| cluster, the numbers are written over the current landmark
| node 42

[Figure 3.1 The JXTA protocols stack.| 54

[Figure 3.2 The JXTA layer architecture| 55

[Figure 3.3 JXTA publication process| 57

[Figure 3.4 JXTA search process| 58

[Figure 3.5 JXTA search process having success thanks to replica-
I tion| 59

[Figure 3.6 JXTA search process using the limited range walker| 59
[Figure 3.7 Finger tables for a chord ring with m = 3, green nodes are
[active| 61

[Figure 3.8 Chord store process| 63

[Figure 3.9 Chord search process| 63

[Figure 3.10 Pseudo-UML representation of the rpv package| 68
[Figure 3.11 PeerViewElement schema| 69

[Figure 3.12 Pseudo-UML representation of the walker implementa-
[tion| 74

[Figure 3.13 A walk schema,| 75

[Figure 3.14 Query schema. 76

[Figure 3.15 Finger table entry implementation| 8o

[Figure 3.16 The join process, in the boxes there are the operations
| performed when the message is received.| 82

[Figure 3.17 Finger table visibility interval.| 84

[Figure 3.18 Average lookup time (milliseconds) in static, “gentle” dy-
| namic and “abrupt” dynamic environment| 94

[Figure 3.19 Average RAM usage percentage comparison 1n static, “gen-
| tle” dynamic and “abrupt” dynamic environment| 95
[Figure 3.20 Average CPU time usage percentage in static, “gentle”
| dynamic and “abrupt” dynamic environment| 96
[Figure 3.21 Average dropped query percentage comparison in static,
| “gentle” dynamic and "abrupt” dynamic environment.| 97
[Figure 3.22 RAM usage percentage in a rendezvous peer (sampled
| each 5 seconds) in a “gentle” dynamic environment| 100
[Figure 4.1 A torus| 109

[Figure 4.2 The values of the mean value of 0 assumed when a node
| approaches to the border of the simulation area| 111
[Figure 4.3 Movements of five nodes following the column model, 112
[Figure 4.4 Movements of nodes following the nomadic model| 113
[Figure 4.5 Movements of nodes following the pursue model| 114
[Figure 4.6 Movements of nodes following the RPGM model| 115

[Figure 4.7

Movements of nodes following the city modell 116

LIST OF FIGURES

[Figure 4.8

A graphical representation of the simulation area of the

[Manhattan modell 116

[Figure 4.9 An example of the simulation area of the obstacle model| 117
[Figure 4.10 The virtual track model simulation area, the big circles are |
| the switch stations connected through the virtual tracks, |
| the black spots are nodes in groups, the grey spots are the |
| single nodes| 118

[Figure 4.11 The MOMOSE tlow diagram| 120

[Figure 4.12 The simulation and mobility model configuration win- |
[dows| 122

[Figure 4.13 The simulation window| 123

[Figure 4.14 The OpenGL player| 124

[Figure 4.15 A comparison of the average execution time of the Java |
[and the C++ engines with respect to the number of nodes |
| (on the left) and with respect to the simulation time (on |
| the right, in a logarithmic scale)| 128

[Figure 4.16 A comparison of CanuMoboSim, Sinalgo, and MOMOSE |
| with respect to the simulation execution time (7200 simu- |
| lated seconds and increasing number of nodes)| 130

[Figure 4.17 A comparison of CanuMoboSim, Sinalgo, and MOMOSE |
| with respect to the simulation execution time (increasing |
[simulated time and 200 nodes)] 131

[Figure 4.18 Experimental results on the topology change rate of two |
| ditferent mobility models| 133

[Figure 5.1 The Bluetooth architecture| 136

[Figure 5.2 Bluetooth piconets with parked nodes (b) and without |
I (@) 137

[Figure 5.3 Bluetooth packet structure| 139

[Figure 5.4 A Bluetooth scatternet| 142

[Figure 5.5 The BTCP protocol execution sequence| 145

[Figure 5.6 The Bluetrees protocol execution sequence.| 147

[Figure 5.7 The distributed Bluetrees protocol execution sequence.| 149
[Figure 5.8 The BlueStars protocol execution sequence.| 152

[Figure 5.9 The Yao construction.| 153

[Figure 5.10 The Florence’s historic center scenario used while evaluat- |
| ing the Blue Pleiades protocol| 155

[Figure 5.11 Number of connected components of the BT topology for |
| some values of ¢, as the number of nodes increases for |
| four different values of transmission range.| 157

[Figure 5.12 Percentage of nodes included into the biggest connected |

component for some values of c, as the number of nodes in-

creases for four different values of transmission range.| 158

178

LIST OF FIGURES

Figure 5.13 The tessellated unit square with k = r*(/f) | 161
igure 5.14 The 95% contfidence intervals of the minimum range of the |

L

visibility graph] 168

[Figure 5.15 Comparison of the average maximum degree of BT (r(n), 3), |
[BT(r(n),2,1), and of the visibility graph with range r(n)|
igure 5.16 Comparison of the average diameter of BT (r(n), 3), BT(r(n),2,1 D]

and the visibility graph with range r(n)|

BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

V. PaxsoN. End-to-end routing behavior in the internet. IEEE/ACM Trans.
Netw., vol. 5(5):pp. 601615, 1997. (Cited on page3})

R. GoviNDAN and A. REDDY. An analysis of internet inter-domain topology
and route stability. In INFOCOM ’97: Proceedings of the INFOCOM ’97.
Sixteenth Annual Joint Conference of the IEEE Computer and Communications
Societies. Driving the Information Revolution, p. 850. IEEE Computer Society,
Washington, DC, USA, 1997. (Cited on page)

R. V. OLIVEIRA, B. ZHANG, and L. ZHANG. Observing the evolution of
internet as topology. In SIGCOMM ’o7: Proceedings of the 2007 conference
on Applications, technologies, architectures, and protocols for computer com-
munications, pp. 313-324. ACM, New York, NY, USA, 2007. (Cited on
page[3})

Y. Kg, L. DENG, W. NG, and D.-L. LEe. Web dynamics and their ramifi-
cations for the development of web search engines. Computer Networks,
vol. 50(10):pp. 1430 — 1447, 2006. 1. Web Dynamics. (Cited on page[4])

S. B. HANDURUKANDE, A.-M. KERMARREC, F. L. FEssaNT, L. MASSOULIE,
and S. PATARIN. Peer sharing behaviour in the edonkey network, and
implications for the design of server-less file sharing systems. In EuroSys,

pp. 359-371. 2006. (Cited on page4})

K. ZrANG, N. ANTONOPOULOS, and Z. MAHMOOD. A review of incentive
mechanisms in peer-to-peer systems. In Proceedings of The First International
Conference on Advances in P2P Systems, AP2PS2009, pp. 45-50. 2009. (Cited

on page[4)

E. K. Lua, J. CRowcROFT, M. P1as, R. SHARMA, and S. LiMm. A survey and
comparison of peer-to-peer overlay network schemes. IEEE Communications
Surveys and Tutorials, vol. 7:pp. 72-93, 2005. (Cited on page|[11})

A. 1Asz1Lo BArRABASI, R. ALBERT, and H. JEONG. Scale-free characteristics
of random networks: The topology of the world-wide web, 2000. (Cited

on page 15})

L. L1, D. ALDERSON, R. TANAKA,]. C. DoyLg, and W. WILLINGER. Towards
a theory of scale-free graphs: Definition, properties, and implications
(extended version), Oct 2005. URL http://arxiv.org/abs/cond-mat/
0501169. (Cited on page [15])

179

http://arxiv.org/abs/cond-mat/0501169
http://arxiv.org/abs/cond-mat/0501169

180

BIBLIOGRAPHY

[10] I. CLARKE, O. SANDBERG, B. WiLEY, and T. W. HoNG. Freenet: A distributed
anonymous information storage and retrieval system. Lecture Notes in
Computer Science, vol. 2009:pp. 46-??, 2001. (Cited on page|[17])

[11] J. E Burorp, H. Yu, and E. K. Lua. P2P Networking and Applications.
Morgan Kaufmann, 2008. (Cited on page [20])

[12] R. RopriGues and C. BLAKE. When multi-hop peer-to-peer lookup matters.
In IPTPS, Peer-to-Peer Systems 111, Third International Workshop, pp. 112-122.

2004. (Cited on pages and [175])

[13] L. GarcEes-ERIcE, E. Biersack, P. A. FELBER, K. W. Ross, and G. Urvoy-
KeLLER. Hierarchical peer-to-peer systems. In in: Proceedings of ACM/IFIP
International Conference on Parallel and Distributed Computing (Euro-Par, pp.

643-657. 2003. (Cited on page [21])

[14] E. MEsHKOVA,]. RitHIJARvVI, M. PETROVA, and P. MAHONEN. A survey
on resource discovery mechanisms, peer-to-peer and service discovery
frameworks. Comput. Netw., vol. 52(11):pp. 2097—2128, 2008. (Cited on

page [22])

[15] C. G. PLaxTON, R. RAJARAMAN, and A. W. RicHA. Accessing nearby copies
of replicated objects in a distributed environment. In SPAA, pp. 311-320.

1997. (Cited on pages and 27})

[16] A. W. RicHA and C. ScHEIDELER. Overlay networks for peer-to-peer
networks. In T. GonzALEs, editor, Handbook of Approximation Algorithms
and Metaheuristics. 2005. (Cited on page [24])

[17] S.Ratnasamy, PFrancis, M.HANDLEY, R.KARP, and S.SCHENKER. A scal-
able content-addressable network. In Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols for computer communica-

tions, pp. 161-172. 2001. (Cited on pages and [49])

[18] A.I T. RowsTrON and P. DRUSCHEL. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In Middleware,

pp- 329-350. 2001. (Cited on pages[32|and [34])

[19] P. DruscHEL and A. I. T. RowsTRON. Past: A large-scale, persistent peer-
to-peer storage utility. In HotOS, pp. 75-80. 2001. (Cited on page [32})

[20] A. L T. RowsTrON and P. DRUSCHEL. Storage management and caching
in past, a large-scale, persistent peer-to-peer storage utility. In SOSP, pp.
188—201. 2001. (Cited on page [32})

[21] P. Maymounkov and D. Mazikres. Kademlia: A peer-to-peer information
system based on the xor metric. In IPTPS, pp. 53-65. 2002. (Cited on

pages and)

BIBLIOGRAPHY

[22] L. Gurta, K. P. BIRMAN, P. LINGA, A.]. DEMERS, and R. vaN RENESSE. Kelips:
Building an efficient and stable p2p dht through increased memory and
background overhead. In IPTPS, pp. 160-169. 2003. (Cited on page 38])

[23] D. KARGER, E. LEHMAN, T. LEIGHTON, R. PANIGRAHY, M. LEVINE, and
D. LEwiN. Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the world wide web. In STOC ‘97:
Proceedings of the 29th annual ACM symposium on Theory of computing, pp.

654-663. 1997. (Cited on pages 38 and [60])

[24] R. VAN RENESsE, Y. MiNsky, and M. HAYDEN. A gossip-style failure
detection service. Tech. rep., Cornell University, Ithaca, NY, USA, 1998.

(Cited on page[40])

[25] T. ZAHN and]. ScHILLER. MADPastry: A DHT Substrate for Practicably
Sized MANETs. In Proc. of 5th Workshop on Applications and Services in
Wireless Networks (ASWN2005). Paris, France, June 2005. (Cited on page)

[26] E. M. BELDING-ROYER and C. E. PERKINS. Multicast operation of the ad-hoc
on-demand distance vector routing protocol. In MOBICOM, pp. 207-218.

1999. (Cited on page[42])

[27] R. WINTER, T. ZAHN, and J. H. ScHILLER. Random landmarking in mobile,
topology-aware peer-to-peer networks. In FTDCS, pp. 319-324. 2004.

(Cited on pages[42|and [43])

[28] C. NoceNTINI, P. CRESCENZI, and L. LaANzI. Performance evaluation of
a chord-based jxta implementation. In Proceedings of the 1st International
Conference on Advances in P2P Systems AP2PS2009, pp. 7-12. 2009. (Cited

on page [47])

[29] Aeolus: Algorithmic principles for building efficient overlay computers
official web site. http://aeolus.ceid.upatras.gr/. (Cited on page [47})

[30] B. Traversat, M. AsBDELAZIZ, and E. Pouvour. Project
jxta: A loosely-consistent dht rendezvous walker.
http:/ /research.sun.com/spotlight/misc/jxta-dht.pdf, 2003. (Cited

on pages [48 and [67})

[31] N. Jiang, C. Scamipt, V. MATOSSIAN, and M. PARASHAR. Enabling ap-
plications in sensor-based pervasive environments. In Proceedings of the
1st Workshop on Broadband Advanced Sensor Networks (BaseNets 2004). 2004.

(Cited on page[48])
[32] METEOR. jxta-meteor official web site. https:/ /jxta-meteor.dev.java.net/.

(Cited on page[48])

181

182

BIBLIOGRAPHY

[33] D. KaTo. Gisp: Global information sharing protocol “a distributed index
for peer-to-peer systems”. In Proceedings of the 2nd International Conference
on Peer-to-Peer Computing (P2P’02), p. 65. 2002. (Cited on page [49])

[34] N. THEODOLOZ. DHT-based Routing and Discovery in [XTA. Master’s thesis,
School of Computer and Communication Sciences Swedish Institute of
Computer Science, 2004. (Cited on page [49})

[35] E. HaLEPOVIC. Performance Evaluation and Benchmarking of the JXTA Peer-To-
Peer Platform. Master’s thesis, University of Saskatchewan, 2004. (Cited on

page[491)

[36] E. HaLEPoOvIC and R. DETERS. The costs of using jxta. In Third International
Conference on Peer-to-Peer Computing (P2P’03), p. 160. 2003. (Cited on

page [49})

[37] E. HAaLEPOVIC, R. DETERS, and B. TRAVERSAT. Performance evaluation of
jxta rendezvous. In LNCS, vol. 3291, On the Move to Meaningful Internet
Systems 2004: CooplS, DOA, and ODBASE, pp. 1125-1142. 2004. (Cited on

pages 49| and [92])

[38] JxTABENCHMARKING. jxta-benchmarking official web site. https:/ /jxta-
benchmarking.dev,java.net/. (Cited on page [49})

[39] L. Stoica, R. Morris, D. KARGER, F. KaAAsHOEK, and H. BALAKRISHNAN.
Chord: A scalable peer-to-peer lookup service for internet applications. In
SIGCOMM ’o1: Proceedings of the 2001 conference on Applications, technologies,
architectures, and protocols for computer communications, pp. 149—160. 2001.

(Cited on pages o] and [61})

[40] L. Stoica, R. Morris, D. L1BEN-NOWELL, D. R. KARGER, M. F. KAASHOEK,
F. DaBEK, and H. BALAKRISHNAN. Chord: A scalable peer-to-peer lookup
service for internet applications. IEEE/ACM Transaction on networking,

vol. 11(1):pp. 17-32, 2003. (Cited on pages[60|and [61])

[41] D. BRoOksHIER, D. Govont, N. KrisHNAN, and J. C. Soto. [XTA: Java P2P
Programming. Sams Publishing, 2002. (Cited on page[67})

[42] J. D. GRaDECKI. Mastering JXTA: Building Java Peer-to-Peer Applications.
Wiley, 2002. (Cited on page [67])

[43] S. Oaks, B. TRAVERSAT, and L. GoNG. JXTA in a nutshell. O’Reilly, 2002.
(Cited on page[67])

[44] B. WiLsoN. JXTA. New Riders Publishing, 1 ed., 2002. (Cited on page[67})

BIBLIOGRAPHY

[45] B. TRAVERSAT, A. ARORA, M. ABDELAZIZ, M. Duicou, C. HaAywoop, J.-C.
Hucty, E. PouyouL, and B. YEAGER. Project jxta 2.0 super-peer virtual
network. http:/ /research.sun.com/spotlight/misc/jxta.pdf, 2003. (Cited

on page[67])

[46] C. NoceNTINI. Jxtach official web site. http://www.dsi.unifi.it/ no-
centin/jxtach/. (Cited on page[102])

[47] S. Boschi, M. D1 Iann1, P. CRescenzi, G. Rosst, and P. Vocca. Momose: a
mobility model simulation environment for mobile wireless ad-hoc net-
works. In Simutools ‘08: Proceedings of the 1st international conference on Sim-
ulation tools and techniques for communications, networks and systems & work-
shops, pp. 1—10. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium,

2008. (Cited on pages[105|and [127])

[48] S. Boschi, P. CresceNzi, M. D. IannN1, C. NoceNTINI, G. Ross1, and
P. Vocca. Momose: A mobility model simulation environment for mobile
wireless ad-hoc networks. unpublished. (Cited on page[105])

[49] J. Capka and R. BoutaBa. A mobility management tool-the realistic
mobility model. In Wireless And Mobile Computing, Networking And Com-
munications, 2005. (WiMob’2005), IEEE International Conference on, vol. 2, pp.
242-246 Vol. 2. Aug. 2005. (Cited on page [106])

[50] W. FELLER. An Introduction to Probability Theory and its Applications, Volume 1.
Wiley, 1968. (Cited on page [106])

[51] B. D. HuGHEs. Random walks and random environments. Oxford University
Press, 1995. (Cited on page [106])

[52] S. PoLya. Uber eine aufgabe der wahrscheinlichkeitstheorie betreffend
die irrfahrt im strassennetz. Mathematische Annalen, vol. 84(1):pp. 149-160,

1921. (Cited on page[106])

[53] P. R&vEsz. Random walk in random and non-random environments. World
Scientific, 1990. (Cited on page [106])

[54] D. B. JounsoN and D. A. MaLrz. Dynamic source routing in ad hoc
wireless networks. Mobile Computing, 1996. (Cited on page [106})

[55] C. BETTSTETTER. Mobility modeling in wireless networks: categorization,
smooth movement, and border effects. SIGMOBILE Mob. Comput. Commun.

Rev., vol. 5(3):pp. 55-66, 2001. (Cited on page[106])

[56] E. ROYER, P. MELLIAR-SMITH, and L. MOSER. An analysis of the optimum
node density for ad hoc mobile networks. In Communications, 2o001. ICC

183

184

BIBLIOGRAPHY

2001. IEEE International Conference on, pp. 857-861 vol.3. 2001. (Cited on
pages[106 and [108])

[57] T. Camp, J. BOLENG, and V. Davies. A survey of mobility models for
ad hoc network research. Wireless Communications & Mobile Computing
(WCMC): Special issue on Mobile Ad Hoc Networking: Research, Trends and
Applications, vol. 2:pp. 483-502, 2002. (Cited on pages [106| (108} [109} [111}
[112] 113} and [114})

[58] X. Hong, M. GErLA, G. PEIL, and C. cHUAN CHIANG. A group mobility
model for ad hoc wireless networks. In Proc. ACM Intern. Workshop on
Modeling, Analysis, and Simulation of Wireless and Mobile Systems, pp. 53—60.
1999. (Cited on pages (106} [111} [114} and [121])

[59] M. SANCHEZ and P. MANZONI. A java-based ad hoc networks simulator.
In SCS Western Multiconference Web-based Simulation Track. San Francisco,
January 1999. (Cited on pages[106} [112} and [113])

[60] A.P.JarposH, E. M. BELDING-ROYER, K. C. ALMEROTH, and S. SURI. Real-
world environment models for mobile network evaluation. IEEE Journal
on Selected Areas in Communications, vol. 23(3):pp. 622632, 2005. (Cited on

page|[106})

[61] B. Zrou, K. Xu, and M. GERLA. Group and swarm mobility models for
ad hoc network scenarios using virtual tracks. In Military Communications
Conference, 2004. MILCOM 2004. IEEE, vol. 1, pp. 289—294 Vol. 1. Oct.-3

Nov. 2004. (Cited on page [106})

[62] C.-H. CHEN, H.-T. Wu, and K.-W. KEk. Flexible mobility models towards
uniform nodal spatial distribution and adjustable average speed. In
Vehicular Technology Conference, 2005. VIC-2005-Fall. 2005 IEEE 62nd, vol. 4,

pp. 2292-2296. Sept., 2005. (Cited on page[106])

[63] S. LM, C. Yu, and C. Das. Clustered mobility model for scale-free wireless
networks. In Local Computer Networks, Proceedings 2006 31st IEEE Conference
on, pp. 231-238. Nov. 2006. (Cited on page[106])

[64] M. MusoLEsl, S. HaiLes, and C. Mascoro. An ad hoc mobility model
founded on social network theory. In MSWiM o04: Proceedings of the 7th
ACM international symposium on Modeling, analysis and simulation of wireless
and mobile systems, pp. 20-24. ACM, New York, NY, USA, 2004. (Cited on

pages[106/and [133])

[65] M. ABDELHAFEZ, G. F. RiLEY, R. G. CoLE, and N. PHAMDO. Modeling and
simulations of tcp manet worms. In Proc. 21st International Workshop on
Principles of Advanced and Distributed Simulation, pp. 123—130. 2007. (Cited

on page|[106})

BIBLIOGRAPHY

[66] F. Bar and A. HELMY. A survey of mobility models, chap. 1. Springer, 2006.
(Cited on page[107})

[67] J. BRocH, D. A. MaLrtz, D. B. JoHNSsON, Y.-C. Hu, and J. G. JETCHEVA. A
performance comparison of multi-hop wireless ad hoc network routing
protocols. In MOBICOM, pp. 85-97. 1998. (Cited on page [108])

[68] Z. Haas. A new routing protocol for the reconfigurable wireless networks.
In Universal Personal Communications Record, 1997. Conference Record., 1997
IEEE 6th International Conference on, vol. 2, pp. 562-566 vol.2. Oct 1997.

(Cited on page [1o9})

[69] B. L1ANG and Z.]. HaAs. Predictive distance-based mobility management
for pcs networks. In INFOCOM, pp. 1377-1384. 1999. (Cited on page[110])

[70] V. ToLerY and V. ToLETY. Load reduction in ad hoc networks using mobile
servers. Master’s thesis at Colorado School of Mines, 1999. (Cited on

page|[t10})

[71] F. Bai, N. Sapacoran, and A. HELmy. Importan> a framework to system-
atically analyze theimpact of mobility on performance of routing protocols
for adhoc networks. In INFOCOM 2003. Twenty-Second Annual Joint Confer-
ence of the IEEE Computer and Communications. IEEE Societies, vol. 2. March-3

April 2003. (Cited on page[115])

[72] C.-H. CrEN, H.-T. Wy, and K.-W. KE. General ripple mobility model: A
novel mobility model of uniform spatial distribution and diverse average
speed. IEICE Transactions on Communications, vol. 91-B(7):pp. 22242233,

2008. (Cited on page[119})
[73] K. FaLL and K. VARADHAN. The ns Manual, 2007. (Cited on page [120})

[74] E. HyytiA, H. KoskiNEN, P. LassiLA, A. PENTTINEN, J. Roszik, and J. VIrR-
TAMO. Random waypoint model in wireless networks. Networks and
Algorithms: complexity in Physics and Computer Science, June 2005.

(Cited on page [120])

[75] G. LN, N. G, and R. RaJaARAMAN. Mobility models for ad hoc network
simulation. In INFOCOM 2004. Twenty-third Annualjoint Conference of the
IEEE Computer and Communications Societies, vol. 1, pp. 454—463. March

2004. (Cited on page[120])

[76] M. Woo, J. NEIDER, and T. Davis. OpenGL Programming Guide: The official
guide to learning OpenGL. Addison Wesley, 2003. (Cited on page [120})

[77] D. SHUKLA. Mobility models in ad-hoc networks. KReSIT-IIT, November
2001. (Cited on pages[121]and [122])

185

186 BIBLIOGRAPHY

[78] C. BETTSTETTER. Smooth is better than sharp: a random mobility model
for simulation of wireless networks. In MSWIM ‘o1: Proceedings of the 4th
ACM international workshop on Modeling, analysis and simulation of wireless
and mobile systems, pp. 19-27. ACM, New York, NY, USA, 2001. (Cited on

page[121})

[79] J. T1aN, J. HAHNER, C. BECKER, I. STEPANOV, and K. ROTHERMEL. Graph-
based mobility model for mobile ad hoc network simulation. In Simulation
Symposium, 2002. Proceedings. 35th Annual, pp. 337-344. April 2002. (Cited

on page [125])

[80] H. Fucns, Z. M. KEpeM, and B. E. NAYLOR. On visible surface generation
by a priori tree structures. In SIGGRAPH ’8o: Proceedings of the 7th annual
conference on Computer graphics and interactive techniques, pp. 124-133. ACM,
New York, NY, USA, 1980. (Cited on page [127})

[81] The network simulator ns-2. http://www.isi.edu/nsnam/ns/. (Cited on
page|[129])

[82] GLoMoSiM. Global mobile information systems simulation library.
http:/ /pcl.cs.ucla.edu/projects/glomosim/. (Cited on page[129])

[83] GTNETS. http://www.ece.gatech.edu/research/labs/MANIACS/GTNetS/.
(Cited on page[129])

[84] Omnet++. http://www.omnetpp.org/index.php. (Cited on page[129])

[85] Mobility framework for omnet++. http://mobility-fw.sourceforge.net/.
(Cited on page[129})

[86] I. STEPANOV, J. HAHNER, C. BECKER, J. TraN, and K. ROTHERMEL. A meta-
model and framework for user mobility in mobile networks. In Networks,
2003. ICON2003. The 11th IEEE International Conference on, pp. 231-238.

Sept.-1 Oct. 2003. (Cited on page[129])

[87] Sinalgo - simulator for network algorithms.
http:/ /dcg.ethz.ch/projects/sinalgo/. (Cited on page[129])

[88] I. O. FOR STANDARDIZATION. Intelligent transport systems - geographic
data files (gdf) - overall data specification. ISO 14825:2004, 2004. (Cited on

page [130})

[89] P. BErcamo and G. MAzziNI. Localization in sensor networks with fading
and mobility. In Proc. 13th IEEE International Symposium on Personal, Indoor
and Mobile Radio Communications, pp. 750—754. 2002. (Cited on page[132})

BIBLIOGRAPHY

[9o] U. BrRanDEs and T. ERLEBACH. Network Analysis: Methodological Foundations
(Lecture Notes in Computer Science), Lecture Notes in Computer Science, vol.
3418. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005. (Cited on

page[132})

[91] M. MusoLest and C. MascoLo. Designing mobility models based on social
network theory. SIGMOBILE Mob. Comput. Commun. Rev., vol. 11(3):pp.
5970, 2007. (Cited on page[133})

[92] S. P. BorGarTI and M. G. EvererT. Ecological and perfect colorings. Social
Networks, vol. 16(1):pp. 43 — 55, 1994. (Cited on page|[133})

[93] S. Xu, K. L. BLACKMORE, and H. M. JoNEs. An analysis framework for
mobility metrics in mobile ad hoc networks. EURASIP |. Wirel. Commun.

Netw., vol. 2007(1):pp. 2626, 2007. (Cited on page[133})

[94] X. PEREz-CostA, C. BETTSTETTER, and H. HARTENSTEIN. Toward a mobility
metric for comparable & reproducible results in ad hoc networks research.
SIGMOBILE Mob. Comput. Commun. Rev., vol. 7(4):pp. 58-60, 2003. (Cited

on page|[133})
[95] Momose. http:/ /sourceforge.net/projects/momose/. (Cited on page [134])

[96] P. CresceNzi, C. NOCENTINI, A. PIETRACAPRINA, G. Pucct, and C. SANDRI.
On the connectivity of bluetooth-based ad hoc networks. In Euro-Par, pp.

960—969. 2007. (Cited on page[135])

[97] P. CresceNzi, C. NOCENTINI, A. PIETRACAPRINA, and G. Puccr. On the
connectivity of bluetooth-based ad hoc networks. Concurrency and Com-
putation: Practice and Experience, vol. 21(7):pp. 875-887, 2009. (Cited on

page[135})

[98] R. WHITAKER, L. HODGE, and 1. CHLAMTAC. Bluetooth scatternet formation:
a survey. Ad Hoc Networks, vol. 3:pp. 403—450, 2005. (Cited on pages [135]

and [141})
[99] B.S. I Group. http://www.bluetooth.com. (Cited on pages[135and [141})

[100] I. StTopmENOVIC and N. ZaGuia. Bluetooth scatternet formation in ad hoc
wireless networks. In J. Misic and V. Misic, editors, Performance Modeling
and Analysis of Bluetooth Networks, pp. 147-171. Auerbach Publications,
2006. (Cited on pages[135} (136} and [159})

[101] S. Basagni, R. Bruno, G. MamBRINI, and C. PErrioLl. Comparative
performance evaluation of scatternet formation protocols for networks of
Bluetooth devices. Wireless Networks, vol. 10(2):pp. 197-213, 2004. (Cited

on pages and [159])

187

188

BIBLIOGRAPHY

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

R. KerTiIMUTHU and S. MUTHUKRISHNAN. Is Bluetooth suitable for large-
scale sensor networks? In Proc. of the 2005 Intl. Conf. on Wireless Networks,

PP 448-454. 2005. (Cited on page[135})

P. CHANDRA, D. M. DoBKIN, A. BENsSKY, R. OLExA, D. Lipg, and F. DowLA.
Wireless Networking: Know It All. Newnes, 2007. (Cited on page[136])

T. SALONIDIS, P. BHAGWAT, L. Tassturas, and R. O. LAMAIRE. Distributed
topology construction of bluetooth personal area networks. In INFOCOM,

pp. 1577-1586. 2001. (Cited on page[143])

T. SAaLoNIDIS, P. BHAGWAT, L. TAsstuLas, and R. O. LAMAIRE. Proximity
awareness and ad hoc network establishment in bluetooth. Tech. rep.,
University of Maryland, 2001. (Cited on page [144})

G. ZARUBA, S. BasacN1, and I. CHLAMTAC. Bluetrees-scatternet formation
to enable bluetooth-based ad hoc networks. In Communications, 2001. ICC
2001. IEEE International Conference on, vol. 1, pp. 273—277 vol.1. Jun 2001.

(Cited on page[146})

C. PetrIOLL S. BASAGNT, and I. CHLAMTAC. Configuring bluestars: Multi-
hop scatternet formation for bluetooth networks. IEEE Trans. Computers,

vol. 52(6):pp. 779-790, 2003. (Cited on pages and [151])

X.-Y. L1, I. StoypmENOVIC, and Y. WANG. Partial delaunay triangulation
and degree limited localized bluetooth scatternet formation. IEEE Trans.
Parallel Distrib. Syst., vol. 15(4):pp. 350-361, 2004. (Cited on page[151})

A. C. Yao. On constructing minimum spanning trees in k-dimensional
spaces and related problems. Tech. rep., Stanford University, Stanford,
CA, USA, 1977. (Cited on page[151})

D. P. DuBHasHI, O. HAGGSTROM, G. MAMBRINI, A. PANCONESI, and
C. PerrioL1. Blue pleiades, a new solution for device discovery and
scatternet formation in multi-hop bluetooth networks. Wireless Networks,

vol. 13(1):pp. 107-125, 2007. (Cited on page|[154})

F. FErRrAGUTO, G. MAMBRINI, A. PANCONESI, and C. PETRIOLI. A new
approach to device discovery and scatternet formation in Bluetooth net-
works. In Proc. of the 18th International Parallel and Distributed Processing
Symposium, pp. 221-228. 2004. (Cited on page|159})

M. J. P. AppeL and R. P. Russo. The connectivity of a graph on uniform
points on [0, 1]4. Statistics & Probability Letters, vol. 60(4):pp. 351-357, 2002.

(Cited on pages [159|and [160])

BIBLIOGRAPHY

[113] P. Gupta and P. R. KuMAR. Stochastic Analysis, Control, Optimization and
Applications: A Volume in Honor of W. H. Fleming, chap. Critical power for
asymptotic connectivity in wireless networks, pp. 547-566. Birkhauser,

1999. (Cited on page[159])

[114] M. D. PENROSE. Random Geometric Graphs. Oxford University Press, New
York, USA, 2003. (Cited on page[159})

[115] D. DuBHaAsHI, C. JoHANSSON, O. HAGGSTROM, A. PANCONESI, and M. Sozro.
Irrigating ad hoc networks in constant time. In Proc. of the 17th ACM Symp.
on Parallel Algorithms and Architectures, pp. 106—115. Jul. 2005. (Cited on

pages (159} 164} and [167})

[116] A. PANCONEsI and]. RADHAKRISHNAN. Expansion properties of (secure)
wireless networks. In Proc. of the 16th ACM Symp. on Parallel Algorithms
and Architectures, pp. 281-285. 2004. (Cited on page[159})

[117] R. ErLis, X. J1a, and C. YAN. On random points in the unit disk. Random
Structures and Algorithms, vol. 29(1):pp. 14-25, 2005. (Cited on page [160})

[118] I. AkyiLpiz, W. Su, Y. SANKARASUBRAMANIAM, and E. Cayirci. Wireless
sensor networks: a survey. Computer Networks, vol. 38:pp. 393—422, 2002.

(Cited on page [160})

[119] T. HaGerur and C. RUB. A guided tour of Chernoff bounds. Information
Processing Letters, vol. 33(6):pp. 305—308, Feb. 1990. (Cited on pages

and [164])

[120] T. Harr1s. The Theory of Branching Processes. Springer, Berlin, Germany,
1963. (Cited on page[164])

[121] J. G. SiEK, L. LEE, and A. LuMsDAINE. Boost Graph Library, The: User Guide
and Reference Manual. Addison Wesley Professional, Reading MA, Dec.

2001. (Cited on page [168])

[122] A. BoUKERCHE. Algorithms and Protocols for Wireless sensor networks. Wiley,
2009.

[123] A. BoukeERrcHE. Algorithms and Protocols for Wireless and Mobile Ad Hoc
Networks. Wiley, 2009.

[124] S. BasagNi, M.ConTr, S. GiIorDANO, and 1. StoymMmENOVIC. Mobile Ad Hoc
Networking. Wiley, 2004.

[125] JXTA. Jxta project official web site. http:/ /jxta.dev.java.net.

[126] CHORrD. Chord official web site. http://pdos.csail. mit.edu/chord/.

189

190

BIBLIOGRAPHY

[127] R. BaAGroDIA, M. TaKkAI Y. AN CHEN, X. ZENG, and]J. MARTIN. Parsec:
A parallel simulation environment for complex systems. IEEE Computer,

vol. 31:pp. 77-85, 1998.

[128] F. Bar, N. SapacoraN, and A. HELMY. User manual for important mobility
tool generators in ns-2 simulator. University of Southern California,
February 2004.

[129] D. DusnasHI, O. HAGGSTROM, G. MAMBRINI, A. PANCONESI, and C. PETRI-
OLI. Blue pleiades, a new solution for device discovery and scatternet
formation in multi-hop bluetooth networks. Wireless Networks, vol. 13(1):pp.
107-125, 2007.

[130] P. Joransson, M. KazaNntzipis, R. KAPoOR, and M. GErRLA. Bluetooth: an
enabler for personal area networking. Network, IEEE, vol. 15(5):pp. 28-37,
Sep/Oct 2001.

[131]]J. YooN, M. Liu, and B. NoBLE. Random waypoint considered harmful. In
INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer
and Communications. IEEE Societies, vol. 2, pp. 1312—1321 vol.2. March-3
April 2003.

[132] Mobigen. http://www.soe.ucsc.edu/"mmosko/mobigen/.
[133] The rice university monarch project. http://www.monarch.cs.rice.edu/.

[134] K. MuroTta and K. HIRADE. Gmsk modulation for digital mobile radio
telephony. Communications, IEEE Transactions on, vol. 29(7):pp. 1044-1050,
Jul 1981.

[135] Z. WANG, R. J. THOMAS, and Z. J. HaAs. Bluenet - a new scatternet
formation scheme. In HICSS, p. 61. 2002.

	Dynamic Networks
	Wired Networks
	Wireless Networks
	Infrastructure based networks
	Infrastructureless networks: Ad hoc networks
	Mobile Ad hoc networks

	Peer to peer networks
	Introduction to P2P overlay networks
	Unstructured P2P Overlay Networks
	Communicating in an unstructured network
	Modeling unstructured networks
	Applications based on unstructured overlay networks

	Structured P2P Overlay Networks
	A taxonomy for structured P2P overlay networks
	Examples of structured P2P overlay networks

	JXTACh
	Introduction
	Related work
	Understanding JXTA and Chord
	JXTA
	Chord

	JXTA rendezvous service reverse engineering
	The Rendezvous Peer View
	The Shared Resource Distributed Index
	The Walker

	JXTACh design and implementation
	The distributed hash table
	The distributed index
	The walker
	A simple utility class

	Experimentation phase
	Static case
	Dynamic case with gentle disconnections
	Dynamic case with abrupt disconnections
	Incidence of negative queries

	Conclusions

	Mobile ad hoc networks simulation: MOMOSE
	Introduction
	Mobility models overview
	Random based mobility models
	Mobility models with temporal dependency
	Mobility models with spatial dependency
	Mobility models with geographical restrictions

	A Description of MOMOSE Features
	The Software Architecture and the Simulation Execution Flow
	Extending MOMOSE

	Java and C++ Performance Comparison
	Related Work and Performance Comparison
	Two Case Studies
	Conclusions

	Bluetooth ad hoc networks
	Bluetooth overview
	Bluetooth architecture
	From piconets to scatternets, the Bluetooth topology
	From constant r to r(n)

	Connectivity of BT(r(n),c(n))
	Case 1lnn/n r(n) n-
	Case n- < r(n) 1

	Achieving c(n)=3 using a double choice protocol
	Experiments
	Conclusions

	Conclusions
	Bibliography

