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Abstract

This paper addresses the problem of blind equalization for
digital communications using constant modulus signals in
the presence of heavy-tailed additive channel noisc. We
compare the performance of a temporal filter antennia sys-
tem with the ones obtained with an array of sensors used
at the receiver to copy the information sequence. First,
we demonstrate the negative effects of channel noisc to
the original CMA cost function in terms of reliability and
convergence. Then, we intreduce a new CMA criterion
for both temporal and spatial systems bazed on the frac-
tionul lower-order statistics (FLOS) of the received data,
We perform an analytical study of the properties of the
new cost function and we Hlustrate its convergence behav-
ior through computer sinmlations.

Introduction

Adaptive channel equalization is an effective tool for the
antenna receiver for estimaling the information sequence
in severe interference backgrounds. As a result, the prob-
lem of linear channel distortion or multipath suppression
has been the focus of considerable research in the signal
processing and communicalions communities,

The Constant Modulus Algorithm (CMA} was studied
by Treichler and Larimore [7] who analyzed its perfor-
mance in terms of capture and lock behavior. Initial CMA
studies considered only the temporal diversity at the re-
ceiver, The development of advanced division access tech-
niques has made the coneept of spatial diversity worth-
pursuing. As a consequence, directionul array antenna
beamformers have taken the place of omnidirectional an-
tennas. Tn this context, Gooch and Lundel introduced the
so-called constant modulus array, which exploits the con-
stant modulus propetties of the communication signal of
interest to steer a beam in the direction of Lhe information
sequence while placing nuils in the directions of interfer-
ences [1].

Most of the theoretical work on blind equalizers based
on the CM criterion typically exploit higher {than second)
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order statistics or second-order cyclostationary statistics
of the channel output signal. For this reason these mceth-
aodls have focused on the case where the channel noise is
agsumed to follow the Gaussian model, The Gaussian as-
sumption is frequently motivated because it ofien leads to
mathematically tractable solutions, However, algorithins
designed under the Gauvssian assumption exhibit various
degrees of performance degradation, depending on the
non-Gaussian nature of the environment. For some op-
plications, such degradation is so strong 10 compromise
irreparably the information transmitted over such impul-
sive chamels. In these cases, there is a point break after
which is not possible to recover the desired signal. As
we will show, lor the Constant Modualus Algorithm ¢lass,
the presence of heavy-tail nature noise, even though not
much impulsive, (i.e. realistic near Gaussian values), lead
lo a total lost of performance il used with methods optima
under the Ganssianity assumption.

Indeed, experimental results have been reported where
clectromagnetic noise in urban mobile-radio channels is
heayy-tailed in nature and cannot be modeled by means of
Guaussian or other exponential-tailed distributions [4, 53,
In addition, impulsive channels appear in telephone lines,
underwater acoustic communications (ice-cracks), atmo-
sphcric environments (thunderstofms), and mobile com-
munications,

Hence, there is a need to use more general and realis-
tic non-Ganssian models and design elficient equalization
techniques that take into account the possible heavy-tail
nature of the data, and simultaneously work well in-good
Gaussian channels, Qur work is devoted to the develep-
ment of a novel constant modulus method which makes
use of temporal (ilter diversity and array signal processing
system for robust performance in the presence of inter-
ference/noise envirenments that can be modeled accord-
ing to the alpha-stable law, We compare the performance
of a temporal FIR filter and an antenna array model with
complex coeflicients which both use a fractional lower-
order statistics on computing the adaptation iterative law
in presence of impulsive noise and Gaussian channels,
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Synmuctric Alpha-Stable Statistics for Ieavy-
Tailed Noise

Man-made as well as natural physical processes can gen-
crate interferences containing noise components that are
impulsive in nature, Tn nodeling this type of signals the
symnetric alpha-stable (SaS) disteibution provides an at-
iraclive theoretical wol. It was proven that under broad
conditions, a general class of heavy-lailed noise follows
the stable law (6],

The S class of distributions is best defined by its
characteristic funetion:

wlw} = exp(gdw — 7|w|"), ()

where o is the characierisiie exponent restricied o (he
values 0 < v < 2,0 (—oo < § < oa) is the lecarion
parameter, and ¥ (v > 0) s the dispeesion of the distri-
bution. The dispersion parameter «y determines the spread
of the distriibution around its location parameter 8, moch
in the same way that the variance of the Gaussian distri-
bulion determines the spread around the mean. The char-
Acteristic exponent v is the most important parameter of
the SewS distribution and it determines the shape of the
distribution. The smaller the characteristic exponent « is,
the heavier the tails of the alpha-stable densiry, 1L is this
heavy-tail characteristic that makes the alpha-stable densi-
ties appropriate for modeling noise that may be impulsive
in nalure, We should also note that the stable distribution
corresponding 1o ¢ = 2 coinecides wilh (he Gaussian ilen-
sily.

The appeal of SaS distributions as statistical models
derives from some important properties, They: (i) natu-
rally acise as limiting processes via the Gencralized Cen-
tral Limit Theoreny; (i) possess the stabilily property and
share many features with the Gaussian density such as uni-
modality, symmetry with respeet to the location parame-
ter, bell-shape; (1iiy all but Gaussian distributions possess
[initc momenis of order p only when 3 is strictly less than
o BIXPP < oo for p < c. Stdeuly related with this
last property, the main concept to point out for this class
of distribution is the introduction of fractional-lower or-
der moments as the only possible teol capable to digitally
process the analyzing data,

CMA class:
analysis

temporal and spatial

The constant modulus family of blind equalizers is based
on a cost function that asstgns a penalty to deviations in
the modulus of the controller’s complex output stgnal. The
cost function is given by

I =Byt |I? =5 7] @

where E[] denotes statistical expectation, () is the con-

troller output at time 2, p and g are posilive integers, and
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# is a constant greater than zern related to the constant
modulus signal [2].

The mos! lnous member of this Family is the Constant
Modolus Algorithm (CMA) far which both parameiers p
and g are equal to two, Onee poioted out the cost function
J, iLis possible to approach the specific probleinutic under
different point of view. Briefly speaking, a fivst temporal
analysis was performed by Treichler ef &l [7], where the
channel diversity referred mainly to the lemporal domain
and was produced by sampling the received analog signal
in time. But spatial diversity has heen used by employing
w array of sensors at the receiver [ 1], showing the benefit
ol spatial smnpling of the received signal.

Assuming the two dilferent sipnal representation, it is
possible 1o deseribe ihe two distinel malysis, Let start
with the temporal approach where a N FIR filter whose
complex coefficients w(n) are ileratively adjusted, The
veetor of data in the delay line of 1he filter s x(n) =
[2(n),. .. ,a(n — N + 1))*, which give o complex fiter
output as

y(n) = wH (n)x(n) 3

where the signal 2(xn) is the reecived signal at the receiver
aL time n resulting of the channel distortion and multipath
elfeets. Consider now an array of N aquispaced sensors,
which receive signals generated by ¢} sources loeated at
91,.. ., Ug. Assuming Ihe signal bandwidth w be narrow
as comparcd to the inverse of the ravel time across the
array, it follows that, by wsing a complex envelop repre-
sentation, the array culput can be expressed as:

x(2) = A(O)s(2) - 1), @

where x(t) = e (), 20(8), - 2 (8)]7 is the wrray out-
put vector; s(8) = [, (), 82(¢), - - , s (1] is the signal
vector received by the reference sensor of (he array; A {9)
is the ¥ x 0} steering matrix, whose rth column vegtor
fl('ﬂr) is [1,8—3211([5/1\)&?:111?,.7 . (,_-—-J(N—I}QW(EI/)«}S:‘TM'-]T
and n{t) = [ (2),... ,na(2)]7 is the noise vector, The
input-output relation at the controller is the same as (3}
The CMA attempts to minimize fhe cost Mnction shown
in {2) by following the path of steepest descent.

Under the hypothesis of sinusoid incident signals for the
temporal analysis, assuming T'(w) the matrix of column
veetors containing the shift carriers of lhe correspand-
ing tone, it is possible to find a mathematical form for
the complex gains of the adaplive lilter for each frequan-
cies, {or both spatial and temporal dimensionalily, which
is [7, 1]

temporal analysis
spatial analysis
(5)
where the bar mneans the expected value, In the case of
orthogonal signals, it is possible to find a closed form:

V(n+ 1) = [I—-,u (‘][‘)1 0 )] W) ©

_ _ | BT (wyw(n -+ 1)
V(?l - 1) = { B [AH [19)“’(11 + 1)}

23
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where, despite of & multiplication factor of ¥ [or the tem-
poral analysis,

o= | 12(|f)1(n)|2 + 2|@2(ﬂ)12) @
Jan = |:42|2(2|51(‘”f)|2 + L@Q(RNE) (®)

where we supposed a FIR [ilter and an antennd arvay sys-
lem with N = 2 taps.

The FLOS-CM Time-Space Algo-
rithms

The main characteristic associated with the eclassical
CMAs is thut they involve fourth-order moments of the
signal, In the presence of heavy-tailed noise, the use of
sceond- or higher-order statistics in effeet amplifies the
noise. For such cases, we propose a new cost {unction (hat
considers information of constant madulos regacding the
communication signals and uses FLOS to mitigate the im-
pulsive noise component, as we pointed oul describing the
SaSdistributions. The new cost function has the expres-
sion

1 —rA _ N i
aptos=an < [ |yt |9 yw) - sy ||
)

where y(n) is the system output and J is a real corrclated
to the constant signal modulus (actually, is the constant
amplitude to the pth—1 power). 'the pair (p, ¢) takes val-
uecs, possibly fractional, strietly between O and e, where
ry is the characteristic exponent of the ulpha-stuble distri-
hution that best deseribes the statistics of the noise vector
n(t}. Furthermere, the product p - ¢ must be less than .,
It is important to point out the reasons why we choose o
defing such [ractional cost (unction. Basically, our taols
are a transmitted signal which has constant maduluy and
an additive noise which can be impulsive in nature; the
gradient funclion takes into account both properiics, sinee
at the convergence, when the amplitude should converpe
to the constant value, the argument of ihe function tends
to z¢ro. Desides, in order to compensate the heavy tailed
noise, a fractional lower-order moment in the iterative liw
has been iniroduced.

First, we develop the reeursive update fornwla for the
weighls in the temaporal ditnension using the principle of
steepest deseent Lo minimize the proposed cost function
in (9. For the iterative law of the complex weights vector
w(n), sec as reference the paper [3]. Fellowing the same
steps as for the CMA, starting with the equation (5) in
order 10 obtain (0}, i1 is possible to write an analogoeus
formula for the FLOS methods. In this case the equations

Figure 1; Boundary curves with SIR trajectories defining
the lock and caplure zones for the FLOS-CMA.

{1y and (B) become
an = AP (PO DR )+ plaam)) + (10)
~ (L4pptEth (Iﬁl(n)V + (%E)V’F’Z(”]P)ﬂ)

oy = |A-z\2(pf-’“"z}(;uim(n)ﬁ +ig@)F+ (1

Lop=l 3+ 1 = . . "
~ ()BT ”Q?QMmmW+meJ”)
where PP is the total output power: P = joi(n)|?> +
| (1) [*.

Naturally, the convergence behavior of the FLOS-CM
algorithins is an important issue when maore that onc con-
stant modulus signals are present. It is possible to address
the lock and capture properties lor the mray antenna sys-
temn of the new eriterion by finding the expression of Lhe
curve boundaries that divide the two zones in positive lock
vone and positive capture zone. Figure 1 shows the bound-
ary curves for the FLOS-CMA and the trajectory curves
for different values of Signal to Interference Ratio, Com-
paring il with the analogeus for Gaussian model in [7] it
is possible to see a very close relation.

Siimilar studies-can be carried out [or the temporal anal-
ysis int cuse of sinuseld signals in terms of the output vee-
tor ¥{n}. This approach permit to epportunely initialize
the weights veclor in order (o have a priori knowledge of
the algorithm in terms of lock {desired signal) and capture
(interference sipnal) behavior. One ditference betweoen (he
two parallel analysis is the capahility to discriminate this
two lock and capture zones for the temporal system only
if the incoming signals are lones, lHowever, in general the
signals involved during a radio communication transmis-
sion are not sinusoids, so 15 not possible to find an equiva-
lent expression for the veetar ¥(n) as (5) for the temporat
analysis. Adversely, in the case of antennas avcay it is
always possible ta find an expression as deseribed in (5)
due to the presence of another information term canieed
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out witl the signals represented by the angular spatial ar-
rival dircction. This is an important point which can cx-
plain the diversity in the bit crror rate curves shown in the
simulation resolt section.

Kxpcerimental Results

[n this section, we test and validate the new FLOS-CM
temporal-spatial adaplive algorithms and compare their
performance wilh that of the conventional CM algorithims
in a noisy cnvironment.  An inlerest problem for the
definition of the new cost Junclion expressed by the
equation (9}, is the choice of the couple (p, ¢). The way to
choose the values {p, 7) is abliged Lo satisfy the relation:
P g < adue to the characteristie of the impulsive noise.
Once followed his condition, a set of possible nnmbers
can be chosen. A criterion which can be used ta make the
decision is io chose the {p, q) couple which gives us a cost
function J with better performance. Taking as example
the case of & = 1.5, the possible ensemnble of valucs
is {(L.1,1.1),(1.1,1.2),(1.1,1.3},(1.2,1.2), (1.2, 1.1},
(1.3, L.1}}, considering the first decimal approximalion
only, In Figuare 2 it is shown a zoom of the smallest
emve for {p,¢) = (1.1, 1.3) cxpanses in the bigger scale
correspending to the values (p,g) = (1.3,1.1). Itis
so shown, at the couple {p,g) = (1.1,1.3) provide
better performance for the adaptive algorithm because
it gives more smooth cost luuction, with less corvature
and more linear trend. All the other pessible values have
a bigger slope than the (p,q) = (1.1, 1.3} casc anyway,
explaining why this choice is the best one.  Basically,
the best choice is the ones which reaches a cost funelion
as regular as possible, This property can help to lead in
a stable solution, in which once we obtain the desired
response, we most probubly will stay near, with very
smail oscillation movements,

Let consider two independent transmitted sipnals im-
pinging on the array from directions 8 = {302, —40°]. The
desired signal is supposed to be the first signal coming
from 30° deg direction. The second signal is a delayed
version of the desired ane. A power contral system is sup-
posed working at the recciver. The number of snupshots
available to the array is M = 100,000, M = 50,000
or M = 1,000,000 depending on the expected BER and
we performed 10 Montecarlo runs, We plol the Bit Jir-
tor Rate versus the SNR ol the two different systems for
bath the original CMA and the propesed FLOS-CMA al-
gorillims: the ones with temporal analysis and the second
with spatial processing (cf, Tigure 3. In Figure 3 (@)
the noise component is madeled as an alpha-stable process
with ce = 1.85, L.e., the noise is fairly close to Gaussian,
Actually, this value has been measured for some pasticular
communication transmissions, Figure 3 {b) is the bit creor
rate of a Gaussian channel,

Figure } demonstiates that occurrences of noise outlicrs
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Figure 2; FILOS-CMA Cost Function, {p,qh = (1.1,1.3) (a)
gy ={1.3,L1) (b).

during the adaptaiion, have an adverse affect to the learn-
ing curve of the original CMA method. In fact, even a
relative low impulsivencss of « = 1.85 has a disruptive
clfect on the convergenee hehavior of the classical CM al-
gorithms, both in the temporal and spatial base, Dricfly
speaking, as an impuolse oceurs, the classical CM algo-
tithms loose their convergence properties and they become
not able anymore 1o recover ihe transmitted information
sequence. On the other hand, the proposed FLOS-CMA
cost function can suppress the noise components and re-
sults in u much deeper bit error vate curve. The gain that
we can reach between the array mode! and the FIR system
cun be even of 10 ddf for low SNR {4, 6, 8) and becomes
smoother as the SNR increases (few dB),

However, in presence of Gaussian noise channels, the
CM algarithms outperfonn the F1.OS methods ranging
from values between 2 and 8 3. As we can see from
the curves, the antenng array system at the recelver shows
a consistent improvement in terms of number of bit cor-
reetly received due to a further diversity that such model
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Figure 3: Bit error rate curves for the filter and the array
rcceiver systean, {8); o = 1.85, (b)i ¢ = 2.

implement. Besides, as poinled oot in the previous sec-
tion, the impossibility to define the two lock and capture
zones in the case of the NV dimensionality FIR filier for all
radio communications signals strongly bounds the pertor-
mance results of the proposed FLOS-CM algorithm in the
ease of temporal analysis,

Conclusions

We proposed a new method for blind equalization of
communication signals vsing a constant modulus crite-
rion based on Mractional lower-order statisties. The intro-
duced FLOS-CM Algorithms exploil the constant modu-
lus property of the signal of interest and uses the heavy-
laited noise suppression capabilities of FLOS to recover
the informaticn sequence in a temparal and spatial point
of view, The capability of an array system to stecr a beam
in the direction of the signal while suppressing interfer-
ence and noisc is resulting in a better performance in terms

of kit arror rate. Besides, the directional of arrival infor-
malion allows the algorithm to divide the signal space in
the eaplure and lock zone. Such property, which is not al-
ways possible with a FIR omnidirectional filter, provides
a further improvement in the BER curves.

The main advantage of the propesed method is its ro-
bustness in the presence of various noise environments.
Truly, by changing the parameters p and ¢ in the criterion
in (9 we obtain a class of F'LOS-based CM Algorithms
which provide considerable flexibility that can be useful
for optimization purpeses in the presence of pon siation-
ary noise environments. Besides, we showed a similar be-
havior of CMA and FLOS algorithms in presence of Gaus-
sian channels,

The proposed method developed using FLOS has ap-
proximately the same computaiional complexity as the
existing CMA methads.  The additional computational
load is due to the need Yor culculating a lractional power
{p < 2) rather than a square power. The technique can be
used in commercial communication applications in which
impulsive channels tend to praduce large-amplitade inter-
ferences and sharp nofse spikes more [requently than what
is expected from Gaussian channels.
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