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ABSTRACT 

We describe new methods on the modeling of the ampli- 
tude statistics of airborne radar clutter by means of alpha- 
stable distributions. We develop target angle and Doppler, 
maximum likelihood-based estimation techniques from radar 
measurements retrieved in the presence of impulsive noise 
modeled as a multivariate isotropic alpha-stable random 
process. We derive the CramCr-Rao bounds for the ad- 
ditive Cauchy interference scenario to assess the best-case 
estimation accuracy which can be achieved. The results 
are of great importance in the study of space-time adaptive 
processing (STAP) for airborne pulse Doppler radar arrays 
operating in impulsive interference environments. 

1. INTRODUCTION 

Future advanced airborne radar systems must be able to 
detect, identify, and estimate the parameters of a target 
in severe interference backgrounds. As a result, the prob- 
lem of clutter and jamming suppression has been the fo- 
cus of considerable research in the radar engineering com- 
munity. It is recognized that effective clutter suppression 
can be achieved only on the basis of appropriate statis- 
tical modeling. Recently, experimental results have been 
reported where clutter returns are impulsive in nature. In 
addition, a statistical model of impulsive interference has 
been proposed, which is based on the theory of symmetric 
alpha-stable ( S a S )  random processes [I]. The model is of a 
statistical-physical nature and has been shown to arise un- 
der very general assumptions and to describe a broad class 
of impulsive interference. 

Until recently much of the work reported for radar sys- 
tems has concentrated mostly on target detection [2]. In 
this paper, we address the target parameter estimation prob- 
lem through the use of radar array sensor data retrieved in 
the presence of impulsive interference. In particular, we de- 
rive Cram&-Rao bounds on angle and Doppler estimator 
accuracy for the case of additive sub-Gaussian noise. Ini- 
tially, we consider the case of additive multivariate Cauchy 
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noise, assuming knowledge of the underlying matrix of the 
distribution. The results obtained here can be viewed as 
generalizations of the work done in [3] to the 2-D frequency 
estimation problem in impulsive interference backgrounds. 
In Section 2,  we present some necessary preliminaries on 
a-stable processes. In Section 3 ,  we define the space-time 
adaptive processing (STAP) problem for airborne radar and 
we form the maximum likelihood function. In Section 4, we 
present the CramCr-Rao analysis and derive bounds on the 
variances of the spatial and temporal frequency estimates. 
Finally, in Section 5, we give some examples on the joint 
target angle and Doppler estimation performance. 

2. SYMMETRIC ALPHA-STABLE 
DISTRIBUTIONS 

In this section, we introduce the statistical model that will 
be used to describe the additive noise. The model is based 
on the class of Complex Isotropic SaS distributions which 
are well suited for describing signals that are impulsive in 
nature. 

The symmetric a-stable ( S a S )  distribution is best de- 
fined by its characteristic function 

P ( W )  = e x p ( & J  - r l w l " )  (1) 

where cy is the characteristic exponent restricted to the val- 
ues 0 < a 5 2,cT-m < S < a) is the location parameter, 
and y is the dispersion of the distribution. The dispersion 
plays a role analogous to the role that the variance plays 
for second-order processes. The characteristic exponent a 
is the most important parameter of the SaS distribution 
and it determines the shape of the distribution: the smaller 
the characteristic exponent a is, the heavier the tails of the 
SOS density. 

SaS densities obey two important properties which fur- 
ther justify their role in data modeling: the stability prop- 
erty and the generalized central limit theorem. Unfortu- 
nately, no closed form expressions exist for the general SaS 
probability density functions (pdf) except for the Cauchy 
and the Gaussian case. However, power series expansions 
can be derived for the general pdf's [1]. Here, we are in- 
terested in the family of complex isotropic SaS random 
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variables. A complex SaS random variable X = XI + 7x2 
is isotropicif and only if the bivariate diistribution ( X ,  , X , )  
has uniform spectral measure. In this case, the character- 
istic function of X can be written as 

An important difference between the Gaussian and the 
other distributions of the S a S  family irs that only moments 
of order less than a exist for the non-Gaussian family mern- 
bers. If X follows the isotropic stable distribution with 
dispersion y ,  the so called fractzonal lower order moments 
(FLOM) are given by 

~1x1~ = ~ 2 ( p , a ) y $  for o < p < a ,  (3 )  

3. STAP PROBLEM FORMULATION ANI) 
MAXIMUM LIKELIHOOD FUNCTION 

Space-time adaptive processing (STAP) refers to multicli- 
mensional adaptive algorithms that simultaneously combine 
the signals from the elements of an array antenna and tlhe 
multiple pulses of a coherent radar waveform, to suppress 
interference and provide target detection [4, 2, 51. 

Consider a uniformly spaced linear array radar antmna 
consisting of N elements, which transmits a coherent burst 
of M pulses at a constant pulse repetitlion frequency (PRF) 
fr and over a certain range of directions of interest. The 
pulses repetition interval is T,. A jpace-time snapshot 
refers to the M N  x 1 vector of samples corresponding to 
a single range gate. Given a single snapshot containing 
target a t  angle 4 and Doppler frequency f, the space-time 
snapshot can be written as [4] 

x = Pv(41.f) + n ( 5 )  

where p is the target's complex amplit,ude given by 

P = X + J Y .  (6) 

The vector v is an N M  x 1 vector called the spacte-time 
steerzng vector. I t  may be expressed as 

where a(4) is the N x 1 spatial steering vector containing the 
interelement phase shifts for a target at 4, and b(f) is the 
M x 1 temporal steering vector that contains the interpuke 
phase shifts for a target with Doppler f. It is assumed that 
the functional form of v(4, f )  is known.. In addition, we can 
write 

where vi(q5, f )  is the i-th element of the space-time steering 
vector v(4, f ) ,  1 5 f ( i )  5 M ,  and 1 <I g(z) 5 N .  

The snapshot also contains a noise component 11. Here, 
the noise includes clutter, jamming, thermal noise, and any 
other undesired signals. As a first aipproxiination to t,he 
problem, we assume that the noise present at the airray is 

v 4 4 ,  f) = b ( t )  (f) ' adz) (4) (8)  

statistically independent both along the array sensors and 
along time, and is modeled as a complex isotropic Cauchy 
process with marginal pdf given by 

Under the independence assumption it follows from ( 5 )  and 
(7) that the joint density function for the case of a single 
snapshot is given by [3] 

(10) 
In the following, it will be convenient to work with the 
normalized spatial and temporal frequency variables: 

1~ = -sin4 27rd . , w = 2sfTr.  
A0 

The estimation problem involves four real valued parame- 
ters. We arrange them to form a 4 x 1 parameter vector 

(12) 0 = [el 02 03 e,] = [$ w x v]. 
Then, givlen a single snapshot x, the likelihood function 
L ( 0 ) ,  ignoring the constant terms, is given by 

N M  

4. CRAMER-RAO BOUND ANALYSIS 

The Cram&-Ra? bound for the error variance of an unbi- 
ased estimator 0 satisfies 

CO - J ( 0 )  2 0 (14) 

where C 6  is the covariance matrix of 6 and 2 0 is inter- 
preted as meaning that the matrix is semidefinite positive. 
The matrix J ( 0 )  is the Fisher information matrix given by 

J ( 0 )  = E{ [aL(o) /ao][aL(o) /ao]T) .  (15) 

First, we calculate the derivatives of the log-likelihood 
function given in (13) with respect to the components of 0. 
We have khat 

where df = da; /8$ ,  i = l , . .  . , N .  In addition 

where d: = ab, Jaw,  a = 1,. . . , M .  Additionally, 

d L  M N  Wa;(.,b;(., n*)  - = 3 > :  
8 X  y2 + 1ntl2 

t = l  
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By performing the second derivatives and expectations 
in a similar way, the Fisher information matrix J(0) is 
derived to be 

3 J(0) - 
5Y2 

where 

*=l 1 = 1  t= 1 

and da = [dy . . .  d:], db = [d: ... dk].  Since target angle 
and Doppler are the two parameters of primary interest, 
we shall focus on the upper left 2 x 2 block of the Fisher 
information matrix J z X 2 .  The inverse of matrix J z X 2  is  ob- 
tained by applying the partitioned matrix inversion lemma. 
The result is 

1 5 7 2  J-' (0) = - . -. 
t 31~12 

2 x 2  

[ N ( l l  d b  11' -&'%) 6abb - p 
6abb - P M(ll d u  1 1 2  -$3 

where = (hf 11 da -%6:)(N 1 1  d b  11' -$6:)  - ( 6 a 6 b  - 
p)' .  The CramCr-Rao bounds of the resulting spatial and 
temporal frequency estimates are obtained from (20) as 

Finally, by using (ll), we get 

(23) 
A: 1 

(2nd)' cos2(yl) 
CRB(yl) == C R B ( $ ) .  __- 

and 

(24) 
1 

( ~ T T , . ) ~  
C R B ( f )  = C R B ( w ) .  ~ 

A useful insight on the CRB can be gained if we consider 
the case of linear array whose sensors are spaced a half- 
wavelength apart, and a waveform with an uniform pulse 
repetition interval. The spatial and temporal steering vec- 
tors for such system are: 

, b(w) = e:w ~ . (25) 

e -3 ( M  - 1) w 

Figure 1: MLG (top) and MLC (bottom) angle-Doppler 
spectra (N = 5 ,  A4 = 4, q5 = -loo, fTr = 0.1). Additive 
Gaussian noise (a  = 2, y = 20, G S N R  = 4 dB). 

In this case, it follows from (21) and (22) that 

and 
2 

(27) 
CRB(w)  = 1. 20 

l P l 2  M 2 N 2 ( M 2  - 1 ) '  

5. SIMULATION RESULTS 

In this simulation experiment, we test the robustness of 
the maximum likelihood estimator based on the Cauchy 
assumption (MLC). We assume a linear array with N = 5 
elements that transmits a coherent burst of M = 4 pulses. 
We considered a single target located at q5 = 10' and having 
Doppler such that fTr  = w/27r = 0.1. Since the alpha- 
stable family determines processes with infinite variance for 
a < 2, we define an alternative signal-to-noise ratio (SNR). 
Namely, we define the Generalized-SNR (GSNR) to be the 
ratio of the signal power over the noise dispersion y: 

G S N R  = lolog ($) (28) 

In Figures 1 and 2 we plot isosurfaces of space-time spec- 
tral estimates (likelihood functions) for the maximum like- 
lihood estimator based on the Gaussian assumption (MLG) 
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Figure 2: MLG (top) and MLC (bottom) angle-Doppler 
spectra ( N  = 5, M = 4, 4 = -lo”, fTT = 0.1). Additive 
stable noise (a  = 1.5, y = 20, G S N R  == 4 dB). 

[2] and for the maximum likelihood estimator based on 
the Cauchy assumption (MLC).The likelihood functions are 
formed by using 50 space-time snapshots. In Figure 1, since 
the additive noise to the sensors is Gaussian ( a  = 2) ,  the 
MLG likelihood function is based on the correct assumlp- 
tion about the noise distribution. On the other hand, in 
Figure 2, the additive noise to the sensors is a-stable with 
a = 1.5 and neither the MLG nor the MLC likelihood fimc- 
tions rely on the correct assumption about the noise cliijtri- 
bution. As we can see from the figures, the MLC likelihood 
function, based on the Cauchy assumption, attains its max- 
imum value very close to the true angle and Doppler va3ues 
in both cases of additive stable noise. On the other !hand, 
the MLG likelihood function, based on the Gaussian as- 
sumption, cannot localize the target iiccurately when the 
actual data distribution deviates from the Gaussian case. 

The observed robustness of the MLC method is quanti- 
fied in Figure 3 which shows the resulting mean-square error 
curve on the estimated Doppler as function of the charac- 
teristic exponent a of the additive noise. The resuli,s are 
based on 300 Monte Carlo runs. As we can clearly see, the 
Cauchy beamformer is practically insensitive to the changes 
of a. On the other hand, the MLG algorithm exhibits very 
large mean-square estimation error for non-Gaussian noise 
environments. 

Figure 3: MSE of the estimated Doppler as a function of 
the characteristic exponent a.  

6. CONCLUSIONS 

We considered the problem of target angle and Doppler 
estimation with an airborne radar employing space-time 
adaptive processing. We derived CramCr-Rao bounds on 
angle and Doppler estimator accuracy for the case of ad- 
ditive multivariate Cauchy interference of known diagonal 
underlying matrix. The bounds are functions of a gener- 
alized SNIt function, similarly to the Gaussian case where 
the bounds are functions of the SNR. As shown in (21) and 
(22), target angle accuracy is a function of Doppler fre- 
quency and vice-versa. In addition, we introduced a new 
joint spatial- and Doppler- frequency estimation technique 
based on the maximum likelihood Cauchy function (MLC) 
and we shiowed that the Cauchy estimator gives better re- 
sults in a wide range of impulsive noise (clutter, jamming, 
thermal) environments. 
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