

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:
http://www.elsevier.com/copyright

New 3-, 8-disubstituted pyrazolo[5,1-c][1,2,4]benzotriazines useful for studying the interaction with the HBp-3 area (hydrogen bond point area) in the benzodiazepine site on the γ-aminobutyric acid type $A\left(G_{A B A}^{A}\right)$ receptor

Gabriella Guerrini ${ }^{\mathrm{a}, *}$, Giovanna Ciciani ${ }^{\mathrm{a}}$, Fabrizio Bruni ${ }^{\mathrm{a}}$, Silvia Selleri ${ }^{\text {a }}$, Fabrizio Melani ${ }^{\text {b }}$, Simona Daniele ${ }^{\text {c }}$, Claudia Martini ${ }^{\text {c }}$, Annarella Costanzo ${ }^{\text {a }}$
${ }^{a}$ Dipartimento di Scienze Farmaceutiche, Laboratorio di Progettazione, Sintesi e Studio di Eterocicli Biologicamente attivi (HeteroBioLab) Università degli Studi di Firenze, Via U. Schiff, 6, 50019 Polo Scientifico, Sesto Fiorentino-Firenze, Italy
${ }^{\mathrm{b}}$ Dipartimento di Scienze Farmaceutiche, Laboratorio di Molecular Modeling, Cheminformatics and QSAR, Università degli Studi di Firenze, Via U. Schiff, 6, 50019 Polo Scientifico, Sesto Fiorentino-Firenze, Italy
${ }^{c}$ Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, Università degli Studi di Pisa, via Bonanno, 6, 56126 Pisa, Italy

ARTICLE INFO

Article history:

Received 20 January 2011
Revised 1 April 2011
Accepted 5 April 2011
Available online 12 April 2011

Keywords:

Pyrazolo[5,1-c][1,2,4]benzotriazine system
Benzodiazepine binding site
GABA_{A}-receptors
Ligand-based pharmacophoric model

Abstract

The pharmacophoric model using ADLR procedure, based on pyrazolo[5,1-c][1,2,4]benzotriazine system, studied in our laboratory, allowed us to identify the essential interaction points (HBp-1, HBp-2, and Lp-1) and the important areas for affinity modulation ($\mathrm{HBp}-3$ and $\mathrm{Lp}-2$) for binding recognition at benzodiazepine (Bzs) site of $G_{A B A}^{A}$ receptors $\left(G A B A_{A}-R s\right)$. In this work $A D L R$ method is used to rationalize the affinity data of 23 new compounds and to improve the knowledge on HBp-3 area, hydrogen bond area. Among these new compounds emerge the pyrrolo derivatives ($\mathbf{1 8}, \mathbf{2 5}, \mathbf{2 8}, \mathbf{3 4}$, and $\mathbf{3 7}$) for their good affinity value $\left(14.9>K_{\mathrm{i}}(\mathrm{nM})>63.0\right)$. In the orientations proposed by ADLR, the NH moiety of the pyrrole ring, independently of the position in the pyrazolobenzotriazine core, fits in HBp-3 area and points out the acceptor feature of this hydrogen bond area, already known as donor area. Unexpectedly, the oxygen atom of the furane ring does not form efficient hydrogen bond with the same area, probably for an imperfect distance. The size of substituent at position 8 is important but not necessary for the receptor recognition, in fact the interdependence between the features of the 3 - and 8 -substituent's is again verified, (i.e., compound $\mathbf{2 0}$ vs $\mathbf{3 2}$).

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The γ-aminobutyric (GABA)-ergic system is the most important inhibitory mechanism in the adult mammalian brain. ${ }^{1}$ The GABA neurotransmitter binds to $G A B A_{A}$ receptors $\left(G A B A_{A}-R s\right)$, members of the Cys-loop family of ligand gated ion channels (LGICs) and to metabotropic G-protein-coupled $G_{A B A}$ receptors. ${ }^{2} G A B A_{A}-R s$ are pentameric trans-membrane proteins formed by a combination of 19 different subunits ($\alpha 1-6, \beta 1-3, \gamma 1-3, \delta, \varepsilon, \theta, \pi$, and $\rho 1-3$) with the most common composition being of two single alpha subunits, two single beta subunits, and one gamma subunit $\alpha_{2} \beta_{2} \gamma^{3}$ The combination of the isoforms $\alpha 1-3,5, \beta 2 / 3$, and $\gamma 2$ form a subset of $\mathrm{GABA}_{\mathrm{A}}$-Rs $(\alpha 1 \beta 2 \gamma 2, \alpha 2 \beta 3 \gamma 2, \alpha 3 \beta 3 \gamma 2$, and $\alpha 5 \beta 3 \gamma 2)$ modulated by benzodiazepines (Bzs) and by non-benzodiazepine ligands belonging to several chemical classes. The Bz binding site is located at the interface of an α and a γ subunit and its pharmacology is mainly determined by the isoforms of these two subunits.

[^0]Subunit β, although needed to generate a functional GABA gated ion channel, does not affect the sensitivity to the Bz site. Using genetically engineered mice and comparing drug-induced behavioral responses in mutated and wild-type mice, with respect to diazepam, ${ }^{4-6} G A B A_{A}-\mathrm{R}$ subtype functions have been identified. The $\alpha 1 \beta 2 \gamma 2$ receptors mediate the sedative, anterograde amnesic and anticonvulsant actions of diazepam. ${ }^{7-9}$ The anxiolytic-like effect and the muscle relaxant activities are mediated by the $\alpha 2 \beta \gamma 2$ and $\alpha 3 \beta \gamma 2$ receptors even if the $\alpha 3$-containing $G A B A_{A}-$ Rs seem to be involved in the inhibitory input for the dopaminergic system. ${ }^{10-12}$ The $\alpha 5 \beta \gamma 2$ receptors, that are preferentially localized in the hippocampus, seem to influence learning and memory. ${ }^{1}$

Currently, the unified pharmacophore/receptor model for ligands at the Bzs site on the $\mathrm{GABA}_{\mathrm{A}}$-Rs developed by Cook et al., ${ }^{13}$ has been updated ${ }^{14}$ and correlated with a comparative model ${ }^{15}$ to individuate residues relative to descriptors of the pharmacophore/receptor model.

To increase our understanding of the requirements of the Bzs site on $G A B A_{A}-R$, we have developed a pharmacophoric model based on pyrazolo[5,1-c][1,2,4]benzotriazine ligands, ${ }^{16}$ using ADLR procedure. This procedure allowed us to identify the essential

Figure 1. Overlapping of ligand conformations following the ADLR procedure: the figure shows the essential interaction points for binding recognition (yellow circles) and the important areas for affinity modulation (blue circles).
interaction points for binding recognition (HBp-1, HBp-2, and Lp-1) and the important areas for affinity modulation (HBp-3 and Lp-2) of the pyrazolobenzotriazine system, Figure 1.

At the same time, we elaborated structure-activity/affinity relationships for the pyrazolobenzotriazine system 3-, 8-disubstituted, identifying the heteroaryl groups, the thienylmethoxycarbonyl group ${ }^{17}$ the iodine atom, ${ }^{18}$ and the furoyl group ${ }^{19}$ as better 3 -substituents, ${ }^{20}$ and, as 8 -substituents, the groups endowed with different electronic/steric features (alkyl, thioalkyl, alkyloxy, halogen, aryloxy, and difluoromethoxy). ${ }^{16,21-23}$ Among these compounds, it was very intriguing to modify the 8 -aryloxy derivatives for which it was hypothesized that the 8 -oxygen atom engaged a hydrogen bond interaction with the HBp-3 area. ${ }^{16}$ In this paper we have decided to investigate the 8 -aryl/heteroaryl derivatives, ${ }^{16}$ maintaining at position 3 the better previously identified substituents. These modifications (introduction at position 8 of aryl/heteroaryl rings) permit us to evaluate whether the $\mathrm{HBp}-3$ area is involved or if other receptor interactions can occur ($\pi-\pi$ stacking, hydrophobic interaction...) and to measure the size and shape of lipophilic regions Lp-1 and Lp-2.

2. Chemistry

All compounds described here are listed in Table 1 (chemical data).

Table 1
Chemical data for new synthesized compounds

Compd ${ }^{\text {a }}$	R_{3}	R_{8}	Yield (\%)	$\mathrm{Mp}{ }^{\circ} \mathrm{C}$ (recryst. solvent)
3	H	2-OMePh	60	190-192 (ethanol)
4	H	4-OMePh	54	196-197 (ethanol)
5	H	4-Py	52	220-222 (ethanol)
6	H	2-Thienyl	65	200-202 (ethanol)
7	H	3-Thienyl	73	206-207 (ethanol)
8	H	2-Furyl	67	201-202 (ethanol)
9	H	1-Boc-2-pyrrolyl	70	196-198 (ethanol)
10	I	$2-\mathrm{OMePh}$	40	212-214 (ethanol)
11	I	$2-\mathrm{OHPh}$	35	250-251 (ethanol)
12	I	4-OMePh	45	234-236 (ethanol)
13	I	4 -Py	27	267-269 (ethanol)
14	I	2-Thienyl	54	247-248 (ethanol)
15	I	3-Thienyl	45	258-259 (methoxyethanol)
16	I	2-Furyl	50	215-216 (ethanol)
17	I	1-Boc-2-pyrrolyl	45	207-208 (ethanol)
18	I	(1H)-2-Pyrrolyl	30	>300 (ethanol)
19	3-Thienyl	Ph	25	237-238 (ethanol)
20	3-Thienyl	4-OMePh	56	250-252 dec (chromatography)
21	3-Thienyl	2-Thienyl	30	229-230 (methoxyethanol)
22	3-Thienyl	3-Thienyl	25	233-234 (methoxyethanol)
23	3-Thienyl	2-Furyl	84	240-241 (ethanol)
24	3-Thienyl	1-Boc-2-pyrrolyl	45	196-198 dec (ethanol)
25	3-Thienyl	(1H)-2-Pyrrolyl	77	>300 (ethanol)
26	2-Furyl	3-Thienyl	37	249-250 (chromatography)
27	1-Boc-2-pyrrolyl	3-Thienyl	57	194-195 dec (ethanol)
28	(1H)-2-Pyrrolyl	3-Thienyl	72	219-220 (ethanol)
30	CO-2-furyl	I	30	233-234 (chromatography)
32	COOCH_{2}-2-thienyl	4-OMePh	21	200-202 (chromatography)
33	COOCH_{2}-2-thienyl	1-Boc-2-pyrrolyl	80	138-140 dec (ethanol)
34	COOCH_{3}	(1H)-2-Pyrrolyl	69	>300 (ethanol)
35	CO-2-furyl	4-OMePh	21	258-259 (chromatography)
36	CO-2-furyl	1-Boc-2-pyrrolyl	73	184-186 dec (ethanol)
37	CO-2-furyl	(1H)-2-Pyrrolyl	78	>300 (ethanol)
39	COOEt	2-furyl	90	140-142 (ethanol)
40	COOH	2-furyl	58	279-280 (ethanol)
41	COOCH_{2}-2-thienyl	2-Furyl	23	215-216 (ethanol)
42	CO-2-furyl	2-Furyl	35	230-233 dec (ethanol)

[^1]The Suzuki coupling reaction on suitable iodinate starting material was used for the synthesis of all 3 -aryl-, 8 -aryl-, and 3,8-diarylderivatives. As reported in Scheme 1, the 8-iodopyrazol-o[5,1-c][1,2,4]benzotriazine 5 -oxide, ${ }^{18}$ 1, was used to obtain the 8 -aryl derivatives 3-9, using the suitable arylboronic acid.

The reaction with 2 -furylboronic acid produced several problems, and for the synthesis of compound $\mathbf{8}$, the most versatile and stable potassium 2 -furantrifluoroborate in presence of the palladium catalyst, palladiumchloride (diphenylphosphine-ferrocene) $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was used as the coupling partner. ${ }^{24,25}$ (All the 3- and/or 8 -(2-furyl) derivatives were synthesized following this procedure). Compounds 3-9 were in turn iodinated at position 3 with ceric ammonium nitrate (CAN) and iodine ${ }^{26}$ to give derivatives 10, 12-17 which are useful for structure-affinity relationships. The demethylation of derivative $\mathbf{1 0}$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{BBr}_{3}$ gave the corresponding 2-hydroxyphenyl derivative 11, while the deprotection of 17 was realized with $\mathrm{NaOCH}_{3} / \mathrm{CH}_{3} \mathrm{OH}$ in THF, ${ }^{27}$ to give 18. The starting material 3 -(3-thienyl)-8-iodopyrazolo[5,1$c][1,2,4]$ benzotriazine 5 -oxide, ${ }^{22}$ 2, was instead used to obtain
derivatives 19-24. The deprotection of $\mathbf{2 4}$ was realized in the same previously described conditions, ${ }^{27}$ and compound 25 was obtained.

To obtain the 8-(3-thienyl)-3-heteroaryl substituted derivatives, 26-27 (Scheme 2), compound $\mathbf{1 5}$ was used as starting material for the Suzuki coupling. The deprotection of $\mathbf{2 7}$ afforded the pyrrole derivative 28.

Scheme 3 depicts the synthetic pathway for obtaining derivatives 32-37. The starting material is 3 -carboxy-8-iodopyrazol-o[5,1-c][1,2,4]benzotriazine 5-oxide, 29, ${ }^{22}$ that was reacted by a Friedel-Craft reaction with thionyl chloride, SnCl_{4}, and furane ${ }^{19}$ to obtain the new 3-(fur-2-ylcarbonyl)-8-iodopyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide, $\mathbf{3 0}$.

Following a described procedure, compound 29 was also used to obtain 3-(2-thienylmethoxycarbonyl)-8-iodopyrazolo[5,1-c][1,2,4]benzotriazine 5 -oxide, 31. ${ }^{22}$ Both compounds $\mathbf{3 0}$ and 31 were subjected to Suzuki coupling and derivatives 32, 33, 35, and 36 were synthesized. The treatment of derivative 33 with $\mathrm{NaOCH}_{3} / \mathrm{CH}_{3} \mathrm{OH}$ caused, at the same time, pyrrole deprotection and trans-esterification, producing derivative 34. In the same

Scheme 1. For compound 1 see, ${ }^{18}$ for compound 2 see ${ }^{22}$ Reagents: (i) Suzuki conditions, Arylboronic acids, ethanol abs, ($\left.\mathrm{PPh}_{3}\right)_{4} \mathrm{Pd}$ tetrakis(triphenylphosphine)palladium (0), sodium carbonate 2 M ; for synthesis of derivatives $\mathbf{8}$ and 23, potassium 2 -furyltrifluoroborate, n-propanol, $\mathrm{TEA}, \mathrm{PdCl}_{2}$ (dppf); (ii) $\mathrm{I}_{2} / \mathrm{CAN} / \mathrm{CH}_{3} \mathrm{CN}$; (iii) for hydrolysis of compound 10, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{BBr}_{3}$; (iv) for deprotection of N -Boc derivatives ($\mathbf{1 7}$ and $\mathbf{2 4}$) THF/MeONa.

15

\mathbf{N}°	3-Ar/Het	
	2-furyl	
$\mathbf{2 7}$	1-Boc-2-pyrrolyl	
$\mathbf{2 8}$	2-pyrrolyl	

Scheme 2. Reagents: (i) Suzuki conditions, potassium 2-furyltrifluoroborate, n-propanol, TEA, $\mathrm{PdCl}_{2}(\mathrm{dppf})$ and N-(Boc)pyrrole-2-boronic acid, ethanol abs, $\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{Pd}^{2}$ tetrakis(triphenylphosphine)palladium (0), sodium carbonate 2 M ; (ii) for deprotection of N-Boc derivative (27) THF/MeONa.
$41 \quad \mathrm{R}_{3}=\mathrm{COOCH}_{2}$ (2-thienyl)
$42 \mathrm{R}_{3}=$ CO-2furyl

Scheme 3. For compound 29 and 31 see ${ }^{22}$: Reagents: (i) Friedel-Craft reaction on 29, 3-carboxy-8-iodopyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide, ${ }^{22}$ to obtain 30: thionyl chloride $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{SnCl}_{4} /$ furane; starting from 29, following a procedure described in ${ }^{22}$ to obtain 31; (ii) Starting material 30 or 31, ${ }^{22}$ reacted in Suzuki conditions: 4methoxyphenylboronic acid for compound $\mathbf{3 2}$ and $\mathbf{3 5}$, N -Boc-2-pyrrolylboronic acid for compounds $\mathbf{3 3}$ and $\mathbf{3 6}$, ethanol abs, tetrakis, sodium carbonate 2 M ; (iii) potassium 2furyltrifluoroborate, n-propanol, TEA, $\mathrm{PdCl}_{2}(\mathrm{dppf})$; (iv) for deprotection of N-Boc derivatives ($\mathbf{3 3}$ and $\mathbf{3 6}$) $\mathrm{THF} / \mathrm{MeONa}$. In case of derivative $\mathbf{3 3}$ in this reaction condition a trans-esterification occurred, obtained compound 34.

39

40

42

Scheme 4. For 38. ${ }^{22}$ Reagents: (i) potassium 2-furantrifluoroborate, PdCl_{2} (dppf), TEA; (ii) $10 \% \mathrm{NaOH}$ solution, diglyme; (iii) NEt_{3}, i-butylchloroformate, 2-thiofenemethanol; (iv) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Cl}_{3} \mathrm{CCN}, \mathrm{PPh}_{3}, \mathrm{SnCl}_{4}$, and furane.
reaction conditions, in derivative 36, the removal of N-Boc group was selective and derivative 37 was obtained. The reaction of coupling of the furyl ring at position 8 on compounds $\mathbf{3 0}$ and $\mathbf{3 1}$, with potassium 2-furantrifluoroborate gave very low yields and with a
heavy work-up, thus the synthesis of compounds 41-42 was made with an alternative synthetic way, Scheme 4 . The intermediate ethyl 1-(2-nitro-5-iodophenyl)-5-aminopyrazole-4-carboxylate 38, ${ }^{22}$ was used as starting material to introduce the 2 -furyl group,
using again potassium 2-furantrifluoroborate and palladium chloride(diphenylphosphine ferrocene) $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 39 was obtained in good yield.

The next cyclization in alkali medium ${ }^{28}$ gave the 3-carboxy-8-(2-furyl)pyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide 40, that was esterified by the mixed anhydride method (triethyl amine/i-butylchloroformate and 2-thiophenmethanol), to yield compound 41. The same compound 40 was transformed into corresponding acid chloride in mild conditions, by treatment with trichloroacetonitrile and triphenylphosphine in methylene chloride ${ }^{29}$; this acyl chloride was not isolated, but subjected to a Friedel-Craft reaction with SnCl_{4} and furane to obtain derivative 42.

3. Results and discussion

3.1. Biological results

The affinity at the Bz site on $\mathrm{GABA}_{A}-\mathrm{R}$ of the new synthesized compounds was evaluated by their ability to displace [$\left.{ }^{3} \mathrm{H}\right]$ flumazenil (Ro 15-1788) from its specific binding in bovine brain membrane. ${ }^{19}$ The affinity was expressed as K_{i} only for those compounds inhibiting radioligand binding by more than 80% at fixed concentrations of $10 \mu \mathrm{M}$.

From the binding results reported in Table 2, some observations arise. The new tested compounds show receptor recognition with a K_{i} range of $14.9-2480 \mathrm{nM}$. Compounds 3-9 as well as compound 40, (Table 1) were not tested because previous reports indicate that these types of derivatives have no receptor recognition. ${ }^{21}$

Among the 3-iodopyrazolo[5,1-c][1,2,4]benzotriazine 5-oxides, bearing various aryl/heteroaryl rings at position $8,10-18$, the features of ring moiety are very important. In fact, the optimization of the 8-phenyl derivative, A27, ${ }^{16}\left(K_{\mathrm{i}}=966 \mathrm{nM}\right)$, that is, compounds 10 and 12, allow a threefold higher binding affinity: 10, $K_{\mathrm{i}}=305 \mathrm{nM}$ and $12 K_{\mathrm{i}}=241 \mathrm{nM}$. These compounds have a methoxy group in the phenyl ring (ortho- and para-position, respectively) that could reinforce the interaction with receptor protein. ${ }^{16}$

A more hydrophilic substituent at position 8 is detrimental for the binding as shown for compound $11\left(K_{\mathrm{i}}=2480 \mathrm{nM}\right)$, obtained from demethylation of $\mathbf{1 0}$ and for the 8 -(4-pyridyl)-derivative $\left(K_{\mathrm{i}}=2380 \mathrm{nM}\right)$, compound 13. The isosteric replacement of the 8-phenyl ring with five-membered heteroaryl rings 2-, 3-thienyl, 2-furyl and (1H)-2-pyrrolyl gave compounds 14-16 and 18. The best affinity was shown by derivative (1H)-2-pyrrolyl, 18 $\left(K_{\mathrm{i}}=25 \mathrm{nM}\right)$, that contains a hydrogen bond donor atom (NH). Among the other heteroaryl rings, only the 8-(3-thienyl) derivative 15 is endowed with good binding affinity ($K_{\mathrm{i}}=56 \mathrm{nM}$) compared to the 8 -(2-thienyl), 14, $K_{\mathrm{i}}=202 \mathrm{nM}$ and the 8 -(2-furyl), 16, $K_{\mathrm{i}}=190 \mathrm{nM}$. These results suggest that the smaller size of the 8substituents versus phenyl ring ($K_{\mathrm{i}}=966 \mathrm{nM}$) permits better receptor interaction.

In the series of the 3-thienyl derivatives $(\mathbf{1 9 - 2 3}, \mathbf{2 5})$ the introduction at position 8 of aromatic/heteroaromatic rings gave useful information. The 8-phenyl derivative 19 shows a poor binding affinity $\left(K_{\mathrm{i}}=642 \mathrm{nM}\right)$, as well as the $8-\left(4-\mathrm{OCH}_{3}\right.$ phenyl) derivative, 20, $K_{\mathrm{i}}=817 \mathrm{nM}$. When in position 8 was introduced a five-membered ring, 2-, 3-thienyl, 2-furyl and (1H)-2-pyrrolyl, 21-23 and 25, the receptor recognition falls in the range of $370-19.4 K_{i}(n M)$, confirming again the importance of ring size. In particular, the need of hydrogen bond donor moiety (NH pyrrole) is evidenced as for compound $\mathbf{2 5}\left(K_{\mathrm{i}}=19.4 \mathrm{nM}\right)$, while the presence of an acceptor moiety (furane oxygen) gave weak affinity (23, $K_{\mathrm{i}}=209 \mathrm{nM}$). We thought that it might be useful to invert the substituents of positions 3 and 8 of compounds 23 and 25 to evaluate the influence of their interchangeability in receptor protein recognition, thus obtaining compounds 26 and 28. The various orientations that

Table 2
BZR ligand affinity of new 8 -aryl-/heteroarylpyrazolo[5,1-c][1,2,4]benzotriazine 5oxide 3-substituted

N°	R_{3}	R_{8}	$K_{\mathrm{i}}(\mathrm{nM})^{\mathrm{a}}$
A27 ${ }^{\text {b }}$	I	Ph	966 ± 95
10	I	2-OMePh	305 ± 29.3
11	I	2-OHPh	2480 ± 120
12	I	4-OMePh	241 ± 23.2
13	I	4-Py	2380 ± 190
14	I	2-Thienyl	202 ± 20
15	I	3-Thienyl	56 ± 4.9
16	I	2-Furyl	190 ± 22
18	I	(1H)-2-Pyrrolyl	25 ± 2.4
19	3-Thienyl	Ph	642 ± 62.6
20	3-Thienyl	4-OMePh	817.0 ± 16.7
21	3-Thienyl	2-Thienyl	370 ± 35.7
22	3-Thienyl	3-Thienyl	357 ± 33.9
23	3-Thienyl	2-Furyl	209 ± 20
25	3-Thienyl	(1H)-2-Pyrrolyl	19.4 ± 2.8
26	2-Furyl	3-Thienyl	26.9 ± 2.5
28	(1H)-2-pyrrolyl	3-Thienyl	48.3 ± 6.1
32	COOCH_{2}-2-thienyl	4-OMePh	29.4 ± 1.8
33	COOCH_{2}-2-thienyl	1-Boc-2-pyrrolyl	395.4 ± 39
34	COOMe	(1H)-2-Pyrrolyl	14.9 ± 1.1
41	COOCH_{2}-2-thienyl	2-Furyl	54.8 ± 4.1
35	CO-2-furyl	4-OMePh	238.67 ± 18
37	CO-2-furyl	(1H)-2-Pyrrolyl	63.0 ± 5.5
42	CO-2-furyl	2-Furyl	856.9 ± 4.2

${ }^{\text {a }} K_{\mathrm{i}}$ value are means \pm SEM of five determinations.
${ }^{\text {b }}$ See Ref. 16.
the pyrazolobenzotriazine scaffold assumes, when selected by ADLR model, show that the substituents at position 3 and 8 can interact indiscriminately with the pharmacophoric points Lp-1 or Lp-2 in case of lipophilic moiety and HBp-1, HBp-2, or HBp-3 in case of a moiety able to form a hydrogen bond interaction. ${ }^{16,23}$ This would explain the good affinity shown by 3-(2-furane derivative), $26\left(K_{\mathrm{i}}=26.9 \mathrm{nM}\right)$ compared to its isomer 23 (8-(2-furane derivative, $K_{\mathrm{i}}=209 \mathrm{nM}$), that probably has less interaction strength. The two pyrrole derivative isomers, instead, have good affinity: 3-(1(H)-2-pyrrol-) derivative 28, $K_{\mathrm{i}}=48.3 \mathrm{nM}$ and 8-(1(H)-2-pyrrol) derivative $\mathbf{2 5}, K_{\mathrm{i}}=19.4 \mathrm{nM}$. (We are going to rationalize these results in the next molecular modeling section).

The (hetero)aryl rings at position 8 in the 3-ester derivatives, $\mathbf{3 2 - 3 4}, 41$, were chosen considering the influence, positive or negative, which they have in the two previous series. In the 3-ester series the negligible influence of the ring size at position 8 was seen, in fact the affinity value is in the same order of magnitude $\left(14.9 \leqslant K_{\mathrm{i}}(\mathrm{nM}) \leqslant 54.8\right)$ for all compounds, except derivative 33, $\left(K_{\mathrm{i}}=395.4 \mathrm{nM}\right)$. The presence of a six-membered ring (paramethoxyphenyl), as in derivative 32, or five-membered ring, compound 41, confers quite comparable affinity values, $32 K_{\mathrm{i}}=29.4 \mathrm{nM}$ and $41 K_{i}=54.8 \mathrm{nM}$. When position 8 was substituted with a 2$(1 H)$-pyrrolyl, as in the case of the 3-methoxycarbonyl derivative 34, the affinity value was the best, $K_{\mathrm{i}}=14.9 \mathrm{nM}$. The NH pyrrole protection, as in compound 33 , reduced the affinity value confirming the importance of the NH pyrrole in the binding. Thus, the importance of anchorage of the 3-ester group is again confirmed ${ }^{17}$ and the affinity modulation due to substituent at position 8 is emphasized. ${ }^{16}$

The importance of the type of 8-substituent in the 3-furoyl derivatives, 35, 37, 42 that show binding affinity values in the
range of $63 \leqslant K_{\mathrm{i}}(\mathrm{nM}) \leqslant 856$ is again verified. Compound 37 , the 8 -(1H)-2-pyrrolyl emerges for its good affinity, $K_{\mathrm{i}}=63 \mathrm{nM}$.

From binding results it is possible assert that compounds bearing the (1 H)-2-pyrrolyl moiety are very good ligands ($\mathbf{1 8}, \mathbf{2 5}, \mathbf{2 8}$, 34, and 37) in each series, suggesting the critical role of a hydrogen bond donor (pyrrole NH) in receptor recognition. Good affinity values were also identified for compounds bearing acceptor atom moiety ($\mathbf{2 6}, \mathbf{3 2}$, and $\mathbf{4 1}$) if only by having the suitable substituent in the complementary position. Moreover, the size of the substituent at position 8 is very important only in the 3-iodine-, 3-hetero-aryl-, and 3 -furoylderivative, while it is negligible in the 3 -ester series.

3.2. Molecular modeling

The ADLR method ${ }^{16,23}$ was used here to rationalize the affinity data and to improve our knowledge of the HBp-3 area. Among the compounds endowed with better binding affinity, emerge derivatives with the pyrrole moiety in position 8 or $3(\mathbf{1 8}, \mathbf{2 5}, \mathbf{3 4}$, 37, and 28). In the overlapping performed by ADLR, the pyrrole ring
fits in the HBp-3 area permitting the NH to form hydrogen bond interaction, independently of the position of the pyrrole moiety in the pyrazolobenzotriazine core (see Fig. 2).

When the pyrrole ring is replaced with furane (16, 23, 42, 41, and 26, Figs. 3 and 4) bearing a potential hydrogen bond acceptor atom (0), ADLR oriented the furane oxygen mainly toward the HBp-3 area. As depicted in Figure 3,compounds 16, 23, and 42 present the furane moiety in this mode, but the lower affinity value of compounds ($K_{\mathrm{i}}=190,209$, and 856 nM , respectively) could be due to a reduced hydrogen bond force or no efficient interaction with LP-1 area (for $\mathbf{1 6}$ and 23) and steric hindrance for 42. Unexpectedly, compound 26 (isomer of compound 23) presents a different orientation proposed by ADLR (Fig. 4).

The thiophene ring efficiently interacts with the lipophilic area Lp-1, justifying the best affinity ($K_{\mathrm{i}}=26.9 \mathrm{nM}$). Compound 41 bearing an ester group (the 2-thienylmethoxycarbonyl group) at position 3 shows a good affinity value ($K_{i}=54.8 \mathrm{nM}$) according to the fact that the ester group contributes significantly to receptor anchorage as previously stated, ${ }^{16}$ interacting with the lipophilic area Lp-1 or Lp-2 depending on the orientation (A or B), see Figure 5.

compound 18

compound 25

compound 34

compound 37

Figure 2. Compounds $\mathbf{1 8}, \mathbf{2 5}, \mathbf{2 8}, \mathbf{3 4}$, and $\mathbf{3 7}$ in the pharmacophoric model performed by ADLR. The pyrrole ring fits in the HBp- 3 area permitting the NH moiety to form hydrogen bond interaction, independently of the position of the pyrrole moiety in the pyrazolobenzotriazine core.

compound 16

compound 23

compound 42
Figure 3. Compounds 16, 23, 42 in the pharmacophoric model performed by ADLR. The furane ring is oriented toward the HBp-3, but a reduced hydrogen bond force in the HBp-3 area or no efficient interaction with Lp-1 area ($\mathbf{1 6}$ and 23) and a steric hindrance (42) are responsible of a low affinity ($\mathbf{1 6}, K_{\mathrm{i}}=190 \mathrm{nM} ; \mathbf{2 3}, K_{\mathrm{i}}=209 \mathrm{nM} ; \mathbf{4 2}$, $K_{\mathrm{i}}=856 \mathrm{nM}$).

compound 26
Figure 4. Compounds 26 in the pharmacophoric model performed by ADLR: unexpected orientation of the furane ring; the driving force of the binding is due to lipophilic interaction of thiophene ring.

The importance of the anchorage by the ester group is also evidenced in compound $32\left(K_{i}=29.4 \mathrm{nM}\right)$, in which the presence of a large size group at position 8 is not binding for affinity, Figure 5 .

4. Conclusion

In previous studies it was hypothesized that the 8-oxygen atom of the 8 -aryloxypyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide derivatives engaged hydrogen bond interaction with the HBp-3 area. ${ }^{16}$ On the other hand, the idea/hypothesis that this HBp-3 was a bifunctional area arose when the CGS 9698 compound, used to validate our pharmacophoric model with respect to Cook's 'unified pharmacophore/receptor model', showed hydrogen bond interaction with the same area. In this study, this hypothesis is confirmed since the NH group of the pyrrole ring engages a strong hydrogen bond interaction with $\mathrm{HBp}-3$. The fact that the furane derivatives
(16, 23, and 42) do not have a good binding, despite the ability to form a hydrogen bond interaction through the oxygen atom, could be due to an imperfect distance from hydrogen bond donor in the $\mathrm{HBp}-3$ area.

In a preliminary study (data not published) derivatives bearing a phenylethylamine moiety $\left(-\mathrm{NHCH}_{2} \mathrm{Ph}\right)$ at position 8 of pyrazolobenzotriazine system were endowed with very good binding affinity (in a range of 0.1 nM), thus the synthesis of $8-\mathrm{NH}$ isoster of $8-\mathrm{OAr}^{16}$ will be the object of our next research project.

5. Experimental

5.1. Chemistry

Melting points were determined with a Gallenkamp apparatus and were uncorrected. Silica gel plates (Merck F_{254}) and silica gel 60 (Merck 70-230 mesh) were used for analytical and column chromatography, respectively. The structures of all compounds were supported by their IR spectra (KBr pellets in nujol mulls, Per-kin-Elmer 1420 spectrophotometer) and ${ }^{1} \mathrm{H}$ NMR data (measured with a Bruker 400 MHz). Chemical shifts were expressed in δ ppm, using DMSO- d_{6} or CDCl_{3} as solvent. The chemical and physical data of new compounds are shown in Tables 1; all new compounds possess a purity $\geqslant 95 \%$: microanalyses were performed with a Perkin-Elmer 260 analyzer for C, H, N.
5.2. General procedure for the synthesis of 3-7, 9, 19-22, 24, 27, 32-33, 35-36

Tetrakis(triphenylphosphine)palladium (0) (20 mg, 0.017 mmol$)$ and the suitable iodopyrazolo benzotriazine (0.15 mmol) were combined in anhydrous tetrahydrofurane (5.0 mL). The starting materials were: compound $\mathbf{1 , 1 8}$ for the synthesis of derivatives

compound 41 (orientation A)

compound 41 (orientation B)

compound 32
Figure 5. Compounds 41 (in two orientations A, B) and compound $\mathbf{3 2}$ in the pharmacophoric model performed by ADLR. Contribute of ester group to receptor anchorage.
$\mathbf{3 - 7}, \mathbf{9}$; compound $2,{ }^{22}$ for the synthesis of derivatives 19-22, 24; compound 15 (see below) for the synthesis of derivative 27; compound $\mathbf{3 0}$ for the synthesis of $\mathbf{3 5}$ and $\mathbf{3 6}$; compound $\mathbf{3 1 , 2}$ for the synthesis of derivatives 32 and 33. The solution of the suitable arylboronic acid ($0.23 \mathrm{mmol}, 1: 1.5$) in absolute ethanol and aqueous sodium carbonate ($2 \mathrm{M}, 2 \mathrm{~mL}$) were added and the reaction was maintained at $25-70{ }^{\circ} \mathrm{C}$ (see the exact condition in each compound) and monitored by TLC. The final suspension was treated with water, filtrated to crude final product and purified by recrystallization by suitable solvent.

5.2.1. 8-(2-Methoxyphenyl)pyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide (3)

From 1, ${ }^{18}$ and 2-methoxy phenylboronic acid, 4 h , room temperature. Yellow crystals; TLC eluent: diisopropyl ether/cyclohexane $8: 3 \mathrm{v} / \mathrm{v} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-d_{6}$) $\delta 8.48(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6$ and $\mathrm{H}-9)$; 8.29 (d, 1H, H-2); 7.87 (dd, 1H, H-7); 7.53 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-4$ and $\mathrm{H}-6$ phenyl); 7.25 (d, 1H, H-3 phenyl); 7.16 (t, 1H, H-5 phenyl); 6.92 (d, 1H, H-3); 3.85 (s, 3H, OCH3). Anal. C, H, N.

5.2.2. 8-(4-Methoxyphenyl)pyrazolo[5,1-c][1,2,4]benzotriazine

5-oxide (4)

From 1, ${ }^{18}$ and 4-methoxyphenylboronic acid, 3 h , room temperature. Yellow crystals; TLC eluent: toluene/ethyl acetate/acetic acid 8:2:1 v/v/v; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6}\right) \delta 8.48(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6$ and H-9); 8.31 (d, 1H, H-2); 8.05 (dd, 1H, H-7); 7.92 (d, 2H, H-2 and H-6 phenyl); 7.15 (d, 2H, H-3 and H-5 phenyl); 6.92 (d, 1H, H-3); 3.85 (s, 3H, OCH_{3}). Anal. C, H, N.

5.2.3. 8-(4-Pyridyl)pyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide

 (5)From 1, ${ }^{18}$ and 4-pyridin boronic acid, 3 h , reflux temperature. Yellow crystals; TLC eluent: toluene/ethyl acetate/acetic acid 8:2:1 v/v/v; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.85$ (m, 2H, H-2 and H-6 pyridine); 8.70 (m, 2H, H-6 and H-9); 8.18 (d, 1H, H-2); 7.90 (dd, 1H,

H-7); 7.70 (m, 2H, H-3 and H-5 pyridine); 6.82 (d, 1H, H-3). Anal. C, H, N.

5.2.4. 8-(Thien-2-yl)pyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide

 (6)From 1, ${ }^{18}$ and 2-thiophen boronic acid, $3 \mathrm{~h}, 70^{\circ} \mathrm{C}$. Yellow crystals; TLC eluent: diisopropyl ether/cyclohexane $8: 3 \mathrm{v} / \mathrm{v} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.59(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-9) ; 8.57$ (d, 2H, H-6); 8.14 (d, 1H, H-2); 7.87 (dd, 1H, H-7); 7.69 (d, 1H, H-5 thiophene); 7.57 (d, 1H, H-3 thiophene); 7.22 (m, 1H, H-4 thiophene); 6.79 (d, 1H, H-3). Anal. C, H, N.

5.2.5. 8-(Thien-3-yl)pyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide

 (7)From 1, ${ }^{18}$ and 3-thiophen boronic acid, 1.5 h , room temperature. Yellow crystals; TLC eluent: diisopropyl ether/cyclohexane $8: 3 \mathrm{v} / \mathrm{v} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6$ and $\mathrm{H}-9) ; 8.05(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{H}-2) ; 7.78$ (m, 2H, H-7 and H-2 thiophene); $7.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4$ thiophene); 7.45 (m, 1H, H-5 thiophene); 6.69 (d, 1H, H-3). Anal. C, H, N.

5.2.6. 8-(N-Boc-pyrrol-2-yl)pyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide (9)

From $1,{ }^{18}$ and $N($ Boc $)$ pyrrole-2-boronic acid $3 \mathrm{~h}, 60-70^{\circ} \mathrm{C}$, in toluene. Red crystals; TLC eluent: toluene/ethyl acetate/acetic acid 8:2:1 v/v/v; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.45$ (m, 2H, H-6 and H-9); 8.02 (d, $1 \mathrm{H}, \mathrm{H}-2$); 7.73 (dd, 1H, H-7); 7.40 (m, 1H, H-3 pyrrole); 6.65 (d, 1H, $\mathrm{H}-3$); 6.50 (m, 1H, H-5, pyrrole); 6.30 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$ pyrrole); 1.40 (s, $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right)$. Anal. C, H, N.

5.2.7. 3-(Thien-3-yl)-8-phenylpyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide (19)

From 2, ${ }^{22}$ and phenylboronic acid, $8 \mathrm{~h}, 50-60^{\circ} \mathrm{C}$. Red crystals; TLC eluent: diisopropyl ether/cyclohexane $8: 3 \mathrm{v} / \mathrm{v}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 8.62$ (d, 1H, H-6); 8.59 (d, 1H, H-9); 8.36 (s, 1H, H-2); 7.93 (d, 1H,

H-2 thiophene); 7.88 (dd, 1H, H-7); 7.80 (d, 2H, H-2 and H-6 phenyl); 7.68 (d, 1H, H-4 thiophene); 7.55 (m, 3H, H-3, H-4 and H-5 phenyl); 7.46 (m, 1H, H-5 thiophene). Anal. C, H, N.

5.2.8. 3-(Thien-3-yl)-8-(4-Methoxyphenyl)pyrazolo[5,1-c][1,2,4]-benzotriazine 5 -oxide (20)

From 2, ${ }^{22}$ and 4-methoxyphenylboronic acid, $4 \mathrm{~h}, 60-70^{\circ} \mathrm{C}$. Red crystals; TLC eluent: diisopropyl ether/cyclohexane $8: 3 \mathrm{v} / \mathrm{v} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) 8.75 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$); 8.47 (m, 2H, H-6 and H-9); 8.05 (dd, 1H, H-7); 8.00 (d, 1H, H-2 thiophene); 7.93 (d, 2H, H-2' and $\mathrm{H}-6^{\prime}$ phenyl); 7.79 (d, 1H, H-4 thiophene); 7.72 (m, 1H, H-5 thiophene); 7.15 (d, 2H, H-3' and H-5' phenyl). Anal. C, H, N.

5.2.9. 3-(Thien-3-yl)-8-(thien-2-yl)pyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide (21)

From 2, ${ }^{22}$ and 2-thiophenboronic acid, 2 h , room temperature. Red crystals; TLC eluent: diisopropyl ether/cyclohexane $8: 3 \mathrm{v} / \mathrm{v}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.58(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6$ and $\mathrm{H}-9) ; 8.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2)$; 7.93 (m, 1H, H-2, 3-thiophene); 7.85 (dd, 1H, H-7); 7.68 (m, 2H, $\mathrm{H}-4,3$-thiophene and $\mathrm{H}-3,8$-thiophene); 7.58 (dd, $1 \mathrm{H}, \mathrm{H}-5,8$-thiophene); 7.46 (dd, 1H, H-5, 3-thiophene); 7.21 (dd, 1H, H-4, 8-thiophene). Anal. C, H, N.

5.2.10. 3-(Thien-3-yl)-8-(thien-3-yl)pyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide (22)

From 2, ${ }^{22}$ and 3-thiophenboronic acid, $3 \mathrm{~h}, 80^{\circ} \mathrm{C}$, in toluene. Red crystals; TLC eluent: diisopropyl ether/cyclohexane $8: 3 \mathrm{v} / \mathrm{v}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 8.59$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-6$ and $\mathrm{H}-9$); 8.36 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$); 7.93 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2,3$-thiophene); 7.86 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-7$ and $\mathrm{H}-2,8$-thiophene); 7.69 (dd, 1H, H-4, 3-thiophene); 7.61 (dd, 1H, H-4, 8-thiophene); 7.54 (dd, 1H, H-5, 8-thiophene); 7.46 (dd, 1H, H-5, 3-thiophene). Anal. C, H, N.

5.2.11. 3-(Thien-3-yl)-8-(N-Boc-pyrrol-2-yl)pyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide (24)

From $2,{ }^{22}$ and $N($ Boc $)$ pyrrole-2-boronic acid, $3 \mathrm{~h}, 60-70^{\circ} \mathrm{C}$, in toluene. Red crystals; TLC eluent: toluene/ethyl acetate/acetic acid 8:2:1 v/v/v; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.73$ (s, 1H, H-2); 8.40 (d, $1 \mathrm{H}, \mathrm{H}-$ 6), 8.21 (d, 1H, H-9); 7.99 (m, 1H, H-2, 3-thiophene); 7.75 (m, 3H, $\mathrm{H}-7$ and $\mathrm{H}-5,3$-thiophene and $\mathrm{H}-3$ pyrrole); 7.57 (m, 1H, H-4, 3thiophene); 6.70 (m, 1H, H-5, pyrrole); 6.51 (m, 1H, H-4 pyrrole); $1.40\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right)$. Anal. C, H, N.

5.2.12. 3-(N-Boc-pyrrol-2-yl)-8-(thien-3-yl)pyrazolo[5,1-c]-

 [1,2,4]benzotriazine 5-oxide (27)From 15 (see below) and $N(\mathrm{Boc})$ pyrrole-2-boronic acid, 3 h , $60-70^{\circ} \mathrm{C}$, in toluene. Red crystals; TLC eluent: toluene/ethyl acetate/acetic acid $8: 2: 1 \mathrm{v} / \mathrm{v} / \mathrm{v} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.51(\mathrm{~d}, 1 \mathrm{H}$, H-9); 8.38 (m, 1H, H-2 thiophene); 8.36 (d, 1H, H-6); 8.32 (s, 1H, $\mathrm{H}-2$); 8.18 (dd, $1 \mathrm{H}, \mathrm{H}-7$); 7.80 (m, 1H, H-5, thiophene); 7.70 (m, 1H, H-4 thiophene); 7.39 (m, 1H, H-3 pyrrole); 6.40 (m, 1H, H-5, pyrrole); 6.30 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$ pyrrole); $1.30\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right)$. Anal. C, H, N.

5.2.13. 3-(2-Thienylmethoxycarbonyl)-8-(4-methoxy-phenyl)pyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide (32)

From 31,22 and 4-methoxyphenylboronic acid, 8 h , room temperature. Yellow crystals; TLC eluent: toluene/ethyl acetate $8: 3 \mathrm{v} /$ $\mathrm{v} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.68$ (s, 1H, H-2); 8.51 (d, 1H, H-9); 8.49 (d, $1 \mathrm{H}, \mathrm{H}-6$); 8.12 (dd, 1H, H-7); 7.95 (d, $2 \mathrm{H}, \mathrm{H}-2$ and H-6 phenyl); 7.60 (d, 1H, H-5 thiophene); 7.30 (d, 1H, H-3 thiophene); 7.60 (d, $2 \mathrm{H}, \mathrm{H}-3$ and H-5 phenyl); 7.08 (m, 1H, H-5 thiophene); 5.52 (s, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. Anal. C, H, N.
5.2.14. 3-(2-Thienylmethoxycarbonyl)-8-(N-Boc-pyrrol-2-yl)-pyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide (33)

From 31, ${ }^{22}$ and $N(\mathrm{Boc})$ pyrrole-2-boronic acid, 3 h , refluxing temperature, in toluene. Yellow crystals; TLC eluent: toluene/ethyl acetate/acetic acid $8: 2: 1 \mathrm{v} / \mathrm{v} / \mathrm{v} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 8.67$ (s, 1H, H2); 8.40 (d, 1H, H-6), 8.23 (d, 1H, H-9); 7.82 (dd, 1H, H-7); 7.60 (m, $1 \mathrm{H}, \mathrm{H}-5$ thiophene); 7.55 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3$ pyrrole); 7.30 (m, 1H, H-3, 3thiophene); 7.01 (m, 1H, H-4 thiophene); 6.71 (m, 1H, H-5, pyrrole); $6.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4$ pyrrole $) ; 5.51\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 1.40(\mathrm{~s}, 9 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{3}\right)$. Anal. C, H, N.

5.2.15. 3-(Fur-2-ylcarbonyl)-8-(4-methoxyphenyl)pyrazolo[5,1c] [1,2,4]benzotriazine 5 -oxide (35)

From 30 (see below), and 4-methoxyphenylboronic acid, 12 h , room temperature. Yellow crystals; TLC eluent: toluene/ethyl acetate $8: 3 \mathrm{v} / \mathrm{v} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2) ; 8.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-9)$; 8.40 (d, 1H, H-6); 8.18 (m, 2H, H-7 and H-5 furane); 7.98 (d, 2H, H2 and H-6 phenyl); 7.61 (d, 1H, H-3 furane); 7.18 (d, $2 \mathrm{H}, \mathrm{H}-3$ and $\mathrm{H}-$ 5 phenyl); 6.82 (m, 1H, H-4 furane); 3.80 (s, 3H, CH3). Anal. C, H, N.

5.2.16. 3-(Fur-2-ylcarbonyl)-8-(N-Boc-pyrrol-2-yl)pyrazolo[5,1c] [1,2,4]benzotriazine 5-oxide (36)

From 30 and N (Boc)pyrrole-2-boronic acid, 3 h , refluxing temperature, in tetrahydrofurane. Yellow crystals; TLC eluent: toluene/ethyl acetate/acetic acid $8: 2: 1 \mathrm{v} / \mathrm{v} / \mathrm{v} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) δ 8.91 (s, 1H, H-2); 8.42 (d, 1H, H-6), 8.30 (d, 1H, H-9); 8.12 (d, 1H, H-5 furane); 7.82 (dd, 1H, H-7); 7.62 (m, 1H, H-3 furane); 7.58 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3$ pyrrole); 6.82 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$, furane); 6.72 (m, 1H, H-5, pyrrole); $6.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4\right.$ pyrrole); $1.40\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right)$. Anal. C, H, N.

5.3. 3-(Fur-2-ylcarbonyl)-8-iodopyrazolo[5,1-c][1,2,4]benzotriazine 5 -oxide (30)

The starting material $\mathbf{2 9},{ }^{22}$ (0.22 mmol) was reacted with 2.5 mL of thionyl chloride and maintained at refluxing temperature for 1 h . The final solution was evaporated in vacuo and the corresponding 3-carbonylchloride intermediate was utilized as that in the next Friedel-Craft reaction. Dichloromethane (10 mL), SnCl_{4} (0.2 mL), and furane (0.2 mL) were added to the carbonylchloride residue and the reaction was heated at $40-50^{\circ} \mathrm{C}$, monitoring by TLC (eluent: toluene/ethyl acetate/acetic acid $8: 2: 1 \mathrm{v} / \mathrm{v} / \mathrm{v}$). The reaction was quenched with $\mathrm{HCl} 1: 1$, diluted with dichloromethane and the organic phase separated. The dichloromethane phase was washed with a saturated solution of sodium bicarbonate, dried over sodium sulfate anhydrous and evaporated. The final residue was purified by chromatography column (eluent: toluene/ethyl acetate/acetic acid $8: 2: 1 \mathrm{v} / \mathrm{v} / \mathrm{v}$) and $\mathbf{3 0}$ was eluted as the fast band. Yellow crystals; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.91$ (s, 1H, H-2); 8.78 (d, 1H, H-9); 8.18 (m, 3H, H-7, H-6 and H-5 furane); 7.61 (d, 1H, H-3 furane); 6.82 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$ furane).

5.4. General procedure for the synthesis of derivatives $8,23,26$,

 and 39A solution of potassium 2-furantrifluoroborate $(60 \mathrm{mg}$, $0.34 \mathrm{mmol}), \mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{mg})$, triethylamine $(0.1 \mathrm{~mL})$ and the suitable starting materials: $\mathbf{1},{ }^{18} \mathbf{2},{ }^{22}, \mathbf{1 5}, \mathbf{3 8},{ }^{22}(0.2 \mathrm{mmol})$ in n-propyl alcohol (10 mL) was stirred at reflux for 3 h . The reaction was monitored by TLC (eluent: toluene/ethyl acetate/acetic acid $8: 2: 1 \mathrm{v} / \mathrm{v} / \mathrm{v}$) and when the staring material disappeared, was cooled to room temperature, and diluted with water (15 mL). The appropriate work up of the final suspension gave the desired final products 8, 23, 26, and 39.

5.4.1. 8-(Fur-2-yl)pyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide

 (8)From $1,{ }^{18}$ the final suspension was extracted with ethyl acetate and dried over sodium sulfate anhydrous. Evaporation of solution gave orange residue. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.45$ (m, 2H, H-6 and $\mathrm{H}-9) ; 8.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2) ; 8.08$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-7$ and $\mathrm{H}-5$ furane); 7.58 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3$ furane); 6.92 (d, 1H, H-3); 6.80 (m, 1H, H-4 furane). Anal. C, H, N.

5.4.2. 3-(Thien-3-yl)-8-(fur-2-yl)pyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide (23)

From $\mathbf{2},{ }^{22}$ the final suspension was extracted with ethyl acetate $(10 \mathrm{~mL} \times 3)$, dried over sodium sulfate anhydrous and evaporated in vacuo and the residue recrystallized. Red crystals; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.78$ (s, 1H, H-2); 8.49 (m, 2H, H-6 and H-9); 8.08 (d, 1H, H-7); 8.02 (s, 1H, H-2, thiophene); 8.00 (d, $1 \mathrm{H}, \mathrm{H}-5$ furane); 7.77 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$, thiophene); 7.72 (m, 1 H , $\mathrm{H}-5$, thiophene); 7.58 (d, 1H, H-3 furane); 6.78 (m, 1H, H-4 furane). Anal. C, H, N.

5.4.3. 3-(Fur-2-yl)-8-(thien-3-yl)pyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide (26)

From 15. The precipitate was filtered and purified by silica gel chromatography (eluting with toluene/ethyl acetate/acetic acid 8:2:1 v/v/v). Red crystals; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.60$ (s, 1H, H-2); 8.58 (d, 1H, H-9); 8.45 (m, 2H, H-6 and H-2 thiophene); 8.12 (dd, $1 \mathrm{H}, \mathrm{H}-7)$; 7.88 (m, 1H, H-5, thiophene); $7.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4$ thiophene and H-5 furane); 6.85 (d, 1H, H-3 furane); 6.68 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$ furane). Anal. C, H, N.
5.4.4. Ethyl 1-(2-nitro-5-(fur-2-yl)phenyl)-5-aminopyrazol-4carboxylate (39)

From 38, ${ }^{22}$ dark-yellow crystals; ${ }^{1} \mathrm{H}$ NMR $\left(\right.$ DMSO- $\left.d_{6}\right) \delta 8.21$ (d, $1 \mathrm{H}, \mathrm{H}-3^{\prime}$); 8.01 (dd, 1H, H-4'); 7.97 (d, 1H, H-6'); 7.93 (s, 1H, H-5 furane); 7.70 (s, 1H, H-3); 7.41 (d, $1 \mathrm{H}, \mathrm{H}-3$ furane); $6.73(\mathrm{~m}, 1 \mathrm{H}$, H-4 furane); 6.57 (br s, 2H, NH_{2}, exch.); 4.22 (q, 2H, CH2); 1.35 (t, $3 \mathrm{H}, \mathrm{CH}_{3}$). Anal. C, H, N.

5.5. General procedure for the synthesis of derivatives 10 and 12-17

A solution of appropriate starting material 3-9 (0.30 mmol) in acetonitrile $(10 \mathrm{~mL})$ was added of iodine $(0.18 \mathrm{mmol})$ and cerium ammonium nitrate (CAN, 0.18 mmol) and maintained at room temperature for 45 min . The final red solution was evaporated under reduced pressure and the residue was washed with a 10% sodium hydroxide solution, the precipitate filtered and recrystallized by suitable solvent.

5.5.1. 3-Iodo-8-(2-methoxyphenyl)pyrazolo[5,1c] [1,2,4]benzotriazine 5 -oxide (10)

From 3. Orange crystals; TLC eluent: toluene/ethyl acetate/acetic acid 8:2:1 v/v/v; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.46(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-6) ; 8.41(\mathrm{~d}$, 1H, H-9); 8.34 (s, 1H, H-2); 7.87 (dd, 1H, H-7); 7.53 (m, 2H, H-4 and H-6 phenyl); 7.25 (d, 1H, H-3 phenyl); 7.16 (t, 1H, H-5 phenyl); $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$. Anal. C, H, N.

[^2]5.5.3. 3-Iodo-8-(4-pyridyl)pyrazolo[5,1-c][1,2,4]benzotriazine 5oxide (13)

From 5. Orange crystals; TLC eluent: toluene/ethyl acetate/acetic acid 8:2:1 v/v/v; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.79$ ($\mathrm{d}, 2 \mathrm{H}, \mathrm{H}-2$ and H-6 pyridine); 8.64 (d, 1H, H-9); 8.55 (d, 1H, H-6); 8.44 (s, 1H, H-2); 8.15 (dd, 1H, H-7); 7.98 (m, 2H, H-3 and H-5 pyridine). Anal. C, H, N.

5.5.4. 3-Iodo-8-(thien-2-yl)pyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide (14)

From 6. Orange crystals; TLC eluent: diisopropyl ether/cyclohexane $8: 3 \mathrm{v} / \mathrm{v} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.58(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6$ and $\mathrm{H}-9)$; 8.14 (s, 1H, H-2); 7.88 (dd, 1H, H-7); 7.69 (d, 1H, H-5 thiophene); 7.57 (d, 1H, H-3 thiophene); 7.22 (m, 1H, H-4 thiophene). Anal. C, H, N.

5.5.5. 3-Iodo-8-(thien-3-yl)pyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide (15)

From 7. Orange crystals; TLC eluent: diisopropyl ether/cyclohexane $8: 3 \mathrm{v} / \mathrm{v} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.57(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6$ and $\mathrm{H}-9)$; $8.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2) ; 7.88(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7$ and $\mathrm{H}-2$ thiophene); 7.59 (m, 1H, H-4 thiophene); 7.45 (m, 1H, H-5 thiophene). Anal. C, H, N.

5.5.6. 3-Iodo-8-(Fur-2-yl)pyrazolo[5,1-c][1,2,4]benzotriazine 5oxide (16)

From 8. Orange crystals; TLC eluent: diisopropyl ether/cyclohexane $8: 3 \mathrm{v} / \mathrm{v} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}\right) \delta 8.47(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-2$, and $\mathrm{H}-9$); 8.05 (dd, 1H, H-7); 7.98 (m, 1H, H-5 furane); 7.52 (m, 1H, H-3 furane); 6.79 (m, 1H, H-4 furane). Anal. C, H, N.

5.5.7. 3-Iodo-8-(N-Boc-pyrrol-2-yl)pyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide (17)

From 9. Orange crystals; TLC eluent: toluene/ethyl acetate/acetic acid 8:2:1 v/v/v; ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) $\delta 8.44$ (m,3H, H-2, H-6 and H-9); 7.85 (d, 1H, H-7); 7.79 (m, 1H, H-3 pyrrole); 6.72 (m, 1H, H-5, pyrrole); $6.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4\right.$ pyrrole); $1.40\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right)$. Anal. C, H, N.

5.6. 3-Iodo-8-(2-hydroxyphenyl)pyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide (11)

A solution of $\mathbf{1 0}(0.24 \mathrm{mmol})$ in dichloromethane (15 mL) was reacted with $\mathrm{BBr}_{3}(0.3 \mathrm{~mL})$ at refluxing temperature until the starting material disappeared in TLC (eluent: toluene/ethyl acetate/acetic acid $8: 2: 1$). Then the final solution was treated with a 10% sodium hydroxide solution and the organic layer eliminated. The aqueous phase, after acidification ($\mathrm{HCl} 1: 1$) was extracted with ethyl acetate, dried and evaporated dryness obtained a yellow residue that was purified by recrystallization. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) δ 10.2 (br s, $1 \mathrm{H}, \mathrm{OH}$); 8.55 (d, 1H, H-9); 8.46 (d, 1H, H-6); 8.34 (s, $1 \mathrm{H}, \mathrm{H}-2$); 7.95 (dd, 1H, H-7); 7.50 (d, 1H, H-3 phenyl); 7.35 (t, $1 \mathrm{H}, \mathrm{H}-5$ phenyl); 7.01 (d, 1H, H-6 phenyl); 7.00 (t, 1H, H-4 phenyl). Anal. C, H, N.

5.7. General procedure for the synthesis of derivatives $18,25,28$, 34 and 37

To a mixture of starting material 17, 24, 27, 33, and 36 $(0.15 \mathrm{mmol})$ and anhydrous THF (2 mL) was added a solution of sodium methoxide in methanol (2 mL of a 0.43 M solution). The mixture was allowed to stir 1 h at room temperature and then treated with water. The resulting suspension was worked up and the row product recrystallized by suitable solvent.

In case of starting material 33 a trans-esterification occurred and the final product was the 3-methyl ester derivative 34.

5.7.1. 3-Iodo-8-(pyrrol-2-yl)pyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide (18)

From 17. Red crystals; TLC eluent: toluene/ethyl acetate/acetic acid 8:2:1 v/v/v; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 12.00$ (br s, $1 \mathrm{H}, \mathrm{NH}$, exch.); 8.43 (s, 1H, H-2); 8.40 (d, 1H, H-9); 8.25 (d, 1H, H-6); 8.00 (dd, 1H, H-7); 7.10 (m, 1H, H-3 pyrrole); 7.05 (m, 1H, H-5, pyrrole); 6.30 (m, 1H, H-4 pyrrole). Anal. C, H, N.

5.7.2. 3-(Thien-3-yl)-8-(pyrrol-2-yl)pyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide (25)

From 24. Red crystals; TLC eluent: toluene/ethyl acetate/acetic acid 8:2:1 v/v/v; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 12.00$ (br s, $1 \mathrm{H}, \mathrm{NH}$, exch.); 8.73 (s, 1H, H-2); 8.50 (d, 1H, H-9); 8.35 (d, 1H, H-6); 8.00 (m, 2H, H-7 and H-2, 3-thiophene); 7.78 (m, 1H, H-5, 3-thiophene); 7.70 (m, 1H, H-5, 3-thiophene); 7.12 (m, 1H, H-5, pyrrole); 7.01 (m, 1H, H-4 pyrrole); 6.30 (m, 1H, H-3 pyrrole). Anal. C, H, N.

5.7.3. 3-(Pyrrol-2-yl)-8-(thien-3-yl)pyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide (28)

From 27. Red crystals; TLC eluent: toluene/ethyl acetate/acetic acid 8:2:1 v/v/v; ${ }^{1} \mathrm{H}$ NMR $\left(\right.$ DMSO- d_{6}) $\delta 11.35$ (br s, $1 \mathrm{H}, \mathrm{NH}$, exch.); 8.51 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-6$ and $\mathrm{H}-2$); 8.42 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-9$ and $\mathrm{H}-2$ thiophene); 8.01 (dd, 1H, H-7); 7.83 (m, 1H, H-5, thiophene); 7.70 (m, 1H, H4 thiophene); 6.90 (m, 1H, H-3 pyrrole); 6.60 (m, 1H, H-5, pyrrole); 6.18 (m, 1H, H-4 pyrrole). Anal. C, H, N.

5.7.4. 3-Methoxycarbonyl-8-(pyrrol-2-yl)pyrazolo[5,1-c][1,2,4]benzotriazine 5 -oxide (34)

From 33, in reaction conditions a trans-esterification occurred. Red crystals; TLC eluent: toluene/ethyl acetate/acetic acid 8:2:1 $\mathrm{v} / \mathrm{v} / \mathrm{v} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 12.1$ (br s, 1 H , NH, exch.); 8.67 (s, 1H, H-2); 8.55 (d, 1H, H-9); 8.38 (d, 1H, H-6), 8.08 (dd, 1H, H-7); 7.18 (m, 1H, H-3 pyrrole); 7.08 (m, 1H, H-5, pyrrole); 6.30 (m, $1 \mathrm{H}, \mathrm{H}-4$ pyrrole); 3.90 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$). Anal. C, H, N.

5.7.5. 3-(Fur-2-ylcarbonyl)-8-(pyrrol-2-yl)pyrazolo[5,1-c][1,2,4]benzotriazine 5 -oxide (37)

From 36. TLC eluent: toluene/ethyl acetate/acetic acid 8:2:1 v/v/ v ; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 12.00$ (br s, 1H, NH, exch.); 8.91 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-$ 2); 8.60 (d, 1H, H-9); 8.38 (d, 1H, H-6), 8.12 (m, 2H, H-7 and H-5 furane); 7.62 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3$ furane); 7.15 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3$ pyrrole); 7.08 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5$, pyrrole); 6.80 (m, 1H, H-4 furane); 6.30 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$ pyrrole). Anal. C, H, N.

5.8. 3-Carboxy-8-(fur-2-yl)pyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide (40)

A solution of $\mathbf{3 9}(0.5 \mathrm{mmol})$ in diglyme (5 mL) was added of 25 mL of 10% sodium hydroxide solution and was kept at $50-$ $60^{\circ} \mathrm{C}$ until the starting material disappeared, monitoring by TLC. The final suspension was treated with hydrochloric acid and the filtration of the precipitate afforded to the acid derivative $\mathbf{4 0}$. The crude products were then recrystallized by suitable solvent. Yellow crystals; TLC eluent: toluene/ethyl acetate/acetic acid $8: 2: 1 \mathrm{v} / \mathrm{v} / \mathrm{v}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) $\delta 12.9$ (br s, 1H, OH, exch.); 8.61 (s, 1H, H-3); 8.51 (d, 1H, H-9); 8.48 (d, 1H, H-6); 8.15 (dd, 1H, H-7); 8.03 (d, $1 \mathrm{H}, \mathrm{H}-5$ furane); 7.60 (d, 1H, H-3 furane); 6.80 (m, 1H, H-4 furane). Anal. C, H, N.

5.9. 3-(2-Thienylmethoxycarbonyl)-8-(fur-2-yl)pyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide (41)

A suspension of the acid $\mathbf{4 0}(0.337 \mathrm{mmol})$ in anhydrous THF and triethyl amine ($1: 3.5$) was maintained at $0^{\circ} \mathrm{C}$ in ice bath for 30^{\prime}. To the suspension was added i-butylchloroformate (0.2 mL) and maintained under stirring for 1 h, from $0^{\circ} \mathrm{C}$ to room temperature,
to permit the anhydride to form. The 2-thiophen methanol was added in excess (0.2 mL) and the reaction was monitored by TLC (eluent: toluene/ethyl acetate 8:2). The final suspension was diluted with water and extracted with ethyl acetate which was in turn washed with sodium hydrogen carbonate and, after the normal work up, the residue was purified by chromatography column. Yellow crystals. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.68$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$); 8.52 (d, 1 H , H-9); 8.49 (d, 1H, H-6); 8.14 (dd, 1H, H-7); 8.03 (d, 1H, H-5 furane); 7.60 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-5$ thiophene and $\mathrm{H}-3$ furane); 7.30 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3,3-$ thiophene); 7.06 (m, 1H, H-4 thiophene); 6.80 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$ furane); $5.55\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$. Anal. C, H, N.

5.10. 3-(Fur-2-ylcarbonyl)-8-(fur-2-yl)pyrazolo[5,1-c][1,2,4]benzotriazine 5 -oxide (42)

To a mixture of acid $\mathbf{4 0}(0.20 \mathrm{mmol})$ and trichloroacetonitrile $(0.60 \mathrm{mmol})$ in dichloromethane (10 mL) was added triphenylphosphine (0.60 mmol) in dichloromethane (1.0 mL) dropwise at room temperature. The reaction mixture was stirred at room temperature for 2 h until the starting material disappeared in TLC (eluent: toluene/ethyl acetate/acetic acid $8: 2: 1 \mathrm{v} / \mathrm{v} / \mathrm{v}$). The reaction was then treated with $\mathrm{SnCl}_{4}(0.1 \mathrm{~mL})$ followed furane (0.1 mL). After 30^{\prime} the solution was treated with water and the organic layer was separated, dried and evaporated to dryness. The residue was recovered by diisopropyl ether and recrystallized by suitable solvent. Yellow crystals. TLC eluent: toluene/ethyl acetate/acetic acid 8:2:1 v/v/v; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.91$ (s, 1H, H-2); 8.58 (d, 1H, H9); 8.50 (d, 1H, H-6), 8.16 (dd, 1H, H-7); 8.12 (m, 1H, H-5, 2-furoyl); 8.06 (m, 1H, H-5 furane); 7.62 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3,2$-furoyl and furane); 6.83 (m, 2H, H-4, 2-furoyl and furane). Anal. C, H, N.

5.11. Radioligand binding assay

[$\left.{ }^{3} \mathrm{H}\right]$ Ro15-1788 (specific activity $78.8 \mathrm{Ci} / \mathrm{mmol}$) was obtained from Perkin-Elmer. ${ }^{30,31}$ All the other chemicals, which were of reagent grade, were obtained from commercial suppliers.

Bovine cerebral cortex membranes were prepared as previously described. The membrane preparations were diluted with 50 mM Tris-citrate buffer pH 7.4, and used in the binding assay. Protein concentration was assayed using the method of Lowry et al. ${ }^{32}$ $\left[{ }^{3} \mathrm{H}\right]$ Ro 15-1788 binding studies were performed as previously reported. ${ }^{20}$ At least six different concentrations of each compound were used. The data of $n=5$ experiments carried out in triplicate were analyzed by means of an iterative curve-fitting procedure (program Prism, GraphPad, San Diego, CA), which provided IC_{50}, K_{i}, and SEM values for tested compounds, the K_{i} values being calculated from the Cheng and Prusoff equation. ${ }^{33}$

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmc.2011.04.009.

References and notes

1. D’Hulst, C.; Atack, J. R.; Kooy, R. F. Drug Discovery Today 2009, 14, 866.
2. Olsen, R. W.; Sieghart, W. Pharmacol. Rev. 2008, 60, 243.
3. Collingridge, G. L.; Olsen, R. W.; Peters, J.; Spedding, M. Neuropharmacology 2009, 56, 2.
4. Rudolph, U.; Mohler, H. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 475.
5. Rudolph, U.; Mohler, H. Curr. Opin. Pharmacol. 2006, 6, 1.
6. Whiting, P. J. Curr. Opin. Pharmacol. 2006, 6, 24.
7. McKernan, R. M.; Rosahl, T. W.; Reynolds, D. S.; Sur, C.; Wafford, K. A.; Atack, J. R.; Farrar, S.; Myers, J.; Cook, G.; Ferris, P.; Garrett, L.; Bristow, L.; Marshall, G.; Macaulay, A.; Brown, N.; Howell, O.; Moore, K. W.; Carling, R. W.; Street, L. J.; Castro, J. L.; Ragan, C. I.; Dawson, G. R.; Whiting, P. J. Nat. Neurosci. 2000, 3, 587.
8. Ebert, B.; Wafford, K. A.; Deacon, S. Pharmacol. Ther. 2006, 112, 612.
9. Savic, M. M.; Obradovic, D. I.; Ugresic, N. D.; Bokonjic, D. R. Neural Plast. 2005, 12, 289.
10. Löw, K.; Crestani, F.; Keist, R.; Benke, D.; Brünig, I.; Benson, J. A.; Fritschy, J. M.; Rülicke, T.; Bluethmann, H.; Möhler, H.; Rudolph, U. Science 2000, 290, 131.
11. Reynolds, D. S. Pharmacol. Biochem. Behav. 2008, 90, 37.
12. Yee, B. K.; Keist, R.; von Boehmer, L.; Studer, R.; Benke, D.; Hagenbuch, N.; Dong, Y.; Malenka, R. C.; Fritschy, J.-M.; Bluethmann, H.; Feldon, J.; Mohler, H.; Rudolph, U. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 17154.
13. Zhang, W.; Koehler, K. F.; Zhang, P.; Cook, J. M. Drug Des. Discov. 1995, 12, 193.
14. Clayton, T.; Chen, J. L.; Ernst, M.; Richter, L.; Cromer, B. A.; Morton, C. J.; Ng, H.; Kaczorowski, C. C.; Helmstetter, F. J.; Furtmuller, R.; Ecker, G.; Parker, M. W.; Sieghart, W.; Cook, J. M. Curr. Med. Chem. 2007, 14, 2755.
15. Ernst, M.; Bruckner, S.; Boresch, S.; Sieghart, W. Mol. Pharmacol. 2005, 68, 1291.
16. Guerrini, G.; Ciciani, G.; Cambi, G.; Bruni, F.; Selleri, S.; Guarino, C.; Melani, F.; Montali, M.; Martini, C.; Ghelardini, C.; Norcini, M.; Costanzo, A. J. Med. Chem. 2009, 52, 4668.
17. Costanzo, A.; Guerrini, G.; Ciciani, G.; Bruni, F.; Costagli, C.; Selleri, S.; Besnard, F.; Costa, B.; Martini, C.; Malmberg-Aiello, P. J. Med. Chem. 2002, 45, 5710.
18. Guerrini, G.; Ciciani, G.; Cambi, G.; Bruni, F.; Selleri, S.; Besnard, F.; Montali, M.; Martini, C.; Ghelardini, C.; Galeotti, N.; Costanzo, A. Bioorg. Med. Chem. 2007, 15, 2573.
19. Guerrini, G.; Ciciani, G.; Cambi, G.; Bruni, F.; Selleri, S.; Melani, F.; Montali, M.; Martini, C.; Ghelardini, C.; Norcini, M.; Costanzo, A. Bioorg. Med. Chem. 2008, 16, 4471.
20. Costanzo, A.; Guerrini, G.; Ciciani, G.; Bruni, F.; Selleri, S.; Costa, B.; Martini, C.; Lucacchini, A.; Malmberg-Aiello, P.; Ipponi, A. J. Med. Chem. 1999, 42, 2218.
21. Guerrini, G.; Costanzo, A.; Bruni, F.; Selleri, S.; Casilli, M. L.; Giusti, L.; Martini, C.; Lucacchini, A.; Malmberg Aiello, P.; Ipponi, A. Eur. J. Med. Chem. 1996, 31, 259.
22. Guerrini, G.; Costanzo, A.; Ciciani, G.; Bruni, F.; Selleri, S.; Costagli, C.; Besnard, F.; Costa, B.; Martini, C.; De Siena, G.; Malmberg-Aiello, P. Bioorg. Med. Chem. 2006, 14, 758.
23. Guerrini, G.; Ciciani, G.; Bruni, F.; Selleri, S.; Guarino, C.; Melani, F.; Montali, M.; Daniele, S.; Martini, C.; Ghelardini, C.; Norcini, M.; Ciattini, S.; Costanzo, A. J. Med. Chem. 2010, 53, 7532.
24. Molander, G. A.; Figueroa, R. Aldrichim. Acta 2005, $38,49$.
25. Molander, G. A.; Riviero, M. R. Org. Lett. 2002, 4, 107.
26. Rodrìguez-Franco, M. I.; Dorronsoro, I.; Hernandez-Higueras, A. I.; Antequera, G. Tetrahedron Lett. 2001, 42, 863.
27. Hasan, I.; Marinelli, E. R.; Lin, L.-C. C.; Fowler, F. W.; Levy, A. B. J. Org. Chem. 1981, 46, 157.
28. Costanzo, A.; Guerrini, G.; Bruni, F.; Selleri, S. J. Heterocycl. Chem. 1994, 31, 1369.
29. Jang, D. O.; Park, D. J.; Kim, J. Tetrahedron Lett. 1999, 40, 5323.
30. Martini, C.; Lucacchini, A.; Ronca, G.; Hrelia, S.; Rossi, C. A. J. Neurochem. 1982, 38, 15.
31. Primofiore, G.; Da Settimo, F.; Taliani, S.; Marini, A. M.; Novellino, E.; Greco, G.; Lavecchia, A.; Besnard, F.; Trincavelli, L.; Costa, B.; Martini, C. J. Med. Chem. 2001, 44, 2286.
32. Lowry, O. H.; Rosenbrough, N. J.; Farr, A.; Barnard, E. A.; Skolnick, P.; Olsen, R. W.; Möhler, H.; Sieghart, W.; Biggio, G.; Braestrup, C.; Bateson, A. N.; Langer, S. Z. L.; Randali, R. J. J. Biol. Chem. 1951, 193, 265.
33. Cheng, Y.; Prusoff, W. H. Biochem. Pharmacol. 1973, 22, 3099.

[^0]: * Corresponding author. Tel.: +39 0554573766 ; fax: +39 0554573671

 E-mail address: gabriella.guerrini@unifi.it (G. Guerrini).

[^1]: ${ }^{\text {a }}$ Compound 1-2, 29, 31, and 38 known, see chemical section for references. Compound 39, ethyl 1-(2-nitro-5-fur-2-ylphenyl)-5-aminopyrazole-4-carboxylate.

[^2]: 5.5.2. 3-Iodo-8-(4-methoxyphenyl)pyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide (12)

 From 4. Orange crystals; TLC eluent: toluene/ethyl acetate/acetic acid $8: 2: 1 \mathrm{v} / \mathrm{v} / \mathrm{v}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.46$ (m, $2 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-$ 6); 8.40 (d, 1H, H-9); 8.05 (dd, 1H, H-7); 7.92 (d, 2H, H-2 and H-6 phenyl); 7.13 (d, 2H, H-3 and H-5 phenyl); 3.85 (s, 3H, OCH ${ }_{3}$). Anal. C, H, N.

