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Summary

Objective: in recent years there has been a growing interest in the study of risk of disease around a point source of pollu-
tion. A number of statistical methods has been proposed to address such analysis with Poisson data. We focus on the analy-
sis of case-control data taking advantage of a real example regarding mortality, for respiratory causes around the oil-pow-
ered energy plant located in Ostiglia, Mantua (IT).

Methods: Tsotonic regression was used as a tool for data description. We proposed a Bayesian Binomial regression model
with change-point prior without specifying any constraint on the risk pattern.

Results: We analyzed 109 cases of deaths for respiratory diseases in the period 1995-1998 and 355 controls. Distance from
residence to putative source was used as proxy of exposure. An excess (relative risk 1.50; 90% credible interval 1.18; 1.83)
of mortality for respiratory causes within 4.5 km from the Ostiglia plant was found.

Conclusion: The Bayesian Binomial regression with change-point prior is a flexible approach to estimate the risk around a
putative point source under a case-control design.

KEY WORDS: Point Source Analysis, Case-Control, Bayesian Binomial Regression, Change-Point Prior, Isotonic Regres-

sion

Introduction

In the last twenty years there has been a growing in-
terest in the study of disease risk around a point sour-
ce of pollution (1). Such studies are known in the scien-
tific literature as point-source studies (2). To analyze
those data a common approach is to consider distan-
ce from the source as a proxy of exposure (3); in par-
ticular, assuming an isotropic process for the risk, it is
possible to consider classes of distance, built up as cir-
cular annuli centered on the source (4).

The statistical analysis depends on the type of availa-
ble information: we may have data only at aggregate
level, that is counts of cases and population denomi-

nators by area or we may know the exact location of
each single case event. Moreover it depends on the kno-
wledge about the population distribution in the study
area. If population density is known, then the analysis
proceeds comparing observed and expected number of
disease cases. Tests based on the difference observed-
expected weighted by distance from source (5,6), on
the ratio observed/expected by circular annuli of gro-
wing radius centred on the source (7) or Poisson pro-
bability tests (8) have been proposed in the literature.
When population density is not known the spatial di-
stribution of non cases can be estimated using a “‘con-
trol” sample. Indeed, the spatial distribution of cases
is not informative per se since population at risk is ge-
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nerally not homogeneously distributed.

Poisson or Logistic regression models in which a pa-
rametric function of distance from the source is spe-
cified are available in the literature (9), while non pa-
rametric approaches were widely used only for Pois-
son data (7, and for an example in case control data 10).
For binomial data, non parametric tests which had been
applied, are the cumulative and the maximum chi squa-
re tests (11,12). These tests are powerful in determi-
ning the presence of an association between distance
and risk, permit to determine a threshold for the effect
but lack in quantifying the risk and estimating the re-
sponse function.

When the relationship between outcome and exposu-
re is monotonic and we do not want to make strong as-
sumptions on the shape of the response function the iso-
tonic regression is appropriate (13). The only assum-
ption is that the response cannot decrease as exposu-
re increases. This kind of analysis is useful also when
we are interested in determining the potential number
of steps or breaking points and their position in case
the risk function be discontinuous.

In this work we propose a Bayesian approach with chan-
ge point prior to point source analysis when case-con-
trol data are available. A similar formulation has been
proposed in the literature for Poisson data (14). We take
advantage of the real example of the Ostiglia study
(Mantua, Italy), where a oil-powered energy plant is
located (15).

Data

The original study

Data come from a case-control study (15) carried out
in the year 2000. The study was commissioned by the
Province of Mantua (Italy) to screen the health status
of the population living near the power plants of Osti-
glia and Sermide. The original study area covered 17
municipalities in the south-west part of the Province
of Mantua for a total population of 46,549 inhabitants
at the moment of the investigation. Five causes of de-
ath were considered: ischemic heart disease (ICD-IX:
410-414), cerebrovascular diseases (ICD-IX: 430-
438), respiratory diseases (ICD-IX: 460-519), lung can-
cer (ICD-IX: 162), lymphoematopoietic malignant tu-
mors (ICD-IX: 200-208). All death certificates with un-
derlying cause of death listed before of all residents dead
in the study area on the calendar period 1995-1998 were

enrolled as cases. For each case up to 4 controls of the -

same sex and age, resident and present in the same area
at death, and dead in the same period of the case (+2
years) for causes not related to the exposure of interest
were identified. Mortality data, both for cases and con-
trols, came from the Mortality Register of the Local He-
alth Authority of Mantua (ASL).

Each case and control were assigned to the 1991 cen-
sus track of residence. For each census track information
on a series of variables as level of education, unem-
ployment, house tenure and house crowding were avai-
lable and were used as confounding variables in the ana-
lysis.

The distance between residence at death and putative
point sources was used as proxy of exposure.

The original report (15) highlighted an excess death risk
for respiratory diseases for residents within 4,5 Km from
the Ostiglia power plant (Adjusted Odds Ratio ORadj
= 2.13; 95% confidence interval Cl= 1.16-3.91).

Materials

In the present analysis we restrict our attention to 109
cases of deaths for respiratory diseases (ICD-IX:
460-519) in the period 1995-1998 and 355 controls.
‘We used as a proxy of exposure the distance from Osti-
glia power plant categorized into 13 circular annuli (1
km width) centered on the point source. In Table 1 we
report the distribution of the number of cases and con-
trols by distance.

Methods

Let assume to have N circular bands centered on a pu-
tative point source. For the i-th band let define ¥,
(i=1,...,N) the number of cases, n, the sum of cases and
controls and p, the probability of being a case.

The vector of probabilities p={p,,..., p, ,..., py} Te-
presents the risk gradient by distance, assuming con-
stant risk within each band. We further assume that the
proportion p, be a piecewise function of distance and
that it may vary k times, with 0 < k < N-1.

Let define s, the position of the change point (the lo-
cation in which p, change) and assume that 1<s,<s, <
... <8, <N(s,=1if k&=0). By definition the proportion
of cases between the locations s;and s, i8p, Ifk=0
the risk is constant, i.e. p=p V i. i
Let assume Y, be conditionally independent given the
parameters p,, 5, € k, and distributed as

Y,| Pys S k ~ﬂinomial(psj, n),i=1,.,N.

The joint likelihood is therefore:
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A linear model is specified on the logit of p.:

logit(p)= B+ B2 I(dizs )+ Bs Udzs2)+...+ Beer I(dizsi)

where I(°) is the indicator function, d; indicate the cir-
cular band, 3, is the logarithm of the odds up to the
first change point, B,+8, from the first to the second
change point, 8,+f3,+, between second and third and
so on till the k-th change point. .
Bayesian inference requires to specify the prior kno-
wledge. This is achieved by eliciting prior distributions
on the unknowns parameters (e.g. the positions s,, and
the 3, risk terms). In our analysis we fixed the number
of change points to be small and we specified Uniform
a priori distributions in (1, ..., N-1) on the change points
locations 5; (with the order restriction 5,< ... <s)). B
parameters are assumed a priori distributed as Normal
with 0 mean and small precision.

The chosen change-point prior results in a smoothed
risk function.

Posterior distributions are approximated by MCMC al-
gorithm. We have made use of the WinBUGS software
(16). Table 2 reports the part of the WinBugs code which
referred to the binomial likelihood and the linear pre-
dictor. The code for the a priori specifications can be
found in Kokki and Penttinen (14).

We also made an explorative analysis by maximum 1i-
kelihood isotonic regression running the PAVA and
CIR.PAVA algorithms of R software (17). That is, we
modelled the risk via a non parametric function which
have the only constrain of monotonicity of the relation
between risk and distance from the point source (13).
The CIR PAVA algorithm (Centered Isotonic Regres-
sion) is developed to estimate true smooth dose-response
functions (18). The PAVA algorithm (Pool Adjacent Vio-
lators Algorithm) constrains observations violating the
monotonicity assumption to a weighted average of ad-
jacent areas. This leads to piece-wise-constant flat in-
tervals (19).

Results

Estimates of the relative risk (RR) as function of distance
obtained by maximum likelihood isotonic regression
thorough the PAVA and CIR.PAVA algorithms are re-
ported in Figure 1.

Bayesian binomial regression for point source data
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Figure 1. Maximum likelihood isotonic regression. Esti-
mated risk function by distance from residence to the Os-
tiglia power plant. PAVA (dotted line) and CIR.PAVA
Algorithm estimates (solid line) (see text). Mortality for
Respiratory causes, Mantua, 1995-1998.

Distance is expressed in km and corresponds to the in-
dex number of each band (see Table 1). Relative Risks
(RR) are obtained dividing the predicted proportion in
each band by the overall proportion of cases in the sam-
ple (0.23). The estimated RR in the first band is 1.6 RR,
decreases by distance and it is null (RR=1) from the
fifth band onward (around 5 Km from the plant). The
function seems to suggest the presence of two change

Table 1. Distance from residence to the Ostiglia power plant
(in classes), annulus index number, counts of cases and con-
trols in each annulus. Mortality for respiratory diseases,
Mantua, 1995-1998.

Annulus Distance Cases Controls Total
1 0-1,5km 22 37 59
2 1,5-2,5 km 1 6 7
3 2,5-35km 4 6 10
4 3,5-4,5km 7 20 27
5 4,5-5,5km 0 1 1
6 5,5-6,5 km 3 11 14
7 6,5-7,5km 6 36 42
8 7,5-8,5 km 4 14 18
9 8,5-9,5 km 21 69 90
10 9,5-10,5km - 7 45 52
11 10,5-11,5 km 8 29 37
12 11,5-12,5km 5 12 17
13 12,5-inf km 21 69 90
Total 109 355 464
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points, one after the second band and one after the fifth.
We fixed k=2 number of change points in the Bayesian
formulation without constraints on monotonicity.

In table 3 we report parameter estimates from the Ba-
yesian regression model. 3 coefficients (log Odds) ta-
king as reference the log odds of the overall proportion
of cases (1og(0.23/0.77)=-1.21) indicates a decreasing
behaviour of relative risk by distance from the source.
Posterior estimates of change points position are 3.5
and 7.7 km with large 95% Cr1 (1.1-7.0 for the first,
2.8-12.4 for the second). The excess risk in proximi-
ty of the plant vanishes after the seventh band. Figu-
re 2 reports the predicted RR as function of distance
with 80% credibility bands (Crl) and the estimated risk
function by maximum likelihood isotonic regression
(PAVA).

Discussion and Conclusions

Our Bayesian analysis of Ostiglia’s data provided evi-
dence of an excess mortality risk for respiratory cau-
ses within 4,5 Km from the plant. This is consistent with
the previous report (15) and with the exploratory ana-
lysis. In the epidemiological literature a short term ef-
fect of fine particulate on mortality for respiratory di-
seases has been widely documented (20). The present
study design did not permit to disentangle short and long
term effects since we used residential address at death.
However the magnitude of relative risk found was con-
sistent with the literature on long term effect (22, 23).
The approach used suffers of the arbitrariness in the con-
struction of the bands and, in particular, in the choice
of their size. However, provided that the dimension of
the bands be sufficiently small, that approach is sen-
sible in studying the relation of interest (21).

The Ostiglia case is used only as a motivating exam-
ple. In this work we addressed case-control design and
proposed a Bayesian model with change point prior to
analyze disease risk gradient by distances. Closely re-
lated statistical methods have been proposed for Pois-
son data (14) but up to date not for binomial data.
The Bayesian model is easy to implement with standard
statistical software, as WinBugs (16). The definition of
circular bands around the point source reduces a “spa-
tial problem” to a one-dimensional problem. The choi-
ce of circular bands is justified by the isotropy of the pro-
cess. If the assumption of isotropy is not valid, other sub-
division of the space are possible, such as ellipses.

Relative Risk

0.0

Annulus

Figure 2. Posterior risk function by distance from residence
to the Ostiglia power plant. Bayesian Binomial regression
with change-point prior (solid line) with 80% Credibility
band (dashes lines) and maximum likelihood isotonic re-
gression (PAVA algorithm, dotted line) (see text). Mortality
for Respiratory causes, Mantua, 1995-1998.

Table 2. Part of the WinBUGS code for the Bayesian Bino-
mial Regression with change-point prior.

model
{
for (iin I:N)
{
nli]<-y[i]+cnfi]

yli]~ dbin(p{i],n(i])
logit(p[i])<-beta[1]+step(i-s[1])*beta[2]+step(i-
s[2])*beta[3]

}
for (j in 1:3) { betalj}~ dnorm(0,1.0E-06) }
1

-

An important issue is the choice of the number of chan-
ge points. It may have an impact in the degree of smoo-
thing of the predicted risk function. One can leave the
number of change points as a parameter to be estima-
ted in the model but the analysis would then become
éxtremely complex and computationally heavy. Ge-
nerally speaking, data from point source studies are not
informative on the number of change points (14). In the
data set currently analyzed the study area was not spre-
ad out and fixing a small number of change points see-
med a reasonable choice. However, a sensitivity ana-
lysis was performed to assess the impact of different
number of change points (not shown).

In conclusion, we focused on the analysis of risk gra-
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Table 3. Posterior estimates of parameters from the Bayesian Binomial regression with change-point prior (see text). Mor-

tality for Respiratory causes, Mantua, 1995-1998.

Parameter Posterior mean Standard deviation

Centiles of posterior distribution

2.5% 10% mediana 90% 97.5%
s{1] 35 1.78 1.1 34 7.0
s[2] 7.7 2.78 2.8 7.6 124
Beta[1] -0.65 0.26 -1.15 -0.65 - =012
Beta[2] -0.69 0.62 -1.99 -0.69 . 057
Beta[3] - 0.06 0.62 -1.20 0.08 1.36
dients as function of distance from putative pointsour-  References

ces with individual case-control data. This kind of de-
sign can be viewed as a sort of mixed design, partly ba-
sed on individual information and partly based on eco-
logical measurement, distance from residence to sour-
ce. In this sense it is superior to purely ecological stu-
dies based on aggregate data. ’

On the other side, this design is subject to biases other
than those which could affect any case-control study.
Theoretically the relevant location should be that at
which the exposure could have been experienced. Exam-
ples of incorrect location definition are for the cases,
the residence at death when analyzing effect with a long
latency and large migratory population flows are pre-
sent, and for the controls, a more recent residence than
the index case (24). Examples of imperfect assessment
of location are the use of geographical maps at low re-
solution incomplete recovery of residential histories
(25).

The definite merits of this sort of investigation stands
on the ability to model the risk gradient while adjusting
for relevant individual risk factors in all instances whe-
re historical data on exposure are difficult to obtain or
unreliable.

The proposed Bayesian Binomial regression with
change-point prior can be a useful non parametric al-
ternative to analyze the risk of disease around a point
source when case-control data are available.

It is valuable in all cases in which we cannot make
strong assumptions on the shape of the response fun-
ction.
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