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Preface

It is for me a great honour to be invited to deliver the Alan Tayler memorial
lecture during this conference.

I had the fortune of sharing a long friendship with Alan, started more than
forty years ago. But Beyond the sincere friendship, we shared a common way
of looking at applied mathematics and its relations with industry.

Well before the nowadays popular slogans on “knowledge based economy”,
Alan was deeply conscious that mathematics could (and should) be a funda-
mental driving force in promoting innovation in industry and more generally
in the society.

Alan put on this goal all his enthusiasm and all his effective action as a
leader and as an organizer.

His contribution to the foundation of ECMI, to its first activities, in ob-
taining the first ECMI-contract from the E.U. it is well known to the ECMI
“old guard”. But it is up to us to act so that also our younger colleagues could
thank Alan Tayler for the momentum he gave to the development of industrial
mathematics in Europe.

This lecture is conceived in his spirit and not just in his memory.

1 Introduction

In the last few years our group was involved in a long-term research pro-
gram partially supported by the societies of the ENI group (Enitecnologie
and Agip), that is the main Italian holding in oil industry.

The program aims at understanding the behaviour of waxy crude oils
subject to temperatures gradients. Indeed, this class of oils is characterized
by the fact that they contain a relatively large amount of heavy hydrocarbons
(paraffines, asphalthenes etc.) that - as we shall discuss in detail in the sequel

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Florence Research

https://core.ac.uk/display/301562026?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Mario Primicerio

- may crystallize and eventually form gel-like structures thus influencing the
motion of the oil in the pipeline.

The experimental evidence is that when these oils are pumped in pipelines
crossing zones at relatively low temperature (as e.g. in the submarine pipelines)
a deposit is formed at the walls that grows and hinders the flow, so that pe-
riodic “cleaning” operations are to be scheduled to keep a high efficiency of
the transportation and to avoid a possible total clogging of the line. The re-
search on the possible mechanisms responsible for the phenomenon and on
their mathematical modelling is very active (see e.g. some general papers and
reviews like [4], [23], [55], [68], [69]). The research program includes both
an experimental part and a section aimed at modellization and simulation.
The former is implemented in three laboratories: Eni Milano, the Istituto
Donegani in Novara and the Department of Chemistry of the University of
Florence. The latter is mainly done by our group: Antonio Fasano, Lorenzo
Fusi and myself together with Loredana Faienza and Alessandro Monti and
some others co-workers (Alberto Mancini, Fabio Rosso) who joined the team
from time to time. A helpful contribution also came from John Ockendon.

It has to be noted that the cooperation among the teams is very intense,
and this is witnessed by a number of papers in which experimental results are
discussed in the framework of the mathematical models presented (see e.g.
[13], [14], [15] ).

To deal with a relatively simple situation, we will refer to an “ideal mix-
ture” that mimics the behaviour of a real oil. It is a mixture of a given standard
“wax” and a “solvent” (decane). The wax we chose has been characterized by
its spectrum obtained by gas chromatography.

2 Segregation/dissolution of wax

For any waxy crude oil, and in particular for our “ideal mixture” with a
given wax concentration c, a temperature TCL can be defined such that, for
T > TCL all wax is dissolved in the solvent while for T < TCL part of the
wax segregates. Temperature TCL is called cloud temperature or W.A.T.
(wax appearance temperature). We are supposing that the system is always
at thermodynamic equilibrium, a fact that is by no means granted.

Cloud temperature is usually determined by differential scanned calorime-
try (DSC), and the measure can be made by raising or lowering the tem-
perature of the sample: in the first case the temperature at which the peak
in the heat exchanged occurs is sometimes called WDT (wax disappearence
temperature) while the term WAT is used for the result obtained when the
measure is performed with decreasing temperature.

Moreover, the determination of WAT and of WDT is influenced by the
rate at which the temperature is varied. Here, we report the data of a typical
experiment ( [30], [36], [64]):
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WDT 10oC/min T1=29.3oC

WDT 1oC/min T2 = 26.5oC

WAT 1oC/min T3 = 21.3oC

WAT 10oC/min T4 = 20.2oC

Table 1.

A few comments on these results are in order (for general theoretical dis-
cussion see e.g. [16], [17], [37], [39], [43], [48], [53], [65], [66], [67],
[70]):

(i) The differences between T1 and T2 and between T3 and T4 show that the
process of dissolution (crystallization) is not instantaneous but that the
system takes some time to reach the thermodynamical equilibrium;

(ii) The difference between WAT and WDT shows that undercooling occurs
practically always, as it is rather usual in phase-change processes;

(iii) A difference of about 5oC between T2 and T3 is commonly found in
different situations of concentration.

We note that in the literature the term “cloud temperature” or “cloud
point” is sometimes related to an optical determination. Of course the accu-
racy of this measurement is strongly dependent on the method used ( [18],
[19]) , since it is difficult to measure the variation of optical properties when
only micro-crystals are present (a possible colloidal transition state has been
also supposed to exist). Moreover, the method is applicable to our “ideal mix-
ture” that is optically transparent but practically useless when commercial
oils are concerned. Let us come back to the definition of TCL and assume we
can associate a value TCL to each value of the concentration c of wax in the
mixture. As it can easily be expected, it turns out that TCL is a monotonically
increasing function of c. For our purposes, it will be useful to consider the in-
verse function of TCL(c) and to define cSAT (T ) as the maximum amount of
wax that can be added to a unit volume the solvent kept at temperature T

without producing any crystallization. It can be seen as the solubility of wax
in the solvent as a function of the temperature.

To model the phenomenon, we will use the following functions:

(i) c(x, t): total wax concentration at point x at time t;
(ii) C(x, t): concentration of dissolved wax;
(iii) G(x, t): concentration of segregated (crystallized) wax.

Of course it is:
c(x, t) = C(x, t) + G(x, t). (1)
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2.1 Case of thermodynamical equilibrium

As we will see, the phenomenon we are studying is a typical multiscale phe-
nomenon, so that it is quite possible that in the time scale of the experiment
the process of dissolution/segregation can be considered to be instantaneous.
In this case we have

C(x, t) = min(c(x, t), cSAT (T (x, t))) (2)

G(x, t) = max(0, c(x, t) − cSAT (T (x, t))) (3)

so that (1) is automatically satisfied.

2.2 A case of macroscopic kinetics

Consider the case in which the thermodynamical equilibrium is reached in
finite time with a characteristic time constant. If we still remain in the frame-
work of a macroscopic description, we should postulate the existence of a sort
of chemical potential acting as the driving force of the phenomenon.

The simplest assumption we can postulate is that the rate of segrega-
tion/dissolution is proportional to the deviation from the thermodynamical
equilibrium i.e.

∂G

∂t
= θβ(C(x, t) − cSAT (x, t)) (4)

where β > 0 is the inverse of the characteristic time and θ is a factor that
ensures that Gt vanishes if both (C − cSAT )+ and G are zero. Thus

θ = H(G + (C − cSAT )+), (5)

where H is the Heaviside jump function

H(z) =

{

0, if z ≤ 0
1, if z > 0.

(6)

A simple generalization consists in assuming different values of β for (C −
cSAT ) positive and negative and/or to include the possible dependence of β

on the temperature.

2.3 A microscopic description

A possible microscopic description of the process of segregation (crystalliza-
tion) is based upon two mechanisms: nucleation and growth. One defines ν̇

to be the rate of birth of new crystals per unit volume of the solution and ρ̇ as
the radial growth of the crystals that are assumed approximately spherical.

We will neglect the radius of the newborn crystals and we will assume that
ν̇ and ρ̇ (both depending on C and T ) are such that their ratio is constant.
This is the so-called isokinetic assumption that can be written as:
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ρ̇ = ρ̇0F (C, T ),

ν̇ = ν̇0F (C, T ).
(7)

Under these assumptions (and normalizing the quantities so that the den-
sity is equal to one) we have:

∂G

∂t
= 4πρ̇(t)

∫ t

0

ν̇0

ρ̇0
ρ̇(τ)

[
∫ t

τ

ρ̇(s)ds

]2

dτ, (8)

and after some simple manipulations we get

∂G

∂t
= 4

(

πν̇0ρ̇
3
0

3

)1/4

G3/4F (C, T ). (9)

Consequently, we can obtain the number of crystallites per unit volume

N(t) =

(

3

π

)1/4 (

ν̇0

ρ̇0

)3/4

G1/4 (10)

and the average radius

R̄(t) = 4−1/3

(

3

π

)1/4 (

ρ̇0

ν̇0

)1/4

G1/4. (11)

Of course, to complete the description of the process we have to specify
the form of the function F in (7). We note that, in any case, this picture can
only refer to the crystallization (of course it does not apply to dissolution)
and hence F has to vanish if and only if thermodynamical equilibrium has
been reached and thus if C reaches the value cSAT . The simplest choice leads
us to

∂G

∂t
= K(ν̇0ρ̇

3
0)

1/4[C(x, t) − cSAT (T (x, t))]G3/4, (12)

or, more generally to

∂G

∂t
= K(ν̇0ρ̇

3
0)

1/4[C(x, t) − cSAT (T (x, t))]qG3/4 (13)

for some q, in accordance with typical models for crystallization of polymer
melts (see [1], [6]).

We note that this model is based on concepts similar to the ones used in
[1], [2], [6], [44], [54], [61], with the difference that the phenomenon of
“impingement” among growing crystals is much less relevant in the present
case because concentration of wax in solvent is very low.

In the literature of waxy oils an approach similar to the one illustrated
above has been adopted in [34], [35], [47], but just in spatially homogeneous
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cases and when the cooling rate is constant. Under these assumptions the
so-called “Avrami thumb rule” ( [3]) is applied.

We conclude this section showing a comparison between the approaches
illustrated under (2.1), (2.2) and (2.3) (see fig. 1).

Fig. 1. Comparison of function G for the three approaches of macroscopic kinetics
Gmacro(x), microscopic kinetics Gmicro(x) and thermal equilibrium Gtherm.equ.(x).
The picture refers to a simulation of a stratum 0 < x < L where the boundary x = L
is at a constant temperature T >WAT while the boundary x = 0 is being cooled at
a temperature T <WAT; we assume that saturation is linear in x and that G = 0
initially.

3 Diffusion/convection of heat

Heat transfer turns out to be the driving force of the deposition of wax, since
temperature is the key quantity in the process of change of state of wax1.
Conversely, one can ask how much the process of segregation/dissolution of
wax influences the thermal field.

1 Indeed, sedimentation by gravity is negligible, since wax and oil have almost the
same density; indeed the deposit on the walls of pipelines has the same thickness
at every point of a given cross section
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Within the experimental uncertainty, one can claim that the state of ag-
gregation of wax (and even its concentration in the mixture) does not have
an important effect on the thermal diffusivity of oil (see [12], [32]).

Concerning the latent heat associated to the change of phase, it is around
10 J g−1. Since concentration of wax is below 10% and the heat capacity of oil
is about 5 J g−1 K−1 and the change of phase takes place across a few degrees,
we can claim that the effect of latent on the determination of thermal field
can be neglected2. This means that the latter can be found without knowing
C and G, as least as far as just conduction is considered. Of course this is
no longer true in general when convection has to be taken into account, since
the rheological properties of the mixture can be strongly influenced by the
state of aggregation of wax and since the presence of deposit determines the
motion.

4 Diffusion/convection of wax. Gelification

Let us turn our attention to the diffusion of segregated and dissolved wax in
the solvent. We assume the validity of Fick’s law and denote the diffusivity of
segregated and dissolved wax by DG and D respectively.

Of course, one expects that

DG << D. (14)

Moreover, the mobility of dissolved wax within the mixture is hindered by
the presence of wax crystals, at least if G is “large enough”. More precisely,
one can see that when G exceeds a threshold value G∗, crystallites tend to
aggregate and to entrap liquid (i.e. oil+dissolved wax) and form a gel. Process
of gelification is not instantaneous but follows a kinetics that we can model
by introducing a quantity g(x, t) characterizing the degree of gelification
whose evolution is governed by the following law

∂g

∂t
= Φ(G − G∗) (15)

where Φ is a nondecreasing function of its argument, Φ(0) = 0. In general, Φ

will also depend on temperature (and will be monotonically decreasing). Of
course (15) only refers to mixtures at rest since motion can strongly influence
in contrasting gelification.

Consistently with the description above, we will assume that D (and also
DG whenever it will be taken into consideration) is a given decreasing function
of K = G(1 + g), vanishing when K exceeds some critical value K∗.

The degree of gelification is also relevant to the phenomenon of adhesion of
wax aggregates to the pipe walls (deposition). In principle, in order to model

2 On the other hand, the mathematical problem to be solved if one takes this
coupling into account is far from being trivial (see [33]).
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this phenomenon, one should also include the nature of the wall, its rugosity
and so on. For simplicity, we can assume that when G reaches the value G∗ at
the wall, then the deposit begins to form and grow; in other words we identify
the deposit with the region where g > 0.

Another phenomenon that is observed is the so-called ageing of the gel.
In our model, this fact is explained both by the diffusion of liquid wax within
the gel (although with lower diffusivity) and by the consequent additional
segregation that takes place whenever

G(x, t) < C(x, t) − CSAT (T (x, t)). (16)

When a mixture is brought at T1 >> TCL and then put in a vessel whose
walls are kept at T2 < TCL the following facts are observed (see [31], [32]
and also [49], [50]):

(i) a deposit is formed at the walls and its final thickness is reached in a short
time;

(ii) the concentration of wax in the deposit continues to increase;
(iii) in the deposited layer concentration of wax decreases when approaching

the walls.

An additional information we got from experiment and from literature is
that the mechanism of gelification - and hence its influence on diffusivity -
is strongly dependent on the nature of wax since the geometry of crystallites
plays an important role ( [64]).

A multiscale problem

Summing up we have briefly discussed five processes that are relevant to the
phenomenon to be studied, and each of them has a corresponding time scale:

(i) thermal diffusion (t1),
(ii) segregation of wax (t2),
(iii) diffusion of dissolved wax (t3),
(iv) diffusion of segregated wax (t4),
(v) gelification (t5).

Moreover, when the motion of the mixture is to be taken into account, we
have also

(vi) motion of the fluid (t6).

Of course the model that can be used should take into account the prac-
tical cases to be studied. Since they span over a large variety of situations
(depending on the type of oil and of thermal conditions) in the sequel we will
consider different scenarios separately.
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5 Thermodynamical and thermal equilibrium

A first scenario is studied in ( [27]) where it is assumed that

t1, t2 << t3, t4 << t5, t6, (17)

corresponding to a situation in which the fluid is at rest, the thermal field
attains its asymptotic (stationary) profile in a very short time interval and
phase equilibrium is instantaneously reached.

Under these assumptions, we will consider a one-dimensional geometry
having in mind the interpretation of experiments done on commercial oils
with a laboratory device called “cold finger” where a steady thermal gradient
is applied between two co-axial cylinders kept at constant temperatures T1

and T2 and the gap between the two cylinders is filled by oil with given wax
concentration c∗. Of course at least one of the two thermostats is maintained
at a temperature below TCL(c∗) ( [14], [15]).

Just to simplify notation, we refer here to plane (rather than cylindrical)
symmetry, and for the same reason we will assume that TCL depends linearly
on concentration in the range of interest, so that

dcSAT

dT
= γ, γ > 0 constant. (18)

Since we have assumed that temperature reaches its stationary (linear)
profile, we have

cSAT (x) = A + Bx, x ∈ [0, l] (19)

where A = cSAT (T1) and B are positive constants assuming that T2 (i.e.
the temperature at the boundary x = l) is higher than the temperature T1 of
the wall x = 0

(

B = γ T2−T1

l

)

.
But assuming that

c∗ > cSAT (l) = A + Bl,

the assumption of instantaneous thermodynamical equilibrium implies that

C(x, 0) = cSAT (x), G(x, 0) = c∗ − cSAT (x). (20)

As long as deposition is not taken into account, the boundary conditions
are of course

DCx(0, t) + DGGx(0, t) = DCx(l, t) + DGGx(l, t) = 0, t > 0. (21)

At this point we have to consider two different cases: first we will see what
happens if diffusion of segregated wax plays a role, then we will discuss the
case in which the crystallites can be thought to be immobile. We will start
assuming that diffusivities are given and constant.
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5.1 The case t3 ∼ t4 (non-negligible crystal diffusivity)

Starting from the initial situation (20)we can define t̂ as

t̂ = sup{t : G(x, t) > 0, x ∈ [0, l]}. (22)

This means that in the time interval [0, t̂) the mixture is always saturated
(that means c > cSAT (x)). Therefore

C(x, t) = A + Bx, 0 < x < l, 0 < t < t̂ (23)







Gt − DGGxx = 0, 0 < x < l, 0 < t < t̂

G(x, 0) = c∗ − A − Bx, 0 < x < l,

Gx(0, t) = Gx(l, t) = − D
DG

B, 0 < t < t̂.

(24)

Of course, t̂ < +∞, if we exclude the non-realistic (and trivial) case
DG

D
>

c2 − c1

2c∗ − c1 − c2
where we wrote ci = cSAT (Ti), i = 1, 2.

Since Gx is negative, by maximum principle, the definition of t̂ implies
G(l, t̂) = 0 and, for any t > t̂ a free boundary x = s(t), s(t̂) = l will exist
separating the saturated region (0, s(t)) where G > 0, from the unsaturated
region (s(t), l) where c(x, t) = C(x, t) < cSAT (x).

More specifically,

C(x, t) = A + Bx, 0 < x < s(t), t > t̂, (25)















Gt − DGGxx = 0, 0 < x < s(t), t > t̂

G(x, t̂) = Ĝ(x), 0 < x < s(t̂) = l,

Gx(0, t) = − D
DG

B, t > t̂,

G(s(t), t) = 0, t > t̂,

(26)

where Ĝ(x) is found as G(x, t̂) from the solution of (24)3.
On the other hand







Ct − DCxx = 0, s(t) < x < l, t > t̂

Cx(l, t) = 0, t > t̂

C(s(t), t) = A + Bs(t), t > t̂,

(27)

and

G(x, t) = 0, s(t) < x < l, t > t̂. (28)

Mass conservation, i.e. flux continuity across x = s(t) provides the free
boundary condition that completes the problem

3 The latter exists and is unique within the class of bounded functions.
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DB + DGGx(s(t)−, t) = DCx(s(t)+, t). (29)

Problem (25)-(29) is an implicit two-phase free boundary problem. In [9]
it is proved that it can be immediately reduced to a form for which the results
of [9] and [42] can be applied and thus prove that a classical solution exists
globally.

The asymptotic profile (C∞, G∞, s∞) of the solution is the following:

G∞(x) =

{

D
DG

B(s∞ − x), x ∈ [0, s∞],

0, x ∈ [s∞, l]
(30)

C∞(x) =

{

A + Bx, x ∈ [0, s∞],
A + Bs∞, x ∈ [s∞, l]

(31)

and s∞ is found from the global mass balance as the unique positive so-
lution of the algebraic equation

B

2

(

D − DG

DG

)

s2
∞

+ Bs∞ − (c∗ − A)l = 0. (32)

As we anticipated the model above does not include a specific mechanicm
for deposition (i.e. for adhesion to the cold wall x = 0) and assumes that D

and DG are constant. In the spirit of sec. 4 we can say that this implies that

G is always below the critical value G∗, i.e. when G∞(0) =
D

DG
Bs∞ < G∗.

The deposit

A possible way of incorporating deposition in the model above is to assume
that all the wax4 arriving at the cold wall sticks to its surface and does not take
part in the diffusion process. This fact can be modelled introducing a second
free boundary x = σ(t) where σ(t) represent the thickness of the deposit or
assuming that such thickness is negligible and that the wax reaching x = 0
simply leaves the system; this corresponds to replacing the third condition in
(26) by Gx(0, t) = 0. This approach (with or without the free boundary σ(t))
has been used to interpret the data of the cold finger experiment (see [14]);
in [27] the difference of heat between the mixture and the deposit has been
also taken into account.

A basic difficulty of this approach is to evaluate the wax concentration in
the deposit i.e. the amount of oil (or, rather, of mixture) that is “entrapped”
and, if not, to estimate how much the displacement of the liquid caused by
the deposit is relevant to the process ( [11], [26]).

A possible way of answering this question is to perform the experiment
until the asymptotic situation is reached and to weigh the total mass M∞

D

per unit surface of the deposit. Knowing the mass of wax initially present and

4 or a given fraction of it
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the quantity that is still in the solution (at a concentration equal to cSAT (0)),
the mass of the deposited wax M∞

w can be calculated. Hence the mass of
entrapped oil is given by M∞

D −M∞

w . Nevertheless, the experiment is delicate
since it lasts for several hours and its results are still not conclusive ( [14]).
We add that, under the assumption of linear dependence of cSAT on T , the
gradient of solubility γ can be evaluated by means of two asymptotic measures
M∞

D of the deposited mass corresponding to two values of T2 (say T̄2 and ¯̄T2).
Indeed

γ =
|M̄∞

D − ¯̄M∞

D |

l|T̄2 −
¯̄T2|

.

Hindered diffusion.

An alternative approach consists in prescribing the dependence of D (and
of DG) on G, as it was discussed in sec. 4, or even on G(1 + g)5.

Some preliminary simulations have been done (not taking into account g)
and assuming that D is constant for G < G∗ and jumps to zero at G∗. Similar
results were obtained imposing the threshold G∗ not to G but to G + C.

In all these simulations the deposit was defined as the region where G (or
G + C) exceeds G∗.

5.2 The case t3 << t4.

If we assume that, in the time scale of the experiment, the segregated wax is
practically immobile the mathematical aspects of the model change totally,
since letting DG tend to zero is a singular perturbation of the problem.

Indeed, if we start from the same initial situation (20) with the natural
boundary condition

Cx(0, t) = Cx(l, t) = 0, (33)

The unsaturated region appears from the very beginning (i.e. t̂ = 0).
Moreover, in order to make the model consistent it is necessary either to
introduce a boundary layer close to x = 0 or to postulate a mechanism of
deposition as we did above.

Let us confine ourselves to the approach used in 5. More specifically let
us consider its simplest case in which the dissolved wax reaching x = 0 is
assumed to be simply leaving the system.

Thus, we have the following problem

G(x, t) =

{

G0(x) = c∗ − cSAT (x), 0 < x < s(t), t > 0
0, s(t) < x < l t > 0

(34)

5 In the latter case, we have to assume t6 ∼ t3, t4.
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C(x, t) = A + Bx, 0 < x < s(t), t > 0 (35)

while, in the unsaturated region we have















Ct − DCxx = 0, s(t) < x < l, t > 0
Cx(l, t) = 0, t > 0,

C(s(t), t) = A + Bs(t), t > 0,

s(0)) = l

(36)

with the free boundary condition

DB − DCx(s(t), t) = −G0(s(t))ṡ(t), t > 0. (37)

This is a free boundary problem formally similar to a Stefan-type problem
and its well-posedness in a classical sense is proved in [28].

6 Phase equilibrium in a transient thermal field. No
gelification.

In this section we will assume that

t2 << t1, t3, t4, << t5, t6

so that the dissolution/segregation of wax can be considered as instan-
taneous while heat conduction and wax diffusion occur over the same time
scale.

6.1 A general problem: weak solution.

Let Qt̃ ≡ Ω × (0, t̃) be a general smooth cylinder in R
3 × R and assume

that initial and boundary conditions are given for temperature on Ω × 0
and ∂Ω × (0, t̃). In the assumptions of sec. 3 the function T (x, t) can be
found and we can define Q+ as the (so far unknown) subset of Qt̃ where
c(x, t) > cSAT (x, t), i.e. where G(x, t) > 0 and C(x, t) = cSAT (T (x, t)).

Assume that D and DG are constant and define

L1C = Ct − D∆C, L2G = Gt − DG∆C.

Mass conservation implies that

L1C + L2G = 0, in Q+. (38)

But C(x, t) = cSAT (T (x, t)) in Q+ and hence L1C is a known quantity
q(x, t)
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q(x, t) =
∂

∂t
cSAT (T (x, t)) − D∆cSAT (T (x, t)). (39)

Thus we have
L2G = −q(x, t), in Q+ (40)

Now set Q− = Qt̃ \ Q+ so that

G(x, t) = 0, L1C = 0, in Q−. (41)

If both Q+ and Q− are non-void and are separated by a smooth surface
S, then we have

G = 0, c = C = cSAT , on S (42)

[

DG
∂G

∂n
+ D

∂C

∂n

]

S+

=

[

D
∂C

∂n

]

S−

(43)

where n is the normal vector to S × {t} and []S+ (resp. []S−) denote the
limit of the quantity in brackets when (x, t) ∈ Q+ (resp. ∈ Q−).

Defining

U(x, t) = c(x, t) − cSAT (T (x, t)) (44)

the problem can be written formally as

Ut −∇ ·

(

D

[

1 +

(

DG

D
− 1

)

H(U)

]

∇U

)

∈ −q(x, t) (45)

where H is the Heaviside graph.
Weak solutions U ∈ Hj,j/2(Qt̃)∩W 1,0(Qt̃) for some j ∈ (0, 1) and for any

t̃ > 0 has been proved to exist in [26].

Remark 1. Note that U is positive in Q+ and negative in Q− and that the
equation (45) could be interpreted as the model for the diffusion of two im-
miscible chemical substances (of concentration U in Q+ and −U in Q−) that
diffuse in a host medium and undergo, on the contact surface, a fast chemical
reaction whose products precipitate. In this picture the term −q(x, t) would
represent a volumetric source/sink.

6.2 One-dimensional classical solutions

In one-dimensional cases, more information can be obtained. Once again we
refer for simplicity to planer symmetry x ∈ (0, l).

Let us fix the temperature at x = l at a value

T (l, t) = T2, t > 0, (46)
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and let

T (0, t = T2 − φ(t), t > 0 (47)

with φ(t) monotonically increasing, φ(0) = 0. To be specific we take φ(t) = λt.
Furthermore, we assume that

T (x, 0) = T2, 0 < x < l, (48)

c(x, 0) = c∗ < cSAT (T2), 0 < x < l, (49)

so that in the initial situation all wax is dissolved (i.e. the slab is completely
unsaturated).

Of course, no segregation will take place till the time t̄ such that

cSAT (T2 − λt̄) = c∗. (50)

Recall that, in our assumption, the thermal field can be found indepen-
dently of the knowledge of C(x, t) and G(x, t).

For t > t̄ a region Q+ ≡ {(x, t) : 0 < x < s(t), t > t̄} will appear where
G > 0 and C(x, t) = cSAT (T (x, t)).

Within Q+ we have

∂G

∂t
− DG

∂2G

∂x2
= −

∂

∂t
cSAT (T (x, t)) + D

∂2

∂x2
cSAT (T (x, t)) (51)

and on x = 0 the following condition has to be fulfilled for t > t̄

[

DG
∂G

∂x

]

x=0

+

[

D
∂

∂x
cSAT (T (x, t))

]

x=0

= 0. (52)

On the other hand, the region Q− ≡ {(x, t) : s(t) < x < l, t > t̄} is such
that G = 0 and hence

∂
∂tC(x, t) − D ∂2

∂x2 C(x, t) = 0, (x, t) ∈ Q− (53)

and

[

∂C
∂x

]

x=l
= 0, t > t̄. (54)

Finally, the free boundary is characterized by the conditions

C(s(t), t) = cSAT (T (s(t), t)), i.e. G(s(t), t) = 0, t > t̄, (55)

[

D
∂

∂x
C(T (x, t))

]

x=s(t)+
=

[

D
∂

∂x
cSAT (T (x, t)) + DG

∂G

∂x

]

x=s(t)+
. (56)

This free boundary problem is considered in [28] and its well-posedness
in the classical sense is proved.
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7 Phase equilibrium in a transient thermal field with
gelification

Here, we consider cases in which gelification takes place, but its characteristic
time t5 (as well as t2) is negligible with respect to t1, t3 and t4 so that the
process can be thought as a change of phase, occurring at a given temperature
depending on temperature.

Ts

Tcp

Liquid (unsaturated)

Gel
(deposit)

D

C

B

A

Solid E

Mushy
Tgel

ctot = cs(T ) + Ggel(T )

ctot = cs(T )

ctot = cs(T ) + Gdep

ctotc
∗0

Gel

T

Fig. 2.

In this case a phase diagram for oil-wax mixtures can be drawn in the
(c, T ) plane in which (see Fig.2) zone A corresponds to dissolved wax (T >

TCL(c), i.e. c < cSAT (T )), in zone B we have coexistence of dissolved and
segregated phases, while zones C and D correspond to gel and a TGEL(G) (or,
equivalently, G = GGEL(T )) can be defined. Zone D is separated from C by a
line where T = TDEP (G) (or G = GDEP (T )) and corresponds to a situation
in which diffusivity of wax vanishes. Thus, zone C is called the gel zone and
zone D is called the deposit.

In [25] a model problem in one space dimension is studied with initial and
boundary conditions like in (46)-(49). Thermal field is computed such that
Tt < 0, Tx > 0, Txt > 0.

Since the case DG = 0 is considered, the problem turns out to be a
hyperbolic-parabolic free boundary problem. Indeed the evolution of G in
the saturated zone and inthe gel is governed by
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∂G

∂t
= λ

∂T

∂t
(57)

if one assumes, for simplicity that cSAT is a linear function of T .
The problem exhibits several free boundaries and its analysis is rather

delicate; results on well-posedness in classical sense and on characterization
of the free boundaries can be found in [25]. As expected (see fig. 3 where
the qualitative behaviour of the solution is illustrated), the saturated region
disappears in the long run and only an unsaturated region and the deposit
are eventually present.

t

tν

tγ

tη

η(t)

ξ(t)

η(t) γ(t)

ν(t)

δ(t)

θ(t)

Stage 1

Stage 3

Stage 4

Stage 5

Unsaturated Region

Unsaturated Region

Unsaturated Region

Unsaturated Region

Unsaturated Region Stage 2

tθ

tδ′

tδ

tξ

0 x

Fig. 3.

8 Thermal equilibrium with crystallization kinetics

In this section we will consider situations in which phase transition is not
assumed to occur instantaneously, i.e. we allow t2 to be of the same order of
t3. Hence we assume

t1 << t2, t3, t4, t5 << t6 (58)

and we consider both the macroscopic and the microscopic description of
the crystallization kinetics.



18 Mario Primicerio

8.1 A problem with uniform temperature

This situation is elementary from the point of view of its mathematical de-
scription, but provides a useful insight to interpret the experimental results.

Assume the mixture with wax concentration c∗ is initially at a uniform
temperature T0 > TCL. Assume that the boundary of the domain Ω occupied
by the mixture has a prescribed time dependent temperature, e.g.

T (x, t) = T0 − λt, x ∈ ∂Ω, t > 0, (59)

for some λ > 0. Since we are assuming that t1 is negligible w.r.t. the
time scale of the experiment and we disregard the effect of latent heat of
crystallization (see. sec 2), we have

T (x, t) = T0 − λt, x ∈ Ω, t > 0. (60)

Therefore, starting from the time t∗ such that

T0 − λt∗ = TCL(c∗)

we will have that the segregation (and, eventually, gelification) starts and
G(x, t) will become positive and increasing (and independent on t) for t > t∗.

Its time evolution can be described by (4) or (12) according to the point
of view we want to assume. In both cases we have one parameter to fit the
experimental data (or two if we take equation (13)).

The results of numerical simulations [22] and the comparison with exper-
imental data, show that it is quite difficult to discriminate between the two
models. Investigation in this sense is still going on.

8.2 A problem with constant thermal gradient

This problem has been studied in [21] and in [28]. In both papers the kinetics
of crystallization is described by a macroscopic equation. We also note that in
[28] gelification is not taken into account (and thus, in (58), we would have
t5 >> t2, t3, t4).

The temperature is stationary and, referring once more to planer symmetry
we will write

T (x, t) = a + bx, 0 < x < l, t > 0. (61)

We also assume that both cSAT (T ) and cGEL(T ) are linear. Therefore,
they can be written as two linear function of x that we denote by c1(x) and
c2(x) respectively:

c1(x) = a1 + b1x, 0 < x < l, (62)

c2(x) = a2 + b2x, 0 < x < l, (63)
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and the positive contants ai, bi (i = 1, 2) are such that

c1(x) < c2(x), 0 < x < l. (64)

Recalling (4)-(6) and neglecting diffusion of the segregated phase, we have

∂G

∂t
= H(G + (C − cSAT )+)β[C(x, t) − c1(x)], 0 < x < l, t > 0. (65)

As we noted in Sec. 2, dependence of β on T (x) could also be taken into
account.

Now, let us turn our attention to C(x, t). In [21] it is postulated that
diffusivity of dissolved wax jumps to zero in the gelified part. Hence C will
have to satisfy, in a suitable weak sense, the following equation

Ct − [DH(c2 − c)Cxx] = −Gt, 0 < x < l, t > 0, (66)

where

c(x, t) = C(x, t) + G(x, t), 0 < x < l, t > 0. (67)

Moreover

Cx(0, t) = 0, t > 0, (68)

Cx(l, t) = 0 t > 0, (69)

C(x, 0) = c1(x), 0 < x < l, (70)

G(x, 0) = c∗ − c1(x), 0 < x < l, (71)

assuming that, for t = 0, the mixture is everywhere saturated (c∗ >

cSAT (T (x, 0)))
It can be proved, [21], that

(A) there exist two Lipschitz continuous functions s(t), σ(t) such that the
half strip K = (0, l) × (0, +∞) in the (x, t) plane is partitioned in three
regions:
(i) the gel region G = {(x, t) : 0 < x < s(t), t > tg, s(tg) = 0}
(ii) the undersaturated region U = {(x, t) : σ(t) < x < l, t > tu, σ(tu) =

l}
(iii) the saturated region S ≡ K \ (U ∪ G).

(B) in region G (no mass transfer)

c = c2(x) (72)
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(C) in region S, c and G ∈ C2, 1(S), and C, Cx, G ∈ C(S̄) and satisfy
the differential equations (65) and (66) with initial conditions (70), (71),
while boundary conditions (68) and (69) are fulfilled for t < tg and tu
respectively

(D) in region U , G = 0, C ∈ C2,1(U) and u, ux ∈ C(Ū). Moreover

Ct − DCxx = 0 (x, t) ∈ U , (73)

(E) on x = σ(t) it is
G(σ(t), t) = 0, t > tu, (74)

[C]+
−

= [Cx]+
−

= 0, t > tu, (75)

where by []+
−

we denoted the jump of the quantity in bracket across the
curve x = σ(t).

(F) on x = s(t) it is

C(s(t), t) + G(s(t), t) = c2(s(t)), t > tg, (76)

Cx(s(t), t) = 0, t > tg. (77)

Assuming the microscopic description of the crystallization process simply
consists in substituting (12) or (13) to (65). The results are quite similar as
in the case of uniform temperature.

9 Variable thermal fields and crystallization kinetics: is
diffusion relevant?

When the domain occupied by the mixture is not “thin” and the waxes that
are contained in the oil are “heavy” enough, neither t1 nor t2 can be thought
to be negligible with respect to the time scale of the experiment. On the
other hand, some authors tend to disregard the influence of diffusion in the
interpretation of experimental results.

In any case, we still retain the assumption that the thermal field can be
determined independently of the knowledge of C(x, t), G(x, t).

Referring to the experimental situation, we consider a cylinder of radius
R, containing a mass M of oil (per unit axial length) at concentration c∗. The
initial temperature T0 is larger than TCL(c∗) while the surface of the cylinder
is maintained, for any t > 0 at a temperature TEXT that is less than TCL(c∗).

The thermal field is the solution of the following parabolic problem



















∂T
∂t = D

{

∂2T
∂r2 + 1

r
∂T
∂r

}

, 0 < r < R, t > 0

T (r, 0) = T0, 0 < r < R
∂T
∂r (0, t) = 0, t > 0
T (R, t) = TEXT , t > 0,

(78)
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that can be expressed in series of Bessel functions (see e.g. [10] chap. VII).
Neglecting diffusion, we can compute G(x, t) according to the macroscopic

and microscopic crystallization kinetics (as well as to the assumption of phase
equilibrium (3)). The corresponding simulations seem to show that a model
that does not take diffusion (at least of the dissolved wax) into account cannot
interpret the experimental results. Once again, it is difficult to discriminate
between macroscopic and microscopic crystallization kinetics, unless we con-
fine to the initial stage of the phenomenon.

10 Deposition in moving mixtures

As we said in Sec. 1, the final aim of the research is a descriptive and predic-
tive model for wax deposition on the walls of pipelines. There exists a huge
literature on this subject (see e.g. [5], [7], [20], [29], [38], [41], [45],
[56], [60]) aimed at interpreting the results on experimental loops and field
experiments.

At the present stage of our research program, we can claim that our model
can actually be used in a quite large class of “field” conditions, i.e. in cases
in which quantities like temperature, mean axial velocity, wax concentration
can be thought to be independent of the radial coordinate r within a bulk
core 0 < r < R − δ, δ being the thickness of a boundary layer.

This problem has been studied in [24]. the basic assumption is that the
flow in the pipeline is turbulent and that molecular diffusion is a thin boundary
layer is the only mechanism responsible for deposition.

The model includes the mechanism of ablation that has the effect of lim-
iting the thickness of the deposit.

Just to give a rough idea of the model, the starting point is to write down
the quasi-steady profile of the temperature in the boundary layer

T (r, z, t) = −a(z, t)(R−δ) ln

(

r

R − δ

)

+Tc(z, t), R−δ < r < R, z > 0, t > 0

(79)
In (79) a(z, t) is a coefficient that has to be determined and Tc is the

temperature of the bulk of the fluids; in general the analysis may take into
account the variation of δ with z and t that will be ignored here to simplify
the discussion.

Imposing thermal balance allows to find a(z,t) that represent the thermal
gradient in the boundary layer as a function of z and t. Since the model
applies to oils for which the characteristic time of crystallization is negligible
w.r.t. the time scale of the experiment, the thickness of the deposit can be
found applying the techniques we used in sec. 5. As long as the “core” remains
saturated, an explicit approximated formula for the thickness of the deposit
can be found
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δ =
Rt

TCLt0

T0 − Tl

µ
exp

[

−
2πDT

µQ
z

]

H(TCL − TW )6 (80)

where Q is the volumetric flow rate, Tl is the temperature of the surroundings
and

µ =
k

hR
(81)

where k is the thermal conductivity of the mixture and h the heat transfer
coefficient between the pipe and the surroundings.

Since TW (z) is the temperature of the wall and H is the Heaviside function,
it is clear that the line will have a “deposit free zone” zF that can be easily
calculated.

For the case in which the core may desaturate, the analysis has some
additional difficulties and we refer the reader to the original paper.

As a conclusion, we report that the model is consistent with field ex-
periments made on two different pipelines, where the discrepancy between
measured and calculated quantities is below 10%.
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