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1. Pb and Health

ead (Pb) is a metallic element of  atomic number 82,
Group iva of  the Periodic Table (At. Wt. 207.2

g/mol). Lead is a heavy, ductile, soft gray solid, soluble
in dilute nitric acid and insoluble in water, although dis-
solves slowly in water containing a weak acid.

Lead has long been recognised as a harmful environ-
mental pollutant. There are many ways in which hu-
mans are exposed to lead: through air, drinking water,
food, contaminated soil, deteriorating paint, and dust.
Airborne lead enters the body when an individual
breathes or swallows lead particles or dust once it has
settled. Before it was known how harmful lead could
be, it was used in paint, gasoline, water pipes, and many
other products.

Lead affects practically all systems within the body.
Lead at high levels (lead levels at or above 80 Ìg/dl of
blood) can cause convulsions, coma, and even death.
Lower levels of  lead can cause adverse health effects on
the central nervous system, kidney, and blood cells. Be-
cause of  lead’s importance as a cause of  public health
problems, a number of  international organisations have
issued advisory standards or enforceable regulations
that set lead levels in different media. In the u.s., for ex-
ample, the b.b.l. (blood lead level) of  concern for lead
exposure in children has been progressively lowered to
10 μg/dl; the amount of  Pb allowed in workplace air
cannot exceed 50 μg/m3 averaged over an 8-hour work-
day; the action level for lead in water delivered to users
of  public drinking water systems has been set to 15 μg/l;
the amount of  lead in paint intended for residential use
has been limited to 0.06% (before 1955, much white
house paint was 50% lead and 50% linseed oil).

2. Atmospheric Pb Pollution

Atmospheric pollution from fossil fuel combustion has
increased dramatically during last century (e.g., Murozu-
mi et alii 1969, Chow et alii 1975, Shirahata et alii 1980).
The principal gaseous pollutants are CO2, CO, SO2 and
a number of  N-oxides. Fossil fuel burning also delivers a
variety of  particulate matter, such as smoke particles
and ashes, to the atmosphere. Lead alkyls, in particular,
added to gasoline since 1920s for their antiknock proper-
ties, are emitted in particulate form from car exhaust and
their addition to the Earth’s ecosystem has long been
recognised (e.g., Chow and Johnstone 1965, Chow et alii
1975, Nriagu 1979, Schaule and Patterson 1981, Settle and

Patterson 1982, Boyle et alii 1986, Shen and Boyle 1987,
Sturges and Barrie 1989). On a global scale about 85% of
industrial Pb emissions are introduced into the atmos-
phere in the Northern Hemisphere (Schaule and Patter-
son 1981, Pacyna and Graedel 1995). This means that, giv-
en the characteristic time for interhemispheric exchange
of  about one year (Levin and Hessheimer 1996), and the
mean residence time of  Pb in the atmosphere of  ~10
days (Settle and Patterson 1991), the Northern Hemi-
sphere emissions have a negligible influence on the
Southern Hemisphere.

Over the last decades the increased awareness of  en-
vironmental issues has led to the recognition that an-
thropogenic Pb emissions to the environment represent
a serious health hazard, and since 1980s most countries
are phasing out leaded fuel replacing lead compounds
with different additives (aromatic hydrocarbons, ethers
and alcohol, usually ethanol or methanol). For the sake
of  clarity, unleaded gasoline does not mean Pb-free
gasoline but gasoline containing < 0.013 g/l of  Pb, as
opposed to leaded gasoline which had > 0.5 g/l of  Pb.

At present, the phase out of  leaded gasoline in indus-
trialised countries is near completion, although the in-
cessant emission of  anthropogenic lead into the envi-
ronment will not stop, and will continue to overwhelm
the very small amounts of  Pb that occur naturally in the
air. This is because i. the automobile traffic all over the
world increases every year (including in developing
countries where emission control is poor and unleaded
gasoline is largely unavailable); ii. fuel containing lead
may continue to be sold for off-road uses, including air-
craft, racing cars, farm equipment, and marine engines
until 2008; iii. mining activities, smelting, non-ferrous
metal refining, waste incineration and coal burning are
still active and represent the other major sources con-
tributing to atmospheric Pb pollution. It is true, howev-
er, that Pb emissions to the atmosphere have been re-
duced in industrialised countries and several published
estimates are available. For example, an e.u. programme
to establish an inventory of  emissions of  air pollutants in
Europe (corinair) indicated a reduction of  total lead
emissions in Europe from 8.5 104 tons in 1985 (75% from
car exhaust) to some 3.2-5.4 104 tons in 1990.

3. Identification of atmospheric Pb Sources

Aerosols represent a mixture of  natural and anthro-
pogenic airborne solid particles and liquid droplets. The
pollutant anthropogenic component can have different
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sources and attempts to identify them have included the
use of  elemental ratios (Lowenthal et alii 1997). How-
ever, this approach can be distorted due to different
physico-chemical removal processes for the elements,
which change their relative abundances during trans-
port. In contrast, Pb isotope abundances are not affect-
ed to any measurable extent by physical or chemical
processes in terrestrial environments. Lead is common-
ly used in pollution studies because of, unlike other
heavy metal pollutants, the effectiveness of  stable Pb
isotopes to distinguish between Pb sources, i.e. natural
vs anthropogenic.

Lead is composed of  4 stable isotopes: 208Pb, 207Pb,
206Pb, and 204Pb. Of  these four isotopes, only 204Pb is
non radiogenic. The others derive from the radioactive
decay, through a series of  intermediate daughters, of
232Th (208Pb), 235U (207Pb), and 238U (206Pb). The abun-
dances of  208Pb, 207Pb, and 206Pb have, therefore, in-
creased through time since Earth’s accretion, from their
primordial values to present-day values depending on
both the time-averaged U/Th/Pb of  a given reservoir
and the half-lives of  the radioactive isotopes of  Th and
U, which vary from 14 Ga (232Th) to 4.5 Ga (238U) and
0.7 Ga (235U). The significant difference in half-lives,
along with the variety of  U/Th/Pb values in natural
materials have produced a relatively wide range of  Pb
isotope ratios in the different Earth reservoirs (e.g.,
Dickin 1995). In general, upper crust rocks have more
radiogenic Pb isotope composition than Pb ore bodies,
and different ore bodies have different Pb isotope signa-
ture depending on their age and the time-averaged
U/Th/Pb values of  their source(s). This means that the
isotopic composition of  alkyllead, and consequently
that of  Pb oxides, Pb halides and organolead com-
pounds emitted from burning of  leaded gasoline, re-

flects the composition of  the Pb ore(s) used in its pro-
duction (Chow et alii 1975). This makes Pb isotopes an
unique tool in environmental studies for tracing Pb
emissions to the atmosphere due to human activities
(e.g., Shirahata et alii 1980; Maring et alii 1987; Sturges
and Barrie 1987; Church et alii 1990; Erel et alii 1990;
Hopper et alii 1991; Veron et alii 1992, 1994; Erel and Pat-
terson 1994). However, multiple sources of  industrial
Pb and the fact that the Pb industry is becoming more
and more a secondary commodity industry are adding
further variety to the isotopic signatures that are ap-
pearing in the environment.

Given the predominant anthropogenic Pb emissions
in the Northern Hemisphere, most of  the studies on the
Pb isotope fingerprinting technique have been concen-
trated over the Northern Hemisphere, although a few
studies have been also focussed on the Southern Hemi-
sphere, allowing a global assessment of  the recent
sources and pathway of  atmospheric pollution (Maring
et alii 1987; Sturges and Barrie 1987, 1989; Hopper et alii
1991; Flegal et alii 1993; Mukai et alii 1993; Rosman et alii
1994; Kober et alii 1999; Bollhöfer and Rosman 2000,
2001).

On a global scale (Bollhöfer and Rosman 2000,
2001), the recent Pb isotope composition of  aerosols
(from 1994 to 1999) is confined within three major end-
members (Fig. 1), which correspond to the most im-
portant Pb producer countries (i.e., China, Australia,
United States, Peru, Mexico and Canada). Source A is
typical for Australian and Canadian (British Columbia)
type Pb ores with low 206Pb/207Pb and 208Pb/207Pb;
source B characterises isotopic ratios which are similar
to those measured in alkyllead available in the u.s. in
the 1970s and the arrow (Fig. 1) points towards the
composition of  Mississippi valley type Pb ores; source
C is typical of  Pb ores from Peru and Mexico. The Pb
isotope compositions of  Pb ores from China and  other

Fig. 1. The Pb isotope compositions of  world-wide recent
aerosols fall within the field defined by three end-members
(Sources A, B, C), which correspond to the major Pb ores pro-
ducer countries, i.e. China, Australia, United States, Peru, Mexi-
co and Canada (redrawn from Bollhöfer and Rosman 2000,
2001).

Fig. 2. Comparison of  two millennia European Pb isotope
record with possible sources of  airborne Pb (from Dunlap et alii
1999).
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sectors of   Canada, are aligned along those of  source
A and C. In countries where leaded gasoline is still
marketed, automobile emissions generally determine
the aerosol signature. However, as the phase out of
leaded gasoline proceeds, the aerosol signature is ex-
pected to be dominated by local industrial sources
and/or incursions from nearby or even distant re-
gions. This means that time series analyses of  the Pb
isotope composition of  aerosols are critical in deter-
mining variations of  the sources of  airborne Pb pollu-
tion to the environment.

4. Historical Records
of atmospheric Pb Pollution

4. 1. Peat Bogs and Ice Core

Aside the present or the recent past, studies of  the tem-
poral trends of  atmospheric pollution typically focus on
the environmental archives preserved in peat bogs and
ice cores. One disadvantage of  these archives is their
 geographic distribution: peat bogs are most abundant
in formerly glaciated regions, e.g., Scandinavia and
Northern North America, while ice cores are restricted
to high altitude and high latitude regions.

To mention a few studies, Dunlap et alii 1999 pre-
sented a synthesis of  Pb isotopes in two millennia of
European air analysing airborne particulate from om-
brotrophic peat bogs in Southern Norway, and com-
bining the data with previously reported measure-
ments from France (Elbaz-Poulichet et alii 1984),
Switzerland (Shotyk et alii 1996), and Greenland (Ros-
man et alii 1997) that cover different ranges of  time.
The integrated European record (Fig. 2) suggests hu-
man control of  Pb in airborne particulates over the last
2,300 years. From 366 bc through the first half  of  the
20th century, Pb isotope compositions in European air
plot within the range of  compositions in European ore
bodies. Since 1950, Pb isotope compositions shift with-
in the array of  Pb isotope compositions typical of
gasoline from western industrial nations (a mixing line
between u.s. and Australian lead in gasoline). Rosman
et alii (2000) presented a two century record of  Pb iso-
topes in high altitude Alpine snow and ice core drilled
at Mont Blanc, France. The results (Fig. 3) reveal three
isotopic groupings, associated with the periods pre-
1923, 1923-1968 and 1969-1991. In the first group, the
isotopic composition is consistent with local mining,
smelting and coal burning, while in the second, motor
vehicle exhaust emissions dominate. In the third
group, motor vehicle emissions also dominate but the
Pb is even less radiogenic and it is a clear consequence
of  the Italian Isotopic Lead Experiment (i.i.l.e.) when
Australian Pb was exclusively used in gasoline in the
Piedmont Region of  North-West Italy.

4. 2. Tree Rings and Bark Pockets

Another possibility to record local and global environ-
mental pollution is offered by trees. The advantage is
that trees are more geographically widespread, with

some species being present across many ecological, ge-
ographical, as well as human-impact gradients. Sample
collection for tree rings is also logistically much simpler
and less costly than is the case for peat or ice. Besides
their wide geographic presence, tree rings also offer a
precise chronology reliably spanning at least the Indus-
trial Period with a potential for far longer periods. Con-
sequently, there is strong interest in dendrochemistry as
a biomonitor tool to reconstruct temporal trends in at-
mospheric pollution. To provide a historical record, a
proportion of  the pollutants present in the environ-
ment must be accumulated and stored within the cur-
rently forming annual ring in a reproducible fashion.
Trees may accumulate environmental pollutants direct-
ly from the atmosphere, by deposition on the leaves or
bark, or indirectly following deposition on the soil and
subsequent root uptake (Lepp 1975).

The use of  annual rings as historical monitors has
proved controversial, however, as it is unclear whether
the relative concentration of  heavy metals and the Pb
isotope composition accurately reflects relative changes
in the environment (Hagemeyer 1993, Nabais et alii
2001). This controversy may, in part, be due to the
choice of  tree species (Baes and Ragsdale 1981, Cutter
and Guyette 1993) and to the fact that the Pb incorpo-
rated during the annual growth of  tree rings is a mix-
ture between a natural component, derived from rock
weathering and root uptake, and an anthropogenic com-
ponent derived from industrial Pb emission to the envi-
ronment. Also, the studies questioning the use of  tree
rings as biomonitors of  anthropogenic Pb emissions did
not adopted the pre-treatment procedure, developed
for radiocarbon analyses of  wood (Kalin et alii 1995), to
remove exchangeable Pb that may be mobile across tree
ring boundaries.

In addition to tree rings, bark and bark pockets are an-
other potentially robust biomonitor of  airborne Pb pol-
lution, as they accumulate Pb and other pollutants di-

Fig. 3. Two century record of  Pb isotopes in ice core drilled at
Mt. Blanc (France - redrawn from Rosman et alii 2000).
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rectly from the atmosphere through dry and wet depo-
sition (e.g., Lotschert and Kohm 1978). The relative po-
sition of  the bark pockets with respect to the annual
rings allows their age, i.e., the date they were enclosed
by the trunk, to be determined and provides a record of
historical changes in pollution (Satake et alii 1996, Bellis
et alii 2002).

4. 3. Case Studies

The following paragraphs deal with a number of  case
studies on the controversial results of  using tree rings
and tree barks as robust biomonitors of  historical
changes in environmental pollution.

Marcantonio et alii (1998) measured the Pb isotopic
composition of  tree rings from seven baldcypress trees
in both highly contaminated and relatively noncontam-
inated regions of  Bayou Trepagnier, a bayou in south-
ern Louisiana that has had oil refinery effluent dis-
charged into it over the past 70 years. The Pb isotope
composition of  tree rings suggests mixing between two
sources of  Pb (Fig. 4). One of  the sources is derived
from the highly polluted dredge spoils on the banks of
the bayou and the other from the natural environment.
The nature of  the contaminant Pb is unique in that it is,
isotopically, relatively homogeneous and extremely ra-
diogenic, similar to ores of  the Mississippi Valley
(206Pb/207Pb ~1.28). The time series analysis provided
by tree rings permitted also to establish that the oil re-
finery started to use the Pb ores from the Mississippi
Valley prior to 1950, whilst the majority of  u.s. industry
did not begin using Pb derived from the Mississippi Val-
ley ores until the 1970s.

Tommasini et alii 2000 determined Pb isotope com-
position of  tree rings and urban aerosols in Firenze,
Italy, to assess whether arboreal species could be used as

bio-geochemical tracers of  the evolution of  heavy met-
al pollution to the environment. The Pb isotope com-
position of  tree rings from 1950 to 1995 is within the
range of  European aerosols and is linearly correlated
with the temporal evolution of  Pb isotopes measured in
air particulates from Firenze (Fig. 5), with the younger
samples having lower 206Pb/207Pb and 208Pb/207Pb than
the older samples. Taken together, tree rings and
aerosols define a mixing line between the Pb isotope
composition of  European and Moroccan Pb ores and
European coal, and the Pb isotope composition of
alkyllead from the major suppliers of  gasoline in Italy,
and indicate, as expected, an increasing contribution
from car exhaust to airborne Pb pollution from 1950 to
1995. The entire data set (tree rings and air particulates)
demonstrate that Pb isotope composition of  tree rings
can be used successfully as a proxy of  the atmospheric
Pb isotope composition of  urban areas. This, in turn,
suggests that tree rings are potentially a powerful bio-
geochemical tracer for monitoring air pollution history
due to human activities.

Bindler et alii 2004 studied the possibility to use tree
rings as Pb pollution archives, comparing the results
with other environmental media. They collected tree
ring samples in Sweden covering an age range of  100-
300 years. They compared the 206Pb/207Pb of  tree
rings with that of  the soil profile along with temporal
changes in the 206Pb/207Pb in peat and lake sediment
deposits in Sweden. The mineral soils at each site are
characterised by high 206Pb/207Pb (1.35), while the ra-
tios in the O-horizon are low (1.14-1.16) and charac-
terised by atmospheric lead pollution. The 206Pb/207Pb
of  the tree rings, typically 1.18-1.20, indicates a signifi-

Fig. 4. 206Pb/207Pb of  tree rings from seven baldcypress trees in
both highly contaminated and relatively noncontaminated re-
gions of  Bayou Trepagnier (Southern Louisiana - redrawn from
Marcantonio et alii 1998).

Fig. 5. Pb isotope composition of  tree rings (Celtis Australis) and
aerosols from Florence (Italy), with the potential sources of  air-
borne Pb (gasoline data of  the main Italian suppliers are from
Dongarrà et alii 2003). Inset: Enlarged diagram with only tree
rings and aerosols data, and their relative age (redrawn from
Tommasini et alii 2000).
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cant (10–30%) contribution of  Pb derived from the un-
derlying mineral soil. While peat and lake sediment
records show that the 206Pb/207Pb of  atmospheric dep-
osition has varied over time, with a pronounced
trough between approximately 1930 and 1990, the tree
rings show no similar trend, implying that the dendro-
chemical record is not useful in temporal studies of
metal pollution.

Bellis et alii (2002) evaluated the historical records of
Pb pollution in the annual growth rings and bark pock-
ets of  a 250-year-old Quercus crispula in Nikko, Japan.
The annual rings record Pb concentrations from 0.01
to 0.1 ppm and there is no significant change in con-
centration with time (Fig. 6). In contrast, bark pocket
samples dating from 1875 to the present show a pro-
gressive increase in Pb concentration with time, from
approximately 0.1 to 10 ppm (Fig. 6), recording the his-
torical increase in airborne Pb pollution accompanying
the industrialisation of  Japan, which was initiated by
the opening of  Japan’s borders from 1854. Similarly, the
Pb isotope composition of  the bark pockets remain
constant until 1964 (206Pb/207Pb ~1.18) and then grad-
ually decrease to a present-day value of  ~1.16, indicat-
ing changes in the sources of  Pb pollution. The data
imply that bark pockets are more effective than annu-
al rings for recording historical change in airborne Pb
pollution.
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