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Università degli Studi di Firenze
Via di Santa Marta 3, 50139 Firenze, Italy
E-mail: roberto.damico@unifi.it

2LMS International
Interleuvenlaan 68
B-3001 Leuven, Belgium
E-mail: michel.tournour@lmsintl.com

Keywords: Non-Uniqueness Problem, Boundary Elements, Fast-Multipole BEM.

ABSTRACT

Boundary Element Method fails to provide a unique solution for exterior problems at frequen-
cies corresponding to internal resonances; this is the well-known non-uniqueness problem. This
problem becomes even more critical at higher frequencies with the increasing modal density
inside the cavity. Approaches have been developed to circumvent this limitation as the over de-
termination points or the Burton-Miller formulation in Direct BEM. In Indirect BEM, the most
commonly used approach consists in applying some absorption (Robin boundary conditions)
inside the cavity to damp those internal resonances. Nevertheless, the approach has a large
computational cost as it increases the number of unknowns.

In this paper we show that imposing Robin boundary condition only on certain percentage
of elements allows to mitigate the non-uniqueness problem without drastically increase the
computational cost. Numerical examples on industrial size problem using both standard IBEM
and Fast Multipole BEM are presented to demonstrate the accuracy of the solution over the
entire range of frequencies. Finally, equivalence with the Burton and Miller method for direct
formulation is demonstrated.

1. INTRODUCTION

Nowadays, accuracy of numerical predictions is crucial in design applications and BEM is a
well-established method for low-frequency acoustic problems. Its main advantage is that the
dimensionality of the problem is decreased and its formulation is suitable for modeling infinite
exterior problems. On the other hand, this methodology presents some disadvantages. To reach
an accurate solution at higher frequencies becomes very demanding because at least 6 elements
per wavelength are needed. Moreover, fully-populated matrices increase exponentially the size
of the problem. To overcome this limitation, Fast Multipole BEM has been developed as an
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improvement of the standard BEM technique. It allows to solve large acoustic problems quicker
and using less computational resources [1, 2].

The other shortcoming is the fact that boundary integral formulations fail to provide a unique
solution at certain frequencies, also called fictitious eigenfrequencies. The solution to an ex-
terior problem is polluted by fictitious resonances corresponding to real eigenfrequencies of
the interior problem. This problem is not physical but merely methematical and results from
an ill-posed formulation. The non-uniqueness issue seriously degrades the solution over the
whole frequency range, in particular at higher frequencies where the modal density increases.
Moreover, the presence of a fictitious resonance slows down the convergence of the FMBEM
iterative solver due to the resulting bad conditioning.

In order to overcome the issue several boundary integral formulations have been proposed.
The family of formulations which assembly simultaneously the interior and exterior surface
integrals, were first approached by Kupradze [3] and Copley [4], successively developed by
Schenck [5] as the CHIEF method. Another type of improved formulation combines the original
surface integral and its normal derivative. This methodology was first approached by Panich
[6] and further developed by Kussumaul [7], Burton and Miller [8] and Zaman [9]. The last
typology of improved formulations, which has been proposed by Ursell [10] consists in the
usage of modified Green’s functions.

All these are mainly direct improved formulations and they are limited either by the fre-
quency range of application or by the computational request.

In this paper we propose an improvement of the method based on internal impedance bound-
ary condition to mitigate the non-uniqueness issue for indirect BEM. Applying a prescribed
value of internal impedance is proven to be mathematically equivalent to the well-known for-
mulation proposed by Burton and Miller. Nevertheless, applying the condition over the entire
boundary requires high computational efforts. The enhancement proposed consists in the appli-
cation of the internal impedance boundary condition only over a certain percentage of elements
of the model. This results in a practical method to avoid the non-uniqueness problem without
highly increase the computational requirements of the problem.

In order to prove the accuracy provided by this methodology, two examples are shown. Dif-
ferent percentages of elements selected are used to investigate the accuracy of the solution vs
computational cost.

2. BOUNDARY INTEGRAL FORMULATIONS

For solving exterior acoustic radiation problems two classes of boundary integral formulations
exist, namely the direct and the indirect formulations [11].
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Figure 1: Domain definition
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The Helmholtz equation evaluated at a point x of domain D (see Figure 1) is given by

∇2 p(x)+ k2p(x) = 0, (1)

where p is the acoustic pressure, k = ω/c is the wavenumber and c is the speed of sound. In
order to obtain the direct formulation eq.(1) is integrated via Green’s theorem using the free-
space Green’s function,

g(y,x) =
e−ikr

4πr
, (2)

where r = |x−y|. This leads to the Helmholtz Integral Equation (HIE)

cs(x)p(x) =
∫

∂D
p(y)

∂g(y,x)
∂n(y)

ds−
∫

∂D
g(y,x)

∂p(y)
∂n(y)

ds, (3)

and the Normal Derivative Helmholtz Integral Equation (NDHIE)

cs(x)
∂p(x)
∂n(x)

=
∫

∂D
p(y)

∂2g(y,x)
∂n(y)∂n(x)

ds−
∫

∂D

∂g(y,x)
∂n(x)

∂p(y)
∂n(y)

ds, (4)

where cs(x) is a coefficient dependent on the position of the point x. If x is inside the domain
cs is equal to 1, if it is outside the domain cs is equal to 0 and if it is on the boundary cs is equal
to 1

2 for smooth surface. These equations are first solved on the boundary and finally inside the
domain. The direct formulation allows to evaluate the solution either on the exterior D+ or on
the interior domain D−.

The indirect formulation expresses the acoustic pressure as the field in free-space due to
monopoles and dipoles distributions over the boundary, respectively known as single layer po-
tential, us, and double layer potential, ud ,

p(x) = us(x)+ud(x) = −
∫

∂D
g(y,x)σ(y)ds+

∫
∂D

∂g(y,x)
∂n(y)

µ(y)ds. (5)

The conditions are applied over both sides of the boundary, positive ∂D+ and negative ∂D−,
and are directly connected to the potential densities. The derivative of the single layer potential
presents a discontinuity approaching the boundary ∂D [12] and leads to a jump in terms of
derivatives of pressure,

∂p+(y)
∂n

=
∂p(y)

∂n
+

σ(y)
2

∂p−(y)
∂n

=
∂p(y)

∂n
− σ(y)

2
, (6)

where ∂p+(y)
∂n (∂p−(y)

∂n ) is the derivative of pressure on the positive (negative) side of the bound-

ary ∂D+ (∂D−) and ∂p(y)
∂n is the derivative of pressure on the boundary ∂D. The double layer

potential presents a discontinuity approaching the boundary ∂D and generates a jump in terms
of pressure,

p+(y) = p(y)+
µ(y)

2

p−(y) = p(y)− µ(y)
2

, (7)
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where p+(y) (p−(y)) is the pressure on the positive (negative) side of the boundary ∂D+ (∂D−)
and p(y) is the pressure on the boundary ∂D. The solution of an indirect acoustic problem
requests to find the potential densities, σ and µ, on ∂D and evaluate their contribution with
eq.(5) at a point x.

Three types of boundary conditions can be applied. The Dirichlet boundary condition defines
the pressure while the Neumann boundary condition defines the derivatives of pressure. Finally,
the Robin boundary condition, which relates the pressure and its derivative, can be written as
follows,

∂p
∂n

= − iρω
Z

p, (8)

where ρ is the density and Z is the impedance of the medium.

3. THE INTERNAL IMPEDANCE BOUNDARY CONDITION METHOD

The non-uniqueness problem is a mathematical shortcoming which directly influences the ac-
curacy of the solution. Practically, the problem can be described as follows. Solving an exterior
Neumann problem with direct formulation, we find that the solution is polluted by fictitious
resonances at the corresponding internal Dirichlet problem eigenfrequencies. The issue is quite
similar with the indirect formulation: the solution to an exterior Neumann (or Dirichlet) prob-
lem is polluted by the resonances in correspondence of the interior Neumann (or Dirichlet)
problem.

Today the CHIEF and the Burton and Miller method seem to be the most popular in direct
BEM. The CHIEF is easily implementable and assures a good accuracy of the solution but it is
not so robust in the mid and high frequency range. The Burton and Miller method leads to a
unique solution for all the wavenumbers.

Using BEM, the non-uniqueness problem can be avoided with a linear combination of HIE
eq.(3) and NDHIE eq.(4),

1
2

p(x)+
1
2

α
∂p(x)
∂n(x)

=
∫

∂D
p(y)

∂g(y,x)
∂n(y)

ds−
∫

∂D
g(y,x)

∂p(y)
∂n(y)

ds+

+α
∫

∂D
p(y)

∂2g(y,x)
∂n(y)∂n(x)

ds−α
∫

∂D

∂g(y,x)
∂n(x)

∂p(y)
∂n(y)

ds, (9)

where the coefficient α usually is equal to i/k. Both the HIE and the NDHIE present a corre-
sponding infinite set of fictitious eigenfrequencies. Since eq.(9)is a linear combination it can
yield fictitious eigenfrequency if and only if both HIE and NDHIE have common eigenfrequen-
cies, which is unexpected.

For indirect BEM, besides some improved indirect formulations, some practical approaches
are used: they consist either in adding internal dummy surface with impedance or apply internal
impedance boundary condition on the inner side of the boundary.

We will see that using an internal Robin boundary condition, with Z = −ρc the indirect for-
mulation of the problem is mathematically equivalent to the direct one proposed by Burton and
Miller to overcome the non-uniqueness problem on the whole frequency range. Furthermore a
trick to reduce the high computational requirements will be illustrated.

3.1 Mathematical equivalence with the Burton and Miller method

Let suppose to solve an exterior direct problem using the boundary conditions defined in the ex-
terior indirect problem. The linear combination between HIE and the NDHIE can be considered
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as follows

1
2

p+(x)+
1
2

α
∂p+(x)
∂n(x)

=
∫

∂D+
p+(y)

∂g(y,x)
∂n(y)

ds−
∫

∂D+
g(y,x)

∂p+(y)
∂n(y)

ds+

+α
∫

∂D+
p+(y)

∂2g(y,x)
∂n(x)∂n(y)

ds−α
∫

∂D+

∂g(y,x)
∂n(x)

∂p+(y)
∂n(y)

ds. (10)

Considering eq.(7) and eq.(6), we can compute the pressure jump,

p+ + p− = 2p, (11)

and the derivative of pressure jump

∂p+

∂n
+

∂p−

∂n
= 2

∂p
∂n

. (12)

Substituting p+ from eq.(11) and ∂p+

∂n from eq.(12) into eq.(10), and supposing that ∂D+ ≈
∂D− ≈ ∂D we obtain the sequent relation

p(x)+
1
2

[
α

∂p+(x)
∂n(x)

− p−(x)
]

= 2
∫

∂D
p(y)

∂g(y,x)
∂n(y)

ds−2
∫

∂D
g(y,x)

∂p(y)
∂n(y)

ds+

−2
∫

∂D
g(y,x)

∂p(y)
∂n(y)

ds+2α
∫

∂D
p(y)

∂2g(y,x)
∂n(x)∂n(y)

ds−2α
∫

∂D

∂g(y,x)
∂n(x)

∂p(y)
∂n(y)

ds+

+α
∫

∂D

∂g(y,x)
∂n(x)

∂p−(y)
∂n(y)

ds+−α
∫

∂D
p−(y)

∂2g(y,x)
∂n(x)∂n(y)

ds−
∫

∂D
p−(y)

∂g(y,x)
∂n(y)

ds+

+
∫

∂D
g(y,x)

∂p−(y)
∂n(y)

ds. (13)

Introducing the jumps (11) and (12) we transform the problem in an indirect one because we
are using the single and double layer potentials. The fifth and the sixth terms on the right side
of eq.(13), compared with eq.(4), referred to the negative side, yield to

α
∫

∂D

∂g(y,x)
∂n(x)

∂p−(y)
∂n(y)

ds−α
∫

∂D
p−(y)

∂2g(y,x)
∂n(x)∂n(y)

ds = −1
2

α
∂p−(x)
∂n(x)

. (14)

The last two terms on the right side of eq.(13), compared with eq.(3), lead to

−
∫

∂D
p−(y)

∂g(y,x)
∂n(y)

ds+
∫

∂D
g(y,x)

∂p−(y)
∂n(y)

ds = −1
2

p−(x). (15)

Eq.(13) can now be rewritten as

p(x)+
1
2

[
α

∂p+(x)
∂n(x)

− p−(x)
]

= 2
∫

∂D
p(y)

∂g(y,x)
∂n(y)

ds−2
∫

∂D
g(y,x)

∂p(y)
∂n(y)

ds+

+2α
∫

∂D
p(y)

∂2g(y,x)
∂n(x)∂n(y)

ds−2α
∫

∂D

∂g(y,x)
∂n(x)

∂p(y)
∂n(y)

ds− 1
2

[
α

∂p−(x)
∂n(x)

− p−(x)
]
. (16)

Terms one to four on the right side of eq.(16) are the same terms on the right side of the eq.(9).
In order to prove the mathematical equivalence between eq.(16) and eq.(9) the last term has
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to be zero and the second one on the left side has to be equal to 2α ∂p
∂n . We need to find an

impedance value Z that satisfy

α
∂p−

∂n
+ p− = 0 (17)

α
∂p+

∂n
− p− = 2α

∂p
∂n

. (18)

The only impedance value that satisfies both eq.(17) and eq.(18), with α = i
k , is

Z = −ρc. (19)

We can conclude that solving an indirect problem with internal impedance boundary con-
dition, −ρc, applied over the entire boundary is mathematically equivalent to solve the Burton
and Miller problem for the direct formulation. Using an impedance equal to −ρc, the real inter-
nal resonances are completely damped, obtaining a solution not polluted by them. The negative
sign is due to the outward normal of the model.

Note that the proposed method allows to avoid the fictitious resonances both on the Neumann
and on the Dirichlet external problem in indirect BEM. The former is much more attractive for
industrial applications because usually the velocity field over the boundary is given.

3.2 Elements selection to reduce computational efforts

Adding internal impedance increases the number of unknowns and is very demanding. It will be
indeed shown in the next section that applying this method allows to completely damp fictitious
resonances both at low and at high frequencies but, as expected, solving time is highly increased.

What is proposed here is a method to obtain a good compromise between reducing compu-
tational efforts and getting accurate results. This method consists in to applying the internal
impedance boundary condition, −ρc, only over a certain percentage of elements. In [13] are
presented application cases with randomly selected stripes of elements, patches and randomly
selected elements. Best results are reached with the random selection of the elements on the
surface.

4. APPLICATION CASES

The method introduced is now applied to a real industrial case and to an academic one. Solutions
are investigated both at low frequencies, using standard BEM, and at higher frequency, using
FMBEM. The software used for both standard BEM and FMBEM is LMS Virtual.Lab Rev.9
[14]. Note that with FMBEM the accuracy of solution and the solving time are strictly related
to the choice of the tolerance and the number of iterations for the iterative solver.

Models are built choosing outward normal, imposing external velocity equal to 1 m/s over
the whole boundary and applying internal impedance equal to -416.5 kg/m2s over the entire
boundary or only on a randomly selected group of elements.

4.1 Vibrating engine

The first case is a vibrating engine, whose acoustic response is evaluated at an external field
point, Figure 2. The method, mesh composition and frequency range are indicated in Table 1.

In Figure 3, we can see that, using internal impedance applied over the entire boundary, fic-
titious resonances are completely eliminated both at low frequencies and at higher frequencies.
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Solver Nodes Elements Frequency Range Frequency Step
Standard BEM 7464 7503 500-1000 Hz 10 Hz
FMBEM 7464 14946 1000-2500 Hz 10 Hz

Table 1: Engine. Solver, mesh composition and frequency range.

Figure 2: Vibrating engine: field point and 12% of selected elements with impedance
boundary condition applied on.

For standard BEM, solving time is increased by about 5.5 when compared to the case without
impedance applied.

In order to reduce the computational effort the impedance boundary condition is applied on a
certain percentage of randomly selected elements, as shown in Figure 2. In Figure 4 and Figure
5 it can be seen that on the entire chosen frequency range a little percentage of elements allows
to obtain an accurate solution. The curves are almost superposed and present the biggest errors
in the highest part of the frequency range. Its amplitude is about 2 dB, negligible respect to the
amplitude of the corresponding fictitious resonances.

Since FMBEM is an iterative solver, the solution time at each frequency is not constant. As
a result, the evaluation of the computational requirements can be addressed only in terms of
total CPU time for a set of frequencies. It is more straightforward and interesting to evaluate
the advantages of the proposed method on a standard BEM solver, for which the solution time
is constant at each frequency. For the engine model, the application of the impedance over the
whole boundary surface increases the solution time with a factor 5.5. Applying the condition
over 12% of the elements increases the solution time much less, about 150%, and applying it
over 5% of the elements, the increase is about 50%. Both 12% and 5% of the elements allow to
obtain an accurate solution.

4.2 Pulsating sphere

The second case presented is a very academic one: the pulsating sphere. The Neumann bound-
ary condition yields strongly excited internal modes and damping fictitious resonances on the
external solution is more difficult. In Table 2 are indicated the solver, the mesh composition and
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Figure 3: Engine. Solution to the external Neumann problem with standard BEM (left) and
Fast Multipole BEM (right).
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Figure 4: Engine, standard BEM. Solution to the external Neumann problem with impedance
boundary condition applied over a certain percentage of randomly selected elements.
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Figure 5: Engine, FMBEM. Solution to the external Neumann problem with impedance
boundary condition applied over a certain percentage of randomly selected elements.

Solver Nodes Elements Frequency Range Frequency Step
Standard BEM 2402 2400 500-1000 Hz 10 Hz
FMBEM 15002 30000 2000-3000 Hz 10 Hz

Table 2: Sphere. Solver, mesh composition and frequency range.

the frequency range. The solution has been evaluated at an external point.
Using impedance boundary condition applied over the entire boundary, fictitious resonances

are mitigated both with standard BEM and with FMBEM, Figure 6.
In Figure 7, the solution obtained using standard BEM is proposed. Selecting 20% and 40%

of elements we get similar and very accurate results. Using 10% of elements allows to damp the
fictitious resonance but it still pollutes the curve. In Figure 8, results computed with FMBEM
are shown. Even in this case, solution obtained selecting 10% of elements does not allow
to mitigate the problem, instead, applying the condition over the 20% and 40% of elements
assures good accuracy.

We can conclude that in this case 20% of elements are sufficient to get accurate results over
the whole examined frequency range. The application of the condition over the whole surface
in standard BEM causes an increase of the solving time with a factor 4. Applying the absorption
over the 40%, 20% and 10% of the elements increases the solution time respectively by 250%,
150% and 100%.

5. CONCLUSIONS

The non-uniqueness is one potential shortcoming with BEM technique and can seriously pol-
lute the solution and drastically impact the efficiency of FMBEM solvers. In the past several
improved boundary integral formulations have been proposed by many authors to overcome the
issue. What we have proposed here is a practical method to obtain accurate results reducing
computational efforts.

In this paper we have shown that using the internal impedance −ρc allows to mitigate the fic-
titous resonances on the entire frequency range but the computational cost drastically increases.
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Figure 6: Sphere. Solution to the external Neumann problem with standard BEM (left) and
Fast Multipole BEM (right).
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Figure 7: Sphere, standard BEM. Solution to the external Neumann problem with impedance
boundary condition applied over a certain percentage of randomly selected elements.
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Figure 8: Sphere, FMBEM. Solution to the external Neumann problem with impedance
boundary condition applied over a certain percentage of randomly selected elements.

We have illustrated that we can reach an accurate and less demanding solution applying the
condition over a certain percentage of elements. This value is strictly connected to the internal
problem: the stronger are the internal resonances, the heavier is the pollution and the larger is
the percentage of elements needed.

Further improvement can be done in order to provide some practical guidelines to avoid the
issue as function of the application, getting accurate results with the lowest computational cost.
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