
Formal Development for Railway Signaling
Using Commercial Tools

Alessio Ferrari1, Alessandro Fantechi2

Stefano Bacherini1, and Niccoló Zingoni1

1 General Electric Transportation Systems (GETS), Firenze, Italy
2 Universitá di Firenze, DSI, Firenze, Italy

Abstract. This report presents the approach experimented by a rail-
way signaling manufacturer for the development of applications through
Simulink/Stateflow in a standard–regulated industrial framework.

The General Electric Transportation Systems (GETS) railway signaling division
of Florence, inside a long-term effort of introducing formal methods to enforce
product safety, decided to adopt the Simulink/Stateflow tool-suite to exploit
model based development and code generation within its own development pro-
cess [1]. Products traditionally provided by GETS, like any railway signaling
application developed for Europe, shall comply with the CENELEC norms [2].
Introducing the Simulink/Stateflow tool-suite within a CENELEC based process
is not a straightforward step, and GETS faced two crucial obstacles: the lack of
a formal semantics for the Simulink/Stateflow languages, and the absence of a
CENELEC compliant code generator.
The languages used by Simulink and Stateflow are not formally specified and
their semantics is essentially given by the simulation engine itself. This increases
the difficulty of defining an effective formal verification strategy, a highly recom-
mended practice according to the CENELEC norms.
Code generators provided for the tool-suite (in particular Stateflow Coder) are
not certified for railway software development, this complicating their adoption
in this domain. In order to defeat these problems, GETS first introduced a set of
modeling guidelines to restrain the semantics of the tools [3]. The idea is based
on the intuition that reducing the Simulink/Stateflow languages to a semanti-
cally unambiguous subset enables proper code synthesis and formal verification.
Once developed this set of modeling rules, a proper strategy including formal de-
velopment, model based unit testing and formal verification of modules has been
defined. Given a set of system-level functional requirements, these can be parti-
tioned into separate sets of unit requirements and then formalized into Stateflow
models according to the GETS guidelines. Each model represents an indepen-
dently verifiable system component. Unit testing based on requirement coverage
is then performed on the models through the Simulink environment, and during
test execution a test observer is used to register the test-suite input data and
the test results. The registered test-suite is executed on the auto-coded unit and
results are automatically compared. Finally, the module is analyzed through the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Florence Research

https://core.ac.uk/display/301561478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

Polyspace tool for abstract interpretation, in order to increase the confidence
on the correctness (i.e., runtime errors freedom) of the generated code (Fig. 1).
This strategy basically settles the problem of having a qualified code generator,
since certification of conformity is ensured each time code is synthesized from
a model. Verification of functional requirements is provided at Stateflow chart
level: unit requirements are translated into formulas made of Simulink blocks
and validated against the Stateflow model through the property proving engine
called Simulink Design Verifier (fig. 2).

Fig. 1. Overview of our strategy for model based testing

Fig. 2. Overview of our strategy for formal verification

The presented approach is focused on the level of system modules, since the strat-
egy has been fully put into practice only at this level during the development of
the logic of an Automatic Train Protection system called SSC/SCMT BaseLine
3 (150K LOC of auto-generated code). Extension of the approach at the overall
system level is theoretically feasible, but we are still working on strategies for
putting it into practice in the most effective manner.

References

1. Bacherini, S., Fantechi, A., Tempestini, M., Zingoni, N.: A Story about For-
mal Methods Adoption by a Railway Signaling Manufacturer. FM 2006. LNCS,
4025/2006, Hamilton, Canada, (2006).

2. European Committee for Electrotechnical Standardization: CENELEC EN 50128,
Railway Applications - Software for Railway Control and Protection Systems.
(1997).

3. Ferrari, A., Fantechi, A., Bacherini, S., Zingoni, N.: Modeling Guidelines for Code
Generation in the Railway Signaling Context. Proceedings of 1st NASA Formal
Methods Symphosium (NFM). Moffet Field, California, U.S.A., (2009).


