-

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

provided by Florence Research

AN ONTOLOGICAL SW ARCHITECTURE FOR THE
DEVELOPMENT OF COOPERATIVE WEB PORTALS

Giacomo Bucci, Valeriano Sandrucci, Enrico Vicario
Dipartimento di Sistemi ed Informatica, Universita degli Studi di Firenze
{bucci,sandrucci,vicario} Qdsi. unifi.it

Saverio Mecca
Dipartimento Tecnologie dell’Architettura e Design, Universita degli Studi di Firenze
saverio.mecca@Qunifi.it

Keywords: SW Architectures, Semantic Web Technologies, Ontologies, Semantic Portals, SW Engineering.

Abstract: Ontological technologies comprise a rich framework of languages and components off the shelf,
which devise a paradigm for the organization of SW architectures with high degree of interoper-
ability, maintainability and adaptability. In particular, this fits the needs for the development of
semantic web portals, where pages are organized as a generic graph, and navigation is driven by
the inherent semantics of contents. We report on a pattern-oriented executable SW architecture
for the construction of portals enabling semantic access, querying, and contribution of conceptual
models and concrete elements of information. By relying on the automated configuration of an
Object Oriented domain layer, the architecture reduces the creation of a cooperative portal to the
definition of an ontological domain model.

1 INTRODUCTION

Technologies for ontological modelling and rea-
soning devise a new paradigm for the organiza-
tion of software architectures with high degree of
interoperability, maintainability and adaptability
(M. Fayad, 1996), (ISO, 2004). This poten-
tial appears particularly well suited for consis-
tent development and management of informa-
tion architecture, site structure, and page layout
of web portals with weblike organization, where
pages are organized in the pattern of a generic
graph, and navigation is driven by the inherent
semantics of contents more than from a hierar-
chical upfront classification (P.J. Lynch, 2002)
(Franca Garzotto, 1995). In (Schreiber et al.,
2006), a semantic portal based on standard onto-
logical technologies and SWI-prolog is proposed,
which supports unified access to cultural heritage
resources classified according to a public unifying
ontology. The portal supports semantic search
and presentation of retrieved data, while con-
tribution of contents is not considered. Contri-
bution of contents by a distributed community
based on ontologies is addressed in (Stojanovic

et al., 2001), as a part of a work mainly focused
on the determination of a rank of relevance for
the result-set of semantic queries. However, the
proposed architecture only permits contribution
of ontology individuals and does not enables evo-
lution and reuse of the implementation when the
ontology changes in its concepts. In (Yuhui Jin,
2001), a declarative approach to the construction
of semantic portals is proposed, which relies on
the definition of a suite of ontologies created by
the portal programmer to define domain concepts
and contents, navigation structure and presenta-
tion style. The work does not address the sub-
ject of content contribution neither the person-
alization of presentation style by the user. In
(Corcho et al., 2006), the declarative approach
of (Yuhui Jin, 2001) is enlarged into a framework
based on ontologies supporting the construction
of a web application combining information and
services. The framework implements the Model
View Controller architectural pattern (Schmidt
et al., 2000). While the model is declared using
ontologies, views are implemented with existing
presentation technologies, and in particular JSP,
which mainly rely on the OO paradigm. To fill

https://core.ac.uk/display/301561253?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the gap between the two paradigms (Woodfield,
1997), the developer is provided with a suite of
predefined JSP components assuming the respon-
sibility of the adaptation.

In this paper, we address the development of
a portal enabling semantic access, querying, and
contribution of both domain individuals and con-
cepts. To this end, we propose an executable SW
architecture (Kruchten, 2003) based on standard
languages and components off the shelf, which re-
duces the creation of a cooperative portal to the
definition of an ontological domain model, and
which is implemented with components that can
be efficiently reused in a variety of data inten-
sive and knowledge based applications. The pro-
gramming model that permits the construction
of a portal using the proposed architecture is il-
lustrated with reference to the case of a coop-
erative portal, that we call Muddy, supporting
distributed contribution and usage of knowledge
about mudbrick construction practices, that we
call Muddy

In the rest of the paper, after a brief overview
of our perspective on the ontological paradigm in
SW architecture, we introduce the Muddy case
and we analyze its requirements, identifying ab-
stract roles and use cases (Sect.2). We then ex-
pound the architectural design and some salient
traits of its implementation, and we identify the
roles involved in its application (Sect.3). Finally
we describe the Muddy portal (Sect.4) and draw
conclusions (Sect.5).

2 REQUIREMENTS ANALYSIS

Ontological technologies mainly originate with
the intent to contribute to the realization of the
Semantic Web (Berners-Lee, 1998). This denotes
an evolution of the current web, in which infor-
mation is sematically defined so as to enable au-
tomated processing.

Client
use -7 . "L use
. ' use -
LS
Resource |,.1 oOntological * Ontological
- Data Schema

Figure 1: Resources and meta-data relations.

The Semantic Web paradigm thus emphasizes

the relation between information and meta infor-
mation, which distinguishes the concepts of Re-
source, Ontology Data, and Ontology Schema, as
illustrated in Fig.1. Resources are any informa-
tion object on the web: a file, an HTML page,
an image, a movie. In the semantic web per-
spective, each Resource will contain its Seman-
tic Data. The Ontology Schema is a conceptual-
ization shared among users, which captures the
intensional part of the model, defining types of
entities and their possible relations (concepts).
Ontology Data (individuals), are the extensional
part of the model, classifying Resources as real-
izations of the concepts in the Ontology Schema.
Client is a Semantic Web reader and can be a hu-
man or an application. In both the cases, Client
is interested to access Resources and their related
semantic data.

2.1 Abstract Roles in a semantic
cooperative portal

The Muddy project aims at supporting explicit
and shared representation of knowledge about
construction practices based on mudbrick. In
particular, the Muddy project aims at develop-
ing a web portal based on ontological models, en-
abling cooperation among subjects from different
localities and different domains of expertise, in
the development of a shared model and in the
contribution of concrete contents for it.

In the light of the organization of information
of Fig.1, this identifies roles, users’ needs, and use
cases generalized beyond the limits of the specific
context of use (ISO, 1998), that are outlined in
Fig.2

R

Reader Writer
Reasource Dntological Ontological Resource Ontological Ontological
Reader Data Schema Writer Data Schema
Reader Reader Writer Writer

Figure 2: Abstract roles in a semantic portal.

Resource Readers correspond to readers in the
conventional web. They are interested in access-
ing information, using meta-information to main-
tain context and to access resources, through di-
rect links or search engines. Resource Writers

are also enabled to insert, update and delete re-
sources.

Ontological Schema Readers correspond to the
second-level reader of (Eco, 1994). They are in-
terested in understanding the organization of con-
cepts more then their concrete realizations. They
need to navigate in ordered manner and search
classes and properties of an ontological model.

Ontological Schema Writers also modify mod-
els, taking part to the definition of the strategy
of content organization. In particular, they may
be interested in fixing errors, changing the model
to follow some evolution, or extending the model
by specialization and inheritance.

An Ontological Data Writer is a human or a
SW indexing Resources with respect to the con-
cepts of an Ontological Schema. Besides, an On-
tological Data Reader is a human or more fre-
quently a SW which exploits Ontological Data
to access concrete resources in semantic querying
(Bonino et al., 2003). Ontological data can also
be formatted to be easily readable as well as a
resource by human users (Dzbor M., 2004).

2.2 Use cases in the Muddy portal

In the specific context of the Muddy portal, the
main goals of a Reader are browsing of pages de-
rived from resources and semantic models, navi-
gation of links corresponding to relations in the
ontological model, execution of semantic queries
on the knowledge base (Fig.3).

Find Information
Manage Profile
\ 1< <include =
% 5 Read Information

Reader T
f <<include =

Mavigate Link

!

Figure 3: Web portal Reader use cases.

Besides, the Writer (Fig.4), extends the Reader
capability to access information with the capabil-
ity to contribute new knowledge in the form of
a generic Ontological Schema or Data. Namely,
the enabled user can contribute either the ex-
tensional or the intensional part of the ontolog-
ical model for the web portal. Writers can also
send /receive feedback and comments about the
ontological model so as to encourage collabora-
tion and cooperation among users. To contribute,

writers will upload model files to ease the devel-
opment of a portal prototype.

i Read Information
Reader i

<<extendz®

Download Model
<<extsnd>}>, -

/ Yote Information S aestends >
Writer Upload Model

Figure 4: Web portal Writer use cases.

3 ARCHITECTURE AND
DEVELOPMENT PROCESS

The conceptual architecture of our semantic por-
tal composes a variety of partecipants that can be
effectively assembled using W3C supported spec-
ifications and components.

Rule Expression }(
wirite

1 wrike use |

‘ Ontology ‘ Rule Language

Language

reason

Query use H
Enxpression [S--------oooooooooo!

' Answer Query validate Model
write !

Query Language Derive Relation

Figure 5: Architectural components.

W
Ontology Model }(

Reasoner }> goal »{ Reasoner Goal

[| |

3.1 Ontology Model

The Ontology Model (Fig.5) is the main compo-
nent of the architecture, with the main responsi-
bility of providing representation of the domain
model of the application. It is implemented by
composition of the Ontology Schema and Ontol-
ogy Data (Fig.1), both encoded using the W3C
standard Ontology Web Language (OWL) (W3C,
2004).

In a logic perspective (Fig.6), the ontology
model can be decomposed in three main parts:
classes, properties and individuals. Classes in
the Ontology Model are part of the Ontological

Schema and play a role that can be compared to
that of table definitions in a relational database.
However, as opposed to relational tables, classes
can be composed through delegation and inheri-
tance. Properties are also part of the Ontologi-
cal Schema, and they are used to define relations
among classes. Individuals are realizations of con-
cepts described by classes, and play a role that
can be compared to that of records in a relational
database.

hasProperty
: domain ki
Class FE---------- Property
7 range T A
instancenf | L
| _"subjectOf
Individual | ___]
objectOFf

Figure 6: Logical compontents of the ontology model.

3.2 Rules

To form the overall knowledge base, the ontolog-
ical model is complemented with Rules that ex-
tend the information explicitly represented with
inference rules that let the system derive new
knowledge. In our architecture, Rules are repre-
sented using the W3C supported Rule Language
SWRL. To circumvent limitations affecting open
source reasoners, we internally represent the lan-
guage using Jena rules (Company, 2002).

3.3 Querying and reasoning

Query on the knowlegde base are expressed using
the W3C supported SparQL. While the architec-
ture supports the full expressivity of SPARQL,
for the sake of usability, and in particular learn-
ability, only a restricted fragment of the language
is provided to the user.

The API Jena is used to drive reasoning and
retrieve information by deciding SPARQL queries
on the model. The APT is also used to validate the
ontology model and derive new knowledge using
OWL axioms and inference rules. In general, any
reasoner represents a trade-off between power and
efficiency in computing. In particular, in the case
of our architecture termination of reasoning tasks
is guaranteed only if the model and the rules are

encompassed within the boundaries of OWL-DL
and SWRL, respectively.

3.4 Participants in the
Development Process

The proposed SW architecture supports separa-
tion of concerns among four different roles of Do-
main Expert, Ontology Expert, Stakeholder, IT
Expert. These naturally fit in a realistic social
context of development (Cockburn, 1996) and ba-
sically correspond to the roles identified in (Tem-
pich et al., 2005).

The Domain Expert knows about the domain
of the portal and share partially formalized mod-
els among the community who belongs to. Do-
main Experts usually use specific tools to do their
analysis and produce their research result. It
is often the case that they don’t know anything
about ontologies and also they don’t have oppor-
tunity (no time available) to learn about them.

The Ontology Expert is able to use sematic
modelling tools and can describe knowledge con-
tributed by Domain Experts with an Ontology
Model. In this way the information, that was het-
erogeneous and sometimes also tacit or embed-
ded, becomes formalized, explicit, homogeneous
and consistent (Kryssanov et al., 1998).

The Stakeholder is interested in the domain
logic but he/she is not necessarily expert. For
this role, it is useful to have an ontology model
that can be read and studied and that can be used
to navigate through Domain Experts documents.

Finally, the IT Expert has to develop software
tools needed by other roles so to let them read
and write resources and ontology models (Fig.1
and 2).

3.5 Salient Aspects of the
Implementation

3.5.1 Layering

The source code of the web portal (Fig.7) is or-
ganized in three layers (Schmidt et al., 2000),
(Fowler, 2002). As usual, in SW architecture,
layering separates presentation, domain logic and
persistence. In this case, layering also helps in
filling the gap between ontological and object
oriented perspectives (Woodfield, 1997) (Guiz-
zardi et al., 2001), which somehow reproduces the
well known problem of Impedance Mismatch be-
tween Objects and relational databases (Ambler,
2003).

The presentation layer contains the logic to
handle the interaction between the user and the
software, relying on Java Server Faces (JSF)
(Mann, 2004); the domain layer contains the ap-
plication logic i.e. the domain model, imple-
mented with Plain Old Java Objects (POJO); the
persistent layer, is implemented as an ontology
expressed as an OWL model and presently en-
coded as an RDF repository.

Presentation
Layer

Domain Layer Pojo Model

<}

Mapping Layer

Persistent OWL Model
% Layer ‘Q -

Figure 7: Web portal layering.

A Mapping layer is inserted between Domain
layer and Persistent layer to improve decoupling
and make easer testing and concurrent developing
(Heumann, 2001), (Beck, 2002). The Mapping
layer manages the mapping between models and
meta-models, elaborates complex relations (reifi-
cation), hides SPARQL embedded code and im-
proves performances with methods like caching
and proxying. Last but not least, only the map-
ping layer refers to the low level API Jena (Com-
pany, 2002).

3.5.2 Domain Model

The POJO Model in the domain layer is com-
posed by two Java packages named Domain and
UserProfile. The DataMapper components of
the Mapping layer initialize objects of the POJO
model with data contained in the OWL model
which is in turn composed by three submodels
named: Domain ontology, UserProfile ontology
and Presentation ontology. The Domain pack-
age has responsibility to manage information con-
tributed by users and is derived from Domain on-
tology according to the architectural pattern of
reflection (Schmidt et al., 2000): classes of the
Domain package are independent from the spe-
cific types defined in the Domain ontology thus
enabling reuse of the OO layer, defining differ-
ent evolutions of a portal or different portals in-

sisting on different application domains. This is
the feature that permits the cooperative portal
to accommodate contributions not only in the in-
dividuals of the extensional part, but also in the
concepts of the intensional part of the knowledge-
base. Derivation of the Domain package is also
affected by the Presentation ontology defining di-
rectives for the presentation of data in the page
layout. The individuals of this ontology are used
by the mapping layer to determine the presenta-
tion and filtering of concepts defined in the on-
tological Domain model. This accomplishes a
responsibility which is much similar to that of
"site view graphs” in the OntoWebber frame-
work (Yuhui Jin, 2001). The UserProfile pack-
age contains data about profiles, users and re-
lated information, and it is automatically derived
from UserProfile ontology, so as to map ontol-
ogy classes and properties to OO classes and at-
tributes.

Damain
tyvpe
Resource Property
i *
+nare
+description
w | A value
|
serProfile

Yote

ull B |

User Contact

S %

Good Contact Bad Contact

Figure 8: The POJO Model of the web portal.

3.5.3 Mapping Layer

Mapping between ontological and object-oriented
models of the architecture was implemented fol-
lowing a pattern-oriented design (Fowler, 2002),
(Schmidt et al., 2000) aimed at building an ex-
tensible and reusable framework.

Mappers The mapping layer includes a map-
per class for each element of the OO domain
model (Fowler, 2002) (Fig.9). Each mapper class
can read information form the ontological model
to assign it to the object-oriented model and vice
versa, and it is implemented as extension of the
abstract DataMapper base class.

DataMapper<f>

+finduri: URI): E

+inserk{o: E)

+updatelo: E)

+deletelo: E)

#load{uri: URI, s: Individual, d: E)
#saveluri URI, s: E, d: Individualy

DomainObjMapper =<interface>>

#load{uri: URL, s: Individual, d: DomainObj) [~7777 7" ® Domainobi
#saveluri: URI, s: DomainObj, d: Individual) A

“<create s> N DomainObjImpl

Figure 9: Mappers.

Mappers decouple the object-oriented Domain
Layer from the ontological Persistence Layer, so
that a client can ignore how objects are per-
sisted in the ontology. For the sake of perfor-
mance and and behavioral abstraction, DataMap-
pers implement some specific patterns (Fowler,
2002), (Gamma et al., 1995):

e Identify Map (Cache): mappers have a
cache memory to speed up repeated access to
the same object.

e Proxy: if possible, mappers substitute ob-
jects requested by the client with equivalent
proxies. This delays the mapping operations
until they are really needed.

e LazyLoad: mappers load objects of a list
when they are used so the slow mapping op-
eration is executed for useful objects only.

e UnitOfWork: unit of work class manages
changes to objects that mappers have to per-
sist.

Developers can use an instance of the class Ses-
sion to access functions of the mapping framework
(Fig.10).

Session a.* ZZinterface ==

Finder

+get{uri: URI, cls: Class<T=) T
+getFindericls: Class<T=): Finder
+savein: Object)

+delete{n: Object)

conmik)

+elosed)
UnitOfwork

1..*% DataMapper<£x>

Figure 10: The Seession class.

4 THE MUDDY PORTAL

Muddy is a web-based application implemented
as an instance of requirements and architecture
described so far. It allows reading and writing
of concrete and conceptual information according
to an ontological paradigm, providing the follow-
ing user functions: navigate information follow-
ing semantic links; execute semantic queries on
the knowledge base; contribute new knowledge
uploading model files; read /write feedback about
the knowledge base.

As characterizing traits: users know that data
are organized according to an underlying ontolog-
ical model; wusers cooperate in the construction
of one or many ontological models, by creating,
retrieving, updating and deleting not only indi-
viduals but also concepts.

4.1 The Portal Architecture

Fig.11 depicts the architecture of the portal man-
aged by the application.

User¥iew Directory search

. El-——

Index Home Find

Login Header

P T 1)

Download Admin Tools

Logerr Upload

Figure 11: Structure of the Muddy Portal.

Index is the first page of the portal with login and
registration, giving access to the Home page and
then, through Header page to the functions of the
portal.

Users can be readers, writers and administrators
and they are provided with different functions. A
new user is always classified as reader and only
administators can give users more privileges.

Find page is used to execute queryies on the
knowledge base by users and it is specialized in
Search and Directory pages. ResourceView page
allows users to read information contained in the
knowledge base. Upload and Download pages
allow users to contribute new knowledge. Ad-
mintools page is for the administrator.

4.2 Find Pages

The Directory page (Fig.12) is used to execute
pro-active search. The system shows to the user
a list of categories that correspond to root classes
of the ontological model managed by the portal.
The user can select a category to get a page con-
taining the list of instances of the category and
the list of its direct subclasses. The user can nav-
igate toward more specific classes or can inspect
one of the instances found.

Humber of Humber of
subclasses is green

istances is blue

Current class

fatsgory) |

[T s Inarnss plare 1 A
= B B - o e ™
WaxDesign

—

visited class list —___|

b)) meme) emmsri82) T2}

Subclasses of the

Risultati 1 -6 50 6
current class 2 mix dgrign i

Result list

Result istances Resu\t_classes
are blue definitians are green

Figure 12: The Directory search page.

The Search page (Fig.13) implements an exten-
sion of full-text search methods. Users can spec-
ify one or more words that must be contained in
desired resources. They can also specify the kind
of relations that link desired resources to specified
words. For instance, the expression "neededTools
= sieve” lets a user require all resources that has
a ”sieve” among needed ”tools”

4.3 Resource View Page

This page shows information about a resource
(Fig.14), and allows users to speed up navigation
towards semantic related resources.

Search button

Searched text
—

Search Result ———

Results are paged _|

Figure 13: The Search page.

Feedback link

Resource classes —— |

Resource description

Resource links

Figure 14: The ResourceView page.

The portal also allows users to give feedback
about accessed resources which is used to calcu-
late appreciation indexes about resources.

5 CONCLUSIONS

We are further developing the portal and its
underlying architecture, facing various interre-
lated issues, that are crucial to tackle the tran-
sition phase towards the context of use:

e a usability cycle has been planned, to eval-
uate the capability of the portal to support
the user in maintaining context in the navi-
gation through the weblike structure of portal
contents. This step should be largely facil-
itated by the orientation towards change in
the overall architecture, and in particular by
the presentation ontology implemented in the
mapper;

e preliminary performance profiling indicates
that performance can be largely improved by
the integration of a more elaborated RDF
repository;

e functional extensions are being developed to
implement the automated derivation of an ed-
itor of individuals based on the structure of
ontology concepts and a tool for annotation
of existing web resources with reference to the
concepts of an ontological model.

REFERENCES

Ambler, S. (2003). Agile Database Techniques: Effec-
tive Strategies for the Agile Software Developer.
John Wiley & Sons, Inc., New York, NY, USA.

Beck, K. (2002). Test Driven Development: By Ex-
ample. Addison-Wesley Professional.

Berners-Lee, T. (1998). Semantic web roadmap.
http:// www.w3.org/2001/sw/.

Bonino, D., Corno, F., and Farinetti, L. (2003). Dose:
a distributed open semantic elaboration plat-
form. ICTAT 2003, The 15th IEEE International
Conference on Tools with Artificial Intelligence,
November 3-5, 2003, Sacramento, California.

Cockburn, A. (1996). The interaction of social is-
sues and software architecture. Commun. ACM,
39(10):40-46.

Company, H.-P. D. (2002). Jena a se-
mantic web framework for java.
http://jena.sourceforge.net/.

Corcho, O., Lpez-Cima, A., and Gomez-Prez, A.
(2006). A platform for the development of se-
mantic web portals. In ICWE ’06: Proceedings
of the 6th international conference on Web en-
gineering, pages 145-152, New York, NY, USA.
ACM Press.

Dzbor M., Motta E., D. J. B. (2004). Opening up
magpie via semantic services. In Proc. of the
3rd Intl. Semantic Web Conference, November
2004, Japan.

Eco, U. (1994). Six walks in the fictional woods. Har-
vard University Press.

Fowler, M. (2002). Patterns of Enterprise Application
Architecture. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA.

Franca Garzotto, Luca Mainetti, P. P. (1995). Hy-
permedia design analysis and evaluation issues.
incomm. of the acm. Communications of the
ACM.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns. Addison-Wesley Pro-
fessional.

Guizzardi, G., Falbo, R., and Filho, J. (2001). Using
objects and patterns to implement domain on-
tologies. 15th Brazilian Symposium on Software
Engineering, Rio de Janeiro, Brazil.

Heumann, J. (2001). Generating test cases from use
cases. The Rational Edge.

ISO (1998). Iso 9241-11 “guidance on usability”.
http://www.iso.org/iso/en/ISOOnline.frontpage.

ISO (2004). Iso 9126 “software en-
gineering - product quality”.
http://www.iso.org/iso/en/ISOOnline.frontpage.

Kruchten, P. (2003). The Rational Unified Process:
An Introduction, Third Edition. Addison-Wesley
Professional.

Kryssanov, V. V., Abramov, V. A., Fukuda, Y., and
Konishi, K. (1998). The meaning of manufactur-
ing know -how. In PROLAMAT ’98: Proceedings
of the Tenth International IFIP WG5.2/WG5.3
Conference on Globalization of Manufacturing in
the Digital Communications Era of the 21st Cen-
tury, pages 375—388, Deventer, The Netherlands,
The Netherlands. Kluwer, B.V.

M. Fayad, M. C. (1996). Aspects of software adapt-
ability. COMMUNICATIONS OF THE ACM.

Mann, K. D. (2004). JavaServer Faces in Action
(In Action series). Manning Publications Co.,
Greenwich, CT, USA.

P.J. Lynch, S. H. (2002). Web style guide: Basic de-
sign principles for creating web sites. Yale Uni-
versity Press.

Schmidt, D. C., Rohnert, H., Stal, M., and Schultz, D.
(2000). Pattern-Oriented Software Architecture:

Patterns for Concurrent and Networked Objects.
John Wiley & Sons, Inc., New York, NY, USA.

Schreiber, G., Amin, A., van Assem, M., de Boer,
V., Hardman, L., Hildebrand, M., Hollink, L.,
Huang, Z., van Kersen, J., de Niet, M., Ome-
layenko, B., van Ossenbruggen, J., Siebes, R.,
Taekema, J., Wielemaker, J., and Wielinga, B. J.
(2006). Multimedian e-culture demonstrator. In
International Semantic Web Conference, pages
951-958.

Stojanovic, N., Maedche, A., Staab, S., Studer, R.,
and Sure, Y. (2001). Seal: a framework for de-
veloping semantic portals.

Tempich, C., Pinto, H. S., Sure, Y., and Staab,
S. (2005). An argumentation ontology for dis-
tributed, loosely-controlled and evolving engi-
neering processes of ontologies (diligent). In
Gmez-Prez, A. and Euzenat, J., editors, Second
European Semantic Web Conference, (ESWC
2005), volume 3532 of LNCS, pages 241-256,
Heraklion, Crete, Greece. Springer.

W3C (2004). Owl web ontology language.
http://www.w3.org/ TR /owl-features/.

Woodfield, S. N. (1997). The impedance mismatch
between conceptual models and implementation
environments. ER’97 Workshop 4 Proceedings.

Yuhui Jin, Stefan Decker, G. W. (2001). Ontowebber:
Model-driven ontology-based web site manage-
ment. 1st International Semantic Web Working
Symposium, Stanford University, Stanford.

