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Abstract

This note is concerned with a quantitative model describing the interaction of three
sociological species , termed as owners, criminals and security guards, and respec-
tively denoted by X, Y and Z. In our model, Y is a predator for the species X, and
so is Z with respect to Y . Moreover, Z can also be thought of as a predator for X,
since this last population is required to bear the costs of maintaining Z.

We propose a system of three ordinary differential equations to account for the
time evolution of X(t), Y (t) and Z(t) according to our previous assumptions ( cf.
(3)-(5) below ). Out of the various parameters that appear in that system we select
one of them, denoted by H and representing the efficiency of the security forces, as a
control parameter in our discussion. To begin with, we consider the case of large and
constant owners population, which allows us to reduce (3)-(5) to a bidimensional
system for Y (t) and Z(t). As a preliminary step, this situation is first discussed
under the additional assumption that Y (t) + Z(t) is constant. A bifurcation study
is then performed in terms of H and h, which shows the key role played by the rate
of casualties in Y and Z, that in particular results in a possible onset of bistability.
When the previous restriction is dropped, we observe the appearance of oscillatory
behaviours in the full two-dimensional system. We finally provide a exploratory
study of the complete model (3)-(5), where a number of bifurcations appear as
parameter H changes, and the corresponding solutions behaviours are described.
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1 Introduction

Crime has always been a serious concern in human societies. Indeed, references
to criminal behaviour (and measures to check it) are well documented from the
oldest extant records to our days (cf. [1],[2], [25],[3], [4]). While the concept of
criminal, whence unacceptable, conducts largely differs among various cultures
and historical periods, there is a general agreement in considering certain
acts as criminal. In particular, this applies to the unauthorized exaction of
resources belonging to a person or group of persons, legally considered to be
their owners. This is the type of criminal behaviour to be addressed mainly in
this note.

It is widely assumed that there is an enormous variability in crime rates, both
in space and time [26]. We shall be herein concerned with some quantitative
models that describe the evolution in time of three interacting populations.
They will be referred to as owners, criminals and security guards, respectively.
These are the three essential players in the so called Routine Activity Theory
([5], [6]), one of the current conceptual frameworks being used in quantitative
criminology (see also [28]). Concerning the interaction of these species, the
following assumptions will be made:

A.1 Owners population (to be denoted as X(t)) are prey to the criminal
population (to be denoted as Y (t)).

A.2 Security guards population (to be represented as Z(t)) act as predators
on the criminal population but also on the owners’ one, since the latter have
to bear the cost to keep the actual numbers of Z(t).

A.3 A crime is committed whenever a criminal meets an owner in the absence
of security surveillance. This statement is often referred to as the Triangle
Dogma ([7]).

A.4 In any criminal event, two characteristic time scales can be distinguished.
More precisely, a first period in which a criminal stalks for prey is followed
by a second stage in which that criminal is actively and exclusively engaged
in committing that crime. Assuming this behaviour, the functional response
of the criminal population Cf (t)is given by ([8], [9]):

Cf (t) =
k X(t)

E +X(t)
Y (t) (1)

for some constants k ≥ 0 and E ≥ 0.
A.5 The process of neutralization of criminals by security forces follows a

kinetics similar to that described in our previous hypothesis. More precisely,
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the rate of removal of criminals by the guard actions, Sf (t), is given by:

Sf (t) =
H Y (t)

D + Y (t)
Z(t) (2)

for some H ≥ 0 and D ≥ 0. The parameter H will be termed as the
efficiency of the security guards and will play a key role in the forthcoming
study.

We next state the triangle model which incorporates assumptions (A.1)-(A.5).
It reads as follows:

dX

dt
= r(N −X)(K −X)− kX

E +X
Y −B Z

X
(3)

dY

dt
= f

SX

E +X
Y − HY

D + Y
Z − FY −GY 2 (4)

dZ

dt
= g

SX

E +X
Y − h HY

D + Y
Z − CZ (5)

Concerning equations (3-5) some remarks are in order. To begin with, space-
dependent properties are not included in that system. Moreover, (3-5) rep-
resents a continuum-based deterministic approach. This framework is partic-
ularly well suited to detect changes in the dynamics of solutions associated
to bifurcations arising when some control parameter reaches critical values, a
strategy that will be exploited in the sequel. Discrete and stochastic effects
are therefore excluded (or averaged out in a suitable manner). For a general
discussion on the features of these different modelling approaches the reader
is referred to [10].

Equation (3) asserts that, in the absence of criminals and guards, the own-
ers population obeys a logistic-type dynamics with growth rate r > 0 and
maximum capacity N > 0. The parameter K < N is the optimal reachable
population and so, X(t)→ K as t→∞ if either 0 ≤ X ≤ K or K ≤ X < N .
Notice that in this formulation the extinction state X = 0 is not a steady
state. The presence of criminals hinders the growth of X at a rate given by
(1), as described by the second term on the right hand side of (3). On its turn,
the existence of security forces represents a cost which is shared by all owners
in the manner described by the latest term in the right hand side of (3), with
B > 0 there.

Equation (4) describes the evolution in time of the criminal population Y (t). It
is therein assumed that Y (t) increases according to the criminal rate (1) with
a proportionality constant f > 0. On the other hand, Y (t) decreases under the
action of Z(t) (recall (2)) and, as a consequence of interspecific competition.
This last is represented by the third and fourth terms in the right hand side
of (4).
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Finally, security forces growth is proportional (with a rate constant g > 0) to
the crimes committed, as shown by the first term on the right hand side of (5).
On the other hand, Z(t) decreases as a consequence of casualties suffered in
encounters with the criminals, the corresponding rate constant being h > 0.
We point out that the concept of casualty in this context is to be associated
with loss of function in general. More precisely, it includes deactivation of
security forces by corruption and other mechanisms, as for instance by moving
police forces out of a particularly difficult neighborhood. Natural decay (with
constant C > 0) also has a negative impact on the values of Z(t).

We should stress that, in order to assess the actual relevance of models like
(3-5), reliable estimates for constants k,E,B,H, f, g, h,G and C should be
provided by sociological records. Obtaining such values seems to be a major
challenge for mathematical modelling in the field. This last approach is not
entirely new (see, for instance, [11], [12]) and is not universally accepted either
(cf. [13]). However, in recent years a number of works have addressed the issue
of studying the evolution in time of a population where criminals are present
by means of mathematical analysis ([14], [15], [16]). A similar point of view
has been used to describe dynastic cycles (see [17] and [18]).

We conclude this introduction by summarizing the plan of this note. We first
consider in section 2 below the case of constant (and large) owners population.
This assumption allows us to reduce (3-5) to a bidimensional system that can
be analysed by means of phase space techniques. Under the additional as-
sumption that (Y +Z) remains constant for all times , we are able to discuss
in detail the dynamic behaviour of solutions in terms of H for a given set of
parameter values. In particular, the possibility of severe depletion in the active
population of security guards is shown to occur whenever h > 0. When the
previous assumption on (Y + Z) is dropped, a oscillatory dynamics appear,
which is discussed in the last paragraph of that Section. We then consider in
Section 3 the case of the full system (3)-(5). The corresponding dynamics is
extremely rich, and we have reduced ourselves to providing a quick discussion
on the influence of parameter H in the behaviour of solutions. To this end ,a
reference parameter set is selected. Regardless of the limited character of that
choice, a number of bifurcations are identified, and the corresponding dynam-
ics are succinctly described. Finally some concluding remarks are gathered in
Section 5 at the end of this article.

2 A reduced system: the case of constant and large owners popu-
lation

In many practical circumstances, the number of owners which are potential
targets for criminals can be assumed to be constant and large with respect to
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the corresponding figures for criminals and guardians. In other words

X(t) ≡ X0 � Y (t) + Z(t) for all t > 0 (6)

Under this assumption, the hypothesis X(t) = X0 can be assumed to hold for
sufficiently large times, and (4)-(5) reduces to

dY

dt
= fαY − Y (F +GY )− HY

D + Y
Z (7)

dZ

dt
= gαY − h HY

D + Y
Z − CZ (8)

where

α =
kX0

E +X0

A further simplification is achieved when the system is subject to global reg-
ulation as described below.

2.1 A bidimensional system with competition

To begin with, we consider a simplified case. More precisely, we introduce the
further assumption that the system has a first integral, namely:

Y (t) + Z(t) = M for all t > 0 (9)

While the hypothesis might be arguable in itself, we believe that the reduced
system thus obtained still deserves some consideration. Indeed, as noticed be-
low, the role of parameter h will be clearly highlighted in this case. Moreover,
conditions akin to (9) are commonly used in Ecology, at least at a preliminary
modelling level. For instance, the existence of a first integral is key to derive
the classical oscillatory Lotka-Volterra dynamics ([10]). Furthermore, an as-
sumption similar to (9) is customarily made when dealing with quasispecies
theory in prebiotic evolution (see, for instance, [27]).

A neutral and natural way of ensuring this constraint is by introducing a
negative flux φ = φ(Y, Z) in equations (7)-(8). Thus, (7)-(8) are replaced by
the following modified system:

dY

dt
= fαY − Y (F +GY )− HY

D + Y
Z − φY (10)
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dZ

dt
= gαY − CZ − h HY

D + Y
Z − φZ (11)

Furthermore, by absorbing linear terms in φ we may take F = C = 0 without
loss of generality. At this stage, it is convenient to introduce nondimensional
variables by setting:

y =
Y

M
; z =

Z

M
, d =

D

M
; ξ = MG (12)

One then has that (9) yields

z = 1− y (13)

and (10)-(11) transform into

dy

dt
= fαy − ξy2 − Hy(1− y)

d+ y
− φy (14)

dz

dt
= gαy − hHy(1− y)

d+ y
− φ(1− y) (15)

On imposing (13), we readily obtain from (14) and (15) that

φ(y) = (f + g)αy − ξy2 − (1 + h)H
y(1− y)

d+ y
(16)

so that y(t) satisfies:

dy

dt
= y

(
(1− y)

(
f α− ξ y − H

d+ y
+H (1 + h)

y

d+ y

)
− gαy

)
(17)

Equation (17) does not seem to be analytically solvable. However, the be-
haviour of its solutions can be qualitatively discussed in terms of the parame-
ters appearing therein. We shall select H (the police efficiency, cf. (2)) as our
main control parameter, and in the sequel we shall describe the various be-
haviours that appear as H varies and the remaining constants are kept fixed.
In particular, let us take:

α = 102; d = 10−1; g = 10−2; f = 10−1; h = 10−1; ξ = 1.0 (18)

While no claim is herein made on the actual relevance of (18) in any particular
criminal setting, some remarks can be made on the rationale behind such
choice. For instance, in view of (1) the (comparatively) large value of α in
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(18) corresponds to a large value of X0 and k. A similar argument (replacing
X0 by M) also applies to the values of d and ξ in (18). On the other hand,
the fact that 0 < g < f and differ in one order of magnitude, corresponds
to the assumption that both criminal and security guard numbers increase
in proportion to crimes committed, but the second population does so at a
lower pace than the first one. Finally, the choice h = 10−1 (which shall be
reconsidered later) corresponds to a relatively high casualty rate in guards
upon interacting with criminals.

We next proceed to discuss the behaviour of solutions to (17). To this end, we
first observe that the equation has a trivial steady state

ȳ0 = 0;

which is independent of the parameter choice in (17). This value means ex-
tinction of the criminal population. Notice, however, that extinction of the
guards is not a steady state for (17). The remaining steady states are given
by the roots of the cubic equation:

ξ y3 + (ξ(d− 1)− (f + g)α−H (1 + h)) y2+

+(f α (1− d)− ξ d+H (2 + h)− g α d) y + f α d−H = 0 (19)

While solutions of (19) can be represented by Cardano-Viete’s formulae (cf, for
instance, [19]), the expressions thus obtained are not particularly illuminating.
Actually, since equation (19) is linear in h, we can write H in terms of y in

the form H(y) = f(y)
g(y)

, where f and g are cubic and quadratic polynomials
in y, respectively. Under our current choice of parameters, one of these roots
is always real and larger than one for all values of H ≥ 0, so that it is not
relevant for our discussion here. The remaining two roots y1, y2 are both real
and satisfy 0 < y1 < y2 < 1 for some values of H, namely

0 < H < 55.25 ≡ H1 and H > 188.75 ≡ H2 (20)

Thus, two branches of y exist for 0 < H < H1 or H > H2. Moreover, for
0 < H < 1 ≡ Hc the lower branch is negative. It is important to observe that
the value Hc = 1 remains constant when h is varied. This situation is depicted
in Figure 1 below.

Using standard bifurcation techniques (cf. for instance [20]), it is straightfor-
ward to show that:

• y0 is asymptotically stable forHc < H. (A)
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• y1 > 0 (respectively y2 > 0 with 0 < y1 < y2 < 1) is asymptotically stable
(respectively unstable) in the range Hc < H < H1 and H > H2.

The global shape of this bifurcation diagram depends crucially on the value
of the casualty parameter h. As a matter of fact, one has that:

As h→ 0, then H1 → 23.64 and H2 →∞, whenever the remaining values in
(18) are kept fixed. (B)

A striking consequence of (A)-(B) is that only for h = 0 an increase in security
efficiency (so that H > H1) guarantees the effective removal of criminals from
the system. On the other hand, whenever h > 0, and no matter how small h
be, a criminal population could remain active for arbitrarily large values of H
(for some particular initial conditions).

A further point to be noticed is that a global bifurcation appears for h = hc ≡
0.1099019514, which leads to the onset of bistability. Specifically, the upper
branch in the left and the lower branch in the right of Figure 1 coalesce when
h = hc. When h > hc, i.e. when losses in the guardian population due to the
fight against criminals are relevant, even a huge increase in police efficiency is
not enough to get rid of criminality. This situation is summarized in Figures
2 and 3 below.

2.2 The model without regulation: oscillatory behaviours

When condition (9) is dispensed with, the dynamics of (7)-(8) becomes more
complex. To compare with the case considered in our previous paragraph, we
now select parameters as follows

α = 102; d = 10−1; g = 10−2; f = 10−1;

h = 0; C = 1; F = 10−1; G = 1 (21)

Under such assumptions (7)-(8) has two nonnegative steady states given by
P1(0, 0) and P2(ȳ, ȳ), where

ȳ = 4.9− H

2
+

1

10

√
2500− 490H + 25H2 (22)

The equilibrium P2 corresponds to the coexistence of criminals and security
forces. As H increases, P2 moves towards the origin, so that higher security
efficiency leads to extinction of both populations. A stability analysis of P2
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in terms of H reveals a number of bifurcations, including in particular two
Andronov-Hopf bifurcation types at the values H̄2 and H̄5 described below.

H Type of Equilibria

(0, H̄1) STABLE NODE

(H̄1, H̄2) STABLE FOCUS

H̄2 CENTER

(H̄2, H̄3) UNSTABLE FOCUS

(H̄3, H̄4)) UNSTABLE NODE

(H̄4, H̄5)) UNSTABLE FOCUS

H̄5 CENTER

(H̄5,∞) STABLE FOCUS

Table 1. Classification of P2 for different ranges of H.

The critical values of H are approximately given by:

H̄1 ≈ 0.28; H̄2 ≈ 5.64; H̄3 ≈ 7.56; H̄4 ≈ 17.785; H̄5 ≈ 96.65

As an illustration of the behaviours obtained, some features of the case H =
7 are depicted in Figures 4 to 6. Figure 4 shows a plot of the limit cycle
that appears around the equilibrium point P2, which corresponds to unstable
coexistence of both species. As observed before, P2 moves towards the origin
as H increases. A close-up of the evolution in time of y(t) and z(t) is provided
in Figure 5. As depicted therein, two time scales can be distinguished in the
evolution of the criminal population. In particular, a sudden increase in y(t)
occurs for low values of z(t), which quickly grows to larger values. This is
followed by a long period of stable, low criminality values. On its turn, the
security forces then relax their members to match this new situation, although
at a slower pace. This general trend is preserved as H varies. Finally, a general
picture of (y(t), z(t)) along several oscillations in the limit cycle is given in
Figure 6.

Notice that the response of the security guards to the criminal challenge is
one of quick fight and slow adjustment to a scenario of low criminality. A re-
markable feature is the fast control of the system by criminals under favorable
circumstances. Note also that, as shown in figure 6, the system remains for
most of the time in a situation of low criminality, i.e. of low values for y(t).
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Under this situation security forces are not required, i.e. so that values of z(t)
remain also small.

3 Some remarks on the complete triangle model

In this section we provide a short description of the bifurcations that appear in
the complete 3-D system (3)-(5) in terms of parameter H, when the remaining
parameters are kept fixed to a reference value (cf. (27)) below. To this end,
we introduce nondimensional variables as follows:

τ = rNt; x =
X

N
; y =

Y

N
; z =

Z

N
(23)

and new parameters given by

ξ =
k

rN
; β =

B

rN2
; ε =

E

N
; H1 =

H

rN
; d =

D

N

ρ =
F

rN
; γ =

C

rN
; µ =

G

r
; κ =

K

N

Then, on replacing H by H1 = H
rN

and dropping for simplicity the subscript
in H1, (3)-(5) is recast in the following non-dimensional form:

dx

dτ
= (1− x)(κ− x)− ξx

ε+ x
y − βx

x
(24)

dy

dτ
= f

ξx

ε+ x
y − Hx

d+ y
z − ρ y − µ y2 (25)

dz

dτ
= g

ξx

ε+ x
y − h Hx

d+ y
z − γz (26)

To proceed further, we select as a reference parameter set that corresponding
to the values:

κ = 0.5; β = 10−1; ρ = 10−2; γ = 10−1; d = 10−3; ξ = 4; 106; ε = 106;

f = 0.1; g = 7; 10−2; h = 0; µ = 0 (27)

As H increases from zero to infinity the following bifurcation diagram unfolds:
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H Type of Dynamics

(0, H̃1) GLOBAL FIXED POINT ATTRACTOR

H̃1 GENERALIZED HOPF BIFURCATION

(H̃1, H̃2) BISTABILITY 0F CYCLES

H̃2 SUB-CRITICAL HOPF BIFURCATION

(H̃2, H̃3)) A SINGLE, ASYMPTOTICALLY STABLE, LIMIT CYCLE

H̃4 HOPF BIFURCATION

(H̃4,∞) STABLE FOCUS

Table 2. A description of the bifurcation dynamics for (25)-(27) in terms of
H.

A global bifurcation occurs at the value H = H̃1, and a unstable limit cycle
then appears surrounding a stable steady state. As the parameter H increases,
this limit cycle splits into two: an external one (asymptotically stable) and an
internal one (unstable). This is an example of a transcritical bifurcation from
a family of limit cycles, also termed as generalized Hopf bifurcation or saddle-
node bifurcation of cycles ([20], [21], [22]). Estimated values for H̃1, H̃2 and
H̃3 are given by

H̃1 = 0.00324; H̃2 = 0.004; H̃3 = 0.05

In Figure 7 below we provide a picture obtained upon projection over the
(y, z)-plane for the choice made in (27) and H = 0.00355. The correspond-
ing tridimensional plot can be seen in Figure 8. Such qualitative behaviour is
preserved until H = H̃2, when the internal limit cycle collapses and the equi-
librium point becomes unstable. Then a subcritical Hopf bifurcation occurs
(cf. [20]). When H moves from H̃2 to H̃3 only one (asymptotically stable) limit
cycle exists. As H further increases, this limit cycle reduces its size and simul-
taneously approaches to the point (1

2
, 0, 0) which corresponds to extinction,

both of criminals and guards. However, this equilibrium is unstable under the
current assumptions. As H reaches H̃3 the limit cycle disappears and the focus
becomes stable again.

11



4 Concluding remarks

The model considered in this note describes the interaction between two preda-
tors (criminals and security guards) which compete for the same resources.
These last are provided by a single prey species (the owners). However, the
behaviours of the two predators sharply differ from each other. While criminals
act as standard predators of the owners, guards do so only by diminishing re-
sources, in a manner proportional to their number, which is equally shared by
all members of the owners population. On the other hand, criminals and guards
compete among themselves. This results in casualties in both sides, whose rel-
ative strength is measured by parameters H and h in (4)-(5). Analysis of the
original model (3)-(5) is considerably simplified in the case of constant and
large owners population, as discussed in section 2 above. In particular, it is
therein shown that guards population evolution is driven by the number of
crimes being committed at any given time. Parameters f and g in (10)-(11)
account for the quantitative aspects of this trend. Under general assumptions,
a oscillatory dynamics sets in. Roughly speaking, the more resources are, the
larger the population of criminals becomes.This phenomenon induces a rise
in the number of security forces available to fight criminals off. Subsequently,
criminal numbers diminish and so do the security forces, eventually allowing
for an increase in crimes to occur which leads to a new cycle in this periodic
behaviour. Such type of dynamics is ubiquitous in Biology and Ecology (cf, for
instance, [23]). However, there seems to be not many examples of non-human
societies displaying the particular kind of interspecific predator-prey relations
considered in this work. See [24] for an account of related topics.

An issue also addressed in section 2 is that of the influence of parametersH and
h in the case of competition among criminals and guards. Under a particular
form of that assumption, it has been shown that only in the limit case h = 0
(total absence of casualties in the security forces) a suitable increase in H
ensures extinction of criminals under general initial conditions. When h > 0,
however small, a strong depletion of the security forces is then possible.

Finally, we have performed in section 3 a preliminary study of the complete
system (3)-(5). We have reduced ourselves to discussing the bifurcation dia-
gram in terms of parameter H for a given reference set of parameter values
(cf. (27)). These results, however partial, show a rich variety of dynamic be-
haviours as H varies. We consider these examples merely as a first step towards
a more detailed study of that complete system that we intend to do in the
future.
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Fig. 1. Bifurcation diagram for the 2D-competition model as a function of H.

Fig. 2. Coalescence of the two branches of steady states at h ≡ hc.

Fig. 3. The bifurcation diagram for h > hc.
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Fig. 4. Limit cycle for (7)-(8) when (22) holds and H = 7.

Fig. 5. The profiles of y(t) and z(t) during one period in the previous case.

Fig. 6. Slow and fast relaxation corresponding to the limit cycle of Figure 4.
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Fig. 7. he projection of the phase space onto the (y, z)-plane when H = 0.00355.
Two limit cycles surround the stable fixed point. The external cycle is asymptotically
stable whereas the internal one is unstable.

Fig. 8. Bifurcations of stationary values of fixed point components (A tridimen-
sional picture corresponding to Figure 7. Notice that the attractors are placed on a
quasi-plane manifold.
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