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Partial Di¤erential Equations — Alternative Forms of the Harnack Inequality for
Non-Negative Solutions to Certain Degenerate and Singular Parabolic Equations,
by Emmanuele DiBenedetto1, Ugo Gianazza and Vincenzo Vespri.

Dedicated to the memory of Renato Caccioppoli

Abstract. — Non-negative solutions to quasi-linear, degenerate or singular parabolic partial dif-

ferential equations, of p-Laplacian type for p > 2N
Nþ1 , satisfy Harnack-type estimates in some intrin-

sic geometry ([2, 3]). Some equivalent alternative forms of these Harnack estimates are established,

where the supremum and the infimum of the solutions play symmetric roles, within a properly rede-
fined intrinsic geometry. Such equivalent forms hold for the non-degenerate case p ¼ 2 following the

classical work of Moser ([5, 6]), and are shown to hold in the intrinsic geometry of these degenerate
and/or parabolic p.d.e.’s. Some new forms of such an estimate are also established for 1 < p < 2.
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1. Introduction and main results

Let E be an open set in RN and for T > 0, let ET denote the cylindrical domain
E � ð0;T �, and consider quasi-linear, parabolic di¤erential equations of the form

u a Clocð0;T ;L2
locðEÞÞBL

p
locð0;T ;W 1;p

loc ðEÞÞ
ut � divAðx; t; u;DuÞ ¼ 0 weakly in ET

ð1:1Þ

where the function A : ET � RNþ1 ! RN is only assumed to be measurable and
subject to the structure conditions

Aðx; t; u;DuÞ �DubCojDujp

jAðx; t; u;DuÞjaC1jDujp�1

�
a:e: in ETð1:2Þ

where p > 1 and Co and C1 are given positive constants. The parameters
fN; p;Co;C1g are the data, and we say that a generic constant g ¼
gðN; p;Co;C1Þ depends upon the data, if it can be quantitatively determined a
priori only in terms of the indicated parameters.
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For r > 0 let Br denote the ball of radius r about the origin of RN and let
Qe

r ðyÞ denote the ‘‘forward’’ and ‘‘backward’’ parabolic cylinders

Q�
r ðyÞ ¼ Br � ð�yrp; 0�; Qþ

r ðyÞ ¼ Br � ð0; yrpÞð1:3Þ

where y is a positive parameter that determines, roughly speaking the relative
height of these cylinders. The origin ð0; 0Þ of RNþ1 is the ‘‘upper vertex’’ of Q�

r ðyÞ
and the ‘‘lower vertex’’ of Qþ

r ðyÞ. If p ¼ 2 and y ¼ 1 we write Qe
r ð1Þ ¼ Qe

r . For
a fixed ðxo; toÞ a RNþ1 denote by ðxo; toÞ þQe

r ðyÞ cylinders congruent to Qe
r ðyÞ

and with ‘‘upper vertex’’ and ‘‘lower vertex’’ respectively at ðxo; toÞ.

1.1 Harnack Estimates for the non-Degenerate Case p ¼ 2

The classical Harnack estimate of Hadamark–Pini ([4, 7]) for non-negative local
solutions of the heat equation, and the Moser Harnack estimate for non-negative
solutions of (1.1)–(1.2) for the non-degenerate case p ¼ 2, take the equivalent
form

g�1 sup
BrðxoÞ

uð�; to � r2Þa uðxo; toÞa g inf
BrðxoÞ

uð�; to þ r2Þð1:4Þ

for a constant g > 0 depending only upon the data, provided the parabolic cylin-
der ðxo; toÞ þQe

4r is all contained in ET . It is then natural to ask what forms, if
any, the Harnack inequality might take for non-negative solutions of (1.1)–
(1.2), for pA 2.

1.2 Intrinsic, Equivalent Forms of the Harnack Estimates for the Degenerate
Case p > 2

Theorem 1.1. Let u be a non-negative, local, weak solution to (1.1)–(1.2) for
p > 2. There exist constants c1 > 1 and g1 > 1 depending only upon the data,
such that for all intrinsic cylinders

ðxo; toÞ þQe
4rðy1ÞHET ; with y1 ¼ c1½uðxo; toÞ�2�pð1:5Þ

there holds

g�1
1 sup

BrðxoÞ
uðx; to � y1r

pÞa uðxo; toÞa g1 inf
BrðxoÞ

uðx; to þ y1r
pÞ:ð1:6Þ

Thus the form (1.4) continues to hold for non-negative solutions of the degenerate
equations (1.1)–(1.2), although in their own intrinsic geometry, made precise by
(1.5). As p & 2 the constants c1 and g1 tend to finite, positive constants, thereby
recovering the classical form (1.4). The upper estimate of (1.6) was established in
[2]. We will show here that the upper estimate implies the lower inequality for all
intrinsic cylinders ðxo; toÞ þQe

4rðy1Þ as in (1.5).
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1.3 Intrinsic, Equivalent Forms of the Harnack Estimates for the Singular,
Super-Critical Case 2N

Nþ1 < p < 2

Theorem 1.2. Let u be a non-negative, local, weak solution to (1.1)–(1.2), for
2N
Nþ1 < p < 2. There exist constants c2 a ð0; 1Þ and g2 > 1 depending only upon the
data, such that for all intrinsic cylinders

ðxo; toÞ þQe
4rðy2ÞHET ; with y2 ¼ c2½uðxo; toÞ�2�pð1:7Þ

and for all 0a ta y2r
p, there holds

g�1
2 sup

BrðxoÞ
uðx; to e tÞa uðxo; toÞa g2 inf

BrðxoÞ
uðx; to e tÞð1:8Þ

Thus the form (1.4) continues to hold for non-negative solutions of the singular
equations (1.1)–(1.2), for 2N

Nþ1 < p < 2, although in their own intrinsic geometry.
However the constant g2 tends to infinity as either p % 2 or p & 2N

Nþ1 . The valid-
ity of (1.8) for all 0a ta y2r

p implies that these Harnack estimate have a strong
elliptic form. Such a form would be false for the non-singular case p ¼ 2, and ac-
cordingly the constant g2 deteriorates as p % 2. The upper estimate of (1.6) was
established in [2]. We will show here that the upper estimate implies the lower in-
equality for all intrinsic cylinders ðxo; toÞ þQe

4rðy2Þ as in (1.7).

1.4 A Form of the Harnack Inequality for the Singular Case 1 < p < 2

It was shown in [3] by explicit counterexamples, that neither (1.5)–(1.6), nor
(1.7)–(1.8) hold for p in the critical and sub-critical range 1 < pa 2N

Nþ1 . This
raises the question of what form, if any, a Harnack estimate might take for
weak solutions of (1.1)–(1.2) for p in such a critical and sub-critical range.

The next inequality provides a possible weak form of a Harnack estimate valid
in the whole singular range 1 < p < 2.

Proposition 1.1. Let u be a non-negative, local, weak solution to (1.1)–(1.2), for
1 < p < 2. Assume moreover that

u a Lr
locðETÞ with rb 1 such that lr ¼

def
Nðp� 2Þ þ rp > 0:ð1:9Þ

Then there exist positive constants c3 and g3 depending only upon the data, such
that for all intrinsic cylinders

ðxo; toÞ þQþ
4rðy3ÞHET ; with y3 ¼ c3

�Z
B2rðxoÞ

urð�; toÞ dx
�ð2�pÞ=r

ð1:10Þ

and for all 1
2 y3r

p a ta y3r
p, there holds

sup
BrðxoÞ

uðx; to þ tÞa g3

�Z
B2rðxoÞ

urð�; toÞ dx
�1=r

:ð1:11Þ
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Proposition 1.2. Let u be a non-negative, local, weak solution to (1.1)–(1.2), for
1 < p < 2, satisfying (1.9). Then there exist positive constants c4 and g4 depending
only upon the data, such that for all intrinsic cylinders

ðxo; toÞ þQ�
4rðy4ÞHET ; with y4 ¼ c4½uðxo; toÞ�2�pð1:12Þ

there holds

uðxo; toÞa g4 sup
BrðxoÞ

uð�; to � y4r
pÞ:ð1:13Þ

The constants g3 and g4 tend to infinity as either p & 1 or as p % 2 or as lr & 0.
It was shown in [1] that local weak solutions of (1.1)–(1.2) need not be bounded
unless they are in Lr

locðETÞ for some rb 1 satisfying (1.9). The latter then guaran-
tees that the solution is in Ll

locðETÞ. As lr & 0 weak solutions are not prevented
to become unbounded and accordingly (1.11) becomes vacuous.

2. Proof of Theorem 1.1

Fix ðxo; toÞ a ET and assume uðxo; toÞ > 0, and let ðxo; toÞ þQe
4rðy1Þ as in (1.5).

Seek those values of t < to, if any, for which

uðxo; tÞ ¼ 2g1uðxo; toÞð2:1Þ

where g1 is as in the right estimate (1.6), which by the results of [2], holds for all
such intrinsic cylinders. If such a t does not exist

uðxo; tÞ < 2g1uðxo; toÞ for all t a ½to � y1ð4rÞp; to�:ð2:2Þ

We establish by contradiction that this in turn implies

sup
BrðxoÞ

uð�; ~tt Þa 2g21uðxo; toÞ; for ~tt ¼ to � y1r
p:ð2:3Þ

If not, by continuity there exists x� a BrðxoÞ such that uðx�; ~tt Þ ¼ 2g21uðxo; toÞ. Ap-
plying the Harnack right inequality (1.6) with ðxo; toÞ replaced by ðx�; ~tt Þ, gives

uðx�; ~tt Þa g1 inf
Brðx�Þ

uð�; ~ttþ ~yy1r
pÞ; where ~yy1 ¼ c1½uðx�; ~tt Þ�2�p:ð2:4Þ

Now xo a Brðx�Þ and, since g1 > 1 and p > 2,

~ttþ ~yy1r
p ¼ to � c1½uðxo; toÞ�2�prp þ c1

½uðxo; toÞ�2�p

ð2g21Þ
p�2

rp < to:

Therefore from (2.2) and (2.4)

2g21uðxo; toÞ ¼ uðx�; ~tt Þa g1uðxo; ~ttþ ~yy1r
pÞ < 2g21uðxo; toÞ:

The contradiction establishes (2.3).
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2.1 There Exists t < to Satisfying (2.1)

Let t1 < to be the first time for which (2.1) holds. For such a time

to � t1 > c1½uðxo; t1Þ�2�prp ¼ c1
½uðxo; toÞ�2�p

ð2g1Þ
p�2

rp:ð2:5Þ

Indeed if such inequality were violated, by applying the Harnack right inequality
(1.5)–(1.6) with ðxo; toÞ replaced by ðxo; t1Þ would give

uðxo; t1Þa g1uðxo; toÞ , 2g1uðxo; toÞa g1uðxo; toÞ:

Set

t2 ¼ to � c1
½uðxo; toÞ�2�p

ð2g1Þ
p�2

rp:

From the definitions, the continuity of u and (2.5)

t1 < t2 < to and uðxo; toÞa uðxo; t2Þa 2g1uðxo; toÞ:

Let n denote the unit vector in RN and for ðxo; t2Þ consider points xs ¼ xo þ sn
where s is a positive parameter. Let so be the first positive s, if any, such that
uðxo þ son; t2Þ ¼ 2g1uðxo; toÞ. We claim that either such a so does not exist or
so b r. In either case

sup
BrðxoÞ

u
�
�; to � c1

½uðxo; toÞ�2�p

ð2g1Þ
p�2

rp
�
a 2g1uðxo; toÞ:ð2:6Þ

To establish the claim, assume that so exists and so < r. Apply the Harnack right
inequality (1.5)–(1.6) with ðxo; toÞ replaced by x2 ¼ xo þ son and t2, to get

uðx2; t2Þa g1 inf
Brðx2Þ

uð�; t2 þ y 0rpÞ; y 0 ¼ c1½uðx2; t2Þ�2�p:

Notice that

t2 þ y 0rp ¼ to � c1
½uðxo; toÞ�2�p

ð2g1Þ
p�2

rp þ c1
½uðxo; toÞ�2�p

ð2g1Þ
p�2

rp ¼ to:

Therefore, since xo a Brðx2Þ

2g1uðxo; toÞ ¼ uðx2; t2Þa uðx2; t2Þa g1 inf
Brðx2Þ

uð�; toÞa g1uðxo; toÞ:

The contradiction implies that (2.6) holds. Thus for all r > 0, either (2.3) or (2.6)
holds true. The proof is now concluded by using the arbitrariness of r and by
properly redefining g1. r
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3. Proof of Theorem 1.2

Let c2 and g2 be the constants appearing on the Harnack right inequality (1.7)–
(1.8) which, by the results of [3], holds true for all r > 0. We may assume that
ðxo; toÞ ¼ ð0; 0Þ, and that Qe

8rðy2ÞHET , where y2 is as in (1.7). It su‰ces to prove
that there exists a positive constant a depending only upon the data and indepen-
dent of u and r, such that

sup
Bar

uð�;�y2r
pÞa g2uð0; 0Þ; y2 ¼ c2½uð0; 0Þ�2�p:ð3:1Þ

Let a > 0 to be chosen and consider the set

Ua ¼ BarB ½uð�;�y2r
pÞa g2uð0; 0Þ�:

Since u is continuous such a set is a closed subset of Bar. The parameter a > 0 will
be chosen, depending only on the data, such that Ua is also open. Therefore
Ua ¼ Bar and (3.1) holds for such a.

Fix z a Ua. Since u is continuous there exists a ball BeðzÞHBar, such that

uðy;�y2r
pÞa 2g2uð0; 0Þ for all y a BeðzÞ:ð3:2Þ

The parameter a will be chosen to insure that BeðzÞHUa thereby establishing
that Ua is open. For y a BeðzÞ construct the solid p-paraboloid

tþ y2r
p
b jx� yjpc2½uðy;�y2r

pÞ�2�p:

If the origin belongs to such a paraboloid, then by the Harnack right inequality
(1.7)–(1.8), with ðxo; toÞ replaced by ðy;�y2r

pÞ, there holds

uðy;�y2r
pÞa g2uð0; 0Þ

and therefore y a Ua. The origin ð0; 0Þ belongs to the paraboloid if

jyjpc2½uðy;�y2r
pÞ�2�p

a jyjpc2ð2g2Þ
2�p½uð0; 0Þ�2�p

a y2r
p:

By the definition of y2, the last inequality is verified if

jyja ar where a ¼ ð2g2Þ
ðp�2Þ=p: r

4. Proof of Propositions 1.1 and 1.2

The following Proposition follows by a minor adaptation of the arguments of [1]
Chapter V, §5, and Chapter VII, §4.

Proposition 4.1. Let u be a non-negative, local, weak solution to (1.1)–(1.2) for
1 < p < 2, satisfying (1.9). There exists a constant g ¼ gðN; p; rÞ such that for any
cylindrical domain
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B2rðyÞ � ½s� ðt� sÞ; sþ ðt� sÞ�HET

there holds

sup
BrðyÞ�½s; t�

ua
g

ðt� sÞN=lr

�Z
B2rðyÞ

urðx; 2s� tÞ dx
�p=lr

þ g
� t� s

rp

�1=ð2�pÞ
:ð4:1Þ

Fix ðxo; toÞ a ET and r > 0 and y3 as in (1.10) with c3 > 0 to be chosen. The esti-
mate (1.11) follows from (4.1) by choosing t ¼ to þ y3r

p and 2s� t ¼ to, and by
properly redefining g3 and c3 in terms of the set of parameters fg;N; p; rg.

Inequality (1.12)–(1.13) follows from (4.1) by choosing s ¼ to and t� s ¼
e½uðxo; toÞ�2�p

rp, for e > 0 to be chosen. r

4.1 Further Results Linking Weak and Strong Harnack Inequalities

The strong Harnack estimates (1.7)–(1.8) cease to exist for 1 < pa 2N
Nþ1 . Coun-

terexamples are provided in [3]. However the weak form (1.10)–(1.11) continues
to hold for all 1 < p < 2. It would be of interest to understand what form, if any,
a Harnack-type estimate might take for p in the sub-critical range

�
1; 2N

Nþ1

�
and in

what form it might be connected to the weak form (1.10)–(1.11). While the prob-
lem is open, the next Proposition provides some information in this direction.

Proposition 4.2. Let u be a non-negative function, locally continuous in ET sat-
isfying the weak Harnack estimate (1.9)–(1.11) for some p a ð1; 2Þ and rb 1 for
which lr > 0, and the left forward strong Harnack estimate in the form

sup
BrðxoÞ

uðx; to � y2r
pÞa g2uðxo; toÞð4:2Þ

for all intrinsic cylinders

ðxo; toÞ þQe
4rðy2ÞHET ; with y2 ¼ c2½uðxo; toÞ�2�p:ð4:3Þ

Then u satisfies the elliptic Harnack estimate in the form

sup
BrðxoÞ

uðx; toÞa g5uðxo; toÞð4:4Þ

for all intrinsic cylinders of the form (4.3), for a constant g5 depending only upon
the set of parameters fN; p; r; c2; g2; c3; g3g.

Remark 4.1. Solutions of (1.1)–(1.2) for 1 < p < 2 satisfy the weak Harnack
estimate (1.9)–(1.11). For p in the super-critical range

�
2N
Nþ1 ; 2

�
they also satisfy

the strong left forward inequality (4.2)–(4.3) as follows from Theorem 1.2. For
this reason in the assumption (4.2)–(4.3) we have used the same symbols c2, and
g2. The Proposition however continues to hold for any function satisfying both
inequalities with any given but fixed constants.
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Proof. Fix ðxo; toÞ a ET , let y2 be defined by (4.3), and set

ya ¼ c3

�Z
B2arðxoÞ

urð�; to � y2r
pÞ dx

�ð2�pÞ=r
; ta ¼ to � y2r

p þ yað2arÞp

where a is a positive parameter to be chosen. Assume momentarily that for such
an a,

ðxo; toÞ þQe
4arðyaÞHET and ðxo; toÞ þQe

4rðy2ÞHET :ð4:5Þ

Apply (1.10)–(1.11) with to replaced by to � y2r
p, and r replaced by ar, to get

sup
Bar

uð�; taÞa g3

�Z
B2arðxoÞ

urð�; to � y2r
pÞ dx

�1=r
:

If ta ¼ to, by the definition of ta and (4.2)–(4.3)

sup
Bar

uð�; toÞa g3g
1=r
1 uðxo; toÞ:ð4:6Þ

Since lr > 0, the function a ! ta is monotone increasing and the equation ta ¼ to
has a root. If a a ð0; 1�, the equation ta ¼ to and the forward Harnack estimate
(4.2)–(4.3) imply

c2½uðxo; toÞ�2�p ¼ 2papc3

�Z
B2arðxoÞ

urð�; to � y2r
pÞ dx

�ð2�pÞ=r

a 2papc3 sup
B2arðxoÞ

uð�; to � y2r
pÞ

" #2�p

a 2papc3g
2�p
2 ½uðxo; toÞ�2�p:

If a > 1, the equation ta ¼ to and the weak Harnack estimate (1.10)–(1.11) with
to replaced by to � y2r

p and t ¼ y2r
p, give

c2½uðxo; toÞ�2�p ¼ 2papc3

�Z
B2arðxoÞ

urð�; to � y2r
pÞ dx

�ð2�pÞ=r

b
2papc3

g
2�p
3

½uðxo; toÞ�2�p:

Thus in either case the root a of ta ¼ to satisfies

min 1;
1

2

� c2

c3

�1=p
g
ðp�2Þ=p
2

� �
¼ ao a aa a1 ¼ max 1;

1

2

� c2

c3

�1=p
g
ð2�pÞ=p
3

� �
:

With ao and a1 determined quantitatively only in terms of the set of parameters
fN; p; c2; c3; g2; g3g condition (4.5) can be always insured by a proper, quantita-
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tive choice of r, and thus (4.6) holds in all cases for some a in the indicated range.
This implies (4.4) for a proper definition of g5.
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