Rend. Lincei Mat. Appl. 20 (2009), 323-331

Partial Differential Equations — Alternative Forms of the Harnack Inequality for Non-Negative Solutions to Certain Degenerate and Singular Parabolic Equations, by EMMANUELE DIBENEDETTO¹, UGO GIANAZZA and VINCENZO VESPRI.

Dedicated to the memory of Renato Caccioppoli

ABSTRACT. — Non-negative solutions to quasi-linear, degenerate or singular parabolic partial differential equations, of *p*-Laplacian type for $p > \frac{2N}{N+1}$, satisfy Harnack-type estimates in some intrinsic geometry ([2, 3]). Some equivalent alternative forms of these Harnack estimates are established, where the supremum and the infimum of the solutions play symmetric roles, within a properly redefined intrinsic geometry. Such equivalent forms hold for the non-degenerate case p = 2 following the classical work of Moser ([5, 6]), and are shown to hold in the intrinsic geometry of these degenerate and/or parabolic p.d.e.'s. Some new forms of such an estimate are also established for 1 .

KEY WORDS: Degenerate and Singular Parabolic Equations, Harnack Estimates.

AMS SUBJECT CLASSIFICATION (2000): Primary 35K65, 35B65; Secondary 35B45.

1. INTRODUCTION AND MAIN RESULTS

Let *E* be an open set in \mathbb{R}^N and for T > 0, let E_T denote the cylindrical domain $E \times (0, T]$, and consider quasi-linear, parabolic differential equations of the form

(1.1)
$$u \in C_{\text{loc}}(0,T; L^2_{\text{loc}}(E)) \cap L^p_{\text{loc}}(0,T; W^{1,p}_{\text{loc}}(E))$$
$$u_t - \text{div} \mathbf{A}(x,t,u,Du) = 0 \quad \text{weakly in } E_T$$

where the function $\mathbf{A}: E_T \times \mathbb{R}^{N+1} \to \mathbb{R}^N$ is only assumed to be measurable and subject to the structure conditions

(1.2)
$$\begin{cases} \mathbf{A}(x,t,u,Du) \cdot Du \ge C_o |Du|^p \\ |\mathbf{A}(x,t,u,Du)| \le C_1 |Du|^{p-1} \end{cases} \text{ a.e. in } E_T \end{cases}$$

where p > 1 and C_o and C_1 are given positive constants. The parameters $\{N, p, C_o, C_1\}$ are the data, and we say that a generic constant $\gamma = \gamma(N, p, C_o, C_1)$ depends upon the data, if it can be quantitatively determined a priori only in terms of the indicated parameters.

¹Partially supported by NSF-DMS-0652385.

For $\rho > 0$ let B_{ρ} denote the ball of radius ρ about the origin of \mathbb{R}^{N} and let $Q_{\rho}^{\pm}(\theta)$ denote the "forward" and "backward" parabolic cylinders

(1.3)
$$Q_{\rho}^{-}(\theta) = B_{\rho} \times (-\theta \rho^{p}, 0], \quad Q_{\rho}^{+}(\theta) = B_{\rho} \times (0, \theta \rho^{p})$$

where θ is a positive parameter that determines, roughly speaking the relative height of these cylinders. The origin (0,0) of \mathbb{R}^{N+1} is the "upper vertex" of $Q_{\rho}^{-}(\theta)$ and the "lower vertex" of $Q_{\rho}^{+}(\theta)$. If p = 2 and $\theta = 1$ we write $Q_{\rho}^{\pm}(1) = Q_{\rho}^{\pm}$. For a fixed $(x_o, t_o) \in \mathbb{R}^{N+1}$ denote by $(x_o, t_o) + Q_{\rho}^{\pm}(\theta)$ cylinders congruent to $Q_{\rho}^{\pm}(\theta)$ and with "upper vertex" and "lower vertex" respectively at (x_o, t_o) .

1.1 Harnack Estimates for the non-Degenerate Case p = 2

The classical Harnack estimate of Hadamark–Pini ([4, 7]) for non-negative local solutions of the heat equation, and the Moser Harnack estimate for non-negative solutions of (1.1)–(1.2) for the non-degenerate case p = 2, take the equivalent form

(1.4)
$$\gamma^{-1} \sup_{B_{\rho}(x_o)} u(\cdot, t_o - \rho^2) \le u(x_o, t_o) \le \gamma \inf_{B_{\rho}(x_o)} u(\cdot, t_o + \rho^2)$$

for a constant $\gamma > 0$ depending only upon the data, provided the parabolic cylinder $(x_o, t_o) + Q_{4\rho}^{\pm}$ is all contained in E_T . It is then natural to ask what forms, if any, the Harnack inequality might take for non-negative solutions of (1.1)–(1.2), for $p \neq 2$.

1.2 Intrinsic, Equivalent Forms of the Harnack Estimates for the Degenerate Case p > 2

THEOREM 1.1. Let u be a non-negative, local, weak solution to (1.1)–(1.2) for p > 2. There exist constants $c_1 > 1$ and $\gamma_1 > 1$ depending only upon the data, such that for all intrinsic cylinders

(1.5)
$$(x_o, t_o) + Q_{4\rho}^{\pm}(\theta_1) \subset E_T, \quad with \quad \theta_1 = c_1 [u(x_o, t_o)]^{2-p}$$

there holds

(1.6)
$$\gamma_1^{-1} \sup_{B_{\rho}(x_o)} u(x, t_o - \theta_1 \rho^p) \le u(x_o, t_o) \le \gamma_1 \inf_{B_{\rho}(x_o)} u(x, t_o + \theta_1 \rho^p).$$

Thus the form (1.4) continues to hold for non-negative solutions of the degenerate equations (1.1)–(1.2), although in their own intrinsic geometry, made precise by (1.5). As $p \searrow 2$ the constants c_1 and γ_1 tend to finite, positive constants, thereby recovering the classical form (1.4). The upper estimate of (1.6) was established in [2]. We will show here that the upper estimate implies the lower inequality for all intrinsic cylinders $(x_o, t_o) + Q_{4\rho}^{\pm}(\theta_1)$ as in (1.5).

1.3 Intrinsic, Equivalent Forms of the Harnack Estimates for the Singular, Super-Critical Case $\frac{2N}{N+1}$

THEOREM 1.2. Let u be a non-negative, local, weak solution to (1.1)–(1.2), for $\frac{2N}{N+1} . There exist constants <math>c_2 \in (0, 1)$ and $\gamma_2 > 1$ depending only upon the data, such that for all intrinsic cylinders

(1.7)
$$(x_o, t_o) + Q_{4o}^{\pm}(\theta_2) \subset E_T, \quad \text{with} \quad \theta_2 = c_2 [u(x_o, t_o)]^{2-p}$$

and for all $0 \le \tau \le \theta_2 \rho^p$, there holds

(1.8)
$$\gamma_2^{-1} \sup_{B_{\rho}(x_o)} u(x, t_o \pm \tau) \le u(x_o, t_o) \le \gamma_2 \inf_{B_{\rho}(x_o)} u(x, t_o \pm \tau)$$

Thus the form (1.4) continues to hold for non-negative solutions of the singular equations (1.1)–(1.2), for $\frac{2N}{N+1} , although in their own intrinsic geometry. However the constant <math>\gamma_2$ tends to infinity as either $p \nearrow 2$ or $p \searrow \frac{2N}{N+1}$. The validity of (1.8) for all $0 \le \tau \le \theta_2 \rho^p$ implies that these Harnack estimate have a strong elliptic form. Such a form would be false for the non-singular case p = 2, and accordingly the constant γ_2 deteriorates as $p \nearrow 2$. The upper estimate of (1.6) was established in [2]. We will show here that the upper estimate implies the lower inequality for all intrinsic cylinders $(x_o, t_o) + Q_{4\rho}^{\pm}(\theta_2)$ as in (1.7).

1.4 A Form of the Harnack Inequality for the Singular Case 1

It was shown in [3] by explicit counterexamples, that neither (1.5)-(1.6), nor (1.7)-(1.8) hold for p in the critical and sub-critical range 1 . This raises the question of what form, if any, a Harnack estimate might take for weak solutions of <math>(1.1)-(1.2) for p in such a critical and sub-critical range.

The next inequality provides a possible weak form of a Harnack estimate valid in the whole singular range 1 .

PROPOSITION 1.1. Let u be a non-negative, local, weak solution to (1.1)-(1.2), for 1 . Assume moreover that

(1.9)
$$u \in L^r_{\text{loc}}(E_T)$$
 with $r \ge 1$ such that $\lambda_r \stackrel{def}{=} N(p-2) + rp > 0.$

Then there exist positive constants c_3 and γ_3 depending only upon the data, such that for all intrinsic cylinders

(1.10)
$$(x_o, t_o) + Q_{4\rho}^+(\theta_3) \subset E_T$$
, with $\theta_3 = c_3 \left(\int_{B_{2\rho}(x_o)} u^r(\cdot, t_o) \, dx \right)^{(2-p)/r}$

and for all $\frac{1}{2}\theta_3\rho^p \le \tau \le \theta_3\rho^p$, there holds

(1.11)
$$\sup_{B_{\rho}(x_{o})} u(x, t_{o} + \tau) \leq \gamma_{3} \Big(\int_{B_{2\rho}(x_{o})} u^{r}(\cdot, t_{o}) \, dx \Big)^{1/r}.$$

PROPOSITION 1.2. Let u be a non-negative, local, weak solution to (1.1)-(1.2), for $1 , satisfying (1.9). Then there exist positive constants <math>c_4$ and γ_4 depending only upon the data, such that for all intrinsic cylinders

(1.12)
$$(x_o, t_o) + Q^-_{4\rho}(\theta_4) \subset E_T, \quad with \quad \theta_4 = c_4 [u(x_o, t_o)]^{2-p}$$

there holds

(1.13)
$$u(x_o, t_o) \leq \gamma_4 \sup_{B_\rho(x_o)} u(\cdot, t_o - \theta_4 \rho^p).$$

The constants γ_3 and γ_4 tend to infinity as either $p \searrow 1$ or as $p \nearrow 2$ or as $\lambda_r \searrow 0$. It was shown in [1] that local weak solutions of (1.1)–(1.2) need not be bounded unless they are in $L^r_{loc}(E_T)$ for some $r \ge 1$ satisfying (1.9). The latter then guarantees that the solution is in $L^\infty_{loc}(E_T)$. As $\lambda_r \searrow 0$ weak solutions are not prevented to become unbounded and accordingly (1.11) becomes vacuous.

2. Proof of Theorem 1.1

Fix $(x_o, t_o) \in E_T$ and assume $u(x_o, t_o) > 0$, and let $(x_o, t_o) + Q_{4\rho}^{\pm}(\theta_1)$ as in (1.5). Seek those values of $t < t_o$, if any, for which

(2.1)
$$u(x_o, t) = 2\gamma_1 u(x_o, t_o)$$

where γ_1 is as in the right estimate (1.6), which by the results of [2], holds for all such intrinsic cylinders. If such a *t* does not exist

(2.2)
$$u(x_o, t) < 2\gamma_1 u(x_o, t_o) \quad \text{for all } t \in [t_o - \theta_1 (4\rho)^p, t_o].$$

We establish by contradiction that this in turn implies

(2.3)
$$\sup_{B_{\rho}(x_o)} u(\cdot, \tilde{t}) \le 2\gamma_1^2 u(x_o, t_o), \quad \text{for } \tilde{t} = t_o - \theta_1 \rho^p.$$

If not, by continuity there exists $x_* \in B_{\rho}(x_o)$ such that $u(x_*, \tilde{t}) = 2\gamma_1^2 u(x_o, t_o)$. Applying the Harnack right inequality (1.6) with (x_o, t_o) replaced by (x_*, \tilde{t}) , gives

(2.4)
$$u(x_*,\tilde{t}) \le \gamma_1 \inf_{B_\rho(x_*)} u(\cdot,\tilde{t}+\tilde{\theta}_1\rho^p), \text{ where } \tilde{\theta}_1 = c_1[u(x_*,\tilde{t})]^{2-p}.$$

Now $x_o \in B_\rho(x_*)$ and, since $\gamma_1 > 1$ and p > 2,

$$\tilde{t} + \tilde{ heta}_1
ho^p = t_o - c_1 [u(x_o, t_o)]^{2-p}
ho^p + c_1 rac{[u(x_o, t_o)]^{2-p}}{(2\gamma_1^2)^{p-2}}
ho^p < t_o.$$

Therefore from (2.2) and (2.4)

$$2\gamma_1^2 u(x_o, t_o) = u(x_*, \tilde{t}) \le \gamma_1 u(x_o, \tilde{t} + \tilde{\theta}_1 \rho^p) < 2\gamma_1^2 u(x_o, t_o).$$

The contradiction establishes (2.3).

2.1 There Exists $t < t_o$ Satisfying (2.1)

Let $t_1 < t_o$ be the first time for which (2.1) holds. For such a time

(2.5)
$$t_o - t_1 > c_1 [u(x_o, t_1)]^{2-p} \rho^p = c_1 \frac{[u(x_o, t_o)]^{2-p}}{(2\gamma_1)^{p-2}} \rho^p.$$

Indeed if such inequality were violated, by applying the Harnack right inequality (1.5)-(1.6) with (x_o, t_o) replaced by (x_o, t_1) would give

$$u(x_o, t_1) \leq \gamma_1 u(x_o, t_o) \quad \Leftrightarrow \quad 2\gamma_1 u(x_o, t_o) \leq \gamma_1 u(x_o, t_o).$$

Set

$$t_2 = t_o - c_1 \frac{[u(x_o, t_o)]^{2-p}}{(2\gamma_1)^{p-2}} \rho^p.$$

From the definitions, the continuity of u and (2.5)

$$t_1 < t_2 < t_o$$
 and $u(x_o, t_o) \le u(x_o, t_2) \le 2\gamma_1 u(x_o, t_o)$.

Let v denote the unit vector in \mathbb{R}^N and for (x_o, t_2) consider points $x_s = x_o + sv$ where s is a positive parameter. Let s_o be the first positive s, if any, such that $u(x_o + s_ov, t_2) = 2\gamma_1 u(x_o, t_o)$. We claim that either such a s_o does not exist or $s_o \ge \rho$. In either case

(2.6)
$$\sup_{B_{\rho}(x_o)} u\left(\cdot, t_o - c_1 \frac{\left[u(x_o, t_o)\right]^{2-p}}{\left(2\gamma_1\right)^{p-2}} \rho^p\right) \le 2\gamma_1 u(x_o, t_o).$$

To establish the claim, assume that s_o exists and $s_o < \rho$. Apply the Harnack right inequality (1.5)–(1.6) with (x_o, t_o) replaced by $x_2 = x_o + s_o v$ and t_2 , to get

$$u(x_2, t_2) \le \gamma_1 \inf_{B_{\rho}(x_2)} u(\cdot, t_2 + \theta' \rho^p), \quad \theta' = c_1 [u(x_2, t_2)]^{2-p}.$$

Notice that

$$t_{2} + \theta' \rho^{p} = t_{o} - c_{1} \frac{[u(x_{o}, t_{o})]^{2-p}}{(2\gamma_{1})^{p-2}} \rho^{p} + c_{1} \frac{[u(x_{o}, t_{o})]^{2-p}}{(2\gamma_{1})^{p-2}} \rho^{p} = t_{o}.$$

Therefore, since $x_o \in B_\rho(x_2)$

$$2\gamma_1 u(x_o, t_o) = u(x_2, t_2) \le u(x_2, t_2) \le \gamma_1 \inf_{B_\rho(x_2)} u(\cdot, t_o) \le \gamma_1 u(x_o, t_o).$$

The contradiction implies that (2.6) holds. Thus for all $\rho > 0$, either (2.3) or (2.6) holds true. The proof is now concluded by using the arbitrariness of ρ and by properly redefining γ_1 .

3. Proof of Theorem 1.2

Let c_2 and γ_2 be the constants appearing on the Harnack right inequality (1.7)–(1.8) which, by the results of [3], holds true for all $\rho > 0$. We may assume that $(x_o, t_o) = (0, 0)$, and that $Q_{8\rho}^{\pm}(\theta_2) \subset E_T$, where θ_2 is as in (1.7). It suffices to prove that there exists a positive constant α depending only upon the data and independent of u and ρ , such that

(3.1)
$$\sup_{B_{\alpha\rho}} u(\cdot, -\theta_2 \rho^p) \le \gamma_2 u(0, 0), \quad \theta_2 = c_2 [u(0, 0)]^{2-p}.$$

Let $\alpha > 0$ to be chosen and consider the set

$$U_{\alpha} = B_{\alpha\rho} \cap [u(\cdot, -\theta_2 \rho^p) \le \gamma_2 u(0, 0)].$$

Since *u* is continuous such a set is a closed subset of $B_{\alpha\rho}$. The parameter $\alpha > 0$ will be chosen, depending only on the data, such that U_{α} is also open. Therefore $U_{\alpha} = B_{\alpha\rho}$ and (3.1) holds for such α .

Fix $z \in U_{\alpha}$. Since *u* is continuous there exists a ball $B_{\varepsilon}(z) \subset B_{\alpha\rho}$, such that

(3.2)
$$u(y, -\theta_2 \rho^p) \le 2\gamma_2 u(0, 0) \text{ for all } y \in B_{\varepsilon}(z).$$

The parameter α will be chosen to insure that $B_{\varepsilon}(z) \subset U_{\alpha}$ thereby establishing that U_{α} is open. For $y \in B_{\varepsilon}(z)$ construct the solid *p*-paraboloid

$$t + \theta_2 \rho^p \ge |x - y|^p c_2 [u(y, -\theta_2 \rho^p)]^{2-p}.$$

If the origin belongs to such a paraboloid, then by the Harnack right inequality (1.7)–(1.8), with (x_o, t_o) replaced by $(y, -\theta_2 \rho^p)$, there holds

$$u(y, -\theta_2 \rho^p) \le \gamma_2 u(0, 0)$$

and therefore $y \in U_{\alpha}$. The origin (0,0) belongs to the paraboloid if

$$|y|^{p}c_{2}[u(y,-\theta_{2}\rho^{p})]^{2-p} \leq |y|^{p}c_{2}(2\gamma_{2})^{2-p}[u(0,0)]^{2-p} \leq \theta_{2}\rho^{p}.$$

By the definition of θ_2 , the last inequality is verified if

$$|y| \le \alpha \rho$$
 where $\alpha = (2\gamma_2)^{(p-2)/p}$.

4. Proof of Propositions 1.1 and 1.2

The following Proposition follows by a minor adaptation of the arguments of [1] Chapter V, §5, and Chapter VII, §4.

PROPOSITION 4.1. Let u be a non-negative, local, weak solution to (1.1)–(1.2) for $1 , satisfying (1.9). There exists a constant <math>\gamma = \gamma(N, p, r)$ such that for any cylindrical domain

$$B_{2\rho}(y) \times [s - (t - s), s + (t - s)] \subset E_T$$

there holds

(4.1)
$$\sup_{B_{\rho}(y)\times[s,t]} u \leq \frac{\gamma}{(t-s)^{N/\lambda_{r}}} \Big(\int_{B_{2\rho}(y)} u^{r}(x,2s-t) \, dx \Big)^{p/\lambda_{r}} + \gamma \Big(\frac{t-s}{\rho^{p}}\Big)^{1/(2-p)}.$$

Fix $(x_o, t_o) \in E_T$ and $\rho > 0$ and θ_3 as in (1.10) with $c_3 > 0$ to be chosen. The estimate (1.11) follows from (4.1) by choosing $t = t_o + \theta_3 \rho^p$ and $2s - t = t_o$, and by properly redefining γ_3 and c_3 in terms of the set of parameters $\{\gamma, N, p, r\}$.

Inequality (1.12)–(1.13) follows from (4.1) by choosing $s = t_o$ and $t - s = \varepsilon [u(x_o, t_o)]^{2-p} \rho^p$, for $\varepsilon > 0$ to be chosen.

4.1 Further Results Linking Weak and Strong Harnack Inequalities

The strong Harnack estimates (1.7)-(1.8) cease to exist for 1 . Counterexamples are provided in [3]. However the weak form <math>(1.10)-(1.11) continues to hold for all 1 . It would be of interest to understand what form, if any, a Harnack-type estimate might take for <math>p in the sub-critical range $(1, \frac{2N}{N+1}]$ and in what form it might be connected to the weak form (1.10)-(1.11). While the problem is open, the next Proposition provides some information in this direction.

PROPOSITION 4.2. Let u be a non-negative function, locally continuous in E_T satisfying the weak Harnack estimate (1.9)–(1.11) for some $p \in (1,2)$ and $r \ge 1$ for which $\lambda_r > 0$, and the left forward strong Harnack estimate in the form

(4.2)
$$\sup_{B_{\rho}(x_o)} u(x, t_o - \theta_2 \rho^p) \le \gamma_2 u(x_o, t_o)$$

for all intrinsic cylinders

(4.3)
$$(x_o, t_o) + Q_{4\rho}^{\pm}(\theta_2) \subset E_T, \quad with \quad \theta_2 = c_2 [u(x_o, t_o)]^{2-p}.$$

Then u satisfies the elliptic Harnack estimate in the form

(4.4)
$$\sup_{B_{\rho}(x_o)} u(x, t_o) \le \gamma_5 u(x_o, t_o)$$

for all intrinsic cylinders of the form (4.3), for a constant γ_5 depending only upon the set of parameters $\{N, p, r, c_2, \gamma_2, c_3, \gamma_3\}$.

REMARK 4.1. Solutions of (1.1)-(1.2) for 1 satisfy the weak Harnack estimate <math>(1.9)-(1.11). For *p* in the super-critical range $\left(\frac{2N}{N+1}, 2\right)$ they also satisfy the strong left forward inequality (4.2)-(4.3) as follows from Theorem 1.2. For this reason in the assumption (4.2)-(4.3) we have used the same symbols c_2 , and γ_2 . The Proposition however continues to hold for any function satisfying both inequalities with any given but fixed constants.

PROOF. Fix $(x_o, t_o) \in E_T$, let θ_2 be defined by (4.3), and set

$$\theta_{\alpha} = c_3 \left(\int_{B_{2\alpha\rho}(x_o)} u^r(\cdot, t_o - \theta_2 \rho^p) \, dx \right)^{(2-p)/r}, \quad t_{\alpha} = t_o - \theta_2 \rho^p + \theta_{\alpha} (2\alpha\rho)^p$$

where α is a positive parameter to be chosen. Assume momentarily that for such an α ,

(4.5)
$$(x_o, t_o) + Q_{4\alpha\rho}^{\pm}(\theta_{\alpha}) \subset E_T \text{ and } (x_o, t_o) + Q_{4\rho}^{\pm}(\theta_2) \subset E_T.$$

Apply (1.10)–(1.11) with t_o replaced by $t_o - \theta_2 \rho^p$, and ρ replaced by $\alpha \rho$, to get

$$\sup_{B_{2\rho}} u(\cdot, t_{\alpha}) \leq \gamma_3 \left(\int_{B_{2\alpha\rho}(x_o)} u^r(\cdot, t_o - \theta_2 \rho^p) \, dx \right)^{1/r}.$$

If $t_{\alpha} = t_o$, by the definition of t_{α} and (4.2)–(4.3)

(4.6)
$$\sup_{B_{x\rho}} u(\cdot, t_o) \le \gamma_3 \gamma_1^{1/r} u(x_o, t_o).$$

Since $\lambda_r > 0$, the function $\alpha \to t_{\alpha}$ is monotone increasing and the equation $t_{\alpha} = t_o$ has a root. If $\alpha \in (0, 1]$, the equation $t_{\alpha} = t_o$ and the forward Harnack estimate (4.2)–(4.3) imply

$$c_{2}[u(x_{o}, t_{o})]^{2-p} = 2^{p} \alpha^{p} c_{3} \Big(\int_{B_{2\alpha\rho}(x_{o})} u^{r}(\cdot, t_{o} - \theta_{2}\rho^{p}) dx \Big)^{(2-p)/4}$$

$$\leq 2^{p} \alpha^{p} c_{3} \left[\sup_{B_{2\alpha\rho}(x_{o})} u(\cdot, t_{o} - \theta_{2}\rho^{p}) \right]^{2-p}$$

$$\leq 2^{p} \alpha^{p} c_{3} \gamma_{2}^{2-p} [u(x_{o}, t_{o})]^{2-p}.$$

If $\alpha > 1$, the equation $t_{\alpha} = t_o$ and the weak Harnack estimate (1.10)–(1.11) with t_o replaced by $t_o - \theta_2 \rho^p$ and $\tau = \theta_2 \rho^p$, give

$$c_{2}[u(x_{o},t_{o})]^{2-p} = 2^{p} \alpha^{p} c_{3} \left(\oint_{B_{2\alpha\rho}(x_{o})} u^{r}(\cdot,t_{o}-\theta_{2}\rho^{p}) dx \right)^{(2-p)/r}$$
$$\geq \frac{2^{p} \alpha^{p} c_{3}}{\gamma_{3}^{2-p}} [u(x_{o},t_{o})]^{2-p}.$$

Thus in either case the root α of $t_{\alpha} = t_o$ satisfies

$$\min\left\{1; \frac{1}{2} \left(\frac{c_2}{c_3}\right)^{1/p} \gamma_2^{(p-2)/p}\right\} = \alpha_o \le \alpha \le \alpha_1 = \max\left\{1; \frac{1}{2} \left(\frac{c_2}{c_3}\right)^{1/p} \gamma_3^{(2-p)/p}\right\}$$

With α_o and α_1 determined quantitatively only in terms of the set of parameters $\{N, p, c_2, c_3, \gamma_2, \gamma_3\}$ condition (4.5) can be always insured by a proper, quantita-

tive choice of ρ , and thus (4.6) holds in all cases for some α in the indicated range. This implies (4.4) for a proper definition of γ_5 .

References

- E. DIBENEDETTO, Degenerate Parabolic Equations. Universitext, Springer-Verlag, New York, 1993.
- [2] E. DIBENEDETTO U. GIANAZZA V. VESPRI, Harnack Estimates for Quasi-Linear Degenerate Parabolic Differential Equation, *Acta Mathematica*, 200 (2008), 181–209.
- [3] E. DIBENEDETTO U. GIANAZZA V. VESPRI, Forward, Backward and Elliptic Harnack Inequalities for Non-Negative Solutions to Certain Singular Parabolic Partial Differential Equations, preprint IMATI-CNR 12PV07/12/9 (2007), 1–37, to appear in Annali Scuola Normale Superiore.
- [4] J. HADAMARD, Extension à l'équation de la chaleur d'un théorème de A. Harnack, *Rend. Circ. Mat. di Palermo, Ser.* 2(3), (1954), 337–346.
- [5] J. MOSER, A Harnack Inequality for Parabolic Differential Equations, Comm. Pure Appl. Math., 17 (1964), 101–134.
- [6] J. MOSER, On a pointwise estimate for parabolic differential equations, *Comm. Pure Appl. Math.*, **24** (1971), 727–740.
- [7] B. PINI, Sulla soluzione generalizzata di Wiener per il primo problema di valori al contorno nel caso parabolico, *Rend. Sem. Mat. Univ. Padova*, **23** (1954), 422–434.

Received 22 April 2009, and in revised form 2 July 2009.

Emmanuele DiBenedetto Department of Mathematics Vanderbilt University 1326 Stevenson Center Nashville TN 37240 (USA) em.diben@vanderbilt.edu

Ugo Gianazza Dipartimento di Matematica "F. Casorati" Università di Pavia via Ferrata 1 27100 Pavia (Italy) gianazza@imati.cnr.it

Vincenzo Vespri Dipartimento di Matematica "U. Dini" Università di Firenze viale Morgagni 67/A 50134 Firenze (Italy) vespri@math.unifi.it