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Università di Firenze

Via Lombroso 6/17, I-50134 Firenze, Italy

Received 10 October, 2009; accepted in revised form 07 December, 2009

Abstract: When approximating reversible Hamiltonian problems, the presence of a “drift”

in the numerical values of the Hamiltonian is sometimes experienced, even when reversible

methods of integration are used. In this paper we analyze the phenomenon by using a

more precise definition of time reversal symmetry for both the continuous and the discrete

problems. A few examples are also presented to support the analysis.
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1 Introduction

Many problems deriving from the mathematical modeling of mechanical systems, molecular dy-
namics, and so forth, are in Hamiltonian form, i.e.

y′ ≡

(

q
p

)

′

=

(

∇pH(q, p)
−∇qH(q, p)

)

≡ J∇yH(q, p), (1)

where, by setting Im the identity matrix of dimension m,

q, p ∈ R
m, J = J2m ≡

(

Im
−Im

)

, (2)
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and H(q, p) is the Hamiltonian function. We shall use the notation H(y), when this will be
convenient for sake of brevity. Hereafter, we assume that the initial condition for (1) is given at

t0 = 0, y(t0) = y0 ≡

(

q0
p0

)

. (3)

When speaking about mechanical systems, the components of q and p are, respectively, the
positions and the momenta while H(q, p) often represents the total energy of the system.

Many mechanical systems are reversible. Usually this property is meant in the sense that if the
time is reversed, the momenta are reversed as well, and the trajectory retraces backward in time.
The numerical approximation of such systems has been recently studied by many authors (see,
e.g. [3, 4] and the references therein). Nevertheless, in our opinion, the definition of reversibility is
sometimes confused and, therefore, the main aim of this paper is to make this notion more precise
in order to analyze the energy drift phenomenon sometimes observed in the numerical simulations
(see, e.g., [2, 5]). With this premise, in the next section the notion of time reversal symmetry
is discussed in detail for continuous problems; then, the subsequent section concerns its discrete
counterpart; finally, the last two sections contain, respectively, some examples of application and
a few concluding remarks.

2 Time reversal symmetry

Ce qui nous rend ces solutions périodiques si
précieuses, c’est qu’elles sont, pour ainsi dire,
la seule brèche par où nous puissions essayer
de pénétrer dans une place jusqu’ici réputée
inabordable.

H.Poincaré

Very often, especially when dealing with mechanical systems, the Hamiltonian satisfies the property

H(y) = H(Sy), (4)

where S is a symmetric matrix which, usually, assumes the form

S =

(

Im
−Im

)

, (5)

even though any symmetric matrix satisfying (see (2))

SJS = −J. (6)

is allowed, e.g.,

S =

(

−Im
Im

)

. (7)

As an example, both (5) and (7) are allowed in the case of the pendulum problem, which we shall
consider later. Again, we emphasize that in the following we shall often consider the form (5),
but all properties derived for it can be extended to any symmetric matrix S satisfying (6). This
because, from the latter property, a corresponding property of the vector field associated with (1)
derives. Indeed, by considering that

∇yH(y) = ∇yH(Sy) = ST∇(Sy)H(Sy) = S∇(Sy)H(Sy),
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one has
Sy′ = SJ∇yH(y) = SJS∇SyH(Sy) = −J∇SyH(Sy). (8)

That is, the vector Sy(−t) satisfies the same equation as y(t). Consequently, the following result
holds true.

Theorem 1 Let the Hamiltonian function of equation (1) satisfy (4)-(6) and assume that the
initial condition (3) satisfies y0 ∈ ker(I − S). Then,

y(−t) ≡ Sy(t), t ≥ 0. (9)

Remark 1 When S is defined according to (5), one immediately obtains that

ker(I − S) =

{(

q
0

)

: q, 0 ∈ R
m

}

.

Remark 2 The property that y(t) and the time reversed vector Sy(t) are both solution of (1),
is often referred as time reversal symmetry (TRS, hereafter). We shall, however, according to
some authors (see, e.g. [8, p. 234]), restrict such expression to the case where the two solutions
have at least two distinct common points: the initial one, y0, and, say, y

∗ 6= y0. In other words,
we restrict the TRS to periodic solutions (librations, in the astronomical terminology [7, p. 458]),
according, as much as possible, to the intuitive definition (see, e.g. [6]) that a motion has TRS
when it is impossible to distinguish whether its “movie” is played forward or backward in time. In
this respect, it is obvious that when y(t) has an open orbit, then at least one of its entries does not
remain bounded for t > 0, and this will certainly characterize the time direction (i.e., the forward
or backward playing of the “movie”).

According to Remark 2, we are interested in the case where the trajectory is (nontrivially)
periodic of period 2T , i.e. satisfying, for y0 ∈ ker(I − S),

y(T ) = y(−T ), i.e. y(T ) = Sy(T ). (10)

This implies that y(T ) 6= y0 and y(T ) ∈ ker(I−S) as well. In such a case, the two trajectories y(t)
and Sy(t) are on the same orbit for t ∈ [0,+∞). This means that each point on the orbit can be
reached both forward and backward in time. This fact naturally leads to the following definition of
TRS.

Definition 1 An Hamiltonian problem (1)–(3) satisfying (4)-(6) has TRS if both y(t) and Sy(t)
are on the same closed orbit for t ∈ [0,+∞).

For sake of brevity, hereafter we shall assume that the initial condition satisfies y0 = Sy0. In
the next section, we shall consider a corresponding discrete time reversal symmetry, which is the
exact counterpart of the continuous one just defined, to be fulfilled by the orbits of suitable discrete
numerical methods approximating problem (1)–(3).

In the following we shall study in detail the simpler case where m = 1 and we shall consider,
in more details, the matrix S in (5). In such a case, Theorem 1 can be rewritten as follows.

Theorem 2 Let the Hamiltonian function of equation (1) satisfy (4) and assume that the initial
condition (3) satisfies y0 ∈ ker(I − S), where the matrix S is given by (5). Consequently,

y0 ≡

(

q0
0

)

, q0 ∈ R, (11)
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Figure 1: Pendulum problem. Future solutions (o) and past solutions (*).

and

q(−t) ≡ q(t), p(−t) = −p(t), t ≥ 0. (12)

Moreover, if there exists T > 0 such that p(T ) = 0, then the solution is periodic of period 2T and,
therefore, the problem has the TRS property.

Example 1 The nonlinear pendulum is described by the equation

d

dt

(

q
p

)

=

(

p
− sin(q)

)

, (13)

with Hamiltonian

H(q, p) =
1

2
p2 + 1− cos q. (14)

This problem has both the symmetries (5) and (7). We shall here consider only the latter one. In
the phase plane it has two types of orbits: the open ones and the closed ones around the critical
point (0, 0) (see Figure 1).

The open orbits do not have a second point in ker(I − S). On such orbits the variable p is
periodic while the variable q is not, since it doesn’t remain bounded. By looking only at the variable
p it is impossible to distinguish if it corresponds to positive or negative values of time. On the
contrary, the variable q gives us such a possibility: it is enough to establish that the “movie is
played” forward if q is growing and backward if q is decreasing. As matter of fact, the open orbits
do not satisfy Definition 1 since the two semi-orbits do not have common points except for the
initial one. The same doesn’t apply to the closed orbits, whose points are simultaneously on both
future and past semi-orbits (see Figure 1).
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Figure 2: Solution of the problem defined by the Hamiltonian (15) and the initial condition (16).
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Figure 3: Problems defined by the Hamiltonian (17); trajectories with initial conditions (16) (upper
plot) and (18) (lower plot).
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Example 2 In the previous example, the variable p is the derivative of q. By reversing the sign
of time, automatically it is reversed the velocity, p, of the variable q. However, in general, this is
not always true: a sign change of dq/dt may not affect the sign of the second variable p. Consider,
for example5, the problem defined by the following Hamiltonian [2, Eq. (4.1)],

H(q, p) = T (p) + U(q) ≡
p3

3
−

p

2
+

q6

30
+

q4

4
−

q3

3
+

1

6
, (15)

with initial condition
q(0) = 0, p(0) = 1. (16)

In such a case, even though the orbit is closed (see Figure 2), the Hamiltonian doesn’t satisfy (4),
so that there is no TRS. However, the symmetry property (4), with S given by (5), is satisfied
when considering the symmetrized problem [2, Eq. (4.2)], with the Hamiltonian

H(q, p) = (U(q) + T (p))(U(q) + T (−p)) ≡ U(q)2 − T (p)2, (17)

and the same initial condition (16). In this case, even though the corresponding orbit is the same
shown in Figure 2 and, moreover, (4) is obviously satisfied, the problem has no TRS, since the initial
condition doesn’t belong to ker(I − S) (actually no points of the orbit belong to ker(I − S)). To be
more precise, in the case of the symmetrized problem (17), both variables q and p are periodic (they
stay on a closed orbit). The transformation t → −t leaves unchanged the orbit. The transformation
y → Sy, however, does not, since, for all t ∈ [0,+∞) the two points y(t) and Sy(t) are on two
separate orbits, even though both of them are solutions of the same equation. For example, in
Figure 3 there are the plots of the orbit starting at (16) (upper plot) and that of the orbit starting
at the symmetric point of (16) (see (5)), i.e.,

q(0) = 0, p(0) = −1. (18)

The paradox is explained by considering that they never can be the same solution, since there doesn’t
exist a nontrivial point of the form (q, 0)T ∈ ker(I −S). Consequently, there is no TRS, according
to our Definition 1.

Remark 3 (Symmetry of the equations and TRS) We have seen that the symmetry (4) of
the Hamiltonian may imply the TRS. As already said, the two properties are often confused. Indeed,
the first one regards the law of motion, i.e. the equations, while the second one regards the solutions,
which, however, do depend also on the specified initial conditions. The fact that the symmetry of
the equations and the TRS are often confused is testified by the following citation of J. C. Baez [9]:

“Even people who claim to understand the distinction often slip . . . I become infuriated when
authors confuse symmetry of the laws with symmetry of the state.”

The symmetry of the state is then a property of certain solutions but, in general, not of all of them.

3 Discrete approximation

In his work on dynamics Poincaré was led
to focus attention primarily upon the periodic
motions . . . and it became a task of the first or-
der of importance for him to determine what
the actual distribution of the periodic motions
was . . . .

G.D.Birkhoff
5A more realistic example could be the equation describing the motion of an electron in a magnetic field.
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We are now concerned with the numerical integration of the trajectories of equation (1). We shall
here consider (convergent) block methods which, at the first integration step (which is the one here
considered for sake of simplicity), generate a discrete problem in the form

A⊗ I2my − hB ⊗ J2m∇H(y) = 0, (19)

where h is the stepsize, the two matrices A,B ∈ R
r×r+1 (A with full rank) characterize the

numerical method, and

y = ((q0, p0), (q1, p1), . . . (qr, pr))
T
, (20)

∇H(y) = (∇H(q0, p0),∇H(q1, p1), . . .∇H(qr, pr))
T
.

Moreover, the discrete solution is assumed to be uniquely determined once the initial condition
y0 = (q0, p0)

T is fixed.
We observe that this is a quite general framework, which encompasses most of the available

numerical methods. For example:

• Runge-Kutta methods,

• block Boundary Value Methods (block BVMs, see [1] for details),

• sequential applications of the above methods.

Remark 4 We observe that the equations (19) are defined up to left multiplication by any nonsin-
gular r × r matrix. Therefore, by also considering that the method is convergent, we may always
assume that A satisfies the following symmetry property:

PrAPr+1 = −A, Pℓ =









1
·

·
1









ℓ×ℓ

, ℓ = r, r + 1. (21)

Example 3 In the case of a Runge-Kutta method, one has that (19) holds true with

A =







−1 1
...

. . .

−1 1







r×r+1

.

Then, left multiplication with the matrix











1
−1 1

. . .
. . .

−1 1











r×r

,

results in the following “new” matrix A:







−1 1
. . .

. . .

−1 1







r×r+1

,

which fulfills (21).
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We are now in the position of stating the following definition (see [1]).

Definition 2 We say the the block method (19) is symmetric if, when it is rewritten so that (21)
holds, it also satisfies

PrBPr+1 = B. (22)

Remark 5 According to this definition, symmetric Runge-Kutta methods are, for example, Gauss-
Legendre and Lobatto IIIA methods. Further examples are provided by symmetric block BVMs [1].

This definition of symmetry for a numerical method in the form (19) is exactly the same as
the usual definition which requires the given method to coincide with its adjoint method (see, e.g.,
[3, 4]). In this setting, this is confirmed by the following result (see also [1]).

Theorem 3 The method (19) provides the same discrete solution, either when started from (q0, p0)
with stepsize h or when started from (qr, pr) with stepsize −h, if and only if it is symmetric (i.e.
(21) and (22) hold true).

Proof Indeed, by considering (21) and (22), one straightforwardly obtains that

0 = PrAPr+1 ⊗ I2m (Pr+1 ⊗ I2m)y − hPrBPr+1 ⊗ J2m (Pr+1 ⊗ I2m)∇H(y)

= −A⊗ I2m (Pr+1 ⊗ I2m)y −B ⊗ J2m∇H ((Pr+1 ⊗ I2m)y).

The first part of the thesis then follows by considering that left multiplication by Pr+1 ⊗ I2m re-
verses the order of the (block) entries of the vectors. The converse easily follows by reversing the
above arguments. �

Concerning the time reversal symmetry for the discrete solutions, the following result is the
discrete counterpart of Theorem 1.

Lemma 1 Suppose that:

i) the numerical method in the above form (19) is symmetric;

ii) the Hamiltonian function satisfies (4)-(6);

iii) y0 ∈ ker(I − S).

Then, if {yn} is the solution for positive h, {Syn} is the solution for negative h.

Proof By setting S = Ir ⊗ S and J = Ir ⊗ J , we obtain

0 = S(A⊗ I2m)S Sy − h (S(B ⊗ I2m)S) (SJS)S∇H(y)

= (A⊗ I2m)Sy + h(B ⊗ I2m)JS∇H(y) = (A⊗ I2m)Sy + h(B ⊗ J2m)∇H(Sy),

where the relation SJS = −J has been used. In other words, if {y0, y1, . . . , yr} is the discrete
solution obtained with stepsize h, then {Sy0, Sy1, . . . , Syr} is the solution obtained with stepsize
−h. �

On the contrary of what happens in the continuous case, in general it is not true that, when
the method is applied to a continuous problem with TRS, there is another point of the discrete
solution which belongs to ker(I − S). Said differently, not all the discrete trajectories are peri-
odic. Nevertheless, it is sometimes possible, by using the continuous dependence of the discrete
trajectories from the parameter h (in a suitable neighborhood of the origin), to force one or more
components of the trajectories to enter ker(I − S). In the particular case m = 1, the following
result, which provides the discrete extension of Theorem 2, holds true.

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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Theorem 4 Suppose that:

i) the continuous problem satisfies the hypotheses of Theorem 2;

ii) the continuous problem has periodic solutions passing from y0 ∈ ker(I − S).

Then, by considering the application of the method (19):

• if the method is symmetric, i.e., it satisfies both (21) and (22), there exist infinitely many
discrete periodic orbits which accumulate as h → 0;

• if a discrete periodic trajectory exists, then the method is symmetric.

Proof Since the method is convergent and the continuous solution y(t) is periodic, for h small
enough there exist values of the stepsize such that, for any integer value of r greater than a
suitable integer r0, yr ∈ ker(I − S) and yr 6= y0, where yr denotes, as usual, the r-th point of
the discrete trajectory obtained with the given stepsize h. That is, (see (5)), 0 6= qr 6= q0 and
pr = 0. Consequenlty, we have that y0, y1, . . . yr are on the positive orbit and Sy0, Sy1, . . . Syr are
on the negative orbit. Both orbits crosses at yr, since yr = Syr. The problem is now whether the
points {yi}i>r are new points or they coincide with {Syi}i<r. If so, the solution is a periodic one.
However, the result of Lemma 1 allows to conclude that a symmetric orbit of period 2r exists. In
this case we have that yi = Sy2r−i, i = 0, . . . , 2r.

Suppose now that a periodic trajectory exists. Then, from Lemma 1, also the backward tra-
jectory is periodic and traces back the same points of the forward trajectory in reverse order.
Consequently, from Theorem 3 the method coincides with its adjoint, i.e., it is symmetric. �

Remark 6 In light of the above result, we have that only symmetric methods can generate discrete
periodic orbits. Moreover, since these methods coincide with their respective adjoint ones, the points
on the discrete orbit can be reached both in forward and in reverse (discrete) time. In analogy with
the continuous case (see Definition 1), we say that the discrete periodic orbit has the TRS property.

Remark 7 In the above theorem, the assumption that h is small enough has been supposed for
convenience. As matter of fact, some periodic orbits may occur for quite large values of h. For
example, for the pendulum problem (13), periodic orbits of low period (say, 4), can be obtained for
relatively large stepsizes (h ≃ 2.09).

The importance of the existence of discrete periodic orbits is given by the following result.

Theorem 5 Assume that, for a given stepsize h, a periodic orbit exists. Then, no drift of the
Hamiltonian function can occur during the integration with that stepsize.

Proof When the discrete trajectory is periodic, clearly at each period the Hamiltonian function
assumes the same values on the discrete solution and, therefore, no drift can occur. �

A straightforward and useful generalization of the previous theorem is given by the following
result.

Corollary 1 The result of Theorem 5 continues to hold when the initial condition is not given by
(3), but such point belongs to the orbit.

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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Proof Indeed, let τ be the time when the trajectory passes from (3). From that point, all the
above arguments continues to hold, by considering a time shift equal to τ . Similar arguments
hold also true in the discrete case, provided that the method is symmetric, since there will exist
infinitely many values of the stepsize h such that the discrete trajectory passes, for r = r(h), from
a point in the form (ξh, 0). From that point, the result of Theorem 5 then applies. �

Remark 8 From the above arguments, it follows that, when the continuous problem has the TRS
property and the method is symmetric, periodic orbits accumulate as h → 0. Consequently, for
h suitably small, we are always “close” to a periodic orbit and, therefore, no drift is expected in
the numerical Hamiltonian. Conversely, a drift may be observed when the discrete periodic orbits
occur only in correspondence of isolated values of h. Nevertheless, if one is able to find one of such
values, the drift will disappear.

In addition to this, it is worth noting that, even in the case where there is no TRS and a drift
is observed, such a drift is (for symmetric methods) in general less evident as the dimension r of
the matrices in (19), defining the method, increases. As matter of fact, in the limit case of the
trapezoidal rule, which actually covers any integration interval with exactly one block, no drift has
been experienced so far (at least, for any reasonable value of the stepsize h).

All the above arguments will be confirmed by the numerical tests in the next section.

4 Examples

We now consider a couple of examples, in order to have evidence of the usefulness of the analysis
made in the previous section. The first problem fulfills the condition in Remark 8, the second does
not. In both cases, the symmetric method that we shall consider is the fourth order Lobatto IIIA
method which, in the formulation (19)-(20), is symmetric with matrices

A =

(

−1 1
−1 1

)

, B =
1

24

(

5 8 −1
−1 8 5

)

. (23)

In all the examples, when not differently specified, the stepsize h = 0.16 is used, which is the same
stepsize considered in [2] for integrating problem (15)-(16).

Pendulum problem

This is the problem described in Example 1. In this case, since the problem has both the symmetry
(5) and (7), from the arguments in the previous section, we expect no drift in the numerical
Hamiltonian, both when y0 ∈ ker(I − S) and when y0 /∈ ker(I − S), provided that the continuous
orbit is periodic (and, therefore, having the TRS property). Indeed, this is confirmed by the plots
in Figure 4, showing the difference between the numerical Hamiltonian and its initial value, for
two discrete trajectories of 2 · 104 steps, respectively starting at the following initial points:

q(0) = 0, p(0) = 1.1, (24)

and

q(0) = 0.9, p(0) =
√

1.12 − 2 + 2 cos(0.9) ≈ 0.6732, (25)

which are on the same continuous orbit.

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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Figure 4: Numerical Hamiltonian for problem (13), initial point (24) (up) and (25) (down).
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Figure 5: Numerical hamiltonian (15) for the trajectory starting at (16).

FHP problem

This is the problem described in Example 2, which is defined by the Hamiltonian (15). When
considering the trajectory starting at (16), the plot of Figure 2 is obtained. Both the Hamiltonian
and the orbit are unsymmetric, so the problem has no TRS. Consequently, when a generic stepsize
h is used, a drift in the numerical Hamiltonian can be expected. This is confirmed by the plot in
Figure 5, where such a drift is clearly seen, for a trajectory of 2 · 104 steps. In [2], the authors
consider the symmetrized Hamiltonian (17), which satisfies (5). Nevertheless, as we have already
pointed out in Example 2, in such a case the starting point (16) doesn’t belong to ker(I − S)
and, actually, the same continuous orbit of Figure 2 is obtained, when starting from it. When
starting from the symmetric initial point (18), the lower orbit in Figure 3 is obtained instead. We
then conclude that, in this case as well, the problem has no TRS, despite the symmetry of the
Hamiltonian function. Consequently, a drift in the numerical Hamiltonian can be expected also in
this case. This fact was observed in [2] and it is confirmed by the plots in Figure 6, for a trajectory
of 2 · 104 steps.

In order to make more evident the connection between the TRS property of the problem and
a possible drift in the numerical Hamiltonian, we consider the problem (15) in which the function
T (p) is modified so that the symmetry (4)-(5) holds true:

H(q, p) = T (p) + U(q) ≡
p4

4
−

p2

2
+

q6

30
+

q4

4
−

q3

3
+

1

6
. (26)

If we consider the trajectory starting at the following initial point, belonging to ker(I − S),

q(0) = 1, p(0) = 0, (27)

then the upper plot in Figure 7 is obtained. Clearly, now the problem has the TRS property.
Consequently, no drift in the numerical Hamiltonian is expected, according to the analysis in the

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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Figure 6: Numerical hamiltonian (17), trajectory starting at (16) (up), with a detail of the “lower
edge” (down).
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Figure 7: Orbit for the problem (26)-(27) (up) and corresponding numerical Hamiltonian (down).

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



Energy Drift in the Numerical Integration of Hamiltonian Problems 167

Figure 8: Orbit for the problem (26)-(28) (up) and corresponding numerical Hamiltonian (down).

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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Figure 9: Asymptotically stable periodic orbit (up), problem (15)-(16), non constant stepsize, with
detail of the square (down).
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Figure 10: Numerical hamiltonian (15), trajectory starting at (16), trapezoidal rule.

Figure 11: Numerical hamiltonian (15) for the trajectory starting at (16), non constant stepsize.

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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previous section, when a symmetric method is used. This is confirmed by the lower plot in Figure 7,
where, for a trajectory of 105 steps, the difference between the numerical Hamiltonian and its initial
value is plotted. On the other hand, if we consider the problem defined by the same Hamiltonian
(26) and by the initial value

q(0) = 1, p(0) = 1, (28)

then the trajectory in the upper plot in Figure 8 is obtained. Clearly, in this case, even though
the equations satisfy the symmetry (4)-(5), the problem has no TRS. Consequently, a drift in the
numerical Hamiltonian could be expected. This is, indeed, confirmed by the lower plot in Figure 8,
where the drift is clearly observable, for a trajectory of 105 steps.

Remark 9 The arguments stated in the previous section allow to conclude that the TRS of the
problem avoids the presence of a drift in the numerical Hamiltonian, when a symmetric numerical
method is used. Nevertheless, we could have no drift even though the problem has no TRS: this
is the case, for example, for the trapezoidal rule which, when applied to the problem (15)-(16),
provides a discrete solution with no drift in the Hamiltonian (see Figure 10).

On the other hand, even when using the method (23), a suitable mesh selection strategy could
result in a discrete solution which approaches an asymptotically stable periodic solution (see Fig-
ure 9, where a periodic orbit of period 24 is approached). Clearly, in such a case, no drift in the
numerical Hamiltonian can occur, as shown in the plot of Figure 11.

5 Conclusions

In this paper, the time reversal symmetry (TRS) of a problem has been investigated in some
details. Such a property, which in general differs from the symmetry of the underlying equations,
is able to prevent, at least in the plane, the occurrence of a drift in the numerical Hamiltonian,
when a symmetric integration method is used. Indeed, symmetric methods are able to preserve, in
the discrete setting, the TRS of the problem. Relevant numerical examples confirm the usefulness
of this approach.

References

[1] L. Brugnano, D.Trigiante. Solving Differential Problems by Multistep Initial and Boundary
Value Methods, Gordon and Breach Science Publ., 1998.

[2] E. Faou, E.Hairer, T. Pham. Energy conservation with non-symplectic methods: examples and
counter-examples, BIT 44 (2004) 699–709.

[3] H.Hairer, C. Lubich, G.Wanner. Geometric Numerical Integration, Springer, 2004.

[4] B. Leimkuhler, S. Reich. Simulating Hamiltonian Dynamics, Cambridge, 2004.

[5] R. I.McLachlan, M.Perlmutter. Energy drift in reversible time integration, J. Phys. A:
Math.Gen. 37 (2004) 593–598.

[6] J. S.W. Lamb, J.A.G.Roberts. Time-reversal symmetry in dynamical systems: a survey, Phys-
ica D 112 (1998) 1–39.

[7] H.Goldstein, C. Poole and J. Safko. Classical Mechanics, 3rd Ed., Addison Wesley, 2000.

[8] T. L. Saaty, J. Bram. Nonlinear Mathematics, Dover, 1964.

[9] http://math.ucr.edu/home/baez/time/

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)


