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Sand bars in tidal channels
Part 2. Tidal meanders
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Careful analysis of new field observations on the geometry of meandering tidal
channels reveals that the values of meander wavelengths as well as curvatures,
conveniently scaled by local channel width, fall within a fairly restricted range,
suggesting the existence of some mechanistic process controlling meander formation.
A three-dimensional model is then proposed to predict flow and bed topography in
weakly meandering tidal channels. The analysis is developed for meander wavelengths
much smaller than the tidal wavelength and assuming that sediment is transported
both as bedload and as suspended load. Both conditions are typically met in nature.
Due to the symmetry of the meander pattern investigated, the theory indicates that
oscillations associated with the basic flow give rise to symmetric oscillations of the
point bar–pool pattern around the locations of maximum curvature. However, no
net migration in a tidal cycle is present, at least for periodic tides with zero mean.
Suspended load leads both to an enhanced bottom deformation and to a downstream
shifting of the position of the point bar. The model then provides the basis of a
planimetric instability theory of the type developed for river meanders (Blondeaux &
Seminara 1985). Though the available data do not yet allow a detailed quantitative
comparison, it is shown that the wavelengths selected by the ‘bend mechanism’ are
somewhat larger than those typically encountered in nature. The geomorphology of
the process of meander formation in tidal environments is then discussed and, upon
comparison with observational evidence, points out the need for various developments
of the present model.

1. Introduction
The process of meandering of tidal channels is relatively unexplored in spite of the

fact that meandering is a ubiquitous feature of tidal networks both in estuaries and in
lagoons (see figure 1). We report in § 2 some very recent observational evidence which
clearly shows that meander wavelength scales with channel width, thus suggesting
that the process of meander formation must arise from the effect of secondary flows
driven by some planimetric instability somewhat similar to that occurring in the
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fluvial case. Indeed, a considerable amount of knowledge has been established in
the last two decades on the simpler, yet fundamental, problem of river meandering.
In particular we know that meandering alluvial rivers are typically characterized by
the formation of a sequence of so called point bars, i.e. regions located along the
inner (convex) banks where sediments accumulate. Correspondingly, along the outer
(concave) banks pools form close to the bend apexes. These alternate sequences of
pools and bars are essentially steady, i.e. they propagate at the very slow time scale
associated with the planimetric evolution of the meandering pattern with migration
speeds of the order of metres per year, unlike the alternate bar pattern typically
observed in straight channels which migrates downstream with a speed of the order
of metres per hour.

The basic mechanisms controlling the formation of the point-bar–pool pattern have
been clarified through the work of several researchers, starting from the pioneering
contributions of Rozovskij (1957) and Engelund (1974) (see Ikeda & Parker 1989). It
is now fairly well established that the lateral bed slope associated with the bar–pool
pattern of meander bends is maintained through the development of a secondary flow
which acts on sediment particles.

In a constant curvature channel, sufficiently far from the bend entrance for the flow
and bed topography to be fully developed (i.e. uniform in the longitudinal direction),
the secondary flow is centrifugally driven: more precisely it arises from the inability
of the lateral pressure gradient associated with the lateral slope of the free surface
to balance the effective centrifugal force acting on fluid particles, the former being
constant in the vertical direction while the latter increases upwards. The resulting
secondary flow is constrained by continuity to have vanishing depth average, directed
inwards close to the bed where the pressure gradient exceeds the centrifugal force
and outwards close to the free surface. Similarly, sediment continuity constrains the
lateral component of bedload transport to vanish. Hence, a delicate balance arises
between two lateral forces acting on sediment particles moving as bedload: the inward
directed lateral component of the drag force associated with the effect of the secondary
flow; and the outward directed lateral component of particle weight. Equilibrium is
achieved for a lateral slope which increases slightly in the outward direction, giving
rise to deposition at the inner bend and scour at the outer bend.

The occurrence of longitudinal variations of channel curvature complicates the
above picture. In fact continuity now forces an additional and often dominant,
topographically driven, component of secondary flow which has a non-vanishing
depth average and transfers longitudinal momentum from each pool to the next one,
leading to a thread of high velocity winding through the channel. Moreover, a lateral
component of the bedload transport vector originates from the longitudinal variations
of the longitudinal component of bedload transport. In order to allow for this lateral
component of bedload transport an additional contribution to the lateral slope is
required. It turns out to be out of phase relative to curvature, and the phase lag of
the bar–pool pattern depends on meander wavenumber for given flow and sediment
characteristics.

The presence of a significant fraction of sediments transported in suspension
adds further contributions to the above balance as both the centrifugal and the
topographical components of the secondary flow advect suspended sediments, giving
rise to additional lateral sediment fluxes. However the resulting bar–pool pattern does
not change qualitatively.

In the present paper we wish to extend the above framework to the tidal environ-
ment. More precisely, we intend to determine the flow pattern and the bed topography
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Figure 1. Typical tidal meanders, developed within the landforms of the lagoon of Venice (Italy).
On the central inset showing Italy the black square indicates (roughly) the inset of (a) in the upper
left corner, which shows, from remote imaging, a detail of the northern lagoon of Venice, termed
Palude Pagliaga. The main part of (a) is an enlargement of the squared zone in the upper inset,
showing the geomorphological patterns typically encountered within a mesotidal saltmarsh, with
drainage-like features and a fully developed dendritic structure defining the tidal network. Here we
emphasize a comparison between the remotely sensed image of the network of meandering tidal
creeks (a) and the related automatic channel identification (b) from digital terrain maps, proposed
by Fagherazzi et al. (1999). Notice the obvious similarity of imaged and synthetic landforms, the
richness of the patterns observed and the rather different features of meanders even in adjacent
zones.
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in tidal meandering channels. The distinct novel feature of such problem is the un-
steady periodic character of the basic flow which reverses direction at each half-cycle.
Note that we are implicitly assuming that the landscape forming events are due to
astronomical tides; meteorologically dominated tides are excluded from the present
model. The present analysis is equipped to deal with any periodic tide, though for
the sake of simplicity results will be presented only for a purely harmonic tide. As
a result of unsteadiness, it will appear that the bar–pool pattern also oscillates in
time. The analysis will be carried on for regularly meandering channels such that the
meander wavelength is much smaller than the tidal wavelength, a condition typical
of both estuarine and lagoon environments. Under these conditions, just like in the
case of tidal free bars treated in Part 1 of the present paper (Seminara & Tubino
2001), the basic state is slowly varying in space at the bar scale and a local analysis is
appropriate at the leading order of approximation. Moreover, provided local inertia
is small enough with respect to other relevant effects (as already discussed in Part 1),
a similarity solution exists which is only parametrically dependent on time.

The knowledge of flow and bed topography in meandering channels allows one
to investigate the problem of meander formation in tidal channels. The origin of
meandering is a subject which has been of great interest in the classical river case. Two
main theories have been put forward in the recent literature: they are known as bar
theory and bend theory of river meandering. The former approach, which may perhaps
be traced back to Leopold & Wolman (1957), essentially assumes that alternate bars,
i.e. free migrating modes excited by a bottom instability, are precursors of meanders:
in other words the presence of alternate bars in the originally straight channel would
be the triggering mechanism which forces bank erosion, hence meander wavelength
would coincide with bar wavelength. On the other hand the bend approach, originally
proposed by Ikeda, Parker & Sawai (1981), assumes that bank erosion originates from
steady flow perturbations induced by channel curvature, i.e. from forced modes rather
than from migrating free alternate bar modes, hence the wavelength selected by the
process of meandering initiation should be such as to maximize curvature-induced
flow and topography perturbations. Blondeaux & Seminara (1985) have clarified the
relationship between bar and bend theories, showing that the bend theory selects a
particular free bar mode which neither grows nor migrates, i.e. the bend approach
may be considered just a particular case of the bar approach. Moreover, it turns out
that, under admittedly idealized conditions consisting of the occurrence of specific
values of meander wavenumber and width to depth ratio for given flow and sediment
characteristics, curvature forces a natural solution of the flow–cohesionless bed system
leading to the occurrence of resonance, displayed by the presence of an infinite peak
in the response of flow and bed topography at least in the context of a linearized
theoretical framework. Meanders thus behave like resonators, displaying all the linear
and nonlinear features of such mechanical systems, as clearly shown by Seminara &
Tubino (1992). In practice resonance never occurs but the peak of bend theories is
clearly related to the occurrence of quasi-resonant conditions. An approach related
to that of Blondeaux & Seminara (1985) was independently pursued by Struiksma
et al. (1985) who concentrated their attention on the role of spatial rather than
temporal modes: in other words they showed that, along with spatially periodic and
temporally growing migrating bar modes, the flow–cohesionless bed system allows
for the existence of spatially damped oscillatory bar modes which neither amplify in
time nor migrate. The resonant mode of Blondeaux & Seminara (1985) is just that
particular spatial mode which neither grows nor amplifies in space.

Comparison of theories with experimental observations is not conclusive because
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reproducing the process of meandering initiation in the laboratory is quite hard
while field observations cannot be performed under clearly controlled conditions.
The current state of the art, however, seems to favour the idea that spatial rather
than temporal modes control meander formation in the fluvial environment. In the
tidal environment the picture is somewhat altered by the fact that, as shown in Part
1, free modes do not exhibit a net migration in a tidal cycle. Hence free modes
might be the triggering perturbations which force the planimetric evolution of the
channel. However, an extension of the theory of Blondeaux & Seminara (1985) to
the present tidal configuration reveals that a bend instability mechanism may indeed
also operate for tidal channels and selects wavenumbers which are smaller than the
wavenumbers of free bars. On the contrary the latter wavenumbers fall in the stable
range of meander wavenumbers, hence a bar mechanism does not seem to be a
feasible explanation of the process of meander formation in tidal environments, at
least in the context of a linear theory. Observational evidence, especially remotely
gathered and objectively manipulated, is also available (Langbein 1963; Pestrong
1965; Allen & Pye 1992; French & Stoddard 1992; Steel & Pye 1997; Fagherazzi et
al. 1999; Rinaldo et al. 1999a,b). A method of automatic extraction of tidal channels
from topographic data of marshes and tidal flats has recently allowed new and
quantitative descriptions of tidal landforms over a wide range of scales. Coupled with
data on the hydrodynamics such observations will eventually yield the benchmark
against which to compare theoretical assumptions and results. At present, as discussed
in § 2, available data concern only the geometry of tidal meandering channels. This
allows some qualitative comparison with theoretical results, which suggests that theory
captures the correct order of magnitude of meander wavenumber, but it systematically
overpredicts meander wavelengths. Hence, we cannot claim that the present work
conclusively proves that a bend mechanism is responsible for the formation of tidal
meanders.

The procedure followed in the rest of the paper is as follows. After a section on new
observational evidence we extend the mathematical formulation proposed in Part 1 to
the meandering configuration examined herein. This formulation is linearized in § 4
where we also derive the linear solution for flow and bed topography in meandering
tidal channels, the results being presented in § 5. The previous findings allow us to test
the performance of a bend approach as opposed to a bar approach to the problem
of meandering initiation. This test is performed in § 6 while some conclusions follow
in § 7.

2. Observational evidence
Through a recent method for automatic extraction of a tidal network from to-

pographic fields (Fagherazzi et al. 1999; Rinaldo et al. 1999a,b), we analyse the
morphology of meandering patterns that we observe in nature in different tidal envi-
ronments (e.g. figure 1). Specifically, we measure widths, wavelengths and sinuousities
(that is, a range of planimetric measures) from digital maps of the imprinting of
planar patterns of the channel network. Figure 1 shows an example of such an ex-
traction for a region of the northern lagoon of Venice, whose climatic, geologic and
vegetational features are described in the above references. Other available patterns,
also described therein, are in the Barnstable lagoon (MA, USA) and the Petaluma
estuary of the bay of San Francisco (CA, USA) as it appears from detailed maps
from the beginning of the century.

The extraction method discriminates among topographic elevations and curvatures
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Figure 2. An example of raw, dimensional observational data from tidal meanders: (a) As an
inset, the planimetric development of a tidal meander is shown by its centreline (dotted) and the
sidelines (solid). The graph shows the measured planimetric evolution of the channel width within
two orders of magnitude from the order of 1 m to the order of 100 m. The width is plotted against
the curvilinear coordinate with origin at the left end of the meandering pattern, and is gauged by the
digital terrain map manipulation described in Rinaldo et al. (1999); (a, b) planimetric evolution of
the curvature r∗−1(s∗) as described in the text; (c) planimetric evolution of the intrinsic wavelength
of the meanders (L∗s , solid line, left scale) and the related sinuosity (L∗s /L∗x) (dotted line, right scale).

to devise a reliable automatic map of connected channelized features of the topo-
graphic landscape. As such, it employs discrete units of landscape (i.e. pixels), typically
of the order of few metres, depending on the accuracy of the digital topographic basis.
It should be emphasized, therefore, that small cross-sections (of finer scale than the
pixel size) cannot be considered reliably identified by the method. Nevertheless, it
is quite interesting to observe (e.g. figure 2), that widths grow rapidly to orders of
one hundred metres in many cases of interest, thereby allowing precise quantitative
descriptions for most sites.

Figure 2 shows a complete set of planimetric measures for a meander within the
Pagliaga region shown in figure 1, specifically: width, curvature, wavelength and
sinuosity development along the intrinsic coordinate defined by the channel centreline
s. The planimetric development of channel width, say 2B∗(s∗), where a star denotes a
dimensional quantity subsequently made dimensionless (for notation, see Part 1, § 2),
is identified through the automatic procedures described in Fagherazzi et al. (1999).
We also compute local curvatures r∗−1(s∗) of the channel centreline. Curvatures,
known to play a central role in meander geometry (e.g. Langbein & Leopold 1964),
are generally determined on the basis of the intrinsic curve defined by the angle
ϑ(s∗) formed by the local tangent of the centreline at s∗ with a fixed reference axis.
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Curvatures are then defined as r∗−1(s∗) = −dϑ/ds∗. A discrete Fourier transform of
the map of the coordinates x(s∗), y(s∗) of the centreline is suitably analysed involving
appropriate windowing techniques which allow a spectral representation of the ϑ(s∗)
curve that can be analytically differentiated, owing to its basic regularities, to yield
reliable curvatures (figure 2b). Details on signal processing techniques are in Zandolin
(1999). We also measure directly intrinsic (L∗s ) and locally Cartesian (L∗x) wavelengths
of the tidal meanders (figure 2c), and their ratio defined as the sinuosity σ. Intrinsic
wavelengths L∗s are distances between adjacent inflection points on a map computed
along the intrinsic coordinate s∗. Local Cartesian analogues L∗x define the same
measure computed along a fixed Cartesian axis, and obviously mimic the above when
curvatures are small and the total length of the meandering reach divided by its
projection on the reference axis approaches the unit value. Note that the most reliable
procedure for the automatic identification of the inflection point is the location of
zeros of the curvatures after spectral approximations and appropriate windowing (see
caption of figure 2 for further details).

Figure 3 shows a synthesis of our observational results. There we have plotted
data pertaining the dimensionless ratio of (intrinsic) wavelengths to channel widths
from source to outlet of a number of tidal meanders. Note that the typical, and
surprisingly robust, range of values is about 2πB∗/L∗s ∼ 0.2–0.4. The above range is
reproduced well in quite different tidal environments. Figure 4 shows a plot of the
spatial development of the dimensionless product of local curvature and half-width,
r∗−1(s∗)B∗(s∗), for three tidal meanders of different size and geographic location. It
is interesting to observe the fluctuating patterns shown by all the gauges, where
nevertheless the product maintains a remarkably constant mean despite at least one
order of magnitude change in the half-width (say, from a few metres to about 100
metres).

Though incomplete for a conclusive comparison with theory, owing to the lack of
detailed information about the sediment properties relevant to transport mechanisms
and about the features of landforming hydrodynamics, we nevertheless provide valu-
able empirical elements, especially planar features, for the theory of tidal meanders
which we elaborate in the ensuing discussion.

3. Formulation of the problem
Let us consider a long meandering channel connected at some initial cross-section

with a tidal sea (figure 5). Except for its meandering character the geometry of the
channel is otherwise taken to be identical to that described in the companion paper
(Part 1) to which we refer the reader for notation. For the moment we assume the
banks to be non-erodible, an assumption that will be relaxed in § 6. Moreover, for
the sake of simplicity, we assume that the curvature of the channel axis undergoes
periodic oscillations described by the classical Langbein & Leopold (1964) sine
generated curve. This assumption is by no means crucial, the theory developed herein
being amenable to a relative straightforward generalization to an arbitrary, albeit
slowly varying, curvature distribution. Hence we assume

r∗−1 = R∗−1
0 (exp iλ∗s∗ + c.c.), (3.1)

where r∗(s∗) is the local radius of curvature of the channel axis, R∗0 is twice the radius
of curvature at the bend apex, λ∗ is meander wavenumber and s∗ is the longitudinal
coordinate taken to coincide with the coordinate of the channel axis. As seen in § 2
(figure 4) the ratio of the channel width to the local radius of curvature of the channel
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Figure 3. A collection of data from different tidal environments around the world (Barnstable (MA,
USA), Petaluma (CA, USA), Pagliaga (Venice, Italy), described in detail in Fagherazzi et al. 1999
and Rinaldo et al. 1999a, b). Dimensionless ratio 2πB∗/L∗s of width and intrinsic wavelength, plotted
versus intrinsic distance s = s∗/s∗max (where s∗max is the maximum distance from source to outlet for
each meander) from the meander origin. Despite almost two orders of magnitude of width growth
in the cases observed, and within rather different environments for tidal range, climate, geology or
vegetation, the ratio remains remarkably constant in the range 0.2–0.4. Ensemble averages of binned
data are also shown (filled circles) where a range of two variances has been computed as described
in the text. Notice that small channels (say, for s 6 0.1) suffer from inaccurate measurement of
the small widths owing to the limitation of the topographic bases adopted. In the inset, width to
depth ratio β is plotted against the relevant dimensionless wavelength in the few cases available as
indicated by the legend.

axis is typically fairly small in estuarine environments, such that it is convenient to
introduce the small parameter

ν =
B∗

R∗0
, (3.2)

which will form the basis of a perturbation expansion of the solution derived in the
next section. It is appropriate to refer flow and bed topography to the orthogonal
curvilinear coordinate system (s∗, n∗, z∗) where s∗ is the longitudinal coordinate defined
previously, n∗ is the coordinate of the transverse horizontal axis orthogonal to s∗ and
z∗ is the usual vertical coordinate. Dependent and independent variables are scaled
as in equations (2.2a–f I)† where x and y must be replaced by s and n respectively.
Note that such a choice is appropriate to the present investigation which focuses on
a channel reach of length equal to meander wavelength, which ranges typically about
a few channel widths. With the above scaling and performing the useful coordinate

† I denotes an equation number in Part 1.
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transformation (2.16 I), the flow equations may be written in the form

LU = − N

F2

∂H

∂s
+
β
√
Cf0

D2

∂

∂Z

[
νT
∂U

∂Z

]
− νc(s)NUV, (3.3)

LV = − 1

F2

∂H

∂n
+
β
√
Cf0

D2

∂

∂Z

[
νT
∂V

∂Z

]
+ νc(s)NU2, (3.4)

NqsU + [qn + νNc(s)]V +
1

D

∂W

∂Z
= 0, (3.5)
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where L is the partial differential operator

L ≡ σ0qt +NUqs + Vqn +
W

D

∂

∂Z
, (3.6)

and only the dominant Reynolds stresses have been retained in (3.3), (3.4). It is
appropriate to point out at this stage that the sidewall boundary layers associated
with the presence of the channel banks are excluded from the present analysis. This
is known from the fluvial literature to be a convenient approximation for wide cross-
sections with gently sloping banks. Furthermore σ0 and qj are the parameter and the
operator defined by (2.8a I) and (2.28 I) respectively, while N−1 is the dimensionless
form of the longitudinal metric coefficient:

N−1 = [1 + νnc(s)] , (3.7)

denoting by c(s) the function which describes the spatial distribution of the dimension-
less curvature B∗/r∗. Note that, just like in Part 1, the mean pressure is hydrostatically
distributed and is

P =
D

F2
[1− Z]. (3.8)

Equations (3.3)–(3.5) must be solved along with the following boundary conditions:

U = V = W = 0 (Z = Z0), (3.9)

[σ0qt +NUqs + Vqn]H −W = 0 (Z = 1), (3.10)

∂V

∂Z
=
∂U

∂Z
= 0 (Z = 1), (3.11)

imposing the usual kinematic and dynamic constraints at the bed and at the free
surface. At the channel banks, following the classical approach employed in the fluvial
literature (which ignores the sidewall boundary layers, Engelund 1974 and Seminara
& Tubino 1986) we impose the condition of vanishing transverse component of the
water flux. This condition will be further clarified in the next section where the
transverse component of the mean velocity will be decomposed into a centrifugally
induced contribution characterized by vanishing depth average and a topographically
induced contribution with non-vanishing depth average. As a consequence of the
boundary condition at the channel banks, the latter component of the secondary flow
must vanish. Hence

V = 0, n = ±1. (3.12)

The convection–diffusion equation is then written in the form

LC− βWs

D

∂C
∂Z

=
β
√
Cf0

D2

∂

∂Z

(
ψ
∂C
∂Z

)
, (3.13)

where we have neglected lateral and longitudinal diffusion which are O(β2) smaller
than the vertical diffusion term, at least in the central region of the flow, as narrow
channels and the sidewall boundary layers are excluded from the present analysis.
Equation (3.13) must be solved with the following boundary conditions:[

(Wsk)C+
√
Cf0ψ∇C] · n = 0 (Z = 1), (3.14)[

(Wsk)Ce +
√
Cf0ψ∇C] · n = 0 (Z = ar), (3.15)
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Barnst. 1 Barnst. 2 Barnst. 3 Pet. 1 Pet. 2 Pagl. 1 Pagl. 2 Pagl. 3

Mean of ν 0.01 0.06 0.03 0.16 0.17 0.12 0.19 0.18
Max of ν 0.05 0.30 0.23 0.64 1.14 1.05 1.27 1.26

Table 1. The mean and the maximum values of ν for tidal meanders located in three distinct
environments (Barnstable (MA, USA), Petaluma (CA, USA) and Pagliaga (Venezia, Italy)).

where the gradient operator and the velocity vector V are

∇ =

(
N

β
qs,

1

β
qn,

1

D

∂

∂Z

)
, V =

(
U,V ,

W

β

)
. (3.16)

Note that, in wide cross-sections the vertical velocity in the central region of the flow
considered herein is O(β) smaller than the lateral velocity, hence the scaling (3.16).
At the sidewalls we must reinforce the condition that the n-components of both the
fluid and the sediment fluxes must vanish.

Finally the bottom evolution equation in the present coordinate system is

σ0

β

∂

∂t

[
CM(H − D) + D

∫ 1

ar

CdZ

]
+N

∂Qs

∂s
+

[
∂

∂n
+ νc(s)N

]
Qn = 0, (3.17)

where CM is the packing concentration of the granular bed, while Qs and Qn are
the longitudinal and transverse components of the total sediment flux, defined in the
form

(Qs, Qn) = Q0(Qbs, Qbn) + D

∫ 1

ar

(U,V )CdZ. (3.18)

Note that we are employing a different, though equivalent to (2.24 I), form of the
sediment continuity equation. The differential systems (3.3)–(3.17), along with the
closure relationships (2.15 I), (2.23 I), (3.8 I) and (5.1)–(5.6 I), form a closed set of
equations which can be solved for arbitrary distributions of channel curvature once
appropriate end conditions are assigned. In the following we will consider the periodic
distribution (3.1) which is equivalent to the following form of the function c(s):

c(s) = exp(iλs) + c.c., (3.19)

where λ is the meander wavenumber scaled by B∗−1. As a result of such a choice, the
end conditions will be simply replaced by periodicity conditions in space while initial
conditions are replaced by periodicity conditions in time.

4. Linear solution for weakly meandering tidal channels
As discussed in Part 1, at the scale of bars, the unsteady basic flow can be taken as

uniform in space at the leading order of approximation. Moreover, it is convenient at
this stage to assume that the reference level for the vertical coordinate coincides with
the average bottom elevation within the meander reach investigated herein. We then
assume the channel to be weakly meandering, i.e. we set

ν � 1. (4.1)

Note that such a condition is appropriate to describe the typical meandering config-
urations observed in nature.
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Table 1 shows the values of ν calculated for each bend of the sequences corre-
sponding to the tidal channels depicted in figure 2 (Barnstable 1, Petaluma 1, Pagliaga
1) and of some tributary channels (Barnstable 2 and 3, Petaluma 2, Pagliaga 2, 3)
corresponding to different tidal environments. It appears that the average value of ν
ranges between 0.01 and 0.19. A linear theory of the type developed herein is thus
generally appropriate to investigate fully developed natural meanders. It may also
form the basis for an investigation of the formation of tidal meanders, based on a
linear analysis of the planimetric instability of tidal channels as discussed in § 6.

Taking advantage of this assumption we expand the solution in powers of the small
parameter ν in a neighbourhood of the basic state as follows:

(U,V ,W ,H,D) = (Ū0(t)F0(Z), 0, 0, H0(s), H0(s)) + ν(u, v, w,F2h, d) + O(ν2), (4.2)

where H0(s) is the free surface elevation associated with the basic tidal wave described
in Part 1 (§ 3 and the Appendix); the perturbations u, v, w, h, d are functions of the
independent variables s, n, Z, t and are also parametrically dependent on the slow
spatial variable ξ describing the spatial distribution of the basic tidal motion (see
Part 1, Appendix), though the latter dependence will not be considered herein. We
emphasize that expansion (4.2) describes a forced solution of the morphodynamic
problem, the forcing arising from the effect of channel curvature. In this respect the
problem is substantially different from the ‘free’ problem treated in Part 1.

Similarly we expand the operators qs, qn,L and the eddy viscosity νT in powers of
ν in the form

(qs, qn,L, νT ) = (qs0, qn0,L0, νT0) + ν(qs1, qn1,L1, νT1) + O(ν2), (4.3)

where

qs0 =
∂

∂s
, qn0 =

∂

∂n
, L0 = U0

∂

∂s
, νT0 = |Ū0(t)|N(Z), (4.4a–d )

qs1 =

[
(1− Z)

∂d

∂s
−F2 ∂h

∂s

]
∂

∂Z
, (4.5)

qn1 =

[
(1− Z)

∂d

∂n
−F2 ∂h

∂n

]
∂

∂Z
, (4.6)

L1 = U0qs1 + (u− nc(s)U0)qs0 + w
∂

∂Z
+ v

∂

∂n
, (4.7)

νT1 = νT0

(
d+

∂u/∂Z

∂U0/∂Z

∣∣∣∣
Z0

)
. (4.8)

Note that in equation (4.4a) local inertial effects have been neglected, an assumption
justified by the smallness of parameter σ0 (see discussion in Part 1, p. 54). The
derivation of the expansion (4.8) is given in the Appendix. By substituting from
(4.2)–(4.8) into the governing hydrodynamic equations (3.3)–(3.5) and the associated
boundary conditions (3.9)–(3.11) and equating terms proportional to ν0 we recover
the governing equation for the basic longitudinal velocity already discussed in Part 1,
§ 3.

Proceeding to O(ν) we derive the linearized form of the differential problem gov-



Sand bars in tidal channels. Part 2 215

erning the dynamics of flow perturbations as

β
√
Cf0

∂(νT0(∂u/∂Z)

∂Z
−U0

∂u

∂s
− β√Cf0N(Z0)|Ū0(t)

∣∣∣∣ ∂u∂Z
∣∣∣∣
Z0

=
∂h

∂s
− n

F2

∂H0

∂s
c(s) +

∂U0

∂Z
w − βCf0Ū0(t)|Ū0(t)|d+U0

∂U0

∂Z
(1− Z)

∂d

∂s
, (4.9)

β
√
Cf0

∂(νT0(∂v/∂Z))

∂Z
−U0

∂v

∂s
=
∂h

∂n
− c(s)U2

0 , (4.10)

∂u

∂s
+
∂v

∂n
+
∂w

∂Z
= −(1− Z)

∂U0

∂Z

∂d

∂s
, (4.11)

u = v = w = 0 (Z = Z0), (4.12a–c)

∂u

∂Z
=

∂v

∂Z
= w = 0 (Z = 1), (4.13a–c)

having neglected terms of order F2 with respect to O(1) terms. Also note that
the bed of tidal channels is typically dune covered, hence variations of the friction
coefficient are dominantly associated with variations of the Shields parameter (recall
the discussion at the beginning of § 5 Part 1). Variations of the friction coefficient due
to the effect of the small perturbation of flow depth, though formally of order ν, are
fairly small and have been neglected in (4.9), (4.10). This differential system can be
solved by setting the following expansions:

(u, w, h, d) =

{
(0, 0, h̄n, d̄n)

+

∞∑
m=1

[um(Z, t), wm(Z, t), hm(t), dm(t)] sinMn

}
exp(iλs) + c.c., (4.14)

v =

{
v0(Z, t) +

[ ∞∑
m=1

vm(Z, t) cosMn

]}
exp(iλs) + c.c., (4.15)

where h̄ and d̄ are parameters to be determined and M is the following parameter:

M ≡ π

2
(2m− 1) (m = 1, 2, 3 . . .). (4.16)

The structure of the above expansions arises as follows. If the channel had constant
curvature and the flow were fully developed, only the zero depth-average contribution
(centrifugal contribution) would arise in (4.14), (4.15): in this case no derivative in
s appears in equations (4.9)–(4.11) and the secondary flow arises from the need to
balance the difference between centrifugal forces (increasing in the vertical direction)
and lateral pressure gradient (constant in the vertical direction). In a linear context
this leads to lateral distributions of both flow depth and free surface elevation which
are linear in the lateral coordinate n and to a lateral component of velocity which
is independent of n (except for the sidewall boundary layers ignored in this analysis)
and has vanishing depth average. This is the case treated in the fluvial environment
by Engelund (1974) and later by several authors, including Kalkwijk & de Vriend
(1980).
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In the presence of longitudinal variations of channel curvature, a centrifugal con-
tribution to secondary flow still exists, of course, but it cannot be self-balanced, unless
the meander wavenumber is so small that the flow can be considered as fully devel-
oped at any cross-section. This is the first term appearing in (4.14), (4.15). However, a
topographic component of the secondary flow with non-vanishing depth average now
arises (the series in (4.14), (4.15)) to balance the equations. In fact the centrifugal term
satisfies the n-component of the momentum equation exactly but it leaves the flow
continuity equation and the s-momentum equation unbalanced (a topographic effect),
hence the term (d̄n exp (iλs)) becomes a forcing term for both equations. The decom-
position is useful, both mathematically because subtracting the centrifugal component
leaves us with homogeneous conditions at the sidewalls (hence allowing the Fourier
expansion of the remaining topographic component), and physically because it allows
us to distinguish the two mechanisms (centrifugal versus topographic) controlling the
establishment of a secondary flow and of the perturbed bottom topography.

Note that such a decomposition is similar to that proposed originally by Kalkwijk
& de Vriend (1980) in the fluvial case, though they assumed a vertical structure of
the topographic component of the secondary flow, which is not assumed but formally
derived here.

The problem for v0 is readily solved in the form

v0 = |Ū0(t)|G(Z; I), (4.17)

h̄ = Ū2
0 (t)H, (4.18)

where I is defined in (4.9c I) and the function G is the solution of the ordinary
differential problem

L1G = − 1

β
√
Cf0

[−H+ F2
0 (Z)], (4.19)

G = 0 (Z = Z0), (4.20)

∂G
∂Z

= 0 (Z = 1). (4.21)

Moreover the operator L1 is defined by (4.8 I), while the constant H is obtained by
requiring that the solution for G satisfies the following integral condition:∫ 1

Z0

G(Z)dZ = 0. (4.22)

This condition reinforces the constraint of vanishing flux through the sidewalls. The
system (4.19)–(4.21) is readily solved by shooting techniques. Note that (4.17) suggests
that the centrifugally induced component of the secondary flow is identical in the
flood and ebb phases. This is not surprising as the symmetry of the geometric
configuration and of the basic longitudinal flow implies that the driving forces are
perfectly symmetrical both in space and in time. The nonlinearity of the temporal
dependence of the driving force is responsible for the generation of a nonlinear
response of the secondary flow which emerges both in (4.17) and in (4.18). Residual
terms are associated with this nonlinear character and may be interpreted as though
the response to the oscillatory basic state includes a steady component of ‘fluvial’
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type. Similarly the problem for (vm, hm;m = 1, 2, 3, . . .) is solved in the form

hm = |Ū0(t)|Hm, (4.23)

vm = µHmGm(Z; I), (4.24)

with Hm functions of time to be determined and the functions Gm(m = 1, 2, 3, . . .)
solutions of the following ordinary differential problem (parametrically dependent on
time):

L1Gm = 1, (4.25)

Gm = 0 (Z = Z0), (4.26)

∂Gm
∂Z

= 0 (Z = 1), (4.27)

with µ defined by (4.9b I). Again, the solution of (4.25)–(4.27) is obtained by a
shooting technique.

Having determined v0 and vm we can proceed to express wm in terms of um and vm
using the continuity equation (4.11). We find

wm = M

∫ Z

Z0

vm(ξ)dξ − iλ

∫ Z

Z0

um(ξ)dξ − (Amd̄+ dm)iλŪ0(t)

×
[
F0(1− Z) +

∫ Z

Z0

F0(ξ)dξ

]
, (4.28)

where Am(m = 1, 2, 3, . . .) are constants

Am = −(−1)m
2

M2
. (4.29)

We may then derive the differential equation for um by substituting from (4.14), (4.15)
into (4.9) and using the structure of the solution obtained for the secondary flow.
With the help of some algebraic manipulations and of the following definition:

f =

∫ Z

Z0

umdξ, (4.30)

we eventually derive the following structure of the solution for the function f:

f =

3∑
j=1

ϕjφj, (4.31)

with

φj =

(
fj − ∂2fj/∂Z

2

∂2f0/∂Z2

∣∣∣∣
Z=1

f0

)
(j = 1, 2, 3), (4.32)

and the functions ϕj(j = 1, 2, 3) are

ϕ1 = Λ
[
AmH|Ū0(t)|+Hm

]−√Cf0Ū0(t)(Amd̄+ dm) +
√
Cf0Ū0(t)Am, (4.33)

ϕ2 = −Λ|Ū0(t)|(Amd̄+ dm), (4.34)

ϕ3 =
M2

β0

√
Cf0

IHm. (4.35)

Moreover the functions fj (j = 0, 1, 2, 3) are solutions of the ordinary differential
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problem (4.22)–(4.24 I) with aj(j = 0, 1, 2, 3) defined as follows:

a0 = 0, a1 = 1, a2 =
dF0

dZ

∫ Z

Z0

F0(ξ)dξ, a3 =
dF0

dZ
Γ (4.36a–d )

and

Γ =

∫ Z

Z0

Gm(ξ)dξ. (4.37)

We finally impose the kinematic condition at the free surface (4.13c) which, with the
help of (4.24), (4.28)–(4.30) and some algebraic manipulations, eventually leads to the
following relationship between the quantities Hm and dm for each m:

Hm = h̄1|Ū0(t)|H+ h̄2Ū0(t)(Amd̄+ dm) + h̄3Ū0(t)Am, (4.38)

where

h̄1 = Λ2φ1|1Am [ΓµM − Λ2φ1|1 − ΛµMIφ3|1]−1
, (4.39)

h̄2 = h̄1

[
1−√Cf0φ1|1 − ΛIφ2|1] /(Λφ1|1Am), (4.40)

h̄3 = h̄1

√
Cf0/(ΛAm), (4.41)

having used the definitions (4.9a, c I), (4.34 I) for Λ, I and Γ .
The reader will note that, through the relationship (4.38), the whole solution for

the flow perturbations is linearly related to the quantity (Amd̄+ dm)(m = 1, 2, 3, . . .). It
is then convenient to express the solution for the velocity perturbations in the form

(um, vm, wm) = (û1, v̂1, ŵ1) + (û2, v̂2, ŵ2)(Amd̄+ dm) (m = 1, 2, 3, . . .), (4.42)

where ûi, v̂i, ŵi (i = 1, 2) are functions of the independent variables Z and t. The
structure (4.42) of the solution for (um, vm, wm) has a simple physical explanation. In
fact, part of this solution (û1, v̂1, ŵ1) is independent of the development of bottom
perturbations, being driven by the forcing effect of centrifugally driven longitudinal
slope of the free surface (term proportional toH in (4.33)) and by the metric variation
of the longitudinal slope (second term in the right-hand side of (4.9) which gives rise
to the third term in the right-hand side of (4.33)). Part of the solution of (4.42) is
induced by perturbations of bottom topography, either centrifugally driven (terms
proportional to d̄ in (4.33) and (4.34)) or due to shoaling effects (terms proportional to
dm in (4.33), (4.34), (4.35)). The as yet unknown quantities d̄ and dm will be determined
below by imposing the constraints required by sediment continuity. Also note that the
relationship (4.38) does not exhibit any discontinuity at the instant of flow reversal.

Let us finally proceed to calculate the perturbation of the concentration field. Hence,
we set the following expansion for the concentration C and the eddy diffusivity ψ in
powers of the small parameter ν:

(C, ψ) = (C0, ψ0) + ν

{[ ∞∑
m=1

(Cm(Z, t), ψm(Z, t)) sin(Mn)

]
exp(iλs) + c.c.

}
, (4.43)

where C0 and ψ0 are the basic concentration and diffusivity fields obtained in Part 1,
§ 3. Note that the perturbation ψ1 of eddy diffusivity is related to the perturbation of
the flow field through a relationship identical with (4.4 I), namely

ψ1 = ψ0

(
d+

∂u/∂Z

∂U0/∂Z

∣∣∣∣
Z0

)
. (4.44)
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Expanding u and d according to (4.14) one readily derives from (4.44) expressions
for the amplitude ψm(Z, t) appearing in (4.43). By substituting from the expansion
(4.43) into the governing equations (3.13)–(3.15), employing the expression (4.42) and
equating terms O(ν) we obtain the following differential system:

L3Cm = ω01(Z, t) + ω02(Z, t)(Amd̄+ dm), (4.45)[
ΨCm,Z + GCm]Z=1

= ω11(t) + ω12(t)(Amd̄+ dm), (4.46)[
ΨCm,Z

]
Z=ar

= ω21(t) + ω22(t)(Amd̄+ dm). (4.47)

Note that Ψ is a function describing the vertical distribution of eddy diffusivity
at equilibrium defined in (2.23 I) and (5.4 I). The functions ω0i(Z, t) in (4.45),
ω1i(t) in (4.46) and ω2i(t) in (4.47) (i = 1, 2) are obtained from the corresponding
relationships (4.33 I) for Ω, (4.36 I) for Ω1 and (4.39 I) for Ω0 by replacing û and ŵ
by ûi/Ū0(t) and ŵi/Ū0(t) respectively, G given by (3.17 I). Note that the effect of the
centrifugally induced secondary flow is only indirectly present through the forcing
effect of d̄ in the system (4.45)–(4.47); no direct effect can be present as the term
v(∂C/∂n) in the convection–diffusion equation only enters at O(ν2). Also note that
the boundary conditions (4.46), (4.47) account for the effect of perturbation of the
reference concentration Ce due to perturbations of the Shields parameter θ and of the
local flow depth D. Finally note that the decomposition (4.42) for the velocity field
drives, through convective terms, an analogous decomposition of the forcing terms in
(4.45)–(4.47) and, hence, of the solution, for Cm. In fact the solution of the differential
system (4.45)–(4.47) is readily obtained in the form

Cm = Ĉ1(Z, t) + Ĉ2(Z, t)(Amd̄+ dm), (4.48)

where the functions Ĉ1 and Ĉ2 are again obtained by shooting techniques.
Let us then linearize and solve the sediment continuity equation along with the

boundary condition of vanishing sediment flux through the sidewalls. To this aim we
substitute from the expansions (4.14), (4.15), (4.43) and the expressions (4.42), (4.48)
into the relationships (3.17), (3.18). Some tedious algebraic work eventually leads to
the solution for the as yet unknown function d̄:

d̄ = − β
√
θ0

rQ0φb0

[
|Ū0(t)|

∫ 1

ar

C0GdZ + Q0φb0
∂G/∂Z
dF0/dZ

∣∣∣∣
Z0

]
. (4.49)

Finally the functions dm (m = 1, 2, 3, . . .) satisfy the following equations:(
s1 − rM2

β
√
θ0

)
dm = −(s2 + s1Amd̄), (4.50)

where

s1 = iλ

[
1

Q0φb0

(
Ū0(t)

∫ 1

ar

Ĉ2F0dZ + Ū0(t)

∫ 1

ar

C0F0dZ +

∫ 1

ar

C0û2dZ

)]

+
2φθ(∂û2/∂Z)

Ū0(t)(dF0/dZ)

∣∣∣∣
Z0

+
rM2

β
√
θ0

|Ū0(t)|Ū0(t)h̄2

− M

Q0φb0

∫ 1

ar

C0v̂2dZ − M(∂v̂2/∂Z)

|Ū0(t)|dF0/dZ

∣∣∣∣
Z0

, (4.51)
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s2 = iλ

[
1

Q0φb0

(
Ū0(t)

∫ 1

ar

Ĉ1F0dZ +

∫ 1

ar

C0û1dZ

)]
+

2φθ(∂û1/∂Z)

Ū0(t)(dF0/dZ)

∣∣∣∣
Z0

+
rM2

β
√
θ0

Ū0(t)(Ū0(t)h̄1H+ |Ū0(t)|Amh̄3)

− M

Q0φb0

∫ 1

ar

C0v̂1dZ − M(∂v̂1/∂Z)

|Ū0(t)|dF0/dZ

∣∣∣∣
Z0

, (4.52)

with φθ given by (4.48 I). Equation (4.50) is easily solved numerically. Once the
quantities d̄ and dm (m = 1, 2, 3, . . .) are known, the whole solution for the flow and
topography fields is completely determined. The reader will note that the complex
nature of the function G in (4.49) and of coefficients s1 and s2 in (4.50) suggests that
both the ‘centrifugally induced’ lateral deformation of the bed and the topographically
induced component are out of phase relative to channel curvature. The temporal
dependence of both components is nonlinearly related to the basic velocity field.

5. Results for the flow and topography fields
Before discussing the main results obtained in the present work we provide some

information about typical values of physical parameters controlling the morpho-
dynamics of tidal channels. Data concerning typical widths, curvature radii of the
channel axis and flow depths have already been given in figures 2 and 3 referring
to three distinct tidal environments. Typical amplitude of flow velocity and of fric-
tion coefficient Cf0 are in the range (0.5–1) m s−1 and (4–2.5)×10−3 respectively; a
typical grain size is about 0.1 mm corresponding to a settling velocity of 1 cm s−1

and a particle Reynolds number about 4 (Danish Hydraulic Institute 1990). Friction
velocity then is about (3–6) cm s−1 while the peak Shields stress (see (3.16 I)) attains
values around 0.6–1.5. Typical values of the peak reference concentration are then
immediately calculated from (5.1a, b, c I) and are found to increase from 4.4×10−5 to
9.6× 10−5 as the Shields stress increases from 0.6 to 1.5. Such values are experienced
at a reference distance from the bed of about (3–16) cm, the bed being covered with
dunes characterized by peak amplitudes of the order of (20–80) cm.

Let us now describe the procedure employed to obtain our results. The analysis
has been carried out considering the simplest temporal distribution of tidal velocity,
namely

Ū0(t) = cos (t). (5.1)

Any other temporal dependence would be readily incorporated in the present
theory. In particular the common presence of tidal dissymmetry would only lead to
an asymmetric pattern of scour and deposition in meander bends.

Flow resistance has been evaluated using Einstein’s (1950) formula in the plane-bed
regime and Engelund–Hansen’s (1967) approach in the dune-covered bed; the basic
flow field was then obtained from (3.1 I), (3.9 I). We calculated the basic concentration
field by means of (3.18 I) having calculated the dimensional fall velocity W ∗

s using
(5.6 I).

Once the basic state was completely determined, we could then calculate the
perturbation of the flow field and finally the bottom topography. All the differential
systems were solved numerically using a Runge–Kutta scheme of fourth order while
quadratures were performed using Simpon’s rule. Figure 6(a, b) shows examples of
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Figure 6. (a) The real part and (b) the imaginary part of the vertical distribution of the lateral
component of velocity perturbation with vanishing depth average v0 is plotted at various instants.
(Values of the relevant parameters are β = 6, λ = 0.05, Rp = 4, θ̄0 = 0.6, ds = 2× 10−5.)

the real part and imaginary part of the vertical distributions of the centrifugally
induced lateral component of the perturbation velocity v0 for given values of the
relevant parameters β, Cf0, Rp, ds at various instants during the tidal cycle, namely at
the flood (t = 0) and ebb (t = π) peaks, as well as at t = π/8, t = π/4. The vertical
distribution of the topographic component of the perturbation of the lateral velocity
vm for (m = 1) is plotted in figure 7(a, b). As one may expect from the symmetry
of the problem it appears that the reversal of the basic tidal flow does not affect
the secondary flow. Therefore the solutions for v0 and vm (m = 1, 2, 3, . . .) satisfy the
condition

vm(Z, t) = ṽm(Z, t+ π) (m = 0, 1, 2, 3, . . .), (5.2)

where a tilde denotes the complex conjugate of a complex number. Note that for the
values of relevant parameters of figures 6(a, b), 7(a, b), 8(a, b), 9(a, b) the lateral
component of secondary flow attains peak values equal to 2.7νV0. Figure 8(a, b) show
the vertical distribution of the perturbation of the longitudinal velocity um for m = 1.
Note that, due to the symmetry of channel geometry, the reversal of the basic flow
leads to an antisymmetric pattern of the perturbation of the longitudinal velocity,
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Figure 7. (a) The real part and (b) the imaginary part of the vertical distribution of the topograph-
ically driven lateral component of velocity perturbation vm(m = 1) is plotted at various instants.
(The values of the relevant parameters are the same as in figure 6.)

hence

um(Z, t) = −ũm(Z, t+ π) (m = 1, 2, 3, . . .). (5.3)

Results for the vertical component of flow perturbation wm (m = 1) (figure 9a, b)
and for the perturbation of the sediment concentration C1 (figure 10b, c) display
characteristics similar to those found for the lateral component of velocity perturba-
tion. Note that, for the values of the relevant parameters of figure 10(b, c), C1 takes
values of the same order as C0 which is plotted in figure 10(a).

Having determined the perturbation of the flow field, we then proceeded to evaluate
the functions d̄(t) and dm(t) in order to obtain the pattern of bottom topography.
Figure 11 shows the patterns of deposition and scour for given values of the relevant
parameters at the positive (t = 0) and negative (t = π) peaks of the tidal cycle
(the arrow indicates the direction of the basic flow). Again note the symmetrical
position of the point bar–pool with respect to the bend apex, a result which provides
a check of consistency for the present analysis. The patterns of the dimensionless
velocity at the free surface (a) and of the dimensionless bed shear stress vector (b)
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Figure 8. (a) The real part and (b) the imaginary part of the vertical distribution of the longitudinal
flow perturbation um(m = 1) is plotted at various instants. (The values of the relevant parameters
are the same as in figure 6.)

are plotted in figure 12(a–c) at t = 0, π/8, π/4 respectively. As one may expect the
thread of high-velocity shifts from the inner to the outer bend due to the effect of
secondary flow, while the channel deepens towards the outer part of the bend. At the
same time the channel experiences higher bed shear stress at the outer bank close
to and downstream of the bend apex, thus indicating the tendency of the meander
to amplify and migrate downstream. Note that, at each cross-section the transverse
slope of the bottom is maintained through a balance, acting on bedload particles,
between the inward transverse component of the bed shear stress and the outward
downhill component of gravity. Such effects tend to weaken as the basic flow reversal
is approached. Due to the periodicity of the basic flow, the point bar–pool pattern
migrates alternately forward and backward in a symmetric fashion: in other words no
net bar migration in a tidal cycle occurs. During the cycle the instantaneous Shields
parameter varies from zero to some maximum value at the tidal peak. As the Shields
parameter θ increases, sediment is transported at first as bedload; for larger values
of θ suspension becomes an appreciable fraction of the total transport. At the same
time the bottom surface experiences the formation of dunes ascertained by using
van Rijn’s (1984) criterion, according to which dunes are present whenever the stage
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Figure 9. (a) The real part and (b) the imaginary part of the vertical distribution of the vertical
flow perturbation wm(m = 1) is plotted at various instants. (The values of the relevant parameters
are the same as in figure 6.)

parameter (θ′ − θc)/θc is lower than 25. The oscillatory character of both the position
and amplitude of the point bar emerges from figure 13(a) which shows the position
and intensity of the maximum dimensionless flow depth during a quarter of a tidal
cycle: ΨDmax denotes the phase of the location where the maximum dimensionless flow
depth Dmax occurs at the outer bank, measured relative to the bend apex. Note that
the location of the maximum scour oscillates in time with maximum displacement
(in half a cycle) of the order of a fraction of a radian, hence a small value relative
to meander wavelength. It appears that, as the intensity of the basic flow decreases,
the point bar migrates upstream, decreasing its amplitude. Approaching basic flow
reversal, the Shields parameter reaches some threshold value below which part of
the channel cross-section becomes inactive: in other words, close to the inner bend
the flow velocity can be so small that the Shields number falls below the threshold
value for sediment motion. The analysis of Seminara & Solari (1998) suggests that
the present approach fails when the mean Shields parameter is about 2–3 times θc,
which corresponds to the minimum Shields parameter for the occurrence of transport
throughout the whole of the cross-section. Note that overtides would not produce
any net migration of point bars. This is clearly shown in figure 13(b) where we have
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plotted the location of the maximum dimensionless flow depth referred to a basic state
characterized by the presence of a second harmonic, namely Ū0(t) = cos (t)+ 1

5
cos (2t).

The figure clearly shows that this location oscillates back and forth in a perfectly
symmetric fashion. The role of the suspension can be inferred from figure 14, which
shows the amplitude of the maximum flow depth at t = 0 as a function of particle
Reynolds number Rp, which controls the ratio of suspended to bedload (see the line
labelled qs0/Q0φb0). As has been shown by Seminara & Tubino (1986) in the fluvial
case, suspension leads both to downstream shifting and to increasing amplitude of
the point bar with respect to the case of vanishing suspended load, whereas flattening
of the point bar occurs for higher values of the above ratio.

6. The formation of tidal meanders: a ‘bend’ process?
The above solution for the flow and bed topography fields can be set at the basis

of a linear ‘bend’ instability theory of the type originally proposed by Ikeda et al.
(1981) and later developed by Blondeaux & Seminara (1985).

The bend instability theory is best formulated in terms of a planimetric evolution
equation of the meandering channel, a linear intrinsic form of which is readily

obtained. Let ζ̂ denote the lateral migration rate of the channel, scaled by the quantity
V0, i.e. by the flow velocity scale (see (2.2c I)). Furthermore let s be the curvilinear
coordinate which identifies the location at time t of the cross-section which was
located at s0 initially, the quantities s and t being dimensionless. The migration rate is
a function of s and t through its dependence on the spatial and temporal distributions
of the bank erosion rate. We will need to formulate some physically based closure

assumption in order to couple the evaluation of ζ̂ to knowledge of the flow field,
of bed topography and of the geological texture of the bank. Figure 15 shows that
the relative displacement of two neighbouring points on the channel axis, say s and
s+ds, in the infinitesimal time interval dt can be expressed in terms of the infinitesimal
temporal variation of the angle ϑ which the tangent to the channel axis forms with
some Cartesian direction x (say the valley axis). It is found that

∂ζ̂

∂s
dsdt =

(
∂ϑ

∂t

∣∣∣∣
s0

dt

)
ds. (6.1)

Strictly speaking, the time derivative is a Lagrangian derivative. However, in the
context of a linear stability theory, where deviations of the shape of the channel
axis from the straight configuration are assumed to remain small, we may safely
approximate the Lagrangian derivative by its Eulerian counterpart. Hence, the linear
form of the planimetric evolution equation of the channel is

∂ϑ

∂t
=
∂ζ̂

∂s
. (6.2)

The nonlinear version of (6.2) for the fluvial case is derived by Seminara et al. 2001
and has an integro-differential form. Meanders typically develop as a result of erosion
at concave banks and deposition at the convex banks. This is a highly complex
process which proceeds in an intermittent fashion: bank collapse may arise from
excess scour at the bank toe, the development of tension cracks, the effects of ground
water seepage and of vegetation, etc. However it has proved quite satisfactory (Ikeda
et al. 1981; Mosselman 1991; Hasegawa 1989) to model the long-term meander
development as a continuous process such that the lateral migration rate of the
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Figure 11. The pattern of the dimensionless flow depth is plotted at (a) the positive (t = 0) peak
of the tidal cycle and (b) the negative (t = π) peak of the tidal cycle. (The values of the relevant
parameters are the same as in figure 6 and ν = 0.03.)

channel is simply proportional, through some erodibility coefficient e (of the order of
10−7), to some measure of the perturbation of the flow field relative to the straight
configuration. We rule out any possible effect of laterally symmetric components
of the flow perturbations on the erosion rate, on the grounds that such symmetric
components would lead to channel widening producing no shift of the channel axis:
hence any appropriate measure of flow perturbation must be expressed in terms of
the difference between the value attained at the outer bank and the corresponding
value at the inner bank.
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Figure 12. The pattern of the dimensionless velocity at the free surface (left) and of the dimensionless
bed shear stress vector (right) is plotted at (a) the positive peak of the tidal cycle, (b) t = π/8 and
(c) t = π/4. (The values of the relevant parameters are the same as in figure 6, and ν = 0.03.)

We now assume that tidal meandering develops in a similar fashion as its fluvial
counterpart. This assumption is tentatively based on the analogy between the plani-
metric shapes of fluvial and tidal meanders but it does not rely on detailed field
observations and will require substantiation in the near future. However, it is instruc-
tive to analyse its implications. We propose a simple generalization of the erosion law
suggested by Ikeda et al. (1981), accounting for the three dimensional and unsteady
character of our flow field. In the context of the flow model employed by Ikeda et al.
(1981), which was depth averaged and steady, the erosion law was assumed to be

ζ̂ = eν(Ũ|n=+1 − Ũ|n=−1), (6.3)

with Ũ perturbation of the longitudinal component of the depth-averaged velocity. In
our case, we generalize (6.3) to account for the integrated effect of erosion throughout
a tidal cycle. Hence we write

ζ̂ = eν

[∫ 2π

0

(Iu|n=+1 −Iu|n=−1

)
dt

]
, (6.4)

where ζ̂ represents the average lateral migration rate in a tidal cycle, where Iu =∫ 1

Z0
udξ. Note that, in the context of a linear theory, different choices of the pertur-
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Figure 13. (a) Temporal variations of the position and intensity of the maximum dimensionless
flow depth during half a tidal cycle. (The values of the relevant parameters are the same as in
figure 6 and ν = 0.03.) (b) Temporal variations of the position and intensity of the maximum
dimensionless flow depth during half a tidal cycle in the case of a tidal velocity characterized by
the following temporal distribution: Ū0(t) = cos (t) + 1

5
cos (2t). (Values of the relevant parameters

are β = 5, λ = 0.1, Rp = 4, θ̄0 = 1.6, ds = 2 × 10−5, ν = 0.02.) The continuous line shows the

temporal distribution of the basic flow field |Ū0|, the dashed lines show the phase lag between the
cross-section where the maximum flow depth is located and the cross-section at the bend apex
(ΨDmax ), the bold continuous lines show the intensity of the maximum dimensionless flow depth
(Dmax).

bation quantity in (6.4) (say the perturbation of the bottom stress at the bank toe),
would not lead to any significant differences in the predictions of the bend stability
theory. We can then employ the solution derived in § 4 to transform the planimetric
evolution equation (6.2) with the closure assumption (6.4) into a linear amplitude
equation for meander evolution. Recalling (3.1), (3.2) and noting that higher har-
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Figure 15. Planimetric evolution: sketch and notations.

monics are not generated as a result of a linear planimetric development, we may
represent the instantaneous channel configuration as

ϑ = ϑ0(t) exp iλs+ c.c., (6.5)

where the function ϑ0(t) plays the role of a meander amplitude. Comparison between
this formulation and the definition (3.1) suggests that ϑ0 is an imaginary number,

hence it is convenient to set ϑ0 = iϑ̂0 with ϑ̂0 real function such that

ϑ̂0 = ν/λ. (6.6)

Recalling the expansion (4.14) and substituting from (6.4), (6.5) into the planimetric
evolution equation (6.2) and using (6.6) we end up with the following amplitude
equation:

∂ϑ̂0

∂t
= Gϑ̂0, (6.7)

where

G =

∫ 2π

0

Gidt, Gi = −2eλ2

( ∞∑
m=1

(−1)mIum

)
, (6.8)

Gi being the instantaneous growth rate.
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Not surprisingly, the amplitude equation (6.7) allows a simple exponential solution
with complex growth rate G, a result typical of any linear stability theory. Hence,
for given values of the width to depth ratio β, of the peak Shields parameter θ
and of the particle Reynolds number Rp, meanders grow for values of the meander
wavenumber λ such that the real part of the complex growth rate G is positive.
Furthermore the net migration rate of the meander pattern is proportional to the
imaginary part of G. The latter quantity is invariably found to vanish, confirming
the absence of any net migration of the meander pattern, which could be anticipated
on physical ground due to the absence of a preferential direction of the basic state.
Figure 16 shows the typical trend exhibited by the growth rate as a function of
meander wavenumber for given values of the relevant physical parameters. Such
a trend is similar to that found in the river case (see, for instance, Blondeaux &
Seminara 1985). It shows that initial perturbations with wavelength smaller than
some threshold value decay. Moreover a peak of growth rate occurs for the most
unstable wavenumber λm, depending on the flow and sediment parameters. Such peak
is reminiscent of the analogous peak discovered by Blondeaux & Seminara (1985) for
river meanders. This is not surprising as, in the context of the present formulation, the
response of tidal meanders simply arises from an integrated effect of the instantaneous
patterns associated with the oscillatory basic state. Hence the peak in the response is
associated with the occurrence, during the tidal cycle, of resonant or quasi-resonant
conditions in a similar fashion as found in the steady river case. Figure 17(a, b) shows
the behaviour of the instantaneous growth rate Gi during a quarter of a tidal cycle.
Each curve displays a maximum which may attain a large value, indicating that, for
given values of the pair λm, β, the instantaneous Shields number θ is such that quasi-
resonant conditions are typically approached. Resonance arises when curvature forces
the flow–bottom topography under conditions such that the system allows a natural
response in the form of non-amplifying and non-migrating bars with wavelength
equal or close to the meander wavelength (see Part 1). The occurrence of resonance
is displayed in figure 18 which shows that the topographically induced component of
flow depth has an infinite peak at some value of the width ratio. Figure 19 shows
the dependence of the most unstable wavenumber λm on the width to depth ratio β
for various values of the peak value of the Shields parameter θ̄0 and for given values
of Rp and ds. It appears that the wavenumber selected by the present planimetric
instability analysis ranges between 0.02 and 0.15, at least for peak values of the
Shields parameter greater than 0.6.

We cannot pursue a thoroughly satisfactory comparison between theory and ex-
perimental observations, as detailed measurements of the hydrodynamic and sedi-
mentologic characteristics of tidal meanders are not available. However, observations
reported in § 2 suggest that the selected dimensionless wavenumbers are about 0.2–0.4,
a range somewhat larger than that suggested by our figure 19, for typical values of
the relevant physical parameters. Though we do not claim that the mechanisms which
can possibly contribute to selecting the wavelengths of natural tidal meanders are
wholly covered by our simplified formulation, the above comparison does support
the idea that bend instability might be a mechanism leading to the formation of
tidal meanders. Note that tidal meandering differs from river meandering for several
reasons. One major feature is the oscillatory character of the basic state, which pre-
vents meander migration. Moreover, as discussed in Part 1, free bars also exhibit no
net migration in a tidal cycle. One might then argue that the planimetric instability
of initially straight tidal channels is naturally forced by initial, finite-amplitude per-
turbations, consisting of free stationary bars. In other words, unlike the river case,
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Figure 16. The real part of the complex growth rate of tidal meanders is plotted as a function of
meander wavenumber λ and for given values of the width ratio β. (Values of the relevant parameters
are θ̄0 = 1, ds = 2× 10−5, Rp = 4.)

where free bars are migrating features, in the tidal case planimetric instability might
not be a free instability but rather a process forced by the presence of stationary
perturbations of the flow field and bottom topography in the straight configuration.
This argument, however, has an intrinsic weak point: in fact, figure 19 shows that
the wavenumber λb selected by the free bar mechanism is much larger than λc, the
threshold value of meander wavenumber above which small-amplitude meandering
perturbations are stable. Hence, free bars pre-existing in the straight channel cannot
force the development of a meander pattern with their wavelength, as the latter do
not amplify.

On the other hand, we are aware of another interesting observation: tidal meanders
are typically more stable than river meanders. In other words their planimetric
evolution is much slower than that of their fluvial counterparts. This may be partly
due to the more cohesive character of channel banks, typically steeper than their fluvial
counterparts. Furthermore the actual rate of lateral migration of river meanders is
known to be controlled by the transport capacity of the stream, i.e. by its ability to
remove the sediment accumulated at the bank toe. This capacity is rather stronger in
the fluvial case, where the flow does not reverse, than in the tidal case. Furthermore,
in tidal channels, vegetation growing in the adjacent salt marshes plays a stabilizing
role which may alter the dynamics of tidal meanders.

The observation of tidal networks which have been stable for several decades (like
Barnstable (MA, USA), Petaluma (CA, USA) and Pagliaga (Venice, Italy)), suggests
the possibility that a process different from the type discussed in the present paper
may be responsible for the formation of tidal meanders. The basic mechanism one
may envisage can be simply described as follows: an initial incision cut in a purely
cohesive tidal flat widens progressively till it reaches some equilibrium width slowly
varying in the longitudinal direction. The widening process may be planimetrically
unstable leading to meandering of the channel axis. This process may embed the
meandering channel at some initial stage in the tidal network which may then be
progressively stabilized by the growth of vegetation. This mechanism, which will
have to be substantiated by an appropriate theoretical analysis, does not require
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of tidal meanders is plotted as a function of meander wavenumber λ for different values of the
width ratio β. (Values of the relevant parameters are θ̄0 = 1, ds = 2× 10−5, Rp = 4, β = 5.)

the assumption that the tidal stream has the ability to progressively shift the inner
convex banks through the deposition of sediment eroded from the outer (concave)
banks, a process known to occur in fluvial environments but not applicable to purely
cohesive environments. We are currently investigating the feasibility of these latter
ideas.

7. Concluding remarks
The field evidence reported in § 2 suggests that the process of formation of tidal

meanders displays a characteristic spatial scale in the range of about 10–15 channel
widths. It is important to appreciate that this scale is found to be fairly uniform in
channels whose width may change by two orders of magnitude. In other words the
mechanism of meandering initiation is definitely controlled by morphodynamic effects
acting at a scale of a few channel widths. This observation has motivated the present
attempt to interpret the above process on the basis of a planimetric instability theory
of the type established for fluvial meandering. The theoretical results discussed in
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the previous sections show that such a planimetric instability mechanism may indeed
operate and selects meander wavenumbers of the correct order of magnitude, though
somewhat smaller than those observed in nature.

Other simplifying assumptions adopted in the present work will require attention in
the near future. Having neglected the contribution proportional to σ0 in the bottom
evolution equation (3.17) we have essentially assumed ‘quasi-equilibrium’, i.e. we have
assumed that the bottom configuration adapts instantaneously to changes of the
flow field throughout the tidal cycle. However, from a more careful examination,
it turns out that this assumption is unduly severe and can be readily removed, as
shown by Solari & Toffolon (2001). They have shown that, starting from an initial
configuration characterized by a flat bed with a uniform flow depth along the channel,
the system reaches an equilibrium topographic pattern such that throughout a tidal
cycle the bottom displays relatively low-amplitude oscillations around a mean level
which no longer changes in time. It is found that the system attains ‘quasi-equilibrium’
conditions only when two limiting cases are approached, namely when the tidal wave
is so ‘long’ that the system is able to adapt instantaneously to the changing flow
configuration or when transport in suspension is extremely ‘strong’.

Furthermore, channel convergence may appreciably affect the structure of point
bars induced by channel curvature. Also, sediments are often cohesive in the inner
portion of tidal channels, a feature which has been ignored in the present analysis.
Tidal flats adjacent to the main channel, besides producing a storage effect which
controls the adjustment of channel width, may also affect the structure of point bars
through their influence on the hydrodynamics of channel flow. The present theory
is linear, in that perturbations induced by channel curvature are taken to be small
enough. As meanders develop, both geometric and flow nonlinearities may become
important, as well as nonlinear interactions between the free bars discussed in Part
1 and point bars analysed in the present paper. The inclusion of nonlinear effects
will also allow an investigation of the important question of the occurrence of a
net sediment flux driven by the presence of bars. A further source of nonlinearity
arises in macrotidal environments whenever the amplitude parameter ε (see (2.1a
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I)) attains finite values. Under these conditions the topographic pattern driven by
channel curvature displays a strong asymmetry

Detailed field observations of flow and bed topography in natural channels and
of the role of vegetation in controlling the process of bank erosion are essential to
further substantiate the present work. Progress in understanding the morphodynamics
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of curved tidal channels will also benefit from detailed experimental observations
performed in the laboratory. Finally, the approach employed in the present paper
relies on a ‘cohesionless mechanism’ of channel shift similar to that known to be
characteristic of fluvial environments. An alternative ‘cohesive mechanism’ appears
to be possible and likely to be responsible for the formation of tidal meanders, as
discussed at the end of the previous section.

The present work has been cofunded by the Italian Ministry of Scientific Research,
the University of Genova and the University of Padova, under the program “Morfo-
dinamica Fluviale e Costiera” (Cofin ’97). The theoretical investigation discussed in
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the supervision of the second author at the University of Genova. Short preliminary
versions of this paper were presented at the European Geophysical Society XXIV
General Assembly, The Hague, 19–23 April 1999 and at the ‘River, Coastal and
Estuarine Morphodynamics’ IAHR Symposium, Genova, 6–10 September, 1999.

Appendix. Linearization of the eddy viscosity coefficient
From (2.15 I) we have

νT = u∗DN(Z), (A 1)

hence, expanding u∗ and D in powers of ν according to (4.2):

νT = νT0

[
1 + ν

(
d+

u∗1
u∗0

)
+ O(ν2)

]
. (A 2)

An expression for u∗1/u∗0 is readily obtained from the definition

u2
∗ =

T ∗zs|z∗0
ρV 2

0Cf0

, (A 3)

where the contribution of T ∗zn|z∗0 is ignored, being of order ν2. From (A 3) we find

u2
∗ =

ν∗T (∂U∗/∂z∗)|z∗0
V 2

0Cf0

= νT
∂U

∂z

∣∣∣∣
z0

=
νT

D

∂U

∂Z

∣∣∣∣
Z0

. (A 4)

Hence, expanding both sides of equation (A 4) in powers of ν yields

u2
∗0

(
1 + 2ν

u∗1
u∗0

+ O(ν2)

)
= νT0

(
1 + ν

νT1

νT0

+ O(ν2)

)
(1− νd+ O(ν2))

(
∂U0

∂Z

∣∣∣∣
Z0

+ ν
∂u

∂Z

∣∣∣∣
Z0

+ O(ν2)

)
. (A 5)

Using (A 2) to express νT1/νT0 in (A 5) and equating terms of various orders in ν we
finally find

O(ν0) : u2
∗0 = νT0

∂U0

∂Z

∣∣∣∣
Z0

, (A 6)

O(ν1) :
u∗1
u∗0

=
∂u/∂Z |Z0

∂U0/∂Z |Z0

. (A 7)

Substituting from (A 7) into (A 2) we finally recover equation (4.8).
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