G. Ottaviani Nagoya Math. J. Vol. 193 (2009), 95–110

AN INVARIANT REGARDING WARING'S PROBLEM FOR CUBIC POLYNOMIALS

GIORGIO OTTAVIANI

to the memory of Michael Schneider, ten years after

Abstract. We compute the equation of the 7-secant variety to the Veronese variety $(\mathbf{P}^4, \mathcal{O}(3))$, its degree is 15. This is the last missing invariant in the Alexander-Hirschowitz classification. It gives the condition to express a homogeneous cubic polynomial in 5 variables as the sum of 7 cubes (Waring problem). The interesting side in the construction is that it comes from the determinant of a matrix of order 45 with linear entries, which is a cube. The same technique allows to express the classical Aronhold invariant of plane cubics as a pfaffian.

§1. Introduction

We work over an algebraically closed field K of characteristic zero. The Veronese variety, given by \mathbf{P}^n embedded with the linear system $|\mathcal{O}(d)|$, lives in \mathbf{P}^N where $N = \begin{pmatrix} n+d \\ d \end{pmatrix}$ $\binom{+d}{d}$ – 1. It parametrizes the homogeneous polynomials f of degree d in $n+1$ variables which are the power of a linear form g, that is $f = g^d$.

Let $\sigma_s(\mathbf{P}^n, \mathcal{O}(d))$ be the s-secant variety of the Veronese variety, that is the Zariski closure of the variety of polynomials f which are the sum of the powers of s linear forms g_i , i.e. $f = \sum_{i=1}^s g_i^d$. In particular $\sigma_1(\mathbf{P}^n, \mathcal{O}(d))$ $(\mathbf{P}^n, \mathcal{O}(d))$ is the Veronese variety itself and $\sigma_2(\mathbf{P}^n, \mathcal{O}(d))$ is the usual secant variety. For generalities about the Waring's problem for polynomials see [IK] or [RS].

Our starting point is the theorem of Alexander and Hirschowitz (see [AH] or [BO] for a survey, including a self-contained proof) which states that the codimension of $\sigma_s(\mathbf{P}^n, \mathcal{O}(d)) \subseteq \mathbf{P}^N$ is the expected one, that is $\max\{N+1-(n+1)s,0\}$, with the only exceptions

(i) $\sigma_k(\mathbf{P}^n, \mathcal{O}(2)), 2 \leq k \leq n$

Received December 18, 2007.

Accepted May 7, 2008.

²⁰⁰⁰ Mathematics Subject Classification: 15A72, 14L35, 14M12, 14M20.

(ii) $\sigma_{\frac{1}{2}n(n+3)}(\mathbf{P}^n, \mathcal{O}(4)), n = 2, 3, 4$ (iii) $\sigma_7(\mathbf{P}^4, \mathcal{O}(3))$

The case (i) corresponds to the matrices of rank $\leq k$ in the variety of symmetric matrices of order $n + 1$. In the cases (ii) and (iii) the expected codimension is zero, while the codimension is one. Hence the equation of the hypersurface $\sigma_s(\mathbf{P}^n, \mathcal{O}(d))$ in these cases is an interesting $SL(n +$ 1)-invariant. In the cases (ii) it is the catalecticant invariant, that was computed by Clebsch in the 19th century, its degree is $\binom{n+2}{2}$ $\binom{+2}{2}$.

The main result of this paper is the computation of the equation of $\sigma_7(\mathbf{P}^4, \mathcal{O}(3))$. This was left as an open problem in [IK, Chap. 2, Rem. 2.4].

We consider a vector space V . For any nonincreasing sequence of positive integers $\alpha = (\alpha_1, \alpha_2, \dots)$ it is defined the Schur module $\Gamma^{\alpha}V$, which is an irreducible $SL(V)$ -module (see [FH]). For $\alpha = (p)$ we get the p-th symmetric power of V and for $\alpha = (1, \ldots, 1)$ (p times) we get the p-th alternating power of V. The module $\Gamma^{\alpha}V$ is visualized as a Young diagram containing α_i boxes in the *i*-th row. In particular if dim $V = 5$ then $\Gamma^{2,2,1,1}V$ and its dual $\Gamma^{2,1,1}V$ have both dimension 45.

Our main result is the following

THEOREM 1.1. Let V be a vector space of dimension 5. For any $\phi \in$ S^3V , let $B_{\phi} \colon \Gamma^{2,2,1,1}V \to \Gamma^{2,1,1}V$ be the $SL(V)$ -invariant contraction operator. Then there is an irreducible homogeneous polynomial P of degree 15 on S ³V such that

$$
2P(\phi)^3 = \det B_{\phi}
$$

The polynomial P is the equation of $\sigma_7(\mathbf{P}(V), \mathcal{O}(3))$.

The coefficient 2 is needed because we want the invariant polynomials to be defined over the rational numbers. The picture in terms of Young diagrams is

This picture means that $\Gamma^{2,1,1}V$ is a direct summand of the tensor product $\Gamma^{2,2,1,1}V\otimes S^3V$, according to the Littlewood-Richardson rule ([FH]).

The polynomial P gives the necessary condition to express a cubic homogeneous polynomial in five variables as a sum of seven cubes. We prove in Lemma 3.2 that if ϕ is decomposable then $rk(B_{\phi})=6$. The geometrical explanation that $\sigma_7(\mathbf{P}^4, \mathcal{O}(3))$ is an exceptional case is related to the fact that given seven points in \mathbf{P}^4 there is a unique rational normal curve through them, and it was discovered independently by Richmond and Palatini in 1902, see [CH] for a modern reference. Our approach gives a different (algebraic) proof of the fact that $\sigma_7(\mathbf{P}^4, \mathcal{O}(3))$ is an exceptional case. Another argument, by using syzygies, is in [RS]. B. Reichstein found in [Re] an algorithm to check when a cubic homogeneous polynomial in five variables is the sum of seven cubes, see the Remark 3.4.

The resulting table of the Alexander-Hirschowitz classification is the following

The degree of $\sigma_k(\mathbf{P}^n, \mathcal{O}(2))$ was computed by C. Segre, it is equal to $\prod_{i=0}^{n-k} \binom{n+1+i}{n+1-k}$ $n+1+i \choose n+1-k-i}/\binom{2i+1}{i}$ $\binom{+1}{i}$. We will use in the proof of Theorem 1.1 the fact that $\sigma_{k-1}(\mathbf{P}^n, \mathcal{O}(2))$ is the singular locus of $\sigma_k(\mathbf{P}^n, \mathcal{O}(2))$ for $k \leq n$.

A general cubic polynomial in five variables can be expressed as a sum of eight cubes in ∞^5 ways, parametrized by a Fano 5-fold of index one (see [RS]). A cubic polynomial in five variables which can be expressed as a sum of seven cubes was called degenerate in [RS], hence what we have found is the locus of degenerate cubics. A degenerate cubic in five variables can be expressed as a sum of seven cubes in ∞^1 ways, parametrized by \mathbf{P}^1 (see [RS, 4.2]).

To explain our technique, we consider the Aronhold invariant of plane cubics.

The Aronhold invariant is the degree 4 equation of $\sigma_3(\mathbf{P}^2, \mathcal{O}(3))$, which can be seen as the $SL(3)$ -orbit of the Fermat cubic $x_0^3 + x_1^3 + x_2^3$ (sum of three cubes), see [St, Prop. 4.4.7] or [DK, (5.13.1)].

Let W be a vector space of dimension 3. In particular $\Gamma^{2,1}W = \text{ad }W$ is self-dual and it has dimension 8. We get

98 G. OTTAVIANI

THEOREM 1.2. For any $\phi \in S^3W$, let $A_{\phi} \colon \Gamma^{2,1}W \to \Gamma^{2,1}W$ be the $SL(V)$ -invariant contraction operator. Then A_{ϕ} is skew-symmetric and the pfaffian Pf A_{ϕ} is the equation of $\sigma_3(\mathbf{P}(W), \mathcal{O}(3))$, i.e. it is the Aronhold invariant.

The corresponding picture is

The Aronhold invariant gives the necessary condition to express a cubic homogeneous polynomial in three variables as a sum of three cubes. The explicit expression of the Aronhold invariant is known since the 19th century, but we have not found in the literature its representation as a pfaffian. In the Remark 2.3 we apply this representation to the Scorza map between plane quartics.

In Section 2 we give the proof of Theorem 1.2. This is introductory to Theorem 1.1, which is proved in Section 3. In Section 4 we review, for completeness, some known facts about the catalecticant invariant of quartic hypersurfaces.

We are indebted to S. Sullivant, for his beautiful lectures at Nordfjordeid in 2006 about [SS], where a representation of the Aronhold invariant is found with combinatorial techniques.

§2. The Aronhold invariant as a pfaffian

Let e_0 , e_1 , e_2 be a basis of W and fix the orientation $\bigwedge^3 W \simeq K$ given by $e_0 \wedge e_1 \wedge e_2$. We have End $W = ad W \oplus K$. The $SL(W)$ -module ad $W = \Gamma^{2,1}(W)$ consists of the subspace of endomorphisms of W with zero trace. We may interpret the contraction

$$
A_{\phi} \colon \Gamma^{2,1}W \longrightarrow \Gamma^{2,1}W
$$

as the restriction of a linear map A'_{ϕ} : End $W \to \text{End } W$, which is defined for $\phi = e_{i_1} e_{i_2} e_{i_3}$ as

$$
A'_{e_{i_1}e_{i_2}e_{i_3}}(M)(w) = \sum_{\sigma} (M(e_{i_{\sigma(1)}}) \wedge e_{i_{\sigma(2)}} \wedge w)e_{i_{\sigma(3)}}
$$

where $M \in \text{End } W$, $w \in W$ and σ covers the symmetric group Σ_3 .

Then A'_{ϕ} is defined for a general ϕ by linearity, and it follows from the definition that it is $SL(V)$ -invariant.

The Killing scalar product on End W is defined by $tr(M \cdot N)$.

LEMMA 2.1. (i) $\text{Im}(A'_{\phi}) \subseteq \text{ad } W \quad K \subseteq \text{Ker}(A'_{\phi})$ (ii) A'_ϕ is skew-symmetric.

Proof. (i) follows from

$$
\text{tr}\Big[A_{e_{i_1}e_{i_2}e_{i_3}}(M)\Big] = \sum_s A_{e_{i_1}e_{i_2}e_{i_3}}(M)(e_s)e_s^{\vee}
$$

$$
= \sum_{\sigma} (M(e_{i_{\sigma(1)}}) \wedge e_{i_{\sigma(2)}} \wedge e_{i_{\sigma(3)}}) = 0
$$

The second inclusion is evident. To prove (ii), we have to check that

$$
\operatorname{tr}(A_{\phi}(M) \cdot N) = -\operatorname{tr}(A_{\phi}(N) \cdot M)
$$

for $M, N \in \text{End } W$. Indeed let $\phi = e_{i_1} e_{i_2} e_{i_3}$. We get

$$
\text{tr}(A_{e_{i_1}e_{i_2}e_{i_3}}(M) \cdot N) = \sum_{s} A_{e_{i_1}e_{i_2}e_{i_3}}(M)(N(e_s))e_s^{\vee}
$$

$$
= \sum_{\sigma} M(e_{i_{\sigma(1)}}) \wedge e_{i_{\sigma(2)}} \wedge N(e_{i_{\sigma(3)}})
$$

which is alternating in M and N, where we denoted by e_i^{\vee} the dual basis.

It follows from Lemma 2.1 that the restriction

$$
A'_{\phi|{\rm ad}\, W}\colon\thinspace\mathrm{ad}\, W\longrightarrow\mathrm{ad}\, W
$$

coincides, up to scalar multiple, with the contraction operator A_{ϕ} of Theorem 1.2 and it is skew-symmetric.

```
LEMMA 2.2. Let \phi = w^3 with w \in W. Then \text{rk } A_{\phi} = 2. More precisely
           \text{Im}\,A_{w^3} = \{M \in \text{ad}\,W \mid \text{Im}\,M \subseteq \langle w \rangle\}Ker A_{w3} = \{M \in \text{ad } W \mid w \text{ is an eigenvector of } M\}
```
Proof. The statement follows from the equality

$$
A_{w^3}(M)(v) = 6(M(w) \wedge w \wedge v)w
$$

As an example, note that $\text{Im } A_{e_0^3} = \langle e_0 \otimes e_1^{\vee}, e_0 \otimes e_2^{\vee} \rangle$ and $\text{Ker } A_{e_0^3}$ is spanned by all the basis monomials, with the exception of $e_0^{\vee} \otimes e_1$ and $e_0^{\vee} \otimes e_2$. Due to the $SL(W)$ -invariance, this example proves the general case.

Proof of Theorem 1.2. Let $\phi \in \sigma_3(\mathbf{P}(W), \mathcal{O}(3))$. By the definition of higher secant variety, ϕ is in the closure of elements which can be written as $\phi_1 + \phi_2 + \phi_3$ with $\phi_i \in (\mathbf{P}(W), \mathcal{O}(3))$. From Lemma 2.2 it follows that

$$
\operatorname{rk} A_{\phi} \le \operatorname{rk} A_{\sum_{i=1}^{3} \phi_i} = \operatorname{rk} \sum_{i=1}^{3} A_{\phi_i} \le \sum_{i=1}^{3} \operatorname{rk} A_{\phi_i} = 2 \cdot 3 = 6
$$

Hence $Pf(A_{\phi})$ has to vanish on $\sigma_3(\mathbf{P}(W), \mathcal{O}(3)).$

Write a cubic polynomial as

$$
\phi = v_{000}x_0^3 + 3v_{001}x_0^2x_1 + 3v_{002}x_0^2x_2 + 3v_{011}x_0x_1^2 + 6v_{012}x_0x_1x_2
$$

+
$$
3v_{022}x_0x_2^2 + v_{111}x_1^3 + 3v_{112}x_1^2x_2 + 3v_{122}x_1x_2^2 + v_{222}x_2^3
$$

We order the monomial basis of $\bigwedge^2 W \otimes W$ with the lexicographical order in the following way:

$$
(w_0 \wedge w_1)w_0, (w_0 \wedge w_1)w_1, (w_0 \wedge w_1)w_2,(w_0 \wedge w_2)w_0, (w_0 \wedge w_2)w_1, (w_0 \wedge w_2)w_2,(w_1 \wedge w_2)w_0, (w_1 \wedge w_2)w_1, (w_1 \wedge w_2)w_2
$$

Call M_i for $i = 1, ..., 9$ this basis. The matrix of A'_{ϕ} , with respect to this basis, has at the entry (i, j) the value $A'_{\phi}(M_j)(M_i)$ and it is the following

Deleting one of the columns corresponding to $(w_0 \wedge w_1)w_2, (w_0 \wedge w_2)w_1$ or $(w_1 \wedge w_2)w_0$ (respectively the 3rd, the 5th and the 7th, indeed their alternating sum gives the trace), and the corresponding row, we get a skewsymmetric matrix of order 8 which is the matrix of A_{ϕ} . To conclude the proof, it is enough to check that the pfaffian is nonzero. This can be easily checked on the point corresponding to $\phi = x_0 x_1 x_2$, that is when $v_{012} = 1$ and all the other coordinates are equal to zero. This means that any triangle is not in the closure of the Fermat curve. we conclude that $Pf(A_{\phi})$ is the Aronhold invariant. We verified that it coincides, up to a constant, with the expression given in [St, Prop. 4.4.7] or in $[DK, (5.13.1)].$ I

The vanishing of the Aronhold invariant gives the necessary and sufficient condition to express a cubic polynomial in three variables as the sum of three cubes.

Remark. A'_ϕ can be thought as a map

$$
A'_{\phi} \colon \bigwedge^2 W \otimes W \longrightarrow \bigwedge^2 W^{\vee} \otimes W^{\vee}
$$

For $\phi = w^3$ we have the formula

$$
A'_{\phi}(\omega \otimes v)(\omega' \otimes v') = (\omega \wedge w) \otimes (v \wedge w \wedge v') \otimes (\omega' \wedge w)
$$

This is important for the understanding of the next section.

Remark. We have the decomposition

$$
\bigwedge^2(\Gamma^{2,1}W) = S^3W \oplus \Gamma^{2,2,2}W \oplus \text{ad }W
$$

and it is a nice exercise to show the behaviour of the three summands. For the first one

$$
S^3W \cap \left\{ M \in {\textstyle\bigwedge}^2(\Gamma^{2,1}W) \mid \mathrm{rk}(M) \le 2k \right\}
$$

is the cone over $\sigma_k(\mathbf{P}(W), \mathcal{O}(3))$, so that we have found the explicit equations for all the higher secant varieties to $(\mathbf{P}(W), \mathcal{O}(3))$. The secant variety $\sigma_2(\mathbf{P}(W), \mathcal{O}(3))$ is the closure of the orbit of plane cubics consisting of three concurrent lines, and its equations are the 6×6 subpfaffians of A_{ϕ} . It has degree 15. There is a dual description for $\Gamma^{2,2,2}W$.

For the third summand, we have that

$$
ad W \subseteq \left\{ M \in \bigwedge^2(\Gamma^{2,1}W) \mid \text{rk}(M) \le 6 \right\}
$$

Indeed any $M \in \text{ad } W$ induces the skew-symmetric morphism

$$
[M, -]
$$

whose kernel contains M. Moreover

$$
ad W \cap \left\{ M \in \text{A}^2(\Gamma^{2,1}W) \mid \text{rk}(M) \le 4 \right\}
$$

is the 5-dimensional affine cone consisting of endomorphisms $M \in \text{ad } W$ such that their minimal polynomial has degree ≤ 2 .

Remark 2.3. We recall from [DK] the definition of the Scorza map. Let A be the Aronhold invariant. For any plane quartic F and any point $x \in \mathbf{P}(W)$ we consider the polar cubic $P_x(F)$. Then $A(P_x(F))$ is a quartic in the variable x which we denote by $S(F)$. The rational map $S: \mathbf{P}(S^4W) \dashrightarrow$ $P(S^4W)$ is called the Scorza map. Our description of the Aronhold invariant shows that $S(F)$ is defined as the degeneracy locus of a skew-symmetric morphism on $\mathbf{P}(W)$

$$
\mathcal{O}(-2)^8 \xrightarrow{f} \mathcal{O}(-1)^8
$$

It is easy to check (see [Be]) that Coker $f = E$ is a rank two vector bundle over $S(F)$ such that $c_1(E) = K_{S(F)}$. Likely from E it is possible to recover the even theta-characteristic θ on $S(F)$ defined in [DK, (7.7)]. The natural guess is that

$$
h^0(E \otimes (-\theta)) > 0
$$

for a unique even θ , but we do not know if this is true.

§3. The invariant for cubic polynomials in five variables

Let now e_0, \ldots, e_4 be a basis of V, no confusion will arise with the notations of the previous section. We fix the orientation $\bigwedge^5 V \simeq K$ given by $e_0 \wedge e_1 \wedge e_2 \wedge e_3 \wedge e_4$. We construct, for $\phi \in S^3V$, the contraction operator

$$
B'_{\phi} \colon \bigwedge^4 V \otimes \bigwedge^2 V \longrightarrow \bigwedge^4 V^{\vee} \otimes \bigwedge^2 V^{\vee} \simeq \bigwedge^3 V \otimes V
$$

If $\phi = e_{i_1} e_{i_2} e_{i_3}$, the definition is

$$
B'_{\phi}(v_a \wedge v_b \wedge v_c \wedge v_d) \otimes (v_e \wedge v_f)
$$

=
$$
\sum_{\sigma} (v_a \wedge v_b \wedge v_c \wedge v_d \wedge e_{i_{\sigma(1)}}) \otimes (v_e \wedge v_f \wedge e_{i_{\sigma(2)}}) \otimes e_{i_{\sigma(3)}}
$$

where σ covers the symmetric group Σ_3 and we extend this definition, to a general ϕ , by linearity.

We may interpret B'_{ϕ} as a morphism

$$
B'_{\phi} \colon \operatorname{Hom}(V, \bigwedge^2 V) \longrightarrow \operatorname{Hom}(\bigwedge^2 V, V)
$$

If $\phi = e_{i_1} e_{i_2} e_{i_3}$ and $M \in Hom(V, \bigwedge^2 V)$ we have

$$
B'_{e_{i_1}e_{i_2}e_{i_3}}(M)(v_1\wedge v_2)=\sum_{\sigma}(M(e_{i_{\sigma(1)}})\wedge e_{i_{\sigma(2)}}\wedge v_1\wedge v_2)e_{i_{\sigma(3)}}
$$

We have a $SL(V)$ -decomposition

$$
\bigwedge^4 V \otimes \bigwedge^2 V = \Gamma^{2,2,1,1} V \oplus V
$$

Consider the contraction $c \colon \bigwedge^4 V \otimes \bigwedge^2 V \to V$ defined by

$$
c(\omega \otimes (v_i \wedge v_j)) = (\omega \wedge v_i)v_j - (\omega \wedge v_j)v_i
$$

Then the subspace $\Gamma^{2,2,1,1}V$ can be identified with

$$
\left\{M \in \bigwedge^4 V \otimes \bigwedge^2 V \mid c(M) = 0\right\}
$$

or with

$$
\left\{M \in Hom(V, \bigwedge^2 V) \mid \sum e_i^{\vee} M(e_i) = 0\right\}
$$

The subspace $V \subset Hom(V, \bigwedge^2 V)$ can be identified with $\{v \land - \mid v \in V\}.$ At the same time we have a $SL(V)$ -decomposition

$$
V \otimes \bigwedge^3 V = \Gamma^{2,1,1} V \oplus \bigwedge^4 V
$$

and the obvious contraction $d: V \otimes \bigwedge^3 V \to \bigwedge^4 V$. The subspace $\Gamma^{2,1,1}V$ can be identified with

$$
\left\{N \in V \otimes \bigwedge^3 V \mid d(N) = 0\right\}
$$

LEMMA 3.1. (i) $\text{Im}(B'_{\phi}) \subseteq \Gamma^{2,1,1}V \quad V \subseteq \text{Ker}(B'_{\phi})$ (ii) B'_ϕ is symmetric.

Proof. The statement (i) follows from the formula

$$
d\left(B'_{e_{i_1}e_{i_2}e_{i_3}}(v_a \wedge v_b \wedge v_c \wedge v_d) \otimes (v_e \wedge v_f)\right)
$$

=
$$
\sum_{\sigma} \left(v_a \wedge v_b \wedge v_c \wedge v_d \wedge e_{i_{\sigma(1)}}\right) \otimes \left(v_e \wedge v_f \wedge e_{i_{\sigma(2)}} \wedge e_{i_{\sigma(3)}}\right) = 0
$$

In order to prove the second inclusion, for any $v \in V$ consider the induced morphism $M_v(w) = v \wedge w$. We get

$$
B'_{e_{i_1}e_{i_2}e_{i_3}}(M_v)(v_1 \wedge v_2) = \sum_{\sigma} \Big(v \wedge e_{i_{\sigma(1)}} \wedge e_{i_{\sigma(2)}} \wedge v_1 \wedge v_2 \Big) e_{i_{\sigma(3)}} = 0
$$

In order to prove (ii) we may assume $\phi = v^3$. We need to prove that

$$
B'_{v^{3}}(\omega\otimes\xi)(\omega'\otimes\xi')=B'_{v^{3}}(\omega'\otimes\xi')(\omega\otimes\xi)
$$

for every $\omega, \omega' \in \bigwedge^4 V$ and $\xi, \xi' \in \bigwedge^2 V$. Indeed

$$
B'_{v^{3}}(\omega \otimes \xi)(\omega' \otimes \xi') = (\omega \wedge v) \otimes (\xi \wedge v \wedge \xi') \otimes (v \wedge \omega')
$$

П

which is symmetric in the pair (ω, ξ) .

It follows from Lemma 3.1 that the restriction $B'_{\phi|{\Gamma}^{2,2,1,1}}: {\Gamma}^{2,2,1,1} \to$ $\Gamma^{2,1,1}V$ coincides, up to scalar multiple, with the contraction B_{ϕ} of the Theorem 1.1 and it is symmetric. Note that

$$
Ker(B_{\phi}) = Ker(B_{\phi}')/V \quad \text{Im}(B_{\phi}) = \text{Im}(B_{\phi}')
$$

LEMMA 3.2. Let $\phi = v^3$ with $v \in V$. Then $\text{rk } B_{\phi} = 6$. More precisely

$$
\operatorname{Im} B_{v^3} = \left\{ N \in Hom(\bigwedge^2 V, V) \mid \sum e_i^{\vee} N(e_i \wedge v) = 0, \right\}
$$

\n
$$
\forall v \in V, \ Im(N) \subseteq \langle v \rangle \right\}
$$

\n
$$
\operatorname{Ker} B_{v^3} = \left\{ M \in Hom(V, \bigwedge^2 V) \mid \sum e_i^{\vee} M(e_i) = 0, \ M(v) \subseteq v \wedge V \right\}
$$

Proof. The statement follows from the equality

$$
B_{v^3}(M)(v_1 \wedge v_2) = 6(M(v) \wedge v \wedge v_1 \wedge v_2)v
$$

As an example, a basis of $\text{Im } B_{e_0^3}$ is given by $e_0 \otimes (e_i^{\vee} \wedge e_j^{\vee})$ for $1 \leq i <$ $j \leq 4$ and a basis of Ker $B_{e_0^3}$ is given by all the basis monomials with the exceptions of $e_0^{\vee} \otimes (e_i \wedge e_j)$ for $1 \leq i < j \leq 4$. Due to the $SL(V)$ -invariance, this example proves the general case. \Box We write $\phi \in S^3V$ as $\phi = v_{000}x_0^3 + 3v_{001}x_0^2x_1 + \cdots + v_{444}x_4^3$.

LEMMA 3.3. Every $SL(V)$ -invariant homogeneous polynomial of degree 15 on S^3V which contains the monomial

$$
v^2_{000}v^3_{012}v_{111}v^3_{223}v^3_{334}v^3_{144} \\
$$

is irreducible.

Proof. Let t_0, \ldots, t_4 be the canonical basis of \mathbb{Z}^5 . We denote by t_i + $t_j + t_k$ the weight of the monomial v_{ijk} , according to [St]. For example the weight of v_{000} is $(3,0,0,0,0)$. We denote the first component of the weight as the x_0 -weight, the second component as the x_1 -weight, and so on. We recall that every $SL(V)$ -invariant polynomial is isobaric, precisely every monomial of a $SL(V)$ -invariant polynomial of degree 5k has weight $(3k, 3k, 3k, 3k, 3k)$ (see [St, $(4.4.14)$]), this follows from the invariance with respect to the diagonal torus. We claim that there is no isobaric monomial of weight $(6, 6, 6, 6, 6)$ and degree 10 with variables among v_{000} , v_{012} , v_{111} , v_{223} , $v_{334}, v_{144}.$ We divide into the following cases, by looking at the possibilities for the x_0 -weight:

- i) The monomial contains v_{000}^2 and does not contain v_{012} . By looking at the x_2 -weight, the monomial has to contain v_{223}^3 , which gives contribution 3 to the x_3 -weight. This gives a contradiction, because from v_{334} the possible values for the x_3 -weight are even, and we never make 6.
- ii) The monomial contains $v_{000}v_{012}^3$ and not higher powers. This monomial gives contribution 3 to the x_2 -weight. From v_{223} the possible values for the x_2 -weight are even, and we never make 6, again.
- iii) The monomial contains v_{012}^6 and does not contain v_{000} . This monomial gives contribution 6 to the x_0 -weight, and the same contribution is given to the x_1 -weight and to the x_2 -weight. Hence the only other possible monomial that we are allowed to use is v_{334} , which gives a x_3 weight doubled with respect to the x_4 -weight, which is a contradiction.

This contradiction proves our claim. Nevertheless, if our polynomial is reducible, also its factors have to be homogeneous and $SL(V)$ -invariant, and the monomial in the statement should split into two factors of degree П 5 and 10, against the claim.

Proof of Theorem 1.1. Let $\phi \in \sigma_7(\mathbf{P}(V), \mathcal{O}(3))$. By the definition of higher secant variety, ϕ is in the closure of elements which can be written as $\sum_{i=1}^{7} \phi_i$ with $\phi_i \in (\mathbf{P}(V), \mathcal{O}(3))$. From Lemma 3.2 it follows that

$$
\operatorname{rk} B_{\phi} \leq \operatorname{rk} B_{\sum_{i=1}^{7} \phi_i} = \operatorname{rk} \sum_{i=1}^{7} B_{\phi_i} \leq \sum_{i=1}^{7} \operatorname{rk} B_{\phi_i} = 6 \cdot 7 = 42
$$

Hence $\det(B_{\phi})$ has to vanish on $\sigma_7(\mathbf{P}(V), \mathcal{O}(3)).$

We order the monomial basis of S^3V with the lexicographical ordered induced by $x_0 < x_1 < x_2 < x_3 < x_4$. We order also the basis of $\bigwedge^2 V \otimes \bigwedge^4 V$ with the lexicographical order. There are 50 terms, beginning with

$$
(e_0 \wedge e_1) \otimes (e_0 \wedge e_1 \wedge e_2 \wedge e_3), (e_0 \wedge e_1) \otimes (e_0 \wedge e_1 \wedge e_2 \wedge e_4), \ldots
$$

and ending with

$$
\ldots, (e_3 \wedge e_4) \otimes (e_1 \wedge e_2 \wedge e_3 \wedge e_4)
$$

These 50 terms are divided into 10 blocks, depending on the first factor $e_s \wedge e_t$. The matrix of B'_{ϕ} , with respect to this basis, is a 50×50 symmetric matrix with linear monomial entries from v_{ijk} .

We describe this matrix in block form. For $i = 0, \ldots, 4$ let A_i be the 5×5 symmetric matrix which at the entry $(5 - s, 5 - t)$ has $(-1)^{s+t}v_{ist}$, corresponding to the monomial $x_i x_s x_t$. For example

$$
A_4 = \begin{bmatrix} v_{444} & -v_{344} & v_{244} & -v_{144} & v_{044} \\ -v_{344} & v_{334} & -v_{234} & v_{134} & -v_{034} \\ v_{244} & -v_{234} & v_{224} & -v_{124} & v_{024} \\ -v_{144} & v_{134} & -v_{124} & v_{114} & -v_{014} \\ v_{044} & -v_{034} & v_{024} & -v_{014} & v_{004} \end{bmatrix}
$$

Then the matrix of B'_{ϕ} has the following block form

$$
\begin{bmatrix}\n & A_4 & -A_3 & A_2 \\
& A_4 & -A_3 & A_1 \\
& A_4 & -A_2 & A_1 \\
& A_4 & -A_3 & A_2 & -A_1 \\
& A_3 & -A_2 & & A_0 \\
& A_4 & -A_1 & & A_0 \\
& A_4 & -A_1 & & A_0 \\
& A_2 & -A_1 & & A_0\n\end{bmatrix}
$$

Among the 50 basis elements, there are 30 tensors $(e_s \wedge e_t) \otimes (e_i \wedge e_i \wedge e_t)$ $e_k \wedge e_l$) such that $\{s, t\} \subseteq \{i, j, k, l\}$. The other 20 elements are divided into 5 groups, depending on the single index $\{s, t\} \cap \{i, j, k, l\}$. The contraction c maps the first group of 30 elements into 30 independent elements of $\Gamma^{2,2,1,1}V$, and each group of 4 elements has the image through c of dimension 3 in $\Gamma^{2,2,1,1}V$, indeed the images of the 4 elements satisfy a linear relation with ±1 coefficients.

It follows that the matrix of B_{ϕ} can be obtained from the matrix of B'_{ϕ} by deleting five rows, one for each of the above groups, and the corresponding five columns. We can delete, for example, the columns and the rows corresponding to

$$
(e_0 \wedge e_1) \otimes (e_1 \wedge e_2 \wedge e_3 \wedge e_4), (e_0 \wedge e_2) \otimes (e_1 \wedge e_2 \wedge e_3 \wedge e_4),(e_0 \wedge e_3) \otimes (e_1 \wedge e_2 \wedge e_3 \wedge e_4), (e_0 \wedge e_4) \otimes (e_0 \wedge e_1 \wedge e_2 \wedge e_3),(e_0 \wedge e_4) \otimes (e_1 \wedge e_2 \wedge e_3 \wedge e_4)
$$

which have respectively number 5, 10, 15, 16, 20. Note that in the resulting matrix for B_{ϕ} , all entries are monomials in v_{ijk} with coefficient ± 1 .

In order to show that for general ϕ the morphism B_{ϕ} is invertible, the simplest way is to look at the monomial $(v_{001}v_{022}v_{113}v_{244}v_{334})^9$ which appears with nonzero coefficient in the expression of det B_{ϕ} . We prefer instead to use the monomial appearing in the statement of Lemma 3.3, which allows to prove the stronger statement that $\det B_{\phi}$ is the cube of an irreducible polynomial. Indeed, by substituting 0 to all the variables different from $v_{000}, v_{012}, v_{111}, v_{223}, v_{334}, v_{144}$, we get by an explicit computation that the determinant is equal to

$$
-2 \big(v_{000}^2 v_{012}^3 v_{111} v_{223}^3 v_{334}^3 v_{144}^3 \big)^3
$$

Hence for general ϕ we have rk $B_{\phi} = 45$. Note that this gives an alternative proof of the fact that $\sigma_7(\mathbf{P}(V), \mathcal{O}(3))$ has codimension bigger than zero, and it has to appear in the Alexander-Hirschowitz classification. It follows that on the points of $\sigma_7(\mathbf{P}(V), \mathcal{O}(3))$ the rank of rk B_ϕ drops at least by three, so that $\sigma_7(\mathbf{P}(V), \mathcal{O}(3))$ is contained in the singular locus of det B_{ϕ} , and in particular det B_{ϕ} has to vanish with multiplicity ≥ 3 on $\sigma_7(\mathbf{P}(V), \mathcal{O}(3))$. It is known that $\sigma_7(\mathbf{P}(V), \mathcal{O}(3))$ is a hypersurface (see [CH]), hence its equation P has to be a factor of multiplicity ≥ 3 of det B_{ϕ} . Since every $SL(V)$ -invariant polynomial has degree 5k, the possible values for the degree of P are 5, 10 or 15. Look at the monomials in P containing some among the variables v_{000} , v_{012} , v_{111} , v_{223} , v_{334} , v_{144} , these monomials have to exist, due to the explicit computation performed before. If the degree of P is ≤ 10 , then there exists a $SL(V)$ -invariant polynomial of degre 10 with a monomial containing the above variables, but this contradicts the claim proved along the proof of the Lemma 3.3. It follows that $\deg P = \deg \sigma_7(\mathbf{P}(V), \mathcal{O}(3)) =$ 15 and P^3 divides det B_{ϕ} , looking again at our explicit computation we see that we can arrange the scalar multiples in order that P is defined over the rational numbers (as all the $SL(V)$ -invariants) and the equation $2P(\phi)^3 = \det B_{\phi}$ holds. The Lemma 3.3 shows that P is irreducible. \Box

Remark 3.4. The results obtained by Reichstein with his algorithm developed in [Re] can be verified with the Theorem 1.1. For example when w is like in the Example 1 at page 48 of $[Re]$, a computer check shows that $rk(B_w) = 42$, confirming that $w \in \sigma_7(\mathbf{P}(V), \mathcal{O}(3))$, while when w is like in the Example 2 at page 57 of [Re] then $rk(B_w) = 45$, so that $w \notin \sigma_{7}(\mathbf{P}(V), \mathcal{O}(3)).$

The simplest example of a cubic which is not the sum of seven cubes is probably

$$
\phi = x_0^2 x_1 + x_0 x_2^2 + x_1^2 x_3 + x_2 x_4^2 + x_3^2 x_4
$$

where $\det(B_{\phi}) = -2$, which can be checked even without a computer, but with a good amount of patience. The polynomial ϕ defines a smooth cubic 3-fold.

§4. The catalecticant invariant for Clebsch quartics

Let U be any vector space of dimension $n + 1$.

Every quartic $f \in S^4U$ induces the contraction $C_f: S^2U^{\vee} \to S^2U$. Clebsch realized in 1861 that if $f \in (\mathbf{P}^n, \mathcal{O}(4))$ then $\mathrm{rk}\,A_f = 1$. Indeed, with the notations of the previous sections,

$$
C_{v^4}(u_1u_2) = 24u_1(v)u_2(v)v^2
$$

is always a scalar multiple of v^2 . Clebsch worked in the case $n = 2$ but the same result holds for every *n*. If $f \in \sigma_k(\mathbf{P}^n, \mathcal{O}(4))$, we get that C_f is the limit of a sum of k matrices of rank one, then $rk C_f \leq k$. The quartic f is called a Clebsch quartic if and only if $\det C_f = 0$, and this equation gives the catalecticant invariant (see [IK] or [DK]). A matrix description is the following. Let D_i for $i = 1, \ldots, \binom{n+2}{2}$ $\binom{+2}{2}$ be a basis of differential operators of second order on U. Then $\det(D_i D_j f)$ is the catalecticant invariant.

The picture in terms of Young diagrams for $n = 2$ is

If $n = 2$, we write

$$
f = f_{0000}x_0^4 + 4f_{0001}x_0^3x_1 + 6f_{0011}x_0^2x_1^2 + \dots + 12f_{0012}x_0^2x_1x_2 + \dots + f_{2222}x_2^4
$$

Then the well known expression for the degree 6 equation of $\sigma_5(\mathbf{P}^2)$, $\mathcal{O}(4)$) is the following (we choosed the basis $\partial_{00}, \partial_{01}, \partial_{11}, \partial_{02}, \partial_{12}, \partial_{22}$)

$$
\det\begin{bmatrix} f_{0000} & f_{0001} & f_{0011} & f_{0002} & f_{0012} & f_{0022} \\ f_{0001} & f_{0011} & f_{0111} & f_{0012} & f_{0112} & f_{0122} \\ f_{0011} & f_{0111} & f_{1111} & f_{0112} & f_{1112} & f_{1122} \\ f_{0002} & f_{0012} & f_{0112} & f_{0022} & f_{0122} & f_{0222} \\ f_{0012} & f_{0112} & f_{1112} & f_{0122} & f_{1122} & f_{1222} \\ f_{0022} & f_{0122} & f_{1122} & f_{0222} & f_{1222} & f_{2222} \end{bmatrix} = 0
$$

The above equation gives the necessary condition to express a quartic homogeneous polynomial in 3 variables as the sum of 5 fourth powers. Mukai proves in [Mu] that a general plane quartic is a sum of 6 fourth powers in ∞^3 ways, parametrized by the Fano 3-fold $V_{22}.$

The Clebsch quartics give a hypersurface of degree $\binom{n+2}{2}$ $\binom{+2}{2}$ in the space of all quartics.

It follows that this hypersurface contains the variety of k -secants to $(\mathbf{P}^n, \mathcal{O}(4))$ for $k = \lfloor \binom{n+2}{2} - 1 \rfloor = n(n+3)/2$, and it is equal to this secant variety for $1 \leq n \leq 4$, which turns out to be defective for $2 \leq n \leq 4$. Indeed it is a hypersurface while it is expected that it fills the ambient space. This explains why this example appears in the Alexander-Hirschowitz classification.

Added in proof: F. Schreyer communicated to us that B_{ϕ} of the Theorem 1.1 appears also in the apolar ring of ϕ .

REFERENCES

[AH] J. Alexander and A. Hirschowitz, Polynomial interpolation in several variables, J. Alg. Geom., 4 (1995), no. 2, 201–222.

110 G. OTTAVIANI

- [Be] A. Beauville, Determinantal hypersurfaces, Michigan Math. J., 48 (2000), 39–64.
- [BO] M. C. Brambilla and G. Ottaviani, On the Alexander-Hirschowitz Theorem, J. of Pure and Applied Algebra, 212 (2008), 1229–1251.
- [CH] C. Ciliberto and A. Hirschowitz, *Hypercubiques de* $P⁴$ avec sept points singuliers génériques, C. R. Acad. Sci. Paris Sér. I Math., 313 (1991), no. 3, 135–137.
- [DK] I. Dolgachev and V. Kanev, Polar covariants of plane cubics and quartics, Adv. Math., 98 (1993), no. 2, 216–301.
- [FH] W. Fulton and J. Harris, Representation theory, Graduate Texts in Math. 129, Springer-Verlag, New York, 1991.
- [IK] A. Iarrobino and V. Kanev, Power sums, Gorenstein algebras, and determinantal loci, Lecture Notes in Mathematics 1721, Springer, 1999.
- [Mu] S. Mukai, Fano 3-folds, LMS Lecture Notes Series 179, Cambridge, 1992.
- [RS] K. Ranestad and F. Schreyer, Varieties of sums of powers, J. Reine Angew. Math., 525 (2000), 147–181.
- [Re] B. Reichstein, On Waring's problem for cubic forms, Linear Algebra Appl., 160 (1992), 1–61.
- [St] B. Sturmfels, Algorithms in invariant theory, Springer, New York, 1993.
- [SS] B. Sturmfels and S. Sullivant, Combinatorial secant varieties, Pure Appl. Math. Q., 2 (2006), no. 3, 867–891.

Dipartimento di Matematica U. Dini Università di Firenze viale Morgagni 67/A, 50134 Firenze Italy ottavian@math.unifi.it