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AN INVARIANT REGARDING WARING’S PROBLEM

FOR CUBIC POLYNOMIALS

GIORGIO OTTAVIANI

to the memory of Michael Schneider, ten years after

Abstract. We compute the equation of the 7-secant variety to the Veronese

variety (P4,O(3)), its degree is 15. This is the last missing invariant in the

Alexander-Hirschowitz classification. It gives the condition to express a homo-

geneous cubic polynomial in 5 variables as the sum of 7 cubes (Waring problem).

The interesting side in the construction is that it comes from the determinant

of a matrix of order 45 with linear entries, which is a cube. The same technique

allows to express the classical Aronhold invariant of plane cubics as a pfaffian.

§1. Introduction

We work over an algebraically closed field K of characteristic zero. The

Veronese variety, given by Pn embedded with the linear system |O(d)|, lives

in PN where N =
(

n+d
d

)

− 1. It parametrizes the homogeneous polynomials

f of degree d in n + 1 variables which are the power of a linear form g, that

is f = gd.

Let σs(P
n,O(d)) be the s-secant variety of the Veronese variety, that is

the Zariski closure of the variety of polynomials f which are the sum of the

powers of s linear forms gi, i.e. f =
∑s

i=1 gd
i . In particular σ1(P

n,O(d)) =

(Pn,O(d)) is the Veronese variety itself and σ2(P
n,O(d)) is the usual secant

variety. For generalities about the Waring’s problem for polynomials see [IK]

or [RS].

Our starting point is the theorem of Alexander and Hirschowitz (see

[AH] or [BO] for a survey, including a self-contained proof) which states

that the codimension of σs(P
n,O(d)) ⊆ PN is the expected one, that is

max{N + 1 − (n + 1)s, 0}, with the only exceptions

(i) σk(P
n,O(2)), 2 ≤ k ≤ n
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(ii) σ 1
2
n(n+3)(P

n,O(4)), n = 2, 3, 4

(iii) σ7(P
4,O(3))

The case (i) corresponds to the matrices of rank ≤ k in the variety of

symmetric matrices of order n + 1. In the cases (ii) and (iii) the expected

codimension is zero, while the codimension is one. Hence the equation

of the hypersurface σs(P
n,O(d)) in these cases is an interesting SL(n +

1)-invariant. In the cases (ii) it is the catalecticant invariant, that was

computed by Clebsch in the 19th century, its degree is
(

n+2
2

)

.

The main result of this paper is the computation of the equation of

σ7(P
4,O(3)). This was left as an open problem in [IK, Chap. 2, Rem. 2.4].

We consider a vector space V . For any nonincreasing sequence of pos-

itive integers α = (α1, α2, . . . ) it is defined the Schur module ΓαV , which

is an irreducible SL(V )-module (see [FH]). For α = (p) we get the p-th

symmetric power of V and for α = (1, . . . , 1) (p times) we get the p-th al-

ternating power of V . The module ΓαV is visualized as a Young diagram

containing αi boxes in the i-th row. In particular if dimV = 5 then Γ2,2,1,1V

and its dual Γ2,1,1V have both dimension 45.

Our main result is the following

Theorem 1.1. Let V be a vector space of dimension 5. For any φ ∈

S3V , let Bφ : Γ2,2,1,1V → Γ2,1,1V be the SL(V )-invariant contraction oper-

ator. Then there is an irreducible homogeneous polynomial P of degree 15

on S3V such that

2P (φ)3 = det Bφ

The polynomial P is the equation of σ7(P(V ),O(3)).

The coefficient 2 is needed because we want the invariant polynomials

to be defined over the rational numbers. The picture in terms of Young

diagrams is

⊗ ∗ ∗ ∗ −→

∗

∗

∗ ≃

This picture means that Γ2,1,1V is a direct summand of the tensor

product Γ2,2,1,1V ⊗S3V , according to the Littlewood-Richardson rule ([FH]).
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The polynomial P gives the necessary condition to express a cubic ho-

mogeneous polynomial in five variables as a sum of seven cubes. We prove

in Lemma 3.2 that if φ is decomposable then rk(Bφ) = 6. The geometri-

cal explanation that σ7(P
4,O(3)) is an exceptional case is related to the

fact that given seven points in P4 there is a unique rational normal curve

through them, and it was discovered independently by Richmond and Pala-

tini in 1902, see [CH] for a modern reference. Our approach gives a different

(algebraic) proof of the fact that σ7(P
4,O(3)) is an exceptional case. An-

other argument, by using syzygies, is in [RS]. B. Reichstein found in [Re] an

algorithm to check when a cubic homogeneous polynomial in five variables

is the sum of seven cubes, see the Remark 3.4.

The resulting table of the Alexander-Hirschowitz classification is the

following

exp. codim codim equation

σk(P
n,O(2))

2 ≤ k ≤ n
max

( (n+1)(n+2−2k)
2 , 0

) (

n−k+2
2

)

(k + 1) − minors

σ 1
2
n(n+3)(P

n,O(4))

n = 2, 3, 4
0 1 catalecticant inv.

σ7(P
4,O(3)) 0 1 see Theorem 1.1

The degree of σk(P
n,O(2)) was computed by C. Segre, it is equal to

∏n−k
i=0

(

n+1+i
n+1−k−i

)

/
(2i+1

i

)

. We will use in the proof of Theorem 1.1 the fact

that σk−1(P
n,O(2)) is the singular locus of σk(P

n,O(2)) for k ≤ n.

A general cubic polynomial in five variables can be expressed as a sum

of eight cubes in ∞5 ways, parametrized by a Fano 5-fold of index one (see

[RS]). A cubic polynomial in five variables which can be expressed as a sum

of seven cubes was called degenerate in [RS], hence what we have found is

the locus of degenerate cubics. A degenerate cubic in five variables can be

expressed as a sum of seven cubes in ∞1 ways, parametrized by P1 (see

[RS, 4.2]).

To explain our technique, we consider the Aronhold invariant of plane

cubics.

The Aronhold invariant is the degree 4 equation of σ3(P
2,O(3)), which

can be seen as the SL(3)-orbit of the Fermat cubic x3
0 + x3

1 + x3
2 (sum of

three cubes), see [St, Prop. 4.4.7] or [DK, (5.13.1)].

Let W be a vector space of dimension 3. In particular Γ2,1W = ad W

is self-dual and it has dimension 8. We get



98 G. OTTAVIANI

Theorem 1.2. For any φ ∈ S3W , let Aφ : Γ2,1W → Γ2,1W be the

SL(V )-invariant contraction operator. Then Aφ is skew-symmetric and the

pfaffian Pf Aφ is the equation of σ3(P(W ),O(3)), i.e. it is the Aronhold

invariant.

The corresponding picture is

⊗ ∗ ∗ ∗ −→

∗
∗

∗ ≃

The Aronhold invariant gives the necessary condition to express a cubic

homogeneous polynomial in three variables as a sum of three cubes. The

explicit expression of the Aronhold invariant is known since the 19th century,

but we have not found in the literature its representation as a pfaffian. In

the Remark 2.3 we apply this representation to the Scorza map between

plane quartics.

In Section 2 we give the proof of Theorem 1.2. This is introductory

to Theorem 1.1, which is proved in Section 3. In Section 4 we review, for

completeness, some known facts about the catalecticant invariant of quartic

hypersurfaces.

We are indebted to S. Sullivant, for his beautiful lectures at Nordfjordeid

in 2006 about [SS], where a representation of the Aronhold invariant is found

with combinatorial techniques.

§2. The Aronhold invariant as a pfaffian

Let e0, e1, e2 be a basis of W and fix the orientation
∧3 W ≃ K

given by e0 ∧ e1 ∧ e2. We have EndW = ad W ⊕ K. The SL(W )-module

ad W = Γ2,1(W ) consists of the subspace of endomorphisms of W with zero

trace. We may interpret the contraction

Aφ : Γ2,1W −→ Γ2,1W

as the restriction of a linear map A′
φ : EndW → EndW , which is defined

for φ = ei1ei2ei3 as

A′
ei1

ei2
ei3

(M)(w) =
∑

σ

(M(eiσ(1)
) ∧ eiσ(2)

∧ w)eiσ(3)

where M ∈ EndW , w ∈ W and σ covers the symmetric group Σ3.
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Then A′
φ is defined for a general φ by linearity, and it follows from the

definition that it is SL(V )-invariant.

The Killing scalar product on EndW is defined by tr(M · N).

Lemma 2.1. (i) Im(A′
φ) ⊆ ad W K ⊆ Ker(A′

φ)

(ii) A′
φ is skew-symmetric.

Proof. (i) follows from

tr
[

Aei1
ei2

ei3
(M)

]

=
∑

s

Aei1
ei2

ei3
(M)(es)e

∨
s

=
∑

σ

(M(eiσ(1)
) ∧ eiσ(2)

∧ eiσ(3)
) = 0

The second inclusion is evident. To prove (ii), we have to check that

tr(Aφ(M) · N) = − tr(Aφ(N) · M)

for M,N ∈ EndW . Indeed let φ = ei1ei2ei3 . We get

tr(Aei1
ei2

ei3
(M) · N) =

∑

s

Aei1
ei2

ei3
(M)(N(es))e

∨
s

=
∑

σ

M(eiσ(1)
) ∧ eiσ(2)

∧ N(eiσ(3)
)

which is alternating in M and N , where we denoted by e∨i the dual basis.

It follows from Lemma 2.1 that the restriction

A′
φ| ad W

: ad W −→ ad W

coincides, up to scalar multiple, with the contraction operator Aφ of Theo-

rem 1.2 and it is skew-symmetric.

Lemma 2.2. Let φ = w3 with w ∈ W . Then rkAφ = 2. More precisely

Im Aw3 = {M ∈ ad W | Im M ⊆ 〈w〉}

Ker Aw3 = {M ∈ ad W | w is an eigenvector of M}
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Proof. The statement follows from the equality

Aw3(M)(v) = 6(M(w) ∧ w ∧ v)w

As an example, note that Im Ae3
0

= 〈e0 ⊗ e∨1 , e0 ⊗ e∨2 〉 and Ker Ae3
0
is spanned

by all the basis monomials, with the exception of e∨0 ⊗ e1 and e∨0 ⊗ e2. Due

to the SL(W )-invariance, this example proves the general case.

Proof of Theorem 1.2. Let φ ∈ σ3(P(W ),O(3)). By the definition of

higher secant variety, φ is in the closure of elements which can be written

as φ1 + φ2 + φ3 with φi ∈ (P(W ),O(3)). From Lemma 2.2 it follows that

rkAφ ≤ rkAP3
i=1 φi

= rk

3
∑

i=1

Aφi
≤

3
∑

i=1

rkAφi
= 2 · 3 = 6

Hence Pf (Aφ) has to vanish on σ3(P(W ),O(3)).

Write a cubic polynomial as

φ = v000x
3
0 + 3v001x

2
0x1 + 3v002x

2
0x2 + 3v011x0x

2
1 + 6v012x0x1x2

+ 3v022x0x
2
2 + v111x

3
1 + 3v112x

2
1x2 + 3v122x1x

2
2 + v222x

3
2

We order the monomial basis of
∧2 W ⊗ W with the lexicographical order

in the following way:

(w0 ∧ w1)w0, (w0 ∧ w1)w1, (w0 ∧ w1)w2,

(w0 ∧ w2)w0, (w0 ∧ w2)w1, (w0 ∧ w2)w2,

(w1 ∧ w2)w0, (w1 ∧ w2)w1, (w1 ∧ w2)w2

Call Mi for i = 1, . . . , 9 this basis. The matrix of A′
φ, with respect to this

basis, has at the entry (i, j) the value A′
φ(Mj)(Mi) and it is the following





























0 v222 −v122 0 −v122 v112 0 v022 −v012

−v222 0 v022 v122 0 −v012 −v022 0 v002

v122 −v022 0 −v112 v012 0 v012 −v002 0
0 −v122 v112 0 v112 −v111 0 −v012 v011

v122 0 −v012 −v112 0 v011 v012 0 −v001

−v112 v012 0 v111 −v011 0 −v011 v001 0
0 v022 −v012 0 −v012 v011 0 v002 −v001

−v022 0 v002 v012 0 −v001 −v002 0 v000

v012 −v002 0 −v011 v001 0 v001 −v000 0
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Deleting one of the columns corresponding to (w0 ∧w1)w2, (w0 ∧w2)w1

or (w1 ∧ w2)w0 (respectively the 3rd, the 5th and the 7th, indeed their

alternating sum gives the trace), and the corresponding row, we get a skew-

symmetric matrix of order 8 which is the matrix of Aφ. To conclude the

proof, it is enough to check that the pfaffian is nonzero. This can be easily

checked on the point corresponding to φ = x0x1x2, that is when v012 = 1

and all the other coordinates are equal to zero. This means that any triangle

is not in the closure of the Fermat curve. we conclude that Pf (Aφ) is the

Aronhold invariant. We verified that it coincides, up to a constant, with

the expression given in [St, Prop. 4.4.7] or in [DK, (5.13.1)].

The vanishing of the Aronhold invariant gives the necessary and suffi-

cient condition to express a cubic polynomial in three variables as the sum

of three cubes.

Remark . A′
φ can be thought as a map

A′
φ :

∧2 W ⊗ W −→
∧2 W∨ ⊗ W∨

For φ = w3 we have the formula

A′
φ(ω ⊗ v)(ω′ ⊗ v′) = (ω ∧ w) ⊗ (v ∧ w ∧ v′) ⊗ (ω′ ∧ w)

This is important for the understanding of the next section.

Remark . We have the decomposition

∧2(Γ2,1W ) = S3W ⊕ Γ2,2,2W ⊕ ad W

and it is a nice exercise to show the behaviour of the three summands. For

the first one

S3W ∩
{

M ∈
∧2(Γ2,1W ) | rk(M) ≤ 2k

}

is the cone over σk(P(W ),O(3)), so that we have found the explicit equa-

tions for all the higher secant varieties to (P(W ),O(3)). The secant variety

σ2(P(W ),O(3)) is the closure of the orbit of plane cubics consisting of three

concurrent lines, and its equations are the 6 × 6 subpfaffians of Aφ. It has

degree 15. There is a dual description for Γ2,2,2W .

For the third summand, we have that

ad W ⊆
{

M ∈
∧2(Γ2,1W ) | rk(M) ≤ 6

}
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Indeed any M ∈ ad W induces the skew-symmetric morphism

[M,−]

whose kernel contains M . Moreover

ad W ∩
{

M ∈
∧2(Γ2,1W ) | rk(M) ≤ 4

}

is the 5-dimensional affine cone consisting of endomorphisms M ∈ ad W

such that their minimal polynomial has degree ≤ 2.

Remark 2.3. We recall from [DK] the definition of the Scorza map.

Let A be the Aronhold invariant. For any plane quartic F and any point

x ∈ P(W ) we consider the polar cubic Px(F ). Then A(Px(F )) is a quartic in

the variable x which we denote by S(F ). The rational map S : P(S4W ) 99K

P(S4W ) is called the Scorza map. Our description of the Aronhold invariant

shows that S(F ) is defined as the degeneracy locus of a skew-symmetric

morphism on P(W )

O(−2)8
f

−→ O(−1)8

It is easy to check (see [Be]) that Coker f = E is a rank two vector bundle

over S(F ) such that c1(E) = KS(F ). Likely from E it is possible to recover

the even theta-characteristic θ on S(F ) defined in [DK, (7.7)]. The natural

guess is that

h0(E ⊗ (−θ)) > 0

for a unique even θ, but we do not know if this is true.

§3. The invariant for cubic polynomials in five variables

Let now e0, . . . , e4 be a basis of V , no confusion will arise with the

notations of the previous section. We fix the orientation
∧5 V ≃ K given

by e0∧e1∧e2∧e3∧e4. We construct, for φ ∈ S3V , the contraction operator

B′
φ :

∧4 V ⊗
∧2 V −→

∧4 V ∨ ⊗
∧2 V ∨ ≃

∧3 V ⊗ V

If φ = ei1ei2ei3 , the definition is

B′
φ(va ∧ vb ∧ vc ∧ vd) ⊗ (ve ∧ vf )

=
∑

σ

(

va ∧ vb ∧ vc ∧ vd ∧ eiσ(1)

)

⊗
(

ve ∧ vf ∧ eiσ(2)

)

⊗ eiσ(3)
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where σ covers the symmetric group Σ3 and we extend this definition, to a

general φ, by linearity.

We may interpret B′
φ as a morphism

B′
φ : Hom(V,

∧2 V ) −→ Hom(
∧2 V , V )

If φ = ei1ei2ei3 and M ∈ Hom(V,
∧2 V ) we have

B′
ei1

ei2
ei3

(M)(v1 ∧ v2) =
∑

σ

(M(eiσ(1)
) ∧ eiσ(2)

∧ v1 ∧ v2)eiσ(3)

We have a SL(V )-decomposition

∧4 V ⊗
∧2 V = Γ2,2,1,1V ⊕ V

Consider the contraction c :
∧4 V ⊗

∧2 V → V defined by

c(ω ⊗ (vi ∧ vj)) = (ω ∧ vi)vj − (ω ∧ vj)vi

Then the subspace Γ2,2,1,1V can be identified with

{

M ∈
∧4 V ⊗

∧2 V | c(M) = 0
}

or with
{

M ∈ Hom(V,
∧2 V ) |

∑

e∨i M(ei) = 0
}

The subspace V ⊂ Hom(V,
∧2 V ) can be identified with {v ∧ − | v ∈ V }.

At the same time we have a SL(V )-decomposition

V ⊗
∧3 V = Γ2,1,1V ⊕

∧4 V

and the obvious contraction d : V ⊗
∧3 V →

∧4 V . The subspace Γ2,1,1V

can be identified with

{

N ∈ V ⊗
∧3 V | d(N) = 0

}

Lemma 3.1. (i) Im(B′
φ) ⊆ Γ2,1,1V V ⊆ Ker(B′

φ)

(ii) B′
φ is symmetric.
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Proof. The statement (i) follows from the formula

d
(

B′
ei1

ei2
ei3

(va ∧ vb ∧ vc ∧ vd) ⊗ (ve ∧ vf )
)

=
∑

σ

(

va ∧ vb ∧ vc ∧ vd ∧ eiσ(1)

)

⊗
(

ve ∧ vf ∧ eiσ(2)
∧ eiσ(3)

)

= 0

In order to prove the second inclusion, for any v ∈ V consider the induced

morphism Mv(w) = v ∧ w. We get

B′
ei1

ei2
ei3

(Mv)(v1 ∧ v2) =
∑

σ

(

v ∧ eiσ(1)
∧ eiσ(2)

∧ v1 ∧ v2

)

eiσ(3)
= 0

In order to prove (ii) we may assume φ = v3.

We need to prove that

B′
v3(ω ⊗ ξ)(ω′ ⊗ ξ′) = B′

v3(ω
′ ⊗ ξ′)(ω ⊗ ξ)

for every ω, ω′ ∈
∧4 V and ξ, ξ′ ∈

∧2 V . Indeed

B′
v3(ω ⊗ ξ)(ω′ ⊗ ξ′) = (ω ∧ v) ⊗ (ξ ∧ v ∧ ξ′) ⊗ (v ∧ ω′)

which is symmetric in the pair (ω, ξ).

It follows from Lemma 3.1 that the restriction B′
φ|Γ2,2,1,1

: Γ2,2,1,1 →

Γ2,1,1V coincides, up to scalar multiple, with the contraction Bφ of the

Theorem 1.1 and it is symmetric. Note that

Ker(Bφ) = Ker(B′
φ)/V Im(Bφ) = Im(B′

φ)

Lemma 3.2. Let φ = v3 with v ∈ V . Then rkBφ = 6. More precisely

Im Bv3 =
{

N ∈ Hom(
∧2 V , V ) |

∑

e∨i N(ei ∧ v) = 0,

∀v ∈ V, Im(N) ⊆ 〈v〉
}

Ker Bv3 =
{

M ∈ Hom(V,
∧2 V ) |

∑

e∨i M(ei) = 0, M(v) ⊆ v ∧ V
}

Proof. The statement follows from the equality

Bv3(M)(v1 ∧ v2) = 6(M(v) ∧ v ∧ v1 ∧ v2)v

As an example, a basis of Im Be3
0

is given by e0 ⊗ (e∨i ∧ e∨j ) for 1 ≤ i <

j ≤ 4 and a basis of Ker Be3
0

is given by all the basis monomials with the

exceptions of e∨0 ⊗ (ei ∧ ej) for 1 ≤ i < j ≤ 4. Due to the SL(V )-invariance,

this example proves the general case.
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We write φ ∈ S3V as φ = v000x
3
0 + 3v001x

2
0x1 + · · · + v444x

3
4.

Lemma 3.3. Every SL(V )-invariant homogeneous polynomial of degree

15 on S3V which contains the monomial

v2
000v

3
012v111v

3
223v

3
334v

3
144

is irreducible.

Proof. Let t0, . . . , t4 be the canonical basis of Z
5. We denote by ti +

tj + tk the weight of the monomial vijk, according to [St]. For example

the weight of v000 is (3, 0, 0, 0, 0). We denote the first component of the

weight as the x0-weight, the second component as the x1-weight, and so

on. We recall that every SL(V )-invariant polynomial is isobaric, precisely

every monomial of a SL(V )-invariant polynomial of degree 5k has weight

(3k, 3k, 3k, 3k, 3k) (see [St, (4.4.14)]), this follows from the invariance with

respect to the diagonal torus. We claim that there is no isobaric monomial of

weight (6, 6, 6, 6, 6) and degree 10 with variables among v000, v012, v111, v223,

v334, v144. We divide into the following cases, by looking at the possibilities

for the x0-weight:

i) The monomial contains v2
000 and does not contain v012. By looking at

the x2-weight, the monomial has to contain v3
223, which gives contri-

bution 3 to the x3-weight. This gives a contradiction, because from

v334 the possible values for the x3-weight are even, and we never make

6.

ii) The monomial contains v000v
3
012 and not higher powers. This mono-

mial gives contribution 3 to the x2-weight. From v223 the possible

values for the x2-weight are even, and we never make 6, again.

iii) The monomial contains v6
012 and does not contain v000. This monomial

gives contribution 6 to the x0-weight, and the same contribution is

given to the x1-weight and to the x2-weight. Hence the only other

possible monomial that we are allowed to use is v334, which gives a x3-

weight doubled with respect to the x4-weight, which is a contradiction.

This contradiction proves our claim. Nevertheless, if our polynomial is

reducible, also its factors have to be homogeneous and SL(V )-invariant,

and the monomial in the statement should split into two factors of degree

5 and 10, against the claim.
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Proof of Theorem 1.1. Let φ ∈ σ7(P(V ),O(3)). By the definition of

higher secant variety, φ is in the closure of elements which can be written

as
∑7

i=1 φi with φi ∈ (P(V ),O(3)). From Lemma 3.2 it follows that

rkBφ ≤ rkBP7
i=1 φi

= rk
7

∑

i=1

Bφi
≤

7
∑

i=1

rkBφi
= 6 · 7 = 42

Hence det(Bφ) has to vanish on σ7(P(V ),O(3)).

We order the monomial basis of S3V with the lexicographical ordered

induced by x0 < x1 < x2 < x3 < x4. We order also the basis of
∧2 V ⊗

∧4 V

with the lexicographical order. There are 50 terms, beginning with

(e0 ∧ e1) ⊗ (e0 ∧ e1 ∧ e2 ∧ e3), (e0 ∧ e1) ⊗ (e0 ∧ e1 ∧ e2 ∧ e4), . . .

and ending with

. . . , (e3 ∧ e4) ⊗ (e1 ∧ e2 ∧ e3 ∧ e4)

These 50 terms are divided into 10 blocks, depending on the first factor

es ∧ et. The matrix of B′
φ, with respect to this basis, is a 50× 50 symmetric

matrix with linear monomial entries from vijk.

We describe this matrix in block form. For i = 0, . . . , 4 let Ai be the

5 × 5 symmetric matrix which at the entry (5 − s, 5 − t) has (−1)s+tvist,

corresponding to the monomial xixsxt. For example

A4 =













v444 −v344 v244 −v144 v044

−v344 v334 −v234 v134 −v034

v244 −v234 v224 −v124 v024

−v144 v134 −v124 v114 −v014

v044 −v034 v024 −v014 v004













Then the matrix of B′
φ has the following block form

































A4 −A3 A2

−A4 A3 −A1

A4 −A2 A1

−A3 A2 −A1

A4 −A3 A0

−A4 A2 −A0

A3 −A2 A0

A4 −A1 A0

−A3 A1 −A0

A2 −A1 A0
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Among the 50 basis elements, there are 30 tensors (es ∧ et)⊗ (ei ∧ ej ∧

ek ∧ el) such that {s, t} ⊆ {i, j, k, l}. The other 20 elements are divided into

5 groups, depending on the single index {s, t}∩{i, j, k, l}. The contraction c

maps the first group of 30 elements into 30 independent elements of Γ2,2,1,1V ,

and each group of 4 elements has the image through c of dimension 3 in

Γ2,2,1,1V , indeed the images of the 4 elements satisfy a linear relation with

±1 coefficients.

It follows that the matrix of Bφ can be obtained from the matrix of B′
φ

by deleting five rows, one for each of the above groups, and the correspond-

ing five columns. We can delete, for example, the columns and the rows

corresponding to

(e0 ∧ e1) ⊗ (e1 ∧ e2 ∧ e3 ∧ e4), (e0 ∧ e2) ⊗ (e1 ∧ e2 ∧ e3 ∧ e4),

(e0 ∧ e3) ⊗ (e1 ∧ e2 ∧ e3 ∧ e4), (e0 ∧ e4) ⊗ (e0 ∧ e1 ∧ e2 ∧ e3),

(e0 ∧ e4) ⊗ (e1 ∧ e2 ∧ e3 ∧ e4)

which have respectively number 5, 10, 15, 16, 20. Note that in the resulting

matrix for Bφ, all entries are monomials in vijk with coefficient ±1.

In order to show that for general φ the morphism Bφ is invertible, the

simplest way is to look at the monomial (v001v022v113v244v334)
9 which ap-

pears with nonzero coefficient in the expression of detBφ. We prefer instead

to use the monomial appearing in the statement of Lemma 3.3, which allows

to prove the stronger statement that det Bφ is the cube of an irreducible

polynomial. Indeed, by substituting 0 to all the variables different from

v000, v012, v111, v223, v334, v144, we get by an explicit computation that the

determinant is equal to

−2
(

v2
000v

3
012v111v

3
223v

3
334v

3
144

)3

Hence for general φ we have rkBφ = 45. Note that this gives an alternative

proof of the fact that σ7(P(V ),O(3)) has codimension bigger than zero, and

it has to appear in the Alexander-Hirschowitz classification. It follows that

on the points of σ7(P(V ),O(3)) the rank of rkBφ drops at least by three,

so that σ7(P(V ),O(3)) is contained in the singular locus of det Bφ, and in

particular detBφ has to vanish with multiplicity ≥ 3 on σ7(P(V ),O(3)).

It is known that σ7(P(V ),O(3)) is a hypersurface (see [CH]), hence its

equation P has to be a factor of multiplicity ≥ 3 of detBφ. Since every

SL(V )-invariant polynomial has degree 5k, the possible values for the degree

of P are 5, 10 or 15. Look at the monomials in P containing some among
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the variables v000, v012, v111, v223, v334, v144, these monomials have to exist,

due to the explicit computation performed before. If the degree of P is ≤ 10,

then there exists a SL(V )-invariant polynomial of degre 10 with a monomial

containing the above variables, but this contradicts the claim proved along

the proof of the Lemma 3.3. It follows that deg P = deg σ7(P(V ),O(3)) =

15 and P 3 divides detBφ, looking again at our explicit computation we

see that we can arrange the scalar multiples in order that P is defined

over the rational numbers (as all the SL(V )-invariants) and the equation

2P (φ)3 = detBφ holds. The Lemma 3.3 shows that P is irreducible.

Remark 3.4. The results obtained by Reichstein with his algorithm

developed in [Re] can be verified with the Theorem 1.1. For example when

w is like in the Example 1 at page 48 of [Re], a computer check shows

that rk(Bw) = 42, confirming that w ∈ σ7(P(V ),O(3)), while when w

is like in the Example 2 at page 57 of [Re] then rk(Bw) = 45, so that

w /∈ σ7(P(V ),O(3)).

The simplest example of a cubic which is not the sum of seven cubes is

probably

φ = x2
0x1 + x0x

2
2 + x2

1x3 + x2x
2
4 + x2

3x4

where det(Bφ) = −2, which can be checked even without a computer, but

with a good amount of patience. The polynomial φ defines a smooth cubic

3-fold.

§4. The catalecticant invariant for Clebsch quartics

Let U be any vector space of dimension n + 1.

Every quartic f ∈ S4U induces the contraction Cf : S2U∨ → S2U .

Clebsch realized in 1861 that if f ∈ (Pn,O(4)) then rkAf = 1. Indeed,

with the notations of the previous sections,

Cv4(u1u2) = 24u1(v)u2(v)v2

is always a scalar multiple of v2. Clebsch worked in the case n = 2 but the

same result holds for every n. If f ∈ σk(P
n,O(4)), we get that Cf is the

limit of a sum of k matrices of rank one, then rkCf ≤ k. The quartic f is

called a Clebsch quartic if and only if det Cf = 0, and this equation gives

the catalecticant invariant (see [IK] or [DK]). A matrix description is the

following. Let Di for i = 1, . . . ,
(

n+2
2

)

be a basis of differential operators of

second order on U . Then det(DiDjf) is the catalecticant invariant.
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The picture in terms of Young diagrams for n = 2 is

⊗ ∗ ∗ ∗ ∗ −→

∗ ∗

∗ ∗ ≃

If n = 2, we write

f = f0000x
4
0 + 4f0001x

3
0x1 + 6f0011x

2
0x

2
1 + · · ·+ 12f0012x

2
0x1x2 + · · ·+ f2222x

4
2

Then the well known expression for the degree 6 equation of σ5(P
2,

O(4)) is the following (we choosed the basis ∂00, ∂01, ∂11, ∂02, ∂12, ∂22)

det

















f0000 f0001 f0011 f0002 f0012 f0022

f0001 f0011 f0111 f0012 f0112 f0122

f0011 f0111 f1111 f0112 f1112 f1122

f0002 f0012 f0112 f0022 f0122 f0222

f0012 f0112 f1112 f0122 f1122 f1222

f0022 f0122 f1122 f0222 f1222 f2222

















= 0

The above equation gives the necessary condition to express a quartic

homogeneous polynomial in 3 variables as the sum of 5 fourth powers. Mukai

proves in [Mu] that a general plane quartic is a sum of 6 fourth powers in

∞3 ways, parametrized by the Fano 3-fold V22.

The Clebsch quartics give a hypersurface of degree
(

n+2
2

)

in the space

of all quartics.

It follows that this hypersurface contains the variety of k-secants to

(Pn,O(4)) for k =
[(

n+2
2

)

− 1
]

= n(n + 3)/2, and it is equal to this secant

variety for 1 ≤ n ≤ 4, which turns out to be defective for 2 ≤ n ≤ 4.

Indeed it is a hypersurface while it is expected that it fills the ambient

space. This explains why this example appears in the Alexander-Hirschowitz

classification.

Added in proof: F. Schreyer communicated to us that Bφ of the The-

orem 1.1 appears also in the apolar ring of φ.
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