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Abstract

Given a word w over a finite alphabet Σ and a finite deterministic
automaton A = 〈Q, Σ, δ〉, the inequality |δ(Q, w)| ≤ |Q| − k means that
under the natural action of the word w the image of the state set Q is
reduced by at least k states. The word w is k-collapsing (k-synchronizing)
if this inequality holds for any deterministic finite automaton (with k + 1
states) that satisfies such an inequality for at least one word. We prove
that for each alphabet Σ there is a 2-collapsing word whose length is
|Σ|3+6|Σ|2+5|Σ|

2
. Then we produce shorter 2-collapsing and 2-synchronizing

words over alphabets of 4 and 5 letters.

1 Introduction and preliminaries.

In this paper by an automaton A = 〈Q,Σ, δ〉 we mean a finite deterministic
automaton with state set Q, input alphabet Σ, and transition function δ :
Q×Σ → Q. The action of Σ on Q given by δ will be denoted by concatenation:
qa = δ(q, a). This action extends naturally, by composition, to the action of the
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words of Σ∗ on Q. Given a word w ∈ Σ∗, we will be interested in the difference
of the cardinalities |Q| − |Qw|. This difference is called the deficiency of the
word w with respect to A and will be denoted dfA(w).

For a fixed k ≥ 1, a word w ∈ Σ∗ is called k-compressing for A if dfA(w) ≥ k.
An automaton A is k-compressible if there exists a k-compressing word for
A. A word w ∈ Σ∗ is k-collapsing (over Σ) if it is k-compressing for every
k-compressible automaton with the input alphabet Σ. A word v is called k-
synchronizing if it is k-compressing for all k-compressible automata with k + 1
states. Of course a k-collapsing word is also k-synchronizing.

The concept of a k-collapsing word is a natural automata-theoretic inter-
pretation of the notion of words with the property ∆k introduced for algebraic
motivations in [12]. Actually k-collapsing words can be seen as universal testers
for checking whether an automaton is k-compressible. They are a black-box
versions of words considered in the so called generalized Černý conjecture that
extends the celebrated Černý conjecture [5]. Recall that the former conjec-
ture deals with the length of the shortest k-compressing word for a given k-
compressible automaton. In [12] it was proved that k-collapsing words always
exist, for each Σ and each k ≥ 1, by means of a recursive construction which
gives a word whose length is doubly exponential as function of k. Then better
lower and upper bounds for the length c(k, t) of the shortest k-collapsing words
on an alphabet of cardinality t were given in [9] and the lower bound for the
case k = 2 was slightly improved in [10]. So far for the case k = 2 the best
known bounds are the following: 2t2 ≤ c(2, t) ≤ t3 + 3t2 + 2t.

In [1, 2], two different algorithms for deciding whether a word is 2-collapsing
are given and another more combinatorial approach to the same problem is pre-
sented in [8]. Here we get a better upper bound for c(2, t), namely c(2, t) ≤
t3+6t2+5t

2 , by means of the latter approach. Moreover we prove that this bound
can be improved at least for small values of t: we build, again by using this
approach, shorter 2-collapsing words on alphabets of cardinality 4 and 5. The
reader is referred to [9] and to [4] for some further references and connections
to some topics in Theoretical Computer Science, Language Theory and Com-
binatorics. Here for sake of completeness we shortly recall notation and main
properties.

We view an automaton A = 〈Q, Σ, δ〉 as a set of transformations on Q
labelled by letters of Σ rather than as a standard triple. By transformations
of A we mean those transformations on Q that are induced via δ by letters of
Σ. In order to define an automaton it is enough just to assign to every letter
of Σ a transformation on Q. Now, for a ∈ Σ, dfA(a) = 0 if and only if the
corresponding transformation is a permutation on Q. If dfA(a) = 1, then there
is a state z ∈ Q which does not belong to the image Qa and two different states
x, y ∈ Q satisfying xa = ya; in such a case the corresponding transformation
will be referred to as a transformation of type {x, y}\z (x, y have the same
image under the transformation, z is missed). The semigroup generated by the
transformations of A consists precisely of the transformations corresponding to
words in Σ∗. It contains a group generated by those transformations that are
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permutations; this group is called the group of permutations of A.
It is well known ([9]) that each 2-collapsing word over a fixed alphabet Σ

is 2-full, i.e. it contains any word of length 2 on Σ among its factors, hence to
characterize 2-collapsing words it is enough to consider 2-full words compressing
each 2-compressible automata such that no word of length 2 is 2-compressing
for them (proper 2-compressible automata, for short). Proper 2-compressible
automata must have both non-permutation and permutation transformations
and they are characterized by the following:

Proposition 1 ([8]) An automaton A is proper 2-compressible if and only if A
fulfils one of the following conditions:

1. there are two states x, y such that all non-permutation transformations are
of the same type {x, y}\x, and the group of permutations fixes neither the
element x nor the set {x, y};

2. there is a state x such that each non-permutation transformation is of type
{x, z}\x for some state z, at least two different types occur, and the group
of permutations does not fix x;

3. there are two states x, y such that each non-permutation transformation
is of type {x, y}\x or {x, y}\y, both types occur, and the group of permu-
tations does not fix the set {x, y}.

Automata of the first two types are called mono-automata, of the latter one
are called stereo-automata.

In [8] it is proved that a word w ∈ Σ∗ is 2-collapsing if and only if certain
systems of conditions on permutations have only trivial solutions. We recall
some notations from [6]. In the sequel, as no confusion can raise, we view the
set Q of the states of A as a set of natural numbers: Q = {1, 2, ..., n}, so that
permutations on Q can be viewed as elements of the symmetric group Symn.
The two states x, y occurring in Proposition 1 will be then denoted by 1 and
2. By a role assignment we mean an arbitrary partition of the alphabet Σ
with a distinguished nonempty block Π ⊂ Σ. Roughly speaking letters in Π
play the role of permutation letters of Σ and the remaining letters play the
role of non-permutation letters. Let Υ = Σ \ Π. Since non-permutation letters
in proper 2-compressible automata can be of different types, a role assignment
induces on Υ a further partition in non empty blocks. We denote this partition
either as {D2, . . . , Dh}, h ≥ 2, where letters in Di will play the role of the non-
permutation letters of the form {1, i}\1 or as {E1, E2} where letters in E1, E2

will play the role of non-permutation letters of the form {1, 2}\1 and {1, 2}\2
respectively. In the first case the partition of Σ will be called a mono-role
assignment (DB-partition in [8]) and in the latter a stereo-role assignment
(3DB-partition in [8]).

Let (Π,Υ) be an arbitrary role assignment, then each word w ∈ Σ+ can be
uniquely represented in the following form:

w = u0p1u1...um−1pmum (1)

3



where p1, . . . , pm ∈ Π+, u1, . . . , um−1 ∈ Υ+, u0, um ∈ Υ∗ and m is a positive
integer. We say that a factor pi of the decomposition (1) is an inner factor if
both ui−1 and ui are non-empty. Then for a mono-role assignment (Π,Υ) for
each a ∈ Υ we denote by Sa the set of the inner factors pi of w such that a is the
first letter in ui. Otherwise if (Π,Υ) is a stereo-role assignment (Π, {E1, E2})
we denote by Sk, k = 1, 2, the sets of the inner factors pi of w such that the last
letter of ui−1 belongs to Ek.

We assign to the word w ∈ Σ+, for each role assignment and for each inner
factor pi, a permutation condition of the form:

- 1pi ∈ {1, j} if the role assignment is mono and pi ∈ Sa with a ∈ Dj ,
- kpi ∈ {1, 2}, k = 1, 2, if the role assignment is stereo and pi ∈ Sk.

Then each role assignment associates to w a system of permutation conditions
formed by all the permutation conditions corresponding to the inner factors
of w. In case of a mono-role assignment (Π,Υ) such system will be denoted
Γw(Π,Υ) otherwise it will be denoted Γ′w(Π,Υ).

Since letters of Π are regarded as permutations acting on a finite set of
positive integers {1, 2, . . . , n} (representing Q), conditions of the form jv ∈ A
with j positive integer, v ∈ Π+, A ⊆ {1, 2, . . . , n} mean that the image of
j under the product v of permutations belongs to the set A. We say that a
system of permutation conditions has a solution if there exists an assignment
of permutations on a finite set {1, 2, . . . , n} to letters in Π such that all the
conditions in the system are satisfied. Obviously the systems associated to w
by each role assignment have always the solution where all permutations are the
identity. A solution of the system Γw(Π,Υ), associated to w by a mono-role
assignment, is called trivial if all permutations fix 1. Also, in the special case
when Υ consists of the unique block D2 (and as a consequence, all j’s on the
right hand side of the conditions are equal to 2), a solution with all permutations
fixing the set {1, 2} is considered trivial. The remaining solutions are nontrivial.
Similarly a solution of the system Γ′w(Π,Υ), associated to w by a stereo-role
assignment (Π,Υ) is called trivial if all the permutations fix {1, 2}.

In [8] 2-collapsing words were characterized in terms of permutation condi-
tions in the following way.

Theorem 2 ([8]) A word w ∈ Σ+ is 2-collapsing if and only if it is 2-full and
the following conditions hold:

1. For each mono-role assignment (Π,Υ) of Σ all the solutions of the system
Γw(Π,Υ) are trivial.

2. For each stereo-role assignment (Π,Υ) of Σ all the solutions of the sys-
tem Γ′w(Π,Υ) are trivial.

By the above Theorem 2 one can readily derive the following characterization
of 2-synchronizing words.

Corollary 3 A word w ∈ Σ+ is 2-synchronizing if and only if it is 2-full and
for each role assignment (Π,Υ) of Σ all the solutions of the systems Γw(Π,Υ)
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(in case of mono-role assignments) and Γ′w(Π,Υ) (in case of stereo-role
assignments) in the semigroup T3 of all transformations on 3 letters are trivial.

2 Main result.

We introduce some useful notations.

Definition 1 . A permutation p on {1, 2, ..., n} is special with respect to the
ordered pair (i, j), i, j ∈ {1, 2, ..., n}, whether it fixes either {i} or {i, j}. Two
permutations p, z are special of the same type with respect to the ordered pair
(i, j) if both p and z fix {i} or both of them fix {i, j}.

In the sequel by (i)..., (ij)..., (ijh...)... we will denote respectively a permu-
tation fixing i, containing a cycle (i, j), containing a cycle (ijh...) of arbitrary
length.

Note that the property of being special of the same type with respect to (i, j)
is not transitive; e.g. both the permutations p = (1)(2...n) and z = (12)(3...n)
are special of the same type as y = (1)(2)(3...n) with respect to (1, 2), but they
are not of the same type. Note however that two special permutations p and z
can be of the same type of y with respect to (i, j) without being of the same type
only if one of them fixes {i} and does not fix j, the other has a cycle (ij) while y
fixes both {i} and {j}. Trivial solutions of systems introduced before Theorem
2 are special of the same type with respect to (1, 2), so we are interested in sets
of equations whose occurrence in a system guarantees that solutions are special
of the same type with respect to (1, 2).

Lemma 4 Let p, z be two permutations on {1, 2, ..., n} and let i, j ∈ {1, 2, ..., n}.
The permutations p, z fulfil the conditions:

1. ip ∈ {i, j}

2. ip2 ∈ {i, j}

3. iz ∈ {i, j}

4. iz2 ∈ {i, j}

5. ipzp ∈ {i, j} (or izpz ∈ {i, j})

if and only if they are special of the same type with respect to (i, j).

Proof The ”if part” is trivial. Conversely from condition 1. we immediately
get that either p fixes i or it is of the form p = (ij...)... and condition 2. gives
that in such case p = (ij).... Similarly conditions 3. and 4. give that z either
fixes i or has the form z = (ij).... Now if z = (ij)... and p fixes i then p fixes
also j otherwise condition 5. is not fulfilled. If p = (ij)... then jz = ipz ∈ {i, j}
by condition 5. whence z fixes {i, j}.

Similarly, the following can be proved:
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Lemma 5 Let p, z be two permutations on {1, 2, ..., n} and let i, j ∈ {1, 2, ..., n}.
The permutations p, z fulfil the conditions:

1. ip ∈ {i, j}

2. ip2 ∈ {i, j}

3. iz2 ∈ {i, j}

4. ipz ∈ {i, j}

5. izp ∈ {i, j}

if and only if they are special of the same type with respect to (i, j).

Theorem 6 The minimal 2-collapsing word on t letters has length less than or
equal to

t3 + 6t2 + 5t

2
.

Proof To show our bound we want to exhibit a 2-collapsing word, similar to
the one introduced in [9]. Consider an alphabet Σ = {a1, a2, ..., at} on t letters
in the lexicographic order and let u = a1a2...at and

w = u(
∏
q∈X

qu)

where
X = {x, x2, xyx : x, y ∈ Σ , y > x}.

We want to prove that the word w is 2-collapsing. Let us consider different role
assignments (Π,Υ) of Σ.

Assume that (Π,Υ) is a stereo-role assignment with Υ = {E1, E2}; let
h, k be respectively the least and the greatest index of an element in Υ and
let aj be an element in Υ belonging to a different block than ak (eventually
h = j). Each ai, i > k (if any) fixes {1, 2}, since the factors akaiak, ajaiaj

occur in w whence both the equations 1ai ∈ {1, 2} and 2ai ∈ {1, 2} occur in
Γ′w(Π,Υ). More the product a1a2...ah−1 fixes {1, 2}. In fact aj(a1a2...ah−1)ah

and ak(a1a2...ah−1)ah are factors of w and all a1, ..., ah−1 are in Π hence both
the equations 1(a1a2...ah−1) ∈ {1, 2} and 2(a1a2...ah−1) ∈ {1, 2} occur in
Γ′w(Π,Υ). This yields that also any ai, i < h (if any) fixes {1, 2}, since also
aiajai(a1a2...ah−1)ah and aiakai(a1a2...ah−1)ah are factors of w whence both
the equations 1ai(a1a2...ah−1) ∈ {1, 2} and 2ai(a1a2...ah−1) ∈ {1, 2} occur in
Γ′w(Π,Υ) with a1a2...ah−1 fixing {1, 2}. Similarly, at last, each ai : h < i < k
(if any) fixes {1, 2}. In fact either ah and ak are in different blocks or there is
an aj ∈ Υ belonging to a different block with respect to ah and ak, so for each
i, h < i < k there are two indices s, r, h ≤ s < i < r ≤ k such that as and ar

are in different blocks of Υ, hence aiarai(a1a2...ah−1)ah and asaias are factors
of w.
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Then let (Π,Υ) be a mono-role assignment with Υ = {D2, D3, ...Dg} with
g > 2. Let k be the greatest index such that ak ∈ Υ then ak ∈ Dk′ for some
k′. Let Dj′ be a block of Υ different from Dk′ and let aj ∈ Dj′ . We will
prove that every ai ∈ Π fixes {1}. In fact if i > k then akaiak, ajaiaj are
factors of w hence both the equations 1ai ∈ {1, k′}, 1ai ∈ {1, j′} occur in the
system Γw(Π,Υ), whence ai fixes {1} for all ai ∈ Π with i > k, if any. Now let
i < k. If j < i < k then ajaiaj , akak+1...ataiakai are factors of w, if i < j then
akak+1...ataiajai, akak+1...ataiakai are factors of w and all elements ak+1, ..., at

are in Π, hence they fix {1}. Then in the system Γw(Π,Υ) there are either the
equations 1ai ∈ {1, j′} and 1ak+1...atai ∈ {1, k′} or 1ak+1...atai ∈ {1, j′} and
1ak+1...atai ∈ {1, k′} from which in both cases we get that 1ai ∈ {1, k′} and
1ai ∈ {1, j′}, thus all ai ∈ Π fix {1}.

At last suppose that Υ consists of only one block, i.e. g = 2, and let h,
k respectively be the least and the greatest index of an element in Υ. Denote
v1 = a1...ah−1 and v2 = ak+1...at, then ahv1ah, akv2ak are factors of w whence
1v1, 1v2 ∈ {1, 2} are equations occurring in Γw(Π,Υ).

In this case, suppose first that 1v2 = 1. Since for all ai ∈ Σ, akv2aiv1ah

and akv2a
2
i v1ah are factors of w, equations in Γw(Π,Υ) give 1aiv1 ∈ {1, 2} and

1a2
i v1 ∈ {1, 2}. Moreover since w contains akaiak or akv2aiakai we have 1ai ∈

{1, 2} for every ai ∈ Σ. If all the letters ai fix 1, then we are done. Otherwise
suppose there is a letter ai such that 1ai = 2. Then we get 2v1 ∈ {1, 2} and
since 1v1 ∈ {1, 2} we obtain that v1 fixes {1, 2}. Thus from 1ai

2v1 ∈ {1, 2} we
get 2ai = 1 and ai = (12).... To prove that in this case all permutations are
of the same type, note that whenever a factor akv2aiajaiv1ah appears in w we
have 1aiajai ∈ {1, 2} and then apply Lemma 4.

Suppose now 1v2 = 2. Then 2aiv1, 2a2
i v1 ∈ {1, 2} for every ai ∈ Π. Let

us prove that v1 must fix {1, 2}. This is trivial if h = 1 and v1 is empty, else
let {1, 2} = {1v1, zv1} for some z and prove that z = 2. For all i : 1 ≤ i < h
akv2aiahai and aiahaiv1ah are factors of w, hence 1v2ai ∈ {1, 2} and 1aiv1 ∈
{1, 2} are equations in Γw(Π,Υ), so that 2ai ∈ {1, 2} and aiv1 fixes {1, 2}. If
for some i : 1 ≤ i < h: 2ai = 2a2

i then ai = (2)... and 2v1 ∈ {1, 2} whence
z = 2; else {2ai, 2a2

i } = {1, z} which immediately yields ai = (2 1 z...)... since
2 6= 2ai ∈ {1, 2}. If there exist two such elements ai, aj , 1 ≤ i < j < h then the
factor akv2aiajaiv1ah occurs in w so that 1v2aiajaiv1 = (2aiaj)aiv1 ∈ {1, 2}
is an equation in Γw(Π,Υ) whence 2aiaj = z ∈ {1, 2} and z = 2; but if only
one element ai of this type exists then z = 1ai = 1v1 ∈ {1, 2}. Thus v1 fixes
{1, 2}, which immediately yields 2ai, 1ai ∈ {1, 2} for every ai ∈ Π, i < k by
the occurrence of the factor akv2aiakaiv1ah, and for every ai ∈ Π, i > k by
the occurrence of the factors akaiak and akv2aiv1ah; hence all elements in Π fix
{1, 2} so that they are special of the same type.

Thus w is 2-collapsing because the systems associated to w for each role
assignment (Π,Υ) have only trivial solutions and the length of the word w is:

t + t(t + 1) + t(t + 2) +
t(t− 1)

2
(t + 3) =

t3 + 6t2 + 5t

2
.
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3 Short 2-collapsing words.

The bound found in Theorem 6 is lower than the one given in [9], but still for
small values of n it reveals to be not efficient: indeed for n = 3, 4, 5 it respectively
gives |w| ≤ 48, 90, 150. It was proved in [3] that the shortest 2-collapsing words
on 3 letters have length 21 and the shortest 2-synchronizing words on 3 letters
have length 20, while a 2-collapsing word on 4 letters is known whose length
equals 58 ([4]). But we can use our lemmas to get shorter 2-collapsing and
2-synchronizing words on 4 and 5 letters.

We will make a systematic use of the following

Lemma 7 Let w be a word on an alphabet Σ with |Σ| ≥ 2, let Σ′ ⊆ Σ and
w′ ∈ Σ′+ be a factor of w, which is a 2-collapsing word on Σ′. For a role
assignment (Π,Υ) of Σ let Π′ = Π ∩ Σ′ and Υ′ = Υ ∩ Σ′ and for each block
Ei (Di) in Υ let E′

i = Ei ∩ Σ′ (D′
i = Di ∩ Σ′). Then for each role assignment

(Π,Υ) such that ∅ 6= Π′ and ∅ 6= Υ′ the following properties hold:

• If (Π,Υ) is a mono-role assignment with Υ = D2, then in each solution
of Γw(Π,Υ) the elements in Π′ are special of the same type with respect
to (1, 2).

• If (Π,Υ) is a a mono-role assignment with Υ = {D2, D3, ...Dg}, g > 2,
and there are at least two non empty blocks D′

i1
, D′

i2
, then in each solution

of Γw(Π,Υ) all the elements in Π′ fix {1}.

• If (Π,Υ) is a stereo-role assignment and both E′
1, E

′
2 are nonempty, then

in each solution of Γ′w(Π,Υ) all the elements in Π′ fix the set {1, 2}.

In all the above cases, if Π′ = Π then the system associated to w for (Π,Υ) has
only trivial solutions.

Proof If (Π,Υ) is a mono-role assignment, then (Π′,Υ′) is a mono-role as-
signment of Σ′ and the equations of Γw′(Π′,Υ′) occur in Γw(Π,Υ), hence all
solutions of the latter system are also solutions of the former. Hence if Υ and
consequently Υ′ has only one block, then all elements in Π′ are special permuta-
tions relative to (1, 2) which all fix {1} or all fix {1, 2}, because w′ is 2-collapsing.
Similarly if Υ′ is formed by at least two blocks then all elements in Π′ fix {1}. If
(Π,Υ) is a stereo-role assignment of Σ, and Υ′ has two non trivial blocks, then
(Π′,Υ′) is a stereo-role assignment of Σ′ hence the equations of Γ′w′(Π′,Υ′)
occur in Γ′w(Π,Υ) and so all elements in Π′ are special permutations relative to
(1, 2) which all fix {1, 2}. The last statement is trivial.

It is important to remark, using the same notation and the same arguments
of the above Lemma 7, that if (Π,Υ) is a mono-role assignment with more than
one block different from Π, while Υ′ is formed by a unique block D′

i, then in
each solution of Γw(Π,Υ) all the elements in Π′ are special of the same type
with respect to {1, i}. Similarly if (Π,Υ) is a stereo-role assignment of Σ and
E′

1 = ∅ then in each solution of Γ′w(Π,Υ) all the elements in Π′ are special of
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the same type with respect to (2, 1) while if E′
2 = ∅ then all the elements in Π′

are special of the same type with respect to (1, 2).

Proposition 8
c(2, 4) ≤ 56

Proof
Let Σ = {a, b, c, d} and let r = cabac2bacbcacb2a2c, s = dadbda2b2dabd2ab,

u = adacdbcadac2d2cbdca.
Consider the word w = r(bab)su. Of course |w| = 56; we want to prove

that w is 2-collapsing. In order to exhibit w we made use of two of the minimal
2-collapsing words on 3 letters. Namely u1 = r(bab) is the 55-th word in the
list in [3] on the alphabet {c, a, b}, while u2 = (bab)s(ad) is the 11-th one in
that list on the alphabet {b, a, d}. Both the words u1 and u2 are 2-collapsing,
as shown in [3]. Put Σ1 = {a, b, c} and Σ2 = {a, b, d}.

Let us consider different role assignments (Π,Υ) of Σ and put Πi = Π ∩Σi,
Υi = Υ ∩ Σi, for i = 1, 2.

Let |Π| = 1 and Π ⊂ {a, b} then Π1 = Π2 = Π. Moreover if (Π,Υ) induces
on Υ a partition in more than one block then there is at least an i = 1, 2
such that Υi contains two non empty blocks, so the system associated to w for
(P,Υ) has only trivial solutions by Lemma 7. Then let Π = {c}. If (Π,Υ) is a
mono-role assignment and Υ consists of only one block, then all the solutions
of Γw(Π,Υ) are trivial by Lemma 7. If Υ consists of more than one block then
one has to consider the factors acb, bca of w if the letters a and b belong to
different blocks, else consider the factors acd and dca. In both cases, if (Π,Υ)
is a mono-role assignment then the equations 1c ∈ {1, 2}, 1c ∈ {1, 3} occur
in Γw(Π,Υ) hence c fixes {1}. If (Π,Υ) is a stereo-role assignment then the
equations 1c ∈ {1, 2}, 2c ∈ {1, 2} occur in Γ′w(Π,Υ), hence c fixes the set {1, 2}.
The same argument applies when Π = {d}, considering the factors adb, bda or
bdc, cdb.

Let |Π| = 2. Assume Υ = {a, b}. Then for all i = 1, 2, ∅ 6= Πi 6= Π and
Υ = Υi. Then if Υ is formed by two blocks then all the solutions of the system
associated to w for (Π,Υ) are trivial: by Lemma 7 if (Π,Υ) is a mono-role
assignment then both c, d fix {1}, if (Π,Υ) is a stereo-role assignment then
both c, d fix {1, 2}. Otherwise if Υ is formed by a unique block we only get that
c and d are special permutations relative to (1, 2). But since w contains the
factors acdb, bdca, the equations 1cd ∈ {1, 2}, 1dc ∈ {1, 2} occur in Γw(Π, {a, b})
hence c, d are special permutations of the same type with respect to (1, 2),
i.e. the system Γw(Π, {a, b}) has only trivial solutions. Then let Υ 6= {a, b},
whence Π = Πi for some i = 1, 2. Hence if Υ is formed by a unique block
then Γw(Π,Υ) has only trivial solutions by Lemma 7. Otherwise we only get
that the solutions of the systems associated to w for (Π,Υ) are either special
permutations relative to (1, 2) or fix {2}. Denote by β1, β2 the elements in Π
and by α1, α2 the elements in Υ; for every choice of (Π,Υ) where Υ 6= {a, b}
is formed by two blocks, there is an i = 1, 2 such that αhβiαh and either
αhβε

i β3−iαh or αhβε
i β3−iα3−h (where ε ∈ {0, 1} and β0

i is the empty word) are

9



factors of w for all h = 1, 2. Then if (Π,Υ) is a stereo-role assignment then the
equations 1βi ∈ {1, 2}, 2βi ∈ {1, 2}, 1βε

i β3−i ∈ {1, 2}, 2βε
i β3−i ∈ {1, 2} occur in

Γ′w(Π,Υ), and this yields that the solutions of the systems are pairs of special
permutations which both fix the set {1, 2}, i.e. the system has only trivial
solutions. Otherwise if (Π,Υ) is a mono-role assignment with three blocks
the equations 1βi ∈ {1, 2}, 1βi ∈ {1, 3}, 1βε

i β3−i ∈ {1, 2}, 1βε
i β3−i ∈ {1, 3}

occur in Γw(Π,Υ), and this yields that the solutions of the systems are pair of
trivial permutations which both fix {1}, hence again the system has only trivial
solutions.

Let |Π| = 3. If Υ = {α} ⊂ {a, b} then for all i = 1, 2 Υi = Υ, hence
the solutions of Γw(Π,Υ) are triples of special permutations of the same type of
γ ∈ {a, b}−Υ, since they are also solutions of Γui(Πi,Υi). If these permutations
are not all of the same type then it must be γ = (1)(2).... Then if γ = b
consider the factor acdbca of w, otherwise consider the factor badacdb of w.
In the first case the equation 1cdbc ∈ {1, 2} occurs in Γw(Π,Υ), in the second
case 1adacd ∈ {1, 2} occurs in Γw(Π,Υ), and both the equations together with
γ = (1)(2)... yield that c, d are of the same type. Hence the system Γw(Π,Υ)
has only trivial solutions.

If Υ = {c} then a, b are special permutations of the same type with respect to
(1, 2) since they are solutions of Γu1({a, b}, {c}), whence 1a, 1a2, 1b, 1b2 ∈ {1, 2}
and b, d are special solutions of the same type with respect to (1, 2) by applying
Lemma 5 to Γu({a, b}, {c}) ∪ {1b, 1b2 ∈ {1, 2}}. Whence 1d, 1d2 ∈ {1, 2} and
again a, d are special solutions of the same type with respect to (1, 2) by applying
Lemma 4 to

Γu({a, b}, {c}) ∪ {1a, 1a2, 1d, 1d2 ∈ {1, 2}}.

If Υ = {d}, then a, b are special solutions of the same type with respect to (1, 2)
since they are solutions of Γu2({a, b}, {d}), whence 1a, 1a2, 1b, 1b2 ∈ {1, 2}. More
1ac, 1bca, 1ac2, 1cb ∈ {1, 2} by Γu({a, b}, {d}). If a fixes {1} but does not fix {2},
then b too fixes {1} and we immediately get 1ac, 1ca, 1c2, 1c ∈ {1, 2} whence a
and c are special solutions of the same type with respect to (1, 2) by applying
Lemma 5 so that also c fixes {1}. If a = (1)(2)... then 1c, 1bc, 1c2, 1cb ∈ {1, 2}
whence again b and c are trivial solutions of the same type by Lemma 5. Finally,
let a = (12)...; then b fixes {1, 2} whence 2c, 1c ∈ {1, 2}.

Proposition 9
c(2, 5) ≤ 119

Proof
Let Σ = {a, b, c, d, e}. Let r = cabac2bacbcacb2a2c, s = dadbda2b2dabd2ab,

u = adacdbcadac2d2cbdca, s′ = abeaebea2b2eabe2ab, u′ = aeacebcaeac2e2cbe.
Consider the words w1 = r(bab)su ∈ {a, b, c, d}+ and w2 = bs′u′r(bab) ∈

{a, b, c, e}+.
Like in the proof of Proposition 8 the word w1 is 2-collapsing on the let-

ters {a, b, c, d} and symmetrically the word w2 is 2-collapsing on the letters
{a, b, c, e}: we only changed the order of some parts, but still we involved as
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factors some of the minimal 2-collapsing words on three letters. The factors
in u and u′(ca) strictly correspond to the one we considered in the proof of
Proposition 8.

More, let v = cedbeacdebdedbedade2d2ecedce and finally w = s′u′r(bab)suv.
(Note that w contains all the factors of w2). Of course |w| = 119; we want to
prove that w is 2-collapsing. Let us consider different role assignments (Π,Υ)
of Σ and put Πi = Π ∩ Σi, Υi = Υ ∩ Σi, for i = 1, 2.

If |Π| = 1 arguments like the ones applied in the proof of Proposition 8 can
be used to prove that the system associated to w for (Π,Υ) has only trivial
solutions.

Let |Π| = 2, 3. Assume that, for some i = 1, 2, Π ⊆ Σi. If Υ is formed
by a unique block, then the system associated to w for (Π,Υ) has only trivial
solutions by Lemma 7; the same happens when both Υi and Υ are decomposed
in more than one block. So, for all i such that Π ⊆ Σi, Υi is formed by a
unique block while Υ is formed by more than one block. It is easy to check that
if Π ⊂ {a, b, c} then either Υ1 or Υ2 are formed by two blocks. Then assume
Π = {a, b, c}, whence Υ = ({d}, {e}). Hence all the solutions of the system
associated to w for (Π,Υ) fix {1, 2} by the remark after Lemma 7. Assume that
Π is not a subset of {a, b, c} and Π ⊆ Σ1, then Π1 = Π and Υ2 = Υ = (Υ1, {e}).
In all the solutions of the system associated to w for (Π,Υ) by Lemma 7 the
elements in Π2 fix {1, 2} if (Π,Υ) is a stereo-role assignment and fix {1} if
it is a mono-role assignment. Moreover each solution of the system associated
with w for (Π,Υ) is formed by permutations which either fix {1, 2} or fix {1} or
fix {2} (by remark after Lemma 7). So let (Π,Υ) be a stereo-role assignment.
Then the solutions of the system Γ′w(Π,Υ) either fix all {1, 2}, or all fix {1}
({2}) and the elements in Π2 are of the form (1)(2).... In the latter case, since
edbe, edce are factors of w, when either b or c are in Π2 we get that d too has the
form (1)(2)..., otherwise we get again that d has the form (1)(2)... because w has
the factors edb, edc. Hence Γ′w(Π,Υ) has only trivial solutions. Then let (Π,Υ)
be a mono-role assignment (with more than one block in Υ). Since w contains
all the factors ade, bde, cde we get that d fixes {1}, whence Γw(Π,Υ) has only
trivial solutions. Similar arguments apply when Π is not a subset of {a, b, c}
and Π ⊆ Σ2. So let {d, e} ⊆ Π. Obviously Υi = Υ for all i = 1, 2. Then if Υ
contains at least two blocks then the solutions of the system associated to w for
(Π,Υ) are trivial by Lemma 7. So let (Π,Υ) be a mono-role assignment with
a unique block in Υ. Then all the solutions of Γw(Π,Υ) are formed by special
permutations with respect to (1, 2) and if |Πi| > 1 then the permutations in Πi

are of the same type. Assume that the permutations in Π1 and in Π2 are not
of the same type then if Π ⊆ {a, d, e}, the factors cdeb, bdec, cedb, bedc give that
both d, e fix {1, 2}. Moreover beaeb is a factor of w so again both a, e fix {1, 2}
provided that a ∈ Π. Now let Π = {b, d, e}. If there is a solution of Γw(Π,Υ)
which is not trivial then b has the form (1)(2)..., and the factor cedbea gives that
both d, e fix {1, 2}. If Π = {c, d, e} then if there is a solution of Γw(Π,Υ) which
is not trivial then c has the form (1)(2)..., and again the factor bdedb gives that
both d and e fix {1, 2}. Hence the systems associated to w for each partition
(Π,Υ) with |Π| = 2, 3 have only trivial solutions.
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So, let |Π| = 4 and let Υ = {α}. If α ∈ {a, b, c} then in each solution
of Γw(Π,Υ) all the elements in Π1 are special permutations of the same type
with respect to (1, 2) and the same holds for all the elements in Π2. So if in
Π there exist elements of different form then the elements in {a, b, c} − {α}
must have the form (1)(2).... But, in such case, considering the equations gen-
erated by some of the factors acedbea, bdcacedb, cedbeac of w it is easy to ver-
ify that also d and e fix {1, 2}. If α = d then in each solution of Γw(Π,Υ)
a, b, c are special of the same type with respect to (1, 2) by Lemma 7 and
1cace, 1beac, 1eb, 1e, 1be, 1e2, 1ece ∈ {1, 2} occur in Γ(bdca)v(Π,Υ) whence they
occur also in Γw(Π,Υ); hence b, e and c, e are special of the same type with
respect to (1, 2). If one among b, c is different from (1)(2)... then all of them
are of the same type; but if both of them fix both 1 and 2 then one gets
1ae, 1ea ∈ {1, 2} and so all the solutions of Γw(Π,Υ) are trivial. If α = e then
again in each solution of Γw(Π,Υ) a, b, c are special of the same type with respect
(1, 2). Moreover 1db, 1acd, 1bd, 1dad, 1d2, 1dc ∈ {1, 2} occur in Γ(bdca)v(Π,Υ),
whence d, b and d, a are special of the same type by Lemmas 5 and 4. Again,
assume a = b = (1)(2)...: this yields at last 1cd, 1dc ∈ {1, 2} and again all the
solutions of Γw(Π,Υ) are trivial.

In Proposition 8 of [7] we considered a slightly longer word, so proving that
c(2, 5) ≤ 120. But in [11] an algorithm is presented to find shorter 2-collapsing
words from a given 2-collapsing word. The author run her algorithm on our
word and got four 2-collapsing words of length 119, one of which is the word
considered in the above Proposition 9. She also did the same on the word in our
Proposition 8: she could not find shorter 2-collapsing words, but found three
more 2-collapsing words of the same length.

Of course Propositions 8 and 9 give upper bounds to the length of the mini-
mal 2-synchronizing words respectively on 4 and 5 letters. But this bounds can
be further improved: denote by s(2, t) the length of the least 2-synchronizing
word on t letters.

Proposition 10
s(2, 4) ≤ 52

Proof Let Σ = {a, b, c, d} and let r = cabab2cbcaca2b2c2a ∈ {a, b, c}+, s =
bd2a2b2dbdada2babd ∈ {a, b, d}+.

The word w = (cd2cbcd)r(ab)s(cdadc2d) is 2-synchronizing and |w| = 52.
In order to exhibit w we used two of the minimal 2-synchronizing words on 3
letters listed in [3]. Namely u1 = r(ab) is the 11-th word in the list in [3], on
the alphabet Σ1 = {c, a, b}, while u2 = (ab)s is the 15-st one in that list, on the
alphabet Σ2 = {a, b, d}. Both the words u1 and u2 are 2-collapsing ([3]).

Let us consider different role assignments (Π,Υ) of Σ and put Πi = Π ∩Σi,
Υi = Υ ∩Σi, for i = 1, 2. The cases when |Π| = 1, 2 can be proved with similar
arguments as in the proof of Proposition 8.
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Let |Π| = 3. We are looking for solutions of our systems of equations on 3
permutations t, y, z in the symmetric group Sym3. If a system has only special
solutions with respect to {1, 2} and t, y are of different types while both of them
are of the same of z, then without loss of generality t = (12)(3) and y = (1)(23);
in such a case we immediately get that z = (1)(2)(3) = t2 = y2.

Now let α ∈ Υ. If α = a (resp. α = b) the permutations b, c (resp. a, c)
are trivial solutions of Γu1(Π1, {α}) and b, d (resp. a, d) are trivial solutions
of Γu2(Π2, {α}), whence both c and d are of the same type as b (resp. of a).
If b (resp. a) is different from the identity, then both c and d must be of
the same type by the previous remark, but this is true also on the other case
as the equation 1bdcd ∈ {1, 2} belongs to Γw(Π, {a}) (resp. 1cdca ∈ {1, 2}
belongs to Γw(Π, {b})). If α = c then a, b are trivial solutions of Σu1(Π1, {α}).
More cdc, cd2c, cdadc are factors of w. Since 1a, 1a2 ∈ {1, 2} then only special
permutations of the same type are solutions of Γw(Π, {c}) by Lemma 4. Thus
b and d are special permutations of the same type as a. But the equation
1au2 ∈ {1, 2} appears in Γw(Π, {c}): if a is the identity it immediately yields
that 1dbd ∈ {1, 2} by previous remark. By Lemma 4 b and d are of the same
type. A similar argument runs when α = d since dcd, dc2d, dcbcd, du1bd are
factors of w.

Proposition 11
s(2, 5) ≤ 111

Proof
Let Σ = {a, b, c, d, e}. We want to exhibit a 2-synchronizing word of length

111 on Σ, like in the proof of Proposition 10. We shall consider two slightly
longer 2-synchronizing word on 4 letters with a better overlapping:

r = ab2c2abacab2cbca2c ; s = bd2abadaba2bdbd2ad ; u = adcd2c2dabcadcbd ;

w1 = ur(ab)s ; s′ = s ; r′ = dedea2eadaead2e2a ; u′ = dbaebdeabe2b2edb ;

w2 = (ab)sr′u′ ; v = cebeacdaece ; v′ = cec2e2cbcedec.

The word w1 (resp. w2) is 2-synchronizing on the alphabet {a, b, c, d} (resp.
{a, b, d, e}), by similar arguments as in the proof of Proposition 10. In fact it is
built from two words in the list in [3] for suitable alphabets: r(ab) is the 6-th
and (ab)s is the 16-th (resp. (ab)s′ is the 16-th while (dad)r′ is the 1-st) and u
(resp. u′) gives us the other necessary factors.

The word w = vur(ab)sr′u′v′ is 2-synchronizing and its length equals 111.
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ematical Foundations of Computer Science 2006, Lect. Notes Comp. Sci.
4162, Springer, Berlin 2006, 256–266.

[9] S. W. Margolis, J.-E. Pin, M. V. Volkov, Words guaranteeing minimum
image, Internat. J. Foundations Comp. Sci. 15, no.2, (2004), 259–276.

[10] E. V. Pribavkina, On some properties of the language of 2-collapsing words,
Internat. J. Foundations Comp. Sci. 17, no.3, (2006), 665–676.

[11] E. V. Pribavkina, 2-collapsing words and a sequence reconstruction problem,
CD Proceedings of AutoMathA Conference 2007, Mondello, Italy.

[12] N. Sauer, M. G. Stone, Composing functions to reduce image size, Ars
Combinatoria 31, (1991), 171–176.

14


