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Abstract

In this study we analyzed the N-formyl-Met-Leu-Phe (fMLP)-induced calcium signal in alveolar
macrophages (AM) isolated from ovalbumin-sensitized (OA-sensitized AM) and naive (naive AM)
guinea-pigs. Guinea-pigs were sensitized by subcutaneous injection of OA and AM were isolated by
bronchoalveolar lavage 6 weeks thereafter. On the following day, we measured in resting and fMLP-
stimulated cells: intracellular calcium concentration by fura-2 imaging analysis, forskolin-induced cy-
clic AMP production and superoxide dismutase inhibitable superoxide anion release of adherent AM.
Resting calcium was 825.0 nM (n=217) and 1449.3 nM (n=213, F<0.001) in naive and OA-
sensitized AM respectively. fMLP (18—10""M) induced a dose-dependent calcium increase,
1078M being the maximal effective dose in both naive and OA-sensitized AM. However, at all doses
tested, this fMLP effect was lower in OA-sensitized than in naive AM. While in resting condition
107°M forskolin increased cyclic AMP both in naive and OA-sensitized AM, in fMPL-stimulated AM
forskolin was effective only in OA-sensitized AM. Superoxide anion release measured 10 min after
fMLP stimulus was higher in naive than in sensitized AM. These data suggest that the fMLP-induced
intracellular signal is different in OA-sensitized AM compared to naive cells. © 2001 Elsevier Sci-
ence Inc. All rights reserved.
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Introduction

Alveolar macrophages (AM) represent the prevalent cell population in bronchoalveolar la-
vage (BAL) and play a pivotal role in pulmonary inflammatory process such as asthma [1,2].
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AM possess the serpentine formyl-methionyl-leucyl-phenylalanine (fMLP) receptor
(FPR) [3]. The FPR activation induces an intracellular calcium increase. This calcium rise is
mainly dependent on the stimulation of the pertussis toxin (PTX)-sensitive Gi24G3b-
unit [4,5,6,7] andx16-containing Gq [8,9]. Indeed, as described by Stickle et al., in quin-2
loaded AM isolated from naive guinea-pigs [10] the formylated peptide formyl norleucyl
leucyl phenylalanine (FNLLP) rises intracellular calcium. Moreover, the Gi2/Gi3 alpha sub-
unit of FPR inhibits adenylyl cyclase (AC) [11,12].

The FPR activation also induces superoxide aniof)(@roduction, by stimulation of
NADPH oxidase [13]. Although the calcium increase can influencep@duction, the regu-
lation of O~ production does not appear to be correlated only with the calcium increase.
Rather, in a study of the relationship between calcium ang@duction after FPR activation,
Watson and co-authors [14] demonstrated that the initial bursjop@duction in human
neutrophils is calcium dependent, whereas the late, long lasting phase is prevalently sus
tained by protein kinase C (PKC) activity as appears by inhibiting PKC with staurosporine.
Other intracellular signaling routes contribute to the activation of NADPH oxidase after stim-
ulation with fMLP [15,16,17]. Since FPR activation has been extensively studied, cellular re-
sponses obtained by FPR occupancy may serve to investigate cell functions in animal model
of airway hyperresponsiveness. Among animal models used for study of airway inflamma-
tory pathologies, the guinea-pig is widely used both as normal animals (naive) and after active
sensitization (sensitized). Although many reports investigate the responsiveness of AM iso-
lated from sensitized guinea-pigs, no extensive studies have yet been performed to characteri:
intracellular calcium regulation in sensitized AM compared to naive animals. We therefore
studied the fMLP-induced intracellular calcium signal in relationship to superoxide anion
production and forskolin-mediated activation of AC in AM isolated from sensitized as com-
pared to those from naive guinea-pigs.

Methods

This investigation conforms to the rules for the care and use of laboratory animals of the
European Community.

Sensitization of guinea-pigs

Male guinea-pigs (300—-4009g) were actively sensitized by s.c. injection of 0.5% ovalbumin
(OA) [18]. Animals (500-600 g body weight) were used 4—6 weeks later.

Isolation of AM from naive and OA-sensitized guinea-pigs

AM were isolated from OA-sensitized guinea-pigs (OA-sensitized AM) and age-matched
guinea-pigs (naive AM) as described [18, 19]. Anesthetized guinea-pigs (Pentothal, 80 mg
kg~1) were tracheoctomized and 5 ml aliquots of PBS were injected. The collected fluid was
centrifuged (700 g for 10 min) and, after erythrocyte hypotonic lysis, AM were resuspended
in RPMI 1640 (10% fetal bovine serum, 100 U hpenicillin and 10G.g mi~! streptomycin)
and plated on round glass coverslips (25 mm diameter) at a density of 200,000/coverslip fol
calcium measurement or 1,000,000/well (6 multiwells) for superoxide and cyclic AMP deter-
mination. AM were washed after 2 h and used 24 h after planting in order to promote cell ad-
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hesion. This isolation procedure yielded a percentage of adherent macrophages more the
95% in both naive and OA-sensitized guinea-pigs.

Imaging analysis of intracellular calcium concentration (fCH)

Coverslip adherent AM were loaded witlw# fura-2AM, 0.02% Pluronic F [20] (Molec-
ular Probes, Eugene, OR, USA) for 45 min at room temperature in Hepes/ Nat@Dm
(composition mM: 140 NacCl, 2.9 KClI, 0.9 MgCD.5 NaBPO,, 12 NaHCQ, 10 mM glu-
cose, 10 mM Hepes, 1.5 CaCidjusted to pH 7.4 with 1 N NaOH).

Fura-2-loaded AM were visualized using ax4@nagnification objective of an inverted
fluorescence microscope (Nikon Diaphot, Japan). Fluorescence images were collected witl
an intensified charge-coupled device ISIS-M extended video camera (Photonic Science, U.K.) b
means of an image Analysis System “Magiscan” (Applied Imaging, New Castle, U.K.) equipped
with a videotape recorder [21].

For quantification of [C&]Ji, following-in-time images obtained at 340 and 380 nm exci-
tation, emission 510 nm were digitalized by an analogical/digital converter{(Z5®% pix-
els) and rationed on a pixel-by-pixel basis. A ratio image was obtained every 800 ms. Cali-
bration curves were performed using ionomycin (Calbiochem) and ethylenebis tetraacetic
acid (EGTA, Aldrich-Chemi, Steinheim, Germany). After measuring L& resting con-
dition, fMLP was administered and continuously present during the experiment as indicated.

Experiments in the absence of extracellular calcium?{[[cat) were performed in nomi-
nally C&*-free medium in which 0.5 mM ethylenediaminetetraacetic acid (EDTA) was added.

All data were exported in ASCII file format and elaborated for graphic presentation using
MicroCal Origin® (2.8 version).

PTX preincubation

Naive and OA-sensitized AM were preincubated for 4 h witfy/nl of PTX, washed and
used either for [Cd]i determination or superoxide anion(Q production assay.

Cyclic AMP determination

After preincubation (10 min, 37 °“Cwith Hepes/NaHC®Q buffer containing 10Qu.M
isobutylmethylxanthine (IBMX), AM were incubated with or without 10 forskolin, a di-
rect activator of AC [22] either in resting condition or after stimulation wittf M fMLP.
The reaction was stopped after 10 min with 70% ice-cold ethanol. Cyclic AMP was deter-
mined in dried alcoholic extract using a commerci@][cyclic AMP RIA Kit (Amersham
International) as specified by the manufacturer.

Superoxide anion assay

O,~ production was evaluated by superoxide dismutase (SOD) inhibitable reduction of
ferricytochrome C [19] after a 10 min incubation in resting conditions and after stimulation
with 10°8M fMLP. In order to evaluate fMLP-induced,Oproduction, values obtained in
resting conditions under different treatments were subtracted.
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Statistical methods

For each experiment, at least 5 different AM preparations were used. Values are presented
meanst s.e.mean of analyzed cells. Statistical comparisons between data groups were performe
using Student’s t test (paired and independent); dose-response curves were also analyzed by o
way ANOVA and linear regression analysis. A P value of 0.05 was considered significant.

fMLP (formyl MET-LEU-PHE), EDTA disodium salt, penicillin, streptomycin, PTX, IBMX,
forskolin, SOD and ferricytochrome C were purchased from Sigma-Aldrich s.r.l. (Milan, Italy).
RPMI 1640 medium and fetal bovine serum were obtained from Gibco BRL-Life Technolo-
gies (Milan, Italy). Cell culture plastic supports were purchased from Costar (Corning Costar
Co., Costar Italia, Milan, Italy). All other reagents were of analytical grade.

Results
Resting intracellular calcium concentration

Resting [C&']i was 82-5.0 nM (n=217) and 1449.3 nM (n=213, P<0.001) in naive
and OA-sensitized AM respectively.

Effect of fMLP on [C&]i

fMLP induced a dose-dependent increase it [{Lin both naive and OA-sensitized AM,
the maximal effective dose being £0M (Fig. 1). As shown, the dose-response curve ob-
tained in OA-sensitized AM was shifted to the right, showing that at all doses tested, the cell
response was lower than that obtained in naive AMGB831, R 0.03, ANOVA). The time
course of the calcium increase was further investigated in naive and sensitized AM at the
maximal fMLP dose.

In naive AM, 108M fMLP induced a [C&]i increase characterized by a steep, early
phase lasting a few seconds (5-10 s). Thereafter, in several cells a slower rising phase until
calcium peak of high intensity occurred. Other cells showed a constant increasé&’]n [Ca
until the maximum. Then the [€di decreased to a sustained plateau. During this plateau
phase, high frequency, high intensity calcium oscillations were observed. In some cases, peal
superimposed on the plateau phase were higher than those observed during the earlier pha:
(Fig. 2). This kinetic characteristic of the calcium increase is in line with the dual G-protein
coupling of FPR.

In OA-sensitized AM the fMLP-induced [€di increase was also characterized by a
steep, early phase lasting a few seconds (5-10 s), but the maxifidi feak was lower
and calcium oscillations were less intense and less frequent than in naive cells (Fig. 3). In
deed, calcium oscillations superimposed on the plateau phase were of lower intensity thal
the first peak.

In the absence of [G&out, resting [C4']i was slightly decreased both in naive AM
(63=5.5 nM, n= 45) and OA-sensitized AM (12911.8 nM, n= 54, P<0.01 vs. naive,
resting). In naive AM the calcium peak induced by &M fMLP was reduced by 78%\(

[Ca']i 563+63.8 nM) and the plateau phase as well as calcium oscillations disappeared. In
OA-sensitized AM, the calcium peak was similarly reduced, by 74%C&]i, 333+35.9
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Fig. 1. Dose-response curve of fMLP in naive and OA-sensitized AM. Points are mesaM of at least 50
cells obtained in 5 separate experiments.

nM) and plateau phase and calcium oscillations were also absent. Also the preincubatior
with 3 wM econazole strongly reduced the fMLP-induced calcium oscillations (Fig. 4) both
in naive and OA-sensitized AM. Moreover, when both naive and OA-sensitized AM were
preincubated with 30 nM thapsigargin, 201 fMLP was ineffective (Fig. 4).

These data indicate that in both naive and sensitized AM the calcium increase is mediated b
an intracellular calcium pool discharge and calcium influx, accounting for the plateau phase an
calcium oscillation. The calcium influx seems to be mediated trough store-operated calcium chan
nels (SOCC), since the SOCC blocker econazole [23] totally suppressed calcium oscillations.

Effect of PTX on fMLP-induced calcium signal

In both naive and OA-sensitized AM, preincubation with the Gi-protein blocker PTX [24]
strongly modified the 1¢ M fMLP-induced calcium signal.

The first peak was decreased and oscillations disappeared. PTX incubation, however, re
duced the fMLP-induced [G4]i increase in OA-sensitized AM less than in naive AM. In
naive AM, preincubation with PTX reduced the calcium peak by 62%, while in OA-sensi-
tized AM PTX preincubation reduced it only by about 37%. It should be noted that after PTX
preincubation, the time course and intensity of the calcium signal were similar in naive and
sensitized AM (Fig. 5). The PTX-insensitive calcium increase is likely to be dependent on ac-
tivation of the PTX-insensitive Gg/&Gorotein [7,8].
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Fig. 2. Typical time-course of I8 M fMLP-induced calcium signal on the fluorescent ratio (340/380 nm, left
axis) and intracellular calcium concentration (right axis) in naive AM. Bottom : each curve is the single response
measured in an individual cell. Top: mean time course of analyzed cells.

Cyclic AMP

In resting conditions cyclic AMP content was very similar in naive and OA-sensitized AM.
Forskolin administration (I3 M) induced a significant increase in cyclic AMP content, being
forskolin effect more pronounced in naive than OA-sensitized AM. Cyclic AMP content was
only slightly increased by 18 M fMLP stimulation (not significant). Whereas in naive AM
fMLP pretreatment inhibited the forskolin-induced cyclic AMP increase, in OA-sensitized
AM, fMLP pretreatment did not interfere with forskolin-induced cyclic AMP increase. In-
deed, in naive AM forskolin-induced cyclic AMP increase was significantly reduced in
fMPL-stimulated cells compared to resting conditions (&.6090 pmol/18cells in fMLP-
stimulated versus 080.12 pmol/16 cells in resting AM, R0.05), while it was not modified
in OA-sensitized AM (0.420.089 pmol/18 cells in fMLP-stimulated versus 0.4D.086
pmol/1C cells in resting AM).

Superoxide anion production

Since Q™ radicals are a typical ROS produced by monocyte/macrophage cells after stimu-
lation with fMLP, we tested the release of @adicals in control conditions and after prein-
cubation with PTX. At rest (fMLP unstimulated cells), the @elease was slightly smaller in
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Fig. 3. Typical time-course of 18 M fMLP-induced calcium signal on the fluorescent ratio (340/380 nm, left
axis) and intracellular calcium concentration (right axis) in OA-sensitized AM. Bottom: each curve is the single
response measured in an individual cell. Top: mean time course of analyzed cells.

naive (not significant) than in OA-sensitized AM independently from the experimental condi-
tions (0.26-0.153 and 0.3#0.138 nmolx 1 cells in control condition; 0.220.086 and
0.25+0.086 nmolx 1 cells in PTX-treated naive- and OA-sensitized AM respectively).
The administration of T®M fMLP induced a strong increase in, Oproduction (R20.001

vs. resting in both naive and OA-sensitized AM); @roduction in OA-sensitized AM being
significantly lower than in naive AM (Fig. 6). Preincubation with PTX strongly decreased
O,~ production. It should be noted that after PTX preincubatigh p@oduction was similar

in both naive and OA-sensitized AM.

Discussion

Our study demonstrates for the first time that in OA-sensitized ANl [@ehavior is al-
tered as compared to naive AM. In OA-sensitized AM, the resting calcium is higher than that
measured in naive cells, suggesting that OA-sensitized cells are in such an “activated condi
tion” before agonist administration. On the other hand, the fMLP-induced calcium increase
in OA-sensitized AM is lower compared to naive AM as demonstrated by the shift to the right
of the dose-response curve. Also a remarkable difference in the calcium signal is the low fre-
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Fig. 4. Typical time-course of 18 M fMLP-induced calcium signal on intracellular calcium concentration in
either thapsigargin- or econazole-pretreated naive (panel A) and OA-sensitized (panel B) AM. Each curve is the

mean of at least 12 analyzed cells.

quency, smooth amplitude of calcium oscillations in OA-sensitized AM compared to the high
frequency, high amplitude in naive AM. This may imply a differenptgéneration by FPR
activation and/or a different behavior in the refilling mechanisms of intracellular calcium

stores. Further research will clarify this point.
Experiments performed in PTX-preincubated AM demonstrate that the block of Gi protein
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Fig. 5. Typical time-course of 18 M fMLP-induced calcium signal on intracellular calcium concentration in
PTX-pretreated naive and OA-sensitized AM. Each curve is the mean of at least 12 analyzed cells.
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Table 1
Forskolin effect on cyclic AMP content of naive and OA-sensitized AM in resting and
1078M fMLP-stimulated cell

Cyclic AMP content (pmol/10cells)

Resting AM fMLP-stimulated AM
Control 10°°M Forskolin Control 10°M Forskolin
Naive AM 0.61+0.068 1.430.157* 0.85:£0.128 1.42:0.235
OA-sensitized 0.630.058 1.1&:0.127* 0.88:0.108 1.3&¢0.175*

Values are meansSEM of 7 experiments performed in triplicate£B.05 vs control, paired Student’s t test.

strongly reduces the fMLP-induced calcium signal in naive AM, whereas this reduction is
less intense in OA-sensitized AM. Indeed after PTX preincubation, the calcium signal is sim-
ilar in naive and sensitized AM. A decreased functional Gi-coupled FPR in sensitized AM may
justify this reduced PTX responsiveness.

Also experiments performed with forskolin indicate a decreased functional Gi-coupled
FPR in OA-sensitized AM. A functional coupling of Gi protein to FPR would decrease the
forskolin-induced cyclic AMP increase, since the activation of FPR inhibits AC trough per-
tussis sensitive Gi2/Gi3 proteins [11,12].

Indeed, the stimulatory forskolin effect is lost in fMLP-stimulated naive AM, whereas it is
still effective in sensitized AM. These data further suggest a different expression of func-
tional Gi-coupled FPR in OA-sensitized AM. Also an enhanced AC activity can explain our
data. An enhanced AC responsiveness in sensitized AM has also been demonstrated in wha
AM stimulated byg-adrenergic drugs [25] and in AM membrane preparations after stimula-
tion with B-adrenergic agents and PGE2 [26].

An altered regulation of cyclic AMP can influence calcium signal. Indeed,@hed€pendent
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Fig. 6. 108 M fMLP-induced superoxide ion production in naive and OA-sensitized AM in control conditions
and in cells preincubated with PTX for 4 h. Values are the me&EM) of 7 different preparations. **<£0.01,
independent Student’s t test.
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activation of PLB2 is inhibited by specific PKA-mediated phosphorylation [27]. On the
other hand, the PTX-independent Gg-pathway would be only marginally affected by an al-
tered cyclic AMP regulation. Our data show that only the PTX-dependent signal is modified
in OA-sensitized AM. Indeed, in PTX-treated cells, the fMLP-induced calcium signal is sim-
ilar in naive and OA-sensitized AM, whereas in control conditions OA-sensitized AM show a
decreased fMLP responsiveness.

Cyclic AMP can also reduce,O production in macrophages [28]. fMLP-induced O
production is mediated by the calcium increase in the early phase of NADPH oxidase activa-
tion [14], while in the late phases of Oproduction, PKC-dependent NADPH oxidase acti-
vation can supply the limited calcium regulation. Therefore, the redugeg@gréduction in
OA-sensitized AM after a short time of fMLP incubation, reflects the lower calcium signal
in OA-sensitized compared to naive AM. The different incubation time can explain the dis-
crepancy between this result and previous work showing simitap@duction in naive and
sensitized AM after 1 hour of fMLP stimulation [19].

PTX preincubation strongly reduces(production in both naive and OA-sensitized AM,
further supporting a prominent role of Gi in FPR activation. This reduction is similar in OA-
sensitized and naive AM. As shown for calcium increase,ptoduction after PTX preincu-
bation is no longer different in naive and sensitized AM. Moreover, an increase in cyclic
AMP can also reduce O production in macrophages [28].

In conclusion, our study demonstrates that OA-sensitized versus naive AM have different
behavior in calcium regulation in response to FPR activation. These decreased responsive
ness can influence functional characteristics of OA-sensitized AM.
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