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Abstract

Future generation networks are expected to furnish differentiated multimedia ser-
vices respecting the constraints of quality of service (QoS) requirements. To ac-
complish this task, a widely adopted approach relies on Admission Control (AC)
strategies, i.e., to keep the number of active communications under a certain
threshold in order to optimize the resources allocation. As a consequence, AC
protocols effectiveness strictly depends upon the accuracy of the future user needs
estimation in terms of bandwidth or, equivalently, of operative load conditions.
Our proposal is based on the Self Similar (SS) traffic modelling; in particular, as
the backbones are likely to be IPvx based, we refer to the class of the second or-
der Asymptotically SS (ASS) processes. Therefore, we derive an equivalent band-
width evaluation criterion and apply it to a DiffServ-based scenario, highlighting
a network capacity increasing together with an outage probability lowering.

1. Introduction

Accurate multimedia traffic measurements have recently shown the limits of

Poisson models for describing the traffic in a telecommunication network [1]

and that they are likely to going to be replaced by the self-similar (SS)

models that are far apart from both conventional telephone and packet

oriented applications traffic models currently considered in the literature.

These models have the important property of scale-invariance with respect

to time aggregation: this means that the traffic looks the same for both large

and small time scales. In particular [2], it can not be defined a burst natural

length since at every time scale, ranging from milliseconds to minutes and

hours, bursts are recursively composed of bursty sub-periods.

According to [3], we have that the superposition of sufficient indepen-

dent and identically distributed (i.i.d.) ON/OFF sources, each exhibiting
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the so called “Noah Effect” phenomenon, that is infinite variance, results

in self-similar aggregate traffic. In our investigation we adopt the ON/OFF

source model with each source characterized by high variability.

It is worth highlighting that traffic modeling is necessary to guarantee

an adequate QoS. QoS management may be decomposed into two steps:

identifying a traffic QoS profile and guaranteeing the respect of these con-

straints by means of a dynamic resources management. To this end two

traffic classes, named Stream and Elastic, could be identified. The Stream

traffic class is comprised of continuos data flows having intrinsic duration

and rate; this class there is error-tolerant, the packets may have different

priority and there is strong dependence with the delay and jitter. Exam-

ples might be interactive services and videoconferences. The Elastic traffic

class is composed by digital information delivered with a variable rate. The

resulting bursty flows require low error rate, the packets are processed sim-

ilarly and are delay and jitter independent. Several examples can be taken

within files transfer and images transfer. Therefore for stream traffic class

the time integrity must be preserved, while for an elastic traffic class the

semantic integrity must be preserved.

In this scenario the QoS provisioning involves the use of two important

elements. The first is represented by a support architecture. One solution id

represented by the IntServ, which aims at integrating QoS aware services

along the network devices. To guarantee delay and bandwidth needs it

is foreseen a a protocol of resources booking, allocating a virtual channel

between source, destination and all the nodes of the route. The main

disadvantage is the lack of scalability, implying a sub-exploitation of the

networks resources. On the other hand, DiffServ manage several diversified

services provided by the network. The main characteristics are a greater

scalability, obtained from the aggregation of individual flows, and the use

of a priority field, i.e., the ToS field in IP packet header, to handle its

delivering. The main drawback is the necessity of a resource pre-allocation,

this implying not a true dynamic bandwidth allocation especially for highly

loaded networks. The second element related to QoS provision is the use

of an AC algorithm; it ensures that the admission of a new flow does not

violate the QoS requirements for the already active flows. In our proposal,

we focus on a capacity oriented AC procedure optimizing the throughput

of each flow.

The paper is organized as follows. In Section 2, we characterize the

network traffic presenting two simple approximations for the equivalent

capacity for a single traffic class scenario and a DiffServ scenario. In Sec-
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tion 3 the numerical results of the proposed approach are prsented. Finally,

in Section 4 we summarize the contribution of the paper outlining possible

extensions.

2. Proposed Approaches

Guaranteeing QoS requirements of multimedia applications is the main

challenge in future broadband networks. When several flows are statisti-

cally multiplexed into a single channel, it is not easy to argue if and how the

telecommunication system can guarantee their QoS constraints. In other

words the problem is how many calls of a given type can be admitted at a

given time.

As already said, QoS management requires a support architecture and

an AC algorithm. We have seen that there are two major QoS frameworks

defined within the Internet community, i.e., Intserv and DiffServ, both pro-

viding QoS with different approaches. In this section we focus instead on

algorithms. In particular, we derive and compare two different AC algo-

rithms based on equivalent bandwidth evaluation for a class of aggregated

traffic. Afterward, the more efficient approach is implemented within Diff-

Serv scenario comprised of two priority traffic classes.

2.1. Traffic Analysis

In this section we randomly create n ON/OFF connections, each with dif-

ferent peak rate and transition, or state, probabilities. The peak rate is

chosen from the uniform distribution on [0, 1], while ON and OFF proba-

bilities are Pareto distributed with parameters able to obtain a Self-Similar

traffic with Hurst parameter [2] H = 0.8.

The analysis of the obtained network traffic has shown that as the num-

ber of connections n increases the distribution of the aggregated traffic

tends to have a Gaussian behavior. This result has allowed to consider an

aggregated traffic composed by 50 connections, to derive the cumulative

distribution function, as in Fig. 1, and to calculate the outage probability

concerning those connections as follows:

P Init
outage(i) = 1 − CDF(B(i)) (1)

where i and B(i) are, respectively, the number of activated connections and

the bandwidth assigned to them. We may define the outage probability as

the probability that a flow is admitted but that it is not always able to take

advantage of the available resources. The value of that bandwidth is easily
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obtainable from Eq. (1) once the outage probability is proactively chosen

to limit the portion of interested aggregated traffic.

Figure 1. CDF del traffico.

2.2. AC Algorithms for a Single Traffic Class Scenario

In this section, we resort to the equivalent capacity approach for a class of an

aggregate of self-similar sources. This approach is supported by the Inter-

net architecture who encourage the use of variable bandwidth applications

whenever possible; furthermore this approach is able both to guarantee a

minimum bandwidth and to bound the maximum packet delay.

The algorithms estimating the equivalent capacity on which our investi-

gation is focused on are based on the approach introduced in [4]. According

to the the first model (AC-Normal Equivalent Capacity, AC-NEC), the in-

stantaneous aggregated arrival rate has a normal distribution [5], whilst

the second (AC-Hoeffding Equivalent Capacity, AC-HEC) gives an upper

bound for the equivalent capacity based on a peak rate policy, taking ad-

vantage of a result derived from Hoeffding [6].

In the first algorithm, the equivalent capacity based on the normal dis-

tribution, ĈN , is given by:

ĈN

(
µS , σ2, ε

)
= µS + ασ (2)
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provided that:

α =

√
2 ln

1

ε
+ ln

1

2π
(3)

where µS , σ2 and ε are, respectively, the mean value, the variance and the

outage probability of the aggregated traffic for a given class. Eq. (2) means

that if the arrival rate S is characterized by a normal distribution, then the

arrival rate after a time interval T , i.e., ST , is likely to exceed the estimated

equivalent capacity ĈN with a probability at most ε.

It is easy to notice from Eq. (3) that there are some limitations con-

cerning the outage probability values which is upper bounded to about

40%:

0 ≤ ε ≤ 1√
2π

, (4)

this is not however a problem because ε is a parameter that we intend to

minimize.

According to the second algorithm, the equivalent capacity ĈH , resort-

ing to the Hoeffding bounds, is given by:

ĈH

(
µS , {pi}1≤i≤n , ε

)
= µS +

√
ln(1/ε)

∑n

i=1 pi

2
(5)

where µS is the mean arrival rate of the Sth traffic class, {pi}1≤i≤n are the

peak rates of the n admitted flows and ε is the outage probability.

In every approach, for each incoming flow α, the AC algorithm verifies

that:

ĈE + pα ≤ Bmax (6)

where pα is the peak rate requested by flow α, Bmax is the link bandwidth

and E ∈ {N, H}. Eq. (6) states that a new flow is admitted if the equivalent

capacity of the admitted flows plus the peak rate of the new flow is less

than the allocated bandwidth for that class. Depending on the admission

of the incoming flow, the load estimation is to be updated.

We give now some details of the proposed protocol. In particular, we

first consider a soft preemptive approach, based on an upper bound for the

peak rate allocation for each connection, with minimum bandwidth and

maximum delay always guaranteed. We refer to soft preemption instead of

real preemption, since the real-time traffics we take into account present

adaptive playback times, being so able to match the time-varying delays

along the network.
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Besides, we consider an approach without preemption in which the last

admitted flow has an unfair allocation due to the presence of already acti-

vated connections (50 in our assumption) with a great amount of assigned

resources, implying more strict upper bounds on the peak rates for the

incoming flows, but with minimum bandwidth and maximum delay still

guaranteed. This approach is useful in the presence of short connections

with a high bit-rate, whilst the former policy is necessary to assure an

average rate.

2.3. Generalization to Differentiated Traffic Classes

Scenario

Whenever several traffic classes are to be addressed, a generalization of the

above protocols is needed.

As shown in Fig.s 2, 3 and 4 a soft preemptive mechanism guarantees

the admission to a limited number of flows with a greater peak rate with

respect to the non-preemptive mechanism. Furthermore, an estimate of the

equivalent capacity based on the Hoeffding bounds is more effective than

the estimate based on the normal distribution. As a consequence, the more

convenient approach is represented by AC-HEC with soft preemption.

In the present scenario two traffic classes with different priority are

introduced. The presence of two traffic classes and the unfairness of this

algorithm reduce the available bandwidth that is given by:

CH,Classe1
+ pα

1 ≤ Bmax, (7)

CH + pα
2 ≤ Bmax − CH,Classe1

(8)

where pα
j are the estimated peak rates of the requesting flows belonging

to the jth (j ∈ {1, 2}) traffic class and CH,Classe1
the equivalent capacity

allocated to the first traffic class that has a greeter priority.

This circumstance also limits the peak rates of each traffic classes:

pα
1 ≤ Bmax − CH,Classe1

, (9)

pα
2 ≤ Bmax − CH,Classe1

− CH . (10)

However the traffic class with a greater priority behaves as the second is

not present.
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2.4. Application to DiffServ QoS Scenario

Finally, the aforementioned approaches is applied to a DiffServ QoS man-

agement scenario, deriving an equivalent bandwidth criterion resorting to

the Hoeffding bounds in the case of two traffic classes. As a consequence,

a new connection is accepted if:

CH,j + pα
j ≤ Bmax −

j−1∑

i=1

CH,i , j = 1, 2, ..., n (11)

where pα
j and CH,j are, respectively, the estimated peak rates of the re-

questing flows belonging to the jth traffic class and the related equivalent

allocated capacity, whilst n represents the number of traffic classes. Eq. (5)

highlights that the higher priority class (j = 1) is not affected by the pres-

ence of the other class.

The obtained results show that the equivalent bandwidth approach is

well suited for low-to-medium initial link load and, moreover, the AC-HEC

is always more convenient.

3. Numerical Results

In this section, we provide several numerical results obtained via computer

simulations to point out the equivalent capacity concept and evaluate its

accurateness.

In particular, we first compare the estimated equivalent capacity ĈN

based on a normal distribution and the estimated equivalent capacity ĈH

based on Hoeffding bounds with an average arrival rate policy, for the

case of one traffic class. We show also that a soft preemptive mechanism

application allows to develop a more efficient approach. After that, the

better policy is implemented within a scenario composed by two traffic

classes.

3.1. Single Traffic Class Scenario

We refer here to a single traffic class with n admitted ON/OFF sources,

comparing AC-HEC and AC-NEC with an approach based on an average

arrival rate policy. We have created two different scenarios: the first in

which the link is initially empty, and the second where there 50 already

active connections. Moreover, we take into account a worst case scenario

neglecting the connections termination. A proper outage probability ε range

values [10−6, 2 · 10−2] depending on the QoS constraints and the link band-

width (100MB) is introduced. Each source consists of n ON/OFF sources
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randomly created, each with a different peak rate pi and ON probability

oi. Fig. 2 highlights an approach without preemption and a link initially

Figure 2. Assigned capacity in the case without preemption and initially occupied link.

occupied. In the subsection 2.1 we calculate the initial aggregated traffic by

superposing n = 50 sources with an i.i.d. heavy-tailed distribution, hence

obtaining an Asymptotically Self-Similar (A-SS) traffic with a Hurst pa-

rameter H = 0.8; here this traffic is used to initially bias the link. Besides,

each for the generic ith ON/OFF connection the peak rate pi is chosen from

the uniform distribution on [0, 1], and the probability oi is chosen from the

Pareto distribution such that the aggregated traffic is A-SS with H = 0.8.

It is important to notice that the peak rates are upper bounded to the

following value:

p ≤ Bmax − (CX − CInit), (12)

where CInit and CX are, respectively, the equivalent capacity calculated for

the initially activated connections and the equivalent capacity estimated

for the already admitted flows; thus an incoming flow is admitted if the

requested bandwidth does not exceed the available bandwidth.

Figure 2 shows results for a P Init
outage for the initially activated connections

and a Poutage for the incoming flows, set to 2∗10−2. The x-axis shows n, the

number of active connections, while the y-axis is normalized and it shows

the assigned bandwidth. The red line shows the AC-HEC approach, the

blue line shows the AC-NEC approach and the green line shows the average

arrival rate policy; in every approach the equivalent capacity is expressed
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as a fraction of the sum of the allocated peak rates. The Figure suggest

that a minimum bandwidth is always guaranteed and a gain of about 50%

is provided for the AC-NEC approach, while AC-HEC seems to be 10 times

better than the average arrival rate policy. Decreasing the Poutage for the

incoming flows we guarantee better QoS, but with less admitted flows.

Fig.s 3, 4 show, instead, an approach with soft preemption, where the

link is initially empty. This approach is more effective as it is shown by

comparing the assigned bandwidth in Fig.s 2, 3 and 4, even if it depends

on the initial conditions. However, to obtain better QoS, we need to reduce

the number of admitted users.

Figure 3. Assigned capacity in the case with soft preemption and initially empty link.

The peak rate for the ith connection pi and the probability oi are uni-

formly distributed in the range [0, 1] and [0, 1
2 ]. Then the peak rates are

upper bounded to the following value:

p ≤ Bmax − CX , (13)

where CX is the equivalent capacity estimated for the already admitted

flows.

In Fig. 3 a scenario where the P Init
outage is fixed to 2 ∗ 10−2 while in Fig. 4

it is decreased to 10−6. and it refers to the incoming flows since there are

no initially active connections.

Fig. 3 suggest that a minimum bandwidth is still guaranteed, further-

more, for high loaded link both the methods, AC-HEC and AC-NEC, get
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Figure 4. Assigned capacity in the case with soft preemption and initially empty link.

closer to the average. We get better QoS if we reduce the outage probabil-

ity: in Fig 4, we notice an important property of the AC-HEC approach:

for low traffic load, that is few connections, it would be equivalent to a peak

rate AC. Moreover the proposed algorithms guarantee a maximum and a

minimum capacity, this upper bounding the delivering delay as well.

The value chosen for the outage probability ε represents a key parameter

for a generic AC-xEC procedure. In the case of a link initially empty, it

is likely to chose a lower value for ε, resulting in a more conservative AC

procedure, whilst it can be increased if the admission of a new flow points

out that a less conservative AC policy would be adequate. In the opposite

case, it would be useful to start with an initial greater value for ε for the

active flows to avoid reaching the link saturation, without decreasing it in

dependence with the new admissions.

Finally, in these approaches, we have considered the three way rela-

tionship who binds outage probability, bandwidth and number of users;

unfortunately it is not possible to optimize the three parameters simulta-

neously, so we have tried to jointly optimize two of them once the outage

probability is chosen: for the approach without preemption we have opti-

mized outage probability and number of users, while in the soft preemptive

approach outage probability and bandwidth are optimized .
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3.2. Two Traffic Classes Scenario

This section is dedicated to generalize the equivalent capacity approxima-

tion developed in the previous section to a scenario compound by two traffic

classes with different priority.

We resort to an AC-HEC algorithm with a soft preemption mechanism.

We have considered a scenario with a link initially empty to apply our

results to applications like fast streaming or video-conferences.

Fig. 5 shows results for an outage probability of (10−6), resulting in

a not conservative algorithm. The x-axis shows n, the number of active

connections, and the y-axis is still normalized and it shows the assigned

bandwidth. The red and the blue lines show, respectively, the performance

of the higher priority class and the lower priority class. The results has

Figure 5. Assigned capacity in the case with soft preemption and initially empty link

with two traffic classes.

pointed out that the algorithm behaves well also for the lower priority class

even if the other is favored. Qualitatively the approach improves if the

outage probability is reduced.

4. Conclusions

In this paper we apply the Self-Similar models, particularly the aggregated

ON/OFF model to describe the real network traffic. After an admission

control protocol optimized for a packet oriented telecommunication net-

work has been proposed, after an analysis of the most significant proactive



January 14, 2005 18:16 Proceedings Trim Size: 9in x 6in UniFi˙WorldScientific

12

or reactive algorithms. However, the effectiveness of an admission con-

trol algorithm strictly depends on the exactness of the evaluation of the

conditions of operating load in terms of necessary bandwidth, so we fo-

cused our attention to an Equivalent Capacity approach. Such approach

has been considered using two different estimate methods (AC-HEC and

AC-NEC) acting with and without a preemptive mechanism. Moreover, we

have compared the above methods in different scenarios in order to high-

lights impairments and possible improvements and we have extended the

more qualitative method to a DiffServ scenario. It has also been ascer-

tained, by means of the simulations results, that the performance of both

the approaches can be improved using a shortest remaining processing time

(SRPT) scheduling discipline. The implementation of SRPT in the case a

single link even if it is complex might provide remarkable benefits to both

both users and network provider by employing a flow control protocol which

discriminates in favour of short documents [7].
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