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1 4-methyl benzylamine (4-MBZ; 28 mg, 231 nmol) elicits a hyperphagic response in starved mice in
contrast to the hypophagia induced by the parent compound benzylamine (BZ; 33 mg, 231 nmol) or by
amphetamine (AMPH, 2 mg).
2 In mice starved for only 4 h, and therefore with little stimulation to eat, the maximal increase
in food consumption induced by intracerebroventricular (i.c.v.)-injected 4-MBZ was 190% over that
of the controls (ED50 8.372.7 mgmouse�1; 68722 nmolmouse�1), whereas after i.p. administration,
these values were 160% and approximately 129mgkg�1, respectively.

3 The hyperphagic effect of 4-MBZ was reduced by more than 60% in mice pretreated with antisense
oligodeoxyribonucleotide (aODN1) previously found to selectively inhibit (over 50%) the expression
of Shaker-like Kv1.1 channels.

4 In mice highly stimulated to eat after 12-h fasting, 4-MBZ (28 mg) significantly reduced (to about
70%) the hypophagic response by AMPH (2 mg) or BZ (33mg). Conversely, these two compounds
reduced (respectively, by 69 and 44%) the hyperphagic response of 4-MBZ in 4-h fasting mice.

5 4-MBZ (28mg) also reduced the hypermotility and the stimulation of inspection activity elicited by
AMPH in mice and the release of DA stimulated by AMPH (2 mg) from the nucleus accumbens of rats.

6 We hypothesize that 4-MBZ elicits hyperphagic effects probably by opening Shaker-like Kv1.1
subtypes in the brain, whereas AMPH and BZ are hypophagic by blocking these channels.
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Introduction

Amphetamine (AMPH), an indirect sympathomimetic com-

pound, elicits its neurobehavioural effects including anorexia,

stimulation of physical performance, insomnia, euphoria, etc. by

releasing DA, 5-HT and other neurotransmitters into the brain.

The lateral hypothalamus, nucleus accumbens and midbrain

raphe nucleus are the regions in which food intake, motor

activity, analgesia and arousal are known to be influenced

(Parada et al., 1988; Inui, 2000; Hoffman, 2001). AMPH-

stimulated exocytosis involves a reverse transport from synaptic

vesicles to cytosol, the elevation of intragranular pH and

disruption of the association of catecholamines with Ca2þ ,

ATP and vesicular proteins (Sulzer & Rayport, 1990; Sulzer

et al., 1995; Sonders et al., 1997; Mundorf et al., 1999). Recent

investigations, however, in mice pretreated with antisense

oligonucleotides have shown that the stimulant properties of

AMPH also require the full expression of Shaker-like Kv1.1

potassium channels in the brain (Ghelardini et al., 2003).

Benzylamine (BZ), a compound endowed with a phenyl-

methylamine skeleton shorter than the phenylethylamine

structure of AMPH, also elicits central hypophagia in starved

mice still requiring the full expression of Kv1.1 potassium

channel subtypes in the brain (Ghelardini et al., 1997;

Banchelli et al., 2000; 2001; Pirisino et al., 2001). In recent

studies aimed at comparing the potential hypophagic effects

of some BZ derivatives, we observed that, at condition of

maximal food intake stimulation (12 h starved mice), 4-methyl

benzylamine (4-MBZ) administration elevated, albeit not

significantly, mice food intake, thus showing an opposite

effect to that of the parent compound BZ or of the AMPH

(Raimondi et al., 2003).

These observations suggested that the phenylmethylamine

skeleton may represent a chemical structure endowed with the

unique ability to differently modulate the brain Shaker-like

Kv1.1 channel subtypes because of the different substituents

present in the molecule. In particular, it was reasonable to find

out whether 4-MBZ, due to its putative properties on

potassium channels, was also able to counteract other central

stimulant effects of AMPH.

In the present work, we investigated whether (i) 4-MBZ also

elicited hyperphagic effects in mice not maximally stimulated

to eat (4 h of fasting) in order to better evaluate the increase in*Author for correspondence; E-mail: renato.pirisino@unifi.it
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food consumption; (ii) the hyperphagic effect of 4-MBZ was

also dependent on the complete expression in the brain of

Kv1.1 channel subtypes; (iii) 4-MBZ and BZ or AMPH

reciprocally counteracted their own central effects on food

consumption and whether 4-MBZ counteracted the motor

stimulant effects of AMPH; (iv) BZ, like AMPH, was

characterized, in microdialysis experiments, by central dopa-

minergic activity and whether 4-MBZ also inhibited the DA

release stimulated by AMPH from the nucleus accumbens of

freely moving rats.

Methods

Animals

Male Swiss albino mice (24–26 g) and albino rats (150–200 g)

from Morini (San Polo d’Enza, Italy) were used. In all, 15 mice

or five rats were housed per cage. The cages were placed in the

experimental room 24 h before the test for acclimatization

purposes. The animals were fed a standard laboratory diet and

tap water ad libitum; they were kept at 23711C, with a 12 h

light/dark cycle, and lights on at 0700 hours. All experiments

were carried out in accordance with the European Community

Council’s Directive of 24 November 1986 (86/609/EEC)

relative to experimental animal care. All efforts were made

to minimize animal suffering and to reduce the number of

animals used (in any case, unless otherwise indicated, at least

10 animals per group were used in each behavioural protocol).

Evaluation of food consumption

The mice did not have access to food for 4 or 12 h but water

was available ad libitum. A weighed amount of food (standard

laboratory pellets) was given, and the amount consumed

(evaluated as the difference between the original amount and

the food left in the cage, including spillage) was measured 15,

30, 45 and 60min after intracerebroventricular (i.c.v.) or i.p.

administration of saline or drug solutions, with an accuracy

of 0.1 g. Considering that, as it was previously described

(Ghelardini et al., 1997), after 60min of food readmission, the

consumption reached a plateau, a cutoff time of 60min was

used, and the total amount of food consumed was expressed in

mgmouse�1 h�1. In single-dose experiments on food consump-

tion, BZ and AMPH were given i.c.v. at the equiactive doses

of 33mg (231 nmol) and 2mg, respectively, while 4-MBZ (28 mg;
231 nmol) was given at the same molar concentration of BZ.

In dose–response experiments i.p.-injected 4-MBZ ranged

from 10 to 600mg kg�1 and from 1.2 to 54.8mg (10–452 nmol)

when given i.c.v.

Hole-board test

The hole-board test consisted of a 40 cm square plane with 16

flush-mounted cylindrical holes (3 cm diameter) distributed 4

by 4 in an equidistant, grid-like manner. Mice were placed one

by one on the centre of the board and allowed to move about

freely for a period of 10min each. Two photoelectric cells,

recording a beam of light crossing the plane from mid-point to

mid-point of opposite sides (thus dividing the plane into four

equal quadrants), automatically signalled the movement of the

animal (counts 5min�1) on the surface of the plane (locomotor

activity). Miniature photoelectric cells in each of the 16 holes

recorded (counts 5min�1) exploration of the holes (exploratory

activity) by the mice. At least 12 mice per group were tested.

Drug administration by i.c.v. route

The i.c.v. administration was performed under ether anaes-

thesia with isotonic saline used as solvent, according to the

method described by Haley & Mccormick (1957). During

anaesthesia, the mice were grasped firmly by the loose skin

behind the head. A hypodermic needle (0.4mm external

diameter) attached to a 10 ml syringe was inserted perpendicu-

larly through the skull and no more than 2mm into the brain

of the mouse, where a 5ml solution was then administered. The

injection site was 1mm to the right or left of the midpoint on a

line drawn through to the anterior base of the ears. Injections

were performed randomly into the right or left ventricle. To

ascertain that solutions were administered exactly into the

cerebral ventricle, some mice were injected with 5 ml of diluted

1:10 India ink and their brains were examined macroscopically

after sectioning. The accuracy of the injection technique was

evaluated, with 95% of injections being correct.

Antisense oligonucleotides

24mer phosphodiester oligonucleotides (ODNs) were capped

by a terminal phosphorothioate double substitution and

purified by high-performance liquid chromatography (HPLC;

Genosys, The Woodlands, TX, U.S.A.). The aODN1 (50-CGA

CAT CAC CGT CAT GAT GAA AGG-30) was designed

by targeting the 50 portion of the murine Kv1.1 mRNA,

residues 575–598 of the published cDNA sequence (Chandy

et al., 1990).

To evaluate the specific antisense effects of the oligodeoxy-

nucleotides, a fully degenerated phosphorodiester phosphor-

othioate-capped oligonucleotide (dODN1) was used as a

negative control. The fully degenerated 24mer is a collection

of about 3� 1014 different molecular species (50-NNN NNN

NNN NNN NNN NNN NNN NNN-30; where N¼G, C, A

or T). Therefore, for the nanomolar–micromolar range

concentrations used in the antisense experiments, the dODN

was present at the site of action in a sub-attomolar

concentration, which is totally insufficient for any antisense

effect. For more details on the aODN1 and dODN1 synthesis

and the RT–PCR analysis of mKv1.1 mRNA in the mouse

brain tissues, the reader may refer to our previous papers

(Ghelardini et al., 1997; 2003; Meiri et al., 1997; Galeotti

et al., 1997a, b).

Administration of antisense oligonucleotides

Phosphorothioate-capped phosphorodiester oligonucleotides

associated with an artificial cationic lipid (DOTAP¼N-[1-

(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl

sulphate), which proved to be without effect on the behaviour-

al parameters under investigation, were used (Ghelardini et al.,

2003). Mice were randomly assigned to an antisense oligo-

nucleotide (aODN1), degenerated oligonucleotide (dODN1),

vector (DOTAP), saline or a naı̈ve group. A suitable amount

of oligonucleotide was preincubated at 371C for 30min with

13 mM DOTAP. Each group received a single i.c.v. injection

(5 ml; 3 nmol of ODN) on days 1, 4 and 7. All behavioural tests
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were performed 48 h after the last i.c.v. injection of aODN1

or dODN1, when the maximal inhibition in the expression of

mKv1.1 mRNA in the mouse brain tissue was detectable

using RT–PCR analysis (Ghelardini et al., 1997; Galeotti et al.,

1997a, b). As it had been previously assessed (Galeotti et al.,

1997a, b) that dODN1 did not induce any evident modification

in the basal behavioural function of mice, as compared to

saline or vector-injected animals, dODN1-treated animals were

used as controls in all experiments.

Microdialysis procedures

Rats received sodium pentobarbital (60mg kg�1, i.p.) as

surgical anaesthesia. Each rat was then placed in a stereotaxic

apparatus for craniotomy. A plastic intracerebral guide

cannula (CMA 12, CMA/Microdialysis, Acton, MA, U.S.A.)

was implanted above the nucleus accumbens (MLþ 1.5mm

and APþ 1.6mm from bregma, DV-8.2mm from skull).

Animals were housed singly and allowed 7–10 days to

recover and microdialysis was carried out with a probe of

2mm� 0.5mm (CMA/12, CMA/Microdialysis) placed inside

the guide cannula by following the method described by

Baumann et al. (2000). Each rat was placed in a bowl, where

free movements were allowed. Ringers’ solution, containing

147.0mM NaCl, 4.0mM KCl and 1.8mM CaCl2, was pumped

through the probe at 0.5ml min�1. Beginning 2–3 h after the

insertion of the probe, dialysate samples were collected at 20-

min intervals and immediately assayed for DA by HPLC using

electrochemical detection. After DA stabilization in dialysate,

three baseline samples were collected and DA concentrations

were expressed as a percentage of the baseline. AMPH, BZ or

4-MBZ were administered in rats via reverse-dialysis, in a

single dose of 2, 33 or 28mg, respectively, 60min after probe

insertion; when antagonism experiments were performed,

AMPH 2mg and 4-MBZ 28 mg were coadministered with the

same procedure. Samples were collected for 280min after

the start of the experiments. At the end of the experiments, the

location of the probes in the brain was evaluated by means

of histological analysis. The data included in this study refer

to rats bearing probes correctly placed within the nucleus

accumbens.

Analysis of DA in dialysate samples

Aliquots of the dialysate (5ml) were injected directly into a

microbore HPLC column coupled to an amperometric detector.

A glass carbon working electrode was set at a potential of

þ 700mV relative to an Ag/AgCl reference. A mobile phase

consisting of 14.2 g monochloroacetic acid, 6.8 g NaOH,

350mg sodium octyl sulphate, 80mg disodium EDTA, 1ml

triethylamine, 6% MeOH, 6% CH3CN per litre of water

(final pH¼ 5) was pumped at a rate of 60ml min�1 with a

constant column pressure of 2500–3000 psi. Standard curves of

DA, constructed before the injection of dialysate samples, were

linear over a wide range of concentrations. The lowest limit of

assay sensitivity for DA was 200 femtograms per 5ml sample.

Reagents and drugs

The oligonucleotides used for the antisense strategy were from

Genosys (The Woodlands, U.S.A.). DOTAP was from

Boheringer-Mannheim (Mannheim, Germany). Amphetamine

sulphate (AMPH), benzylamine hydrochloride (BZ) and

4-MBZ were purchased from the Sigma Chemical Company

(St Louis, MO, U.S.A.). Chromatographic reagents, buffer

salts and other chemicals used in the microdialysis experiments

were obtained from the Sigma Chemical Company (St Louis,

MO, U.S.A.). 4-MBZ was administered as hydrochloride

obtained by adding to a solution of free base, under pH meter,

a suitable amount of 1M HCl. All the drugs used for the

behavioural experiments were dissolved in isotonic (NaCl

0.9%) saline. Dilutions of the compounds were prepared in

such a way that the necessary dose could be administered by

i.c.v. injection in a volume of 5ml per mouse. Before i.c.v.

administration, it was assessed that the pH values of the nM

compound solutions (ranging from 7.2 to 6.7) did not vary

significantly from those of the saline (pH¼ 6.870.4). Anti-

sense and degenerated oligonucleotides were dissolved in the

vector (DOTAP) at least 30min before injection.

Statistical analysis

All experimental results are given as the mean7s.e.m. An

analysis of variance (ANOVA) was used to verify significance

between two means of the behavioural results, and was

followed by Fisher’s protected least significant difference

procedure for post hoc comparison; P-values o0.05 were

considered significant. Data were analysed using the stat view

software for Macintosh (1992). For the microdialysis experi-

ments, the first three samples collected before any experiment

were considered as baseline samples; subsequent DA concen-

trations were expressed as a percentage of the mean of this

baseline. For these studies, according to Baumann et al.

(2000), ANOVA evaluations were performed on the AMPH-,

BZ- or 4-MBZ-stimulated percent of DA release and in rats

coadministered with AMPH and 4-MBZ in comparison with

the basal release of controls.

Results

In mice deprived of food for only 4 h and therefore slightly

stimulated to eat (only 227710mgmouse�1 h�1 of food

was consumed by 4-h fasting controls, as compared to

66579mgmouse�1 h�1; n¼ 10, Po0.01, after 12 h of fasting),

AMPH (2 mg) and BZ (33mg; 231 nmol) still retained a weak,

but not significant, hypophagic response by reducing the food

intake of 12 and 8%, respectively, of the controls. On the

contrary, 4-MBZ (1.2–54.8 mg; 10–452 nmol) dose dependently

stimulated food consumption (Figure 1a), with an increase of

about 190% in the food consumed by the controls and an ED50

of 8.372.7mgmouse�1 (68722 nmolmouse�1). Hyperphagic

behaviour was also elicited by 4-MBZ after i.p. administration

(10–600mgkg�1), with a maximum increase in food ingestion

of about 160% over saline-treated controls and an approx-

imate ED50 of 129mgkg�1 (Figure 1b).

In 4-h fasting mice, the 4-MBZ-induced hyperphagic

response (28 mg; 231 nmol) (Figure 2) was dose dependently

reduced by pretreatments with aODN1 (3, 6, 9 nmol of ODNs

on days 1, 4, 7 before food intake experiments), whereas

dODN1, which was unable to modify the expression of Kv1.1

channels and was therefore used as negative control, was

without effect. At the time selected for the food consumption

experiments (48 h after the last injection of the ODNs), it was
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also verified that neither aODN1 nor dODN1 alone induced any

significant variation in the food consumption of pretreated

animals as compared with control, saline-injected mice. In parti-

cular, the food consumption in 3, 6, 9 nmol of aODN1-

pretreated mice was, respectively, of 238718, 228717,

215717, whereas the corresponding values in dODN1-pretreated

animals were 249722, 236722, 244722mgmouse�1 h�1.

These values did not differ significantly from the food

consumption of 23179mgmouse�1 h�1 as measured in saline-

injected animals.

At the experimental settings of 6 and 9 nmol of aODN1

pretreatment, the percentage of reduction of mRNA levels for

Kv1.1 was not measured; however, a significant reduction

(Po0.01) of 4-MBZ-induced hyperphagic response (28 mg;
231 nmol) over dODN1-treated controls was obtained. Instead,

because the dose of 3 nmol of aODN1 was already demon-

strated to reduce mRNA levels (Ghelardini et al., 1997), this

dose was used for all the further experiments. In 3, 6, 9 nmol

dODN1-pretreated mice, a food ingestion of 193710, 20479

and 192710mgmouse�1 h�1 was obtained, while the amount

of food ingested by mice after 3, 6, 9 nmol of aODN1

pretreatments was 7674, 5873 and 2472mgmouse�1 h�1,

respectively, resulting in an inhibition of 60, 71, 89%,

respectively. Moreover, a significant reduction of food intake

among the three different groups of aODN1 treatment was also

obtained (Po0.01).

In other experiments, performed in 4-h fasting mice, we

found that equiactive doses of AMPH (2 mg) or BZ (33mg;
231 nmol) significantly reduced the hyperphagic response of

coadministered 4-MBZ (28 mg; 231 nmol) to about 69.6 and

44.9%, respectively (Figure 3a). Conversely, the hypophagic

activity of AMPH (2mg) or BZ (33mg; 231nmol), in 12-h fasting

mice contemporaneously receiving 4-MBZ (28mg; 231nmol), was

decreased to about 73.9 and 72.6% (Figure 3b), respectively.

Furthermore, a significant antagonism of AMPH-stimulated

motility and inspection activity on the hole-board test (Table 1)

was also observed for 4-MBZ which was devoid per se of

any significant effect on mice as compared with the saline-

injected controls.

Microdialysis experiments, in freely moving rats, also

showed that, expressed as percentage change from controls,

120–160min after BZ (33 mg; 231 nmol) or AMPH (2 mg)
infusion, the maximum increase in DA efflux from nucleus

accumbens (60–80% over the basal values) was observed in

rats (Figure 4a and b). No changes over the basal efflux of DA

was induced by 4-MBZ (28 mg; 231 nmol) administered alone

to the animals (Figure 4c), whereas this compound signifi-

cantly reduced the AMPH-induced DA efflux (Figure 4d).

Discussion

4-MBZ elicits hyperphagic activity in mice, which is the

opposite of the hypophagic effect of the parent compound BZ

Figure 1 Effect of increasing doses of 4-MBZ on the food intake in
4-h fasting mice 60min after food readministration: (a) 4-MBZ-
induced increase of food intake over controls after i.c.v. adminis-
tration or (b) 4-MBZ-induced increase of food intake over controls
after i.p. administration in mice. Each point represents the
mean7s.e.m. of at least 10 mice.

Figure 2 Effect of aODN1 or dODN1 pretreatments (3, 6, 9, nmol
per single i.c.v. injection at days 1, 4, 7) on the food intake increase
induced by 28 mg (231 nmol) of i.c.v.-injected 4-MBZ in 4-h fasting
mice, 60min after food readministration. *Po0.01 in comparison
with dODN1-pretreated mice taken as controls. Each point
represents the mean7s.e.m. of at least 10 mice. One-way ANOVA
also showed a value of Po0.01 level of significance among the three
groups receiving different doses of aODN1 pretreatments.
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or that of AMPH. The present results, which were obtained in

mice not maximally stimulated to eat (4-h fasting), show that

i.c.v.- or i.p.-administered 4-MBZ dose dependently increases

food consumption, thus confirming that the simple methyl

substitution in position 4 of the benzene ring inverts the

anorexigenic property of BZ. This feature, which is not present

in 2- or 3-alkyl or halogen derivatives nor in alkyl-amino

substitutes of BZ (Raimondi et al., 2003), suggests the utility

of more detailed SAR studies in order to find the best alkyl

substitution for this effect.

The results obtained after i.c.v. administrations in mice show

that the hyperphagic effect of 4-MBZ is dose dependently

reduced by aODN1, from about 60 to 89%, as compared with

that of control dODN1-pretreated animals. Similar aODN1

pretreatments were previously found to decrease by more than

50% the Shaker-like Kv1.1 mRNA channel expression in the

brain (Galeotti et al., 1997a, b) and almost completely abolish

the hypophagic responses induced by AMPH and BZ in 12-h

fasting mice (Banchelli et al., 2001; Pirisino et al., 2001).

Therefore, it appears that 4-MBZ, as well as AMPH and BZ,

to exert their opposite effects on food consumption in mice,

require the complete expression of the Shaker-like Kv1.1

channels. Conversely, the food consumption of control mice

starved for 4 or 12 h is not influenced at the same experimental

condition, suggesting that just the 50% reduction of Kv1.1

expression is enough to maintain the physiological response.

These results confirm our previous observations on the role of

potassium channels in alimentary behaviour and the observa-

tion that Shaker-like Kv1.1 subtypes play a role in the central

stimulating effects of AMPH.

It is known that potassium channels, by regulating the

action potential in neurons, modulate the extracellular

concentrations of DA or 5-HT known to be involved in

alimentary behaviour (Cook & Quast, 1990; Boireau et al.,

1991; Dawson & Routledge, 1995; Inui, 2000). Some electro-

physiological results also indicate that AMPH and related

compounds may block Kþ currents in different tissues

(Hu et al., 1998; Casis et al., 2000) and it has been found

that Kþ channels openers, injected i.c.v. in mice, increase food

intake, whereas blockers induce hypophagic effects (Ghelardini

et al., 1997). Thus, although direct electrophysiological

investigations were outside the scope of the present work, we

hypothesize that 4-MBZ – at least at the doses used in our

investigations – elicits hyperphagic effects in mice probably by

opening Shaker-like Kv1.1 subtypes in the brain, whereas

AMPH and BZ could induce hypophagic effects by blocking

these channels. This conclusion could also explain the results

of experiments in which both the hyperphagic responses

induced by 4-MBZ and the hypophagic effects elicited by

AMPH and BZ were studied, respectively, in 4- or in 12 h-

fasting mice coadministered i.c.v. with these compounds: 28mg
of 4-MBZ were almost equipotent to 2mg of AMPH or 33mg
of BZ in reciprocally counteracting their own pharmacological

properties. The hypophagic effect of AMPH and BZ in 4 h-

fasted mice was measurable but it was not statistically

significant (Figure 3a). This can result from the fact that,

after 4 h of fasting, mice consumed a very low amount of food

that was only weakly modified by hypophagic treatments.

AMPH also elicits motor stimulatory effects, mainly by

increasing the extracellular concentration of DA, 5-HT or

other neurotransmitters in the brain, the nucleus accumbens

being an important target for this effect (Giros et al., 1996;

Figure 3 Inhibition induced by (a) AMPH (2 mg) and BZ 33 mg
(231 nmol) on the hyperphagic effect of 4-MBZ 28 mg (231 nmol) in
4 h fasted mice; the compounds were coadministered i.c.v. in 5ml
of saline. *Po0.01 in comparison with saline-injected controls;
1Po0.01 in comparison with the hyperphagic effect of 4-MBZ 28 mg.
Inhibition induced by (b) 4-MBZ 28 mg on the hypophagic effect
AMPH (2 mg) and BZ 33 mg in 12 h fasted mice; the compounds were
coadministered i.c.v. in 5ml of saline. *Po0.01 in comparison with
saline-injected controls; 1Po0.01 in comparison with the hypopha-
gic effect of AMPH or BZ. Each point represents the mean7s.e.m.
of at least 10 mice.

Table 1 Effect of AMPH, 4-MBZ, AMPH+4-MBZ,
on hole-board test in mice

Treatment (i.c.v.) Hole-board test
No. of movements
on the plane

No. of head
plunging

Saline (5ml) 31.574.3 21.873.3
4-MBZ (28mg) 33.474.9 20.674.0
AMPH (2 mg) 71.577.7* 34.275.1**
4-MBZ (28mg)+AMPH
(2mg)

42.676.51 23.573.71

**Po0.05; *Po0.01 in comparison with saline-treated
mice.1Po0.01 in comparison with 2 mg AMPH-treated mice.
The values are the mean7s.e.m. of at least 10 mice per group.
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Bardo, 1998; Chiamulera et al., 2001). Microdialysis investiga-

tions have recently shown that aODN1 pretreatments sig-

nificantly reduced the DA efflux elicited by AMPH from the

nucleus accumbens of rats (Ghelardini et al., 2003). Further-

more, some results of the present investigations (not shown)

indicate that 2 mg AMPH, given i.c.v., failed to increase the

basal release of 5-HT in this brain area. These observations are

in agreement with those of (Baumann et al., 2000) showing

that doses of AMPH below 10mg i.c.v. increased the extra-

cellular DA, but not 5-HT levels, in the nucleus accumbens.

Our results also indicate that, like aODN1, 4-MBZ counteracts

the stimulation of DA release induced by AMPH and BZ.

Together with the hypophagic response, aODN1 pretreatments

were also found to reduce other neurobehavioural effects of

AMPH, including hypermotility, in mice (Ghelardini et al., 2003).

Again, in our experiments, 4-MBZ reduced the motor stimula-

tory effects as well as the increase of inspection activity induced

by AMPH, showing properties similar to that of the potassium

channels openers, also reported to attenuate the hyperlocomo-

tory effects of AMPH (Rosenzweig-Lipson et al., 1997). The

ability of 4-MBZ to counteract the AMPH-induced central

stimulation in mice was also verified in AMPH-induced

reduction in sleeping time or in AMPH-induced seizures (not

shown), further indicating that the pharmacological profile of this

compound is very similar to that already described for aODN1

(Ghelardini et al., 2003). It is appropriate to point out that, in all

the behavioural experiments we have performed, the administra-

tion of 4-MBZ alone did not change the basal parameters of the

animals, indicating that this compound did not show, at least at

concentrations used in these experiments, any relevant inter-

ference in the gross activity of the animals.

Conclusions

The reduction of Shaker-like Kv1.1 potassium channel

expression, by i.c.v.-administered aODN1, was previously

described to abolish the most relevant stimulatory effects of

AMPH. We describe here a novel compound, 4-MBZ, capable

like aODN1 of counteracting hypophagia, hypermotility and

neurochemical dopaminergic activity of AMPH acting on

Kv1.1 subtypes. This compound, suitable for systemic admin-

istration, could be of potential interest as an antidote of central

pharmacotoxicological effects of AMPH.

This work was financed by a 2004 grant of the Italian Ministry for
University and Scientific Research (MIUR).

Figure 4 The effect of (a) 2 mg i.c.v. AMPH, (b) 28 mg (231 nmol) i.c.v. 4-MBZ, (c) 33 mg (231 nmol) i.c.v. BZ, (d) 28 mg i.c.v.
4-MBZþ 2 mg i.c.v. AMPH on DA release from the nucleus accumbens in freely moving rat. *Po0.01 in comparison with the values
obtained at the same times in saline, (5 ml) injected, controls. 1Po0.01 in comparison with the values obtained at the same times in
2mg AMPH-treated rats. Each point represents the mean7s.e.m. of five rats.
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