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HIGHER ALGEBRAIC K -THEORY OF GROUP
ACTIONS WITH FINITE STABILIZERS

GABRIELE VEZZOSI and ANGELO VISTOLI

Abstract
We prove a decomposition theorem for the equivariant K -theory of actions of affine
group schemes G of finite type over a field on regular separated Noetherian alge-
braic spaces, under the hypothesis that the actions have finite geometric stabilizers
and satisfy a rationality condition together with a technical condition that holds, for
example, for G abelian or smooth. We reduce the problem to the case of aGLn-action
and finally to a split torus action.
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1. Introduction
The purpose of this paper is to prove a decomposition theorem for the equivariant
K -theory of actions of affine group schemes of finite type over a field on regular sep-
arated Noetherian algebraic spaces. LetX be a regular connected separated Noethe-
rian scheme with an ample line bundle, and letK0(X) be its Grothendieck ring of
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vector bundles. Then the kernel of the rank morphismK0(X) → Z is nilpotent (see
[SGA6, Exp. VI, Th. 6.9]), so the ringK0(X) is indecomposable and remains such
after tensoring with any indecomposableZ-algebra.

The situation is quite different when we consider the equivariant case. LetG be an
algebraic group acting on a Noetherian separated regular scheme, or algebraic space,
let X be over a fieldk, and consider the Grothendieck ringK0(X,G) of G-equivariant
perfect complexes. This is the same as the Grothendieck group ofG-equivariant co-
herent sheaves onX, and it coincides with the Grothendieck ring ofG-equivariant
vector bundles if allG-coherent sheaves are quotients of locally free coherent sheaves
(which is the case, e.g., whenG is finite or smooth andX is a scheme). Assume that
the action ofG on X is connected, that is, that there are no nontrivial invariant open
and closed subschemes ofX. Still, K0(X,G) usually decomposes, after inverting
some primes; for example, ifG is a finite group andX = SpecC, then K0(X,G)
is the ring of complex representations ofG, which becomes a product of fields after
tensoring withQ.

In [Vi2] the second author analyzes the case where the action ofG on X has
finite reduced geometric stabilizers. Consider the ring of representations R(G), and
consider the kernelm of the rank morphism rk: K0(X,G)→ Z. ThenK0(X,G) is
an R(G)-algebra; he shows that the localization morphism

K0(X,G)⊗Q −→ K0(X,G)m

is surjective and that the kernel of the rank morphismK0(X,G)m ⊗ Q → Q is
nilpotent. Furthermore, he conjectures thatK0(X,G) ⊗ Q splits as a product of the
localizationK0(X,G)m and some other ring, and he formulates a conjecture about
what the other factor ring should be whenG is abelian and the field is algebraically
closed of characteristic zero. The proofs of the results in [Vi2] depend on an equivari-
ant Riemann-Roch theorem, whose proof was never published by the author; however,
all of the results have been proved and generalized in [EG].

The case whereG is a finite group is studied in [Vi1]. Assume thatk contains
all nth roots of 1, wheren is the order of the groupG. Then the author shows that,
after inverting the order ofG, the K -theory ringK∗(X,G) of G-equivariant vector
bundles onX (which is assumed to be a scheme in that paper) is canonically the
product of a finite number of rings, expressible in terms of ordinaryK -theory of
appropriate subschemes of fixed points ofX. HereK∗(X,G) =

⊕
i K i (X,G) is the

graded higherK -theory ring. The precise formula is as follows.
Let σ be a cyclic subgroup ofG whose order is prime to the characteristic ofk;

then the subschemeXσ of fixed points ofX under the actions ofσ is also regular. The
representation ring R(σ ) is isomorphic to the ringZ[t]/(tn

−1), wheret is a generator
of the group of characters hom(σ, k∗). We callR̃(σ ) the quotient of the ring R(σ ) by
the ideal generated by the element8n(t), where8n is thenth cyclotomic polynomial;
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this is independent oft . The ringR̃(σ ) is isomorphic to the ring of integers in thenth
cyclotomic field. Call NG(σ ) the normalizer ofσ in G; the group NG(σ ) acts on
the schemeXσ and, by conjugation, on the groupσ. Consider the induced actions of
NG(σ ) on theK -theory ringK∗(Xσ ) and on the ring̃R(σ ).

Choose a setC (G) of representatives for the conjugacy classes of cyclic sub-
groups ofG whose order is prime to the characteristic of the field. The statement of
the main result of [Vi1] is as follows.

THEOREM

There is a canonical ring isomorphism

K∗(X,G)⊗ Z[1/|G|] '
∏

σ∈C (G)

(
K∗(X

σ )⊗ R̃(σ )
)NG(σ )

⊗ Z[1/|G|].

In the present paper we generalize this decomposition to the case in whichG is an
algebraic group scheme of finite type over a fieldk, acting with finite geometric sta-
bilizers on a Noetherian regular separated algebraic spaceX over k. Of course, we
cannot expect a statement exactly like the one for finite groups, expressing equiv-
ariant K -theory simply in terms of ordinaryK -theory of the fixed point sets. For
example, whenX is the Stiefel variety ofr -frames inn-space, then the quotient of
X by the natural free action of GLr is the Grassmannian ofr -planes inn-space, and
K0(X,GLr ) = K0(X/GLr ) is nontrivial, whileK0(X) = Z.

Let X be a Noetherian regular algebraic space overk with an action of an affine
group schemeG of finite type overk. We consider the WaldhausenK -theory group
K∗(X,G) of complexes of quasi-coherentG-equivariant sheaves onX with coherent
bounded cohomology. This coincides on the one hand with the WaldhausenK -theory
group K∗(X,G) of the subcategory of complexes of quasi-coherentG-equivariant
flat sheaves onX with coherent bounded cohomology (and hence has a natural ring
structure given by the total tensor product) and on the other hand with the Quillen
groupK ′∗(X,G) of coherent equivariant sheaves onX; furthermore, if every coherent
equivariant sheaf onX is the quotient of a locally free equivariant coherent sheaf, it
also coincides with the Quillen groupK naive

∗ (X,G) of coherent locally free equiv-
ariant sheaves onX. TheseK -theories and their relationships are discussed in the
appendix.

Our result is as follows. First we have to see what plays the role of the cyclic
subgroups of a finite group. This is easy; the group schemes whose rings of represen-
tations are of the formZ[t]/(tn

− 1) are not the cyclic groups, in general, but their
Cartier duals, that is, the group schemes that are isomorphic to the group schemeµn

of nth roots of 1 for somen. We call these group schemesdual cyclic. If σ is a dual
cyclic group, we can definẽRσ as before. A dual cyclic subgroupσ of G is called
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essential ifXσ 6= ∅. The correct substitute for the ordinaryK -theory of the subspaces
of invariants is thegeometric equivariant K -theory K∗(X,G)geom, which is defined
as follows. CallN the least common multiple of the orders of all the essential dual
cyclic subgroups ofG. Call S1 the multiplicative subset of the ring R(G) consisting
of elements whose virtual rank is a power ofN; then K∗(X,G)geom is the localiza-
tion S−1

1 K∗(X,G). Notice thatK∗(X,G)geom⊗Q = K∗(X,G)m, with the notation
above. Moreover, if every coherent equivariant sheaf onX is the quotient of a locally
free equivariant coherent sheaf, by [EG], we have an isomorphism of rings

K0(X,G)geom⊗Q = A∗G(X)⊗Q,

whereA∗G(X) denotes the direct sum ofG-equivariant Chow groups ofX.
We prove the following. Assume that the action ofG on X is connected. Then

the kernel of the rank morphismK0(X,G)geom→ Z[1/N] is nilpotent (see Cor.5.2).
This is remarkable; we have made what might look like a small step toward making
the equivariantK -theory ring indecomposable, and we immediately get an indecom-
posable ring. Indeed,K∗(X,G)geom “feels like” the K -theory ring of a scheme; we
want to think ofK∗(X,G)geomas what theK -theory of the quotientX/G should be,
if X/G were smooth, after invertingN (see Conj.5.8).

Furthermore, consider the centralizer CG(σ ) and the normalizer NG(σ ) of σ in-
sideG. The quotient wG(σ ) = NG(σ )/CG(σ ) is contained inside the group scheme
of automorphisms ofσ , which is a discrete group, so it is also a discrete group.
It acts onR̃(σ ), by conjugation, and it also acts on the equivariantK -theory ring
K∗(Xσ ,CG(σ )) and on the geometric equivariantK -theory ringK∗(Xσ ,CG(σ ))geom

(see Cor.2.5).
We say that the action ofG on X is sufficiently rational when the following two

conditions are satisfied. Letk be the algebraic closure ofk.
(1) Each essential dual cyclic subgroupσ ⊆ Gk is conjugate by an element of

G( k ) to a dual cyclic subgroup ofG.
(2) If two essential dual cyclic subgroups ofG are conjugate by an element of

G( k ), they are also conjugate by an element ofG(k).
Obviously, every action over an algebraically closed field is sufficiently rational.

Furthermore, ifG is GLm, SLm, Spm, or a totally split torus, then any action ofG is
sufficiently rational over an arbitrary base field (see Prop.2.3). If G is a finite group,
then the action is sufficiently rational whenk contains allnth roots of 1, wheren is
the least common multiple of the orders of the cyclic subgroups ofk of order prime
to the characteristic, whose fixed point subscheme is nonempty. Denote byC (G) a
set of representatives for essential dual cyclic subgroup schemes, under conjugation
by elements of the groupG(k). Here is the statement of our result.
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MAIN THEOREM

Let G be an affine group scheme of finite type over a field k, acting on a Noetherian
separated regular algebraic space X. Assume the following three conditions.
(a) The action has finite geometric stabilizers.
(b) The action is sufficiently rational.
(c) For any essential cyclic subgroupσ of G, the quotient G/CG(σ ) is smooth.

ThenC (G) is finite, and there is a canonical isomorphism ofR(G)-algebras

K∗(X,G)⊗ Z[1/N] '
∏

σ∈C (G)

(
K∗(X

σ ,CG(σ ))geom⊗ R̃(σ )
)wG(σ ).

Conditions (a) and (b) are clearly necessary for the theorem to hold. We are not sure
about (c). It is rather mild, as it is satisfied, for example, whenG is smooth (this is
automatically true in characteristic zero) or whenG is abelian. A weaker version of
condition (c) is given in Section5.2.

In the case whenG is abelian over an algebraically closed field of characteristic
zero, the main theorem implies [Vi2, Conj. 3.6]. WhenG is a finite group, and the base
field contains enough roots of 1, as in the statement of Theorem 1, then the conditions
of the main theorem are satisfied; since the natural mapsK∗(Xσ ,CG(σ ))geom →

K∗(Xσ )CG(σ ) become isomorphisms after inverting the order ofG (see Prop.5.7),
the main theorem implies [Vi1, Th. 1]. However, the proof of the main theorem here
is completely different from [Vi1, proof of Th. 1].

As B. Toen pointed out to us, a weaker version of our main theorem (withQ-
coefficients and assumingG smooth, acting with finite reduced stabilizers) follows
from his [To1, Th. 3.15]; theétale techniques he uses in proving this result make it
impossible to avoid tensoring withQ (see also [To2]).

Here is an outline of the paper. First we define the homomorphism (see Sec. 2.2).
Next, in Section 3, we prove the result whenG is a totally split torus. Here the basic
tool is the result of R. Thomason, which gives a generic description of the action
of a torus on a Noetherian separated algebraic space, and we prove the result by
Noetherian induction, using the localization sequence for theK -theory of equivariant
coherent sheaves. As in [Vi1], the difficulty here is that the homomorphism is defined
via pullbacks, and thus it does not commute with the pushforwards intervening in the
localization sequence. This is solved by producing a different isomorphism between
the two groups in question, using pushforwards instead of pullbacks, and then relating
this to our map, via the self-intersection formula.

The next step is to prove the result in the case whenG = GLn; here the key point
is a result of A. Merkurjev which links the equivariantK -theory of a scheme with
a GLn-action to the equivariantK -theory of the action of a maximal torus. This is
carried out in Section 4. Finally (see Sec. 5), we reduce the general result to the case
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of GLn, by considering an embeddingG ⊆ GLn, and the induced action of GLn on
Y = GLn×

G X. It is at this point that condition (c) enters, allowing a clear description
of Yσ whereσ is an essential dual cyclic subgroup ofG (see Prop.5.6).

2. General constructions

Notation. If S is a separated Noetherian scheme,X is a Noetherian separatedS-
algebraic space (which is most of the time assumed to be regular), andG is a flat
affine group scheme overSacting onX, we denote byK∗(X,G) (resp.,K ′(X,G)) the
WaldhausenK -theory of the complicial bi-Waldhausen (see [ThTr]) categoryW1,X,G

of complexes of quasi-coherentG-equivariantOX-modules with bounded coherent
cohomology (resp., the QuillenK -theory ofG-equivariant coherentOX-modules). As
shown in the appendix, ifX is regular,K∗(X,G) is isomorphic toK ′∗(X,G) and has
a canonical graded ring structure. WhenX is regular, the isomorphismK∗(X,G) '
K ′∗(X,G) then allows us to switch between the two theories when needed.

2.1. Morphisms of actions and induced maps on K-theory
Let S be a scheme. By anaction over S we mean a triple(X,G, ρ) whereX is an
S-algebraic space,G is a group scheme overS, andρ : G×S X→ X is an action of
G on X overS. A morphism of actions

( f, φ) : (X,G, ρ) −→ (X′,G′, ρ′)

is a pair ofS-morphismsf : X → X′ andφ : G → G′, whereφ is a morphism of
S-group schemes, such that the following diagram commutes:

G×S X
ρ

−−−−→ X

φ× f

y y f

G′ ×S X′ −−−−→
ρ′

X′

Equivalently, f is required to beG-equivariant with respect to the givenG-action on
X and theG-action onX′ induced by composition withφ.

A morphism of actions( f, φ) : (X,G, ρ) → (X′,G′, ρ′) induces an exact
functor ( f, φ)∗ : W3,X′,G′ → W3,X,G, whereW3,Y,H denotes the complicial bi-
Waldhausen category of complexes ofH -equivariant flat quasi-coherent modules
with bounded coherent cohomology on theH -algebraic spaceY (see appendix). Let
(E ∗, ε∗) be an object ofW3,X′,G′ ; that is,E ∗ is a complex ofG′-equivariant flat quasi-
coherentOX′-modules with bounded coherent cohomology, and for anyi ,

εi
: pr′∗2 E i

−̃→ ρ′∗E i
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is an isomorphism satisfying the usual cocycle condition. Here pr′

2 : G
′
×S X′→ X′

denotes the obvious projection, and similarly for pr2 : G×S X→ X. Since

ρ∗ f ∗E ∗ = ( fρ)∗E ∗ = (φ × f )∗ρ′∗E ∗

and
pr∗2 f ∗E ∗=(φ × f )∗pr′∗2 E ∗,

we define( f, φ)∗(E ∗, ε∗)
.
= ( f ∗E ∗, (φ × f )∗(ε∗)) ∈ W3,X,G (the cocycle condition

for each(φ × f )∗(εi ) following from the same condition forεi ); ( f, φ)∗ is then de-
fined on morphisms in the only natural way. Now,( f, φ)∗ is an exact functor and, if
X andX′ are regular so that the WaldhausenK -theory ofW3,X,G (resp., ofW3,X′,G′)
coincides withK∗(X,G) (resp.,K∗(X′,G′)) (see appendix), it defines a ring mor-
phism

( f, φ)∗ : K∗(X
′,G′) −→ K∗(X,G).

A similar argument shows that iff is flat,( f, φ) induces a morphism

( f, φ)∗ : K ′∗(X
′,G′) −→ K ′∗(X,G).

Example 2.1
Let G andH be group schemes overS, and letX be anS-algebraic space. Moreover,
suppose that
(1) G andH act onX;
(2) G acts onH by S-group scheme automorphisms (i.e., it is given a morphism

G→ Aut(GrSch)/S(H) of group functors overS);
(3) the two preceding actions are compatible; that is, for anyS-schemeT , any

g ∈ G(T), h ∈ H(T), andx ∈ X(T), we have

g · (h · x) = hg
· (g · x),

where(g, h) 7→ hg denotes the action ofG(T) on H(T).
If g ∈ G(S) and if gT denotes its image viaG(S)→ G(T), let us define a morphism
of actions( fg, φg) : (X, H)→ (X, H) as

fg(T) : X(T) −→ X(T) : x 7−→ gT · x,

φg(T) : H(T) −→ H(T) : h 7−→ hgT .

This is an isomorphism of actions and induces an action of the groupG(S) on K ′∗(X,
H) and onK∗(X, H). This applies, in particular, to the case whereX is an algebraic
space with aG action andG B H , G acting onH by conjugation.



8 VEZZOSI and VISTOLI

2.2. The basic definitions and results
Let G be a linear algebraick-group schemeG acting with finite geometric stabilizers
on a regular Noetherian separated algebraic spaceX overk.

We denote by R(G) the representation ring ofG.
A (Cartier) dual cyclic subgroupof G over k is a k-subgroup schemeσ ⊆ G

such that there exist ann > 0 and an isomorphism ofk-groupsσ ' µn,k. If σ, ρ
are dual cyclic subgroups ofG and if L is an extension ofk, we say thatσ andρ
are conjugate overL if there existsg ∈ G(L) such thatgσ(L)g−1

= ρ(L) (where
H(L)

.
= H ×Speck SpecL, for any k-group schemeH ) as L-subgroup schemes of

G(L).
A dual cyclic subgroupσ ⊆ G is said to beessentialif Xσ 6= ∅.
We say that the action ofG on X is sufficiently rationalif

(1) any two essential dual cyclic subgroups ofG are conjugated overk if and only
if they are conjugated over an algebraic closurek of k;

(2) any essential dual cyclic subgroupρ of G(k) is conjugated overk to a dual
cyclic subgroup of the formσ(k) whereσ ⊆ G is (essential) dual cyclic.

We denote byC (G) a set of representatives for essential dual cyclic subgroups ofG
with respect to the relation of conjugacy overk.

Remark 2.2
Note that if the action is sufficiently rational and ifρ, σ are essential dual cyclic
subgroups ofG which are conjugate over an algebraically closed extension� of k,
then they are also conjugate overk.

PROPOSITION2.3
Any action ofGLn, SLn,Sp2n, or of a split torus is sufficiently rational.

Proof
If G is a split torus, condition (1) is clear becauseG is abelian, while it follows from
the rigidity of diagonalizable groups that any subgroup scheme ofGk is in fact defined
overk. Let σ ⊆ GLm be a dual cyclic subgroup. Sinceσ is diagonalizable, we have
an eigenspace decomposition

V = km
=

⊕
χ∈σ̂

Vσ
χ

such that theχ with Vχ 6= 0 generatêσ . Conversely, given a cyclic groupC and a
decomposition

V =
⊕
χ∈Ĉ

Vχ
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such that theχ with Vχ 6= 0 generatêC, there is a corresponding embedding of
the Cartier dualσ of C into GLn with Vχ = Vσ

χ for eachχ ∈ C = σ̂ . Now, if

σ ⊆ GLm,k is a dual cyclic subgroup defined overk, we can apply an element of

GLm(k) to make theVχ defined overk, and thengσg−1 is defined overk. If σ ⊆ GLm

andτ ⊆ GLm are dual cyclic subgroups that are conjugate overk, pick an element
of GLm(k) sendingσ to τ . This induces an isomorphismφ : σk ' τk, which by
rigidity is defined overk. Then ifχ andχ ′ are characters that correspond under the
isomorphism of̂σ and τ̂ induced byφ, then the dimension ofVσ

χ is equal to the
dimension ofVτ

χ ′
, so we can find an elementg of GLm which carries eachVσ

χ onto the
correspondingVτ

χ ′; conjugation by this element carriesσ ontoτ . For SLm, the proof
is very similar if we remark that to give a dual cyclic subgroupσ ⊆ SLm ⊆ GLm

corresponds to giving a decomposition

V = km
=

⊕
χ∈σ̂

Vσ
χ

such that theχ with Vσ
χ 6= 0 generatêσ , with the condition

∏
χ∈σ̂ χ

dim Vσχ = 1 ∈ σ̂ .
For Spm ⊆ GL2m, a dual cyclic subgroupσ ⊆ Spm gives a decomposition

V = k2m
=

⊕
χ∈σ̂

Vσ
χ

such that theχ with Vσ
χ 6= 0 generatêσ , with the condition that forv ∈ Vσ

χ and
v′ ∈ Vσ

χ ′ the symplectic product ofv andv′ is always zero, unlessχχ ′ = 1 ∈ σ̂ . Both
conditions then follow rather easily from the fact that any two symplectic forms over
a vector space are isomorphic.

Let N(G,X) denote the least common multiple of the orders of essential dual cyclic
subgroups ofG. Notice thatN(G,X) is finite: since the action has finite stabilizers,
the group scheme of stabilizers is quasi-finite overX; therefore the orders of the
stabilizers of the geometric points ofX are globally bounded.

We define3(G,X)
.
= Z[1/N(G,X)].

If H ⊆ G is finite, we also write3H for Z[1/|H |]. Note that, ifσ ⊆ G is dual
cyclic, then3σ = 3(σ,Speck), and if, moreover,σ is essential,3σ ⊆ 3(G,X).

If H ⊆ G is a subgroup scheme and ifA is a ring, we write R(H)A for R(H)⊗Z
A. We denote by rkH : R(H) −→ Z and by rkH,3(G,X) : R(H)3(G,X) −→ 3(G,X) the
rank ring homomorphisms.

We let
K ′∗(X,G)3(G,X) = K ′∗(X,G)⊗3G,X

and
K∗(X,G)3(G,X) = K∗(X,G)⊗3G,X
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(for the notation, see the beginning of this section). Recall thatK∗(X,G)3(G,X) is
an R(G)-algebra via the pullback R(G) ' K0(Speck,G) → K0(X,G) and that
K∗(X,G) ' K ′∗(X,G) sinceX is regular (see appendix).

If σ is a dual cyclic subgroup ofG of ordern, the choice of a generatort for the
dual group̂σ

.
= HomGrSch/k(σ,Gm,k) determines an isomorphism

R(σ ) '
Z[t]

(tn − 1)
.

Let pσ be the canonical ring surjection

Z[t]
(tn − 1)

−→

∏
d|n

Z[t],
(8d)

,

and let p̃σ be the induced surjection

Z[t]
(tn − 1)

−→
Z[t]
(8n)

,

where8d is thedth cyclotomic polynomial. Ifmσ is the kernel of the composition

R(σ ) '
Z[t]

(tn − 1)
−→

Z[t]
(8n)

,

the quotient ring R(σ )/mσ does not depend on the choice of the generatort for σ̂ .

Notation. We denote bỹR(σ ) the quotient R(σ )/mσ . We remark that ifσ is dual
cyclic of ordern and if t is a generator of̂σ , there are isomorphisms

R(σ )3σ '
3σ [t]

(tn − 1)
'

∏
d|n

3σ [t]

(8d)
. (1)

Let π̃σ : R(G)3(G,X) → R̃(σ )3(G,X) be the canonical ring homomorphism. The
σ -localization K′∗(X,G)σ of K ′∗(X,G)3(G,X) is the localization of the R(G)3(G,X)-
moduleK ′∗(X,G)3(G,X) at the multiplicative subsetSσ

.
= π̃σ

−1(1). Theσ -localiza-
tion K∗(X,G)σ is defined in the same way. IfH ⊆ G is a subgroup scheme, we also
write R(H)σ for S−1

σ (R(H)3(G,X)).
If σ is the trivial group, we denote byK ′∗(X,G)geom the σ -localization

of K ′∗(X,G)3(G,X) and call it the geometric partor geometric localizationof
K ′∗(X,G)3(G,X) . Note that π̃1 coincides with the rank morphism rkG,3(G,X) :

R(G)3(G,X) −→ 3(G,X). We have the same definition forK∗(X,G)geom.
Let NG(σ ) (resp., CG(σ ) ⊆ NG(σ )) be the normalizer (resp., the centralizer) of

σ in G; since Aut(σ ) is a finite constant group scheme,

WG(σ )
.
=

NG(σ )

CG(σ )
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is also a constant group scheme overk associated to a finite groupwG(σ ).

LEMMA 2.4
Let H be a k-linear algebraic group, letσ ' µn,k be a normal subgroup, and let
Y be an algebraic space with an action of H/σ . Then there is a canonical action of
wH (σ ) on K′∗(Y,CH (σ )).

Proof
Let us first assume that the natural map

H(k) −→ wH (σ ) (2)

is surjective (which is true, e.g., ifk is algebraically closed). Since CH (σ )(k) acts triv-
ially on K ′∗(Y,CH (σ )) and, by Example2.1, H(k) acts naturally onK ′∗(Y,CH (σ )),
we may use (2) to define the desired action. In general, (2) is not surjective and we
proceed as follows. Suppose that we can find a closed immersion ofk-linear algebraic
groupsH ↪→ H ′ such that
(i) σ is normal inH ′;
(ii) H ′/CH ′(σ ) ' WH (σ );
(iii) H ′(k)→ wH (σ ) is surjective.

Consider the open and closed immersionY×CH (σ ) ↪→ Y× H ; this induces an
open and closed immersionY ×CH (σ ) CH ′(σ ) ↪→ Y ×CH (σ ) H ′ whose composition
with theétale coverY ×CH (σ ) H ′ → Y ×H H ′ is easily checked (e.g., on geometric
points) to be an isomorphism. Therefore,

K ′∗
(
Y ×H H ′,CH ′(σ )

)
' K ′∗

(
Y ×CH (σ ) CH ′(σ ),CH ′(σ )

)
' K ′∗

(
Y,CH (σ )

)
,

where the last isomorphism is given by the Morita equivalence theorem (see [Th3,
Prop. 6.2]). By (i) and (iii) we can apply the argument at the beginning of the proof
and get an action ofwH (σ ) on K ′∗(Y×

H H ′,CH ′(σ )) and therefore onK ′∗(Y,CH (σ )),
as desired. It is not difficult to check that this action does not depend on the chosen
immersionH ↪→ H ′.

Finally, let us prove that there exists a closed immersionH ↪→ H ′ satisfying
conditions (i) – (iii) above. First choose a closed immersionj : H ↪→ GLn,k for some
n. Clearly,

H/CH (σ ) ↪→ GLn,k /CGLn,k(σ ),

and, embeddingσ in a maximal torus of GLn,k, it is easy to check that

GLn,k(k)→
(

GLn,k /CGLn,k(σ )
)
(k)

is surjective. Now defineH ′ as the inverse image ofH/CH (σ ) in the normalizer
NGLn,k(σ ).
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COROLLARY 2.5
There is a canonical action ofwG(σ ) on K′∗(X

σ ,CG(σ )) which induces an action on
K ′∗(X

σ ,CG(σ ))geom.

Proof
Since CG(σ ) = CNG(σ )(σ ), Lemma2.4, applied toY = Xσ (resp.,Y = Speck)
and H = NG(σ ), yields an action ofwG(σ ) on K ′∗

(
Xσ ,CG(σ )

) (
resp., on

K0(Speck,CG(σ )) = R(CG(σ ))
)
. The multiplicative systemS1 = rk−1(1) is pre-

served by this action so that there is an induced action on the ringS−1
1 R(CG(σ )). The

pullback
K0

(
Speck,CG(σ )

)
→ K0

(
Xσ ,CG(σ )

)
iswG(σ )-equivariant, and thenwG(σ ) acts onK ′∗(X

σ ,CG(σ ))geom.

Remark 2.6
If Y is regular, Lemma2.4 also gives an action ofwH (σ ) on K∗(Y,CH (σ )) since
K∗(Y,CH (σ )) ' K ′∗(Y,CH (σ )) (see appendix). In particular, since by [Th5, Prop.
3.1], Xσ is regular, Corollary2.5still holds for K∗(Xσ ,CG(σ ))geom.

Note also that the embedding ofk-group schemesWG(σ ) ↪→ Autk(σ ) induces, by
Example2.1, an action ofwG(σ ) on K0(Speck, σ ) = R(σ ). The product inσ induces
a morphism ofk-groups,

σ × CG(σ ) −→ CG(σ ),

which in its turn induces a morphism

mσ : K∗
(
Xσ ,CG(σ )

)
−→ K∗

(
Xσ , σ × CG(σ )

)
.

LEMMA 2.7
If H ⊆ G is a subgroup scheme and ifσ is contained in the center of H, there is a
canonical ring isomorphism

K∗(X
σ , σ × H) ' K∗(X

σ , H)⊗ R(σ ).

Proof
Sinceσ acts trivially onXσ , we have an equivalence (see [SGA3, Exp. I, par. 4.7.3])

(σ × H)− CohXσ '
⊕
σ̂

(H − CohXσ ) (3)

(wherêσ is the character group ofσ ) which induces an isomorphism

K ′∗(X
σ , σ × H) ' K ′∗(X

σ , H)⊗ R(σ ).
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We conclude sinceK∗(Y, H) ' K ′∗(Y, H) andK∗(Xσ , σ × H) ' K ′∗(X
σ , σ × H)

(see appendix).

For any essential dual cyclic subgroupσ ⊆ G, let 3
.
= 3(G,X), and consider the

composition

K∗(X,G)3→ K∗
(
X,CG(σ )

)
3
→ K∗

(
Xσ ,CG(σ )

)
3

mσ
−→ K∗

(
Xσ ,CG(σ )

)
3
⊗3 R(σ )3

−→ K∗
(
Xσ ,CG(σ )

)
geom⊗3 R̃(σ )3, (4)

where the first map is induced by group restriction, the last one is the geometric
localization map tensored with the projection R(σ )3 → R̃(σ )3, and we have used
Lemma2.7with H = CG(σ ); the second map is induced by restriction alongXσ ↪→
X which is a regular closed immersion (see [Th5, Prop. 3.1]) and therefore has finite
Tor-dimension, so that the pullback onK -groups is well defined (see appendix). It
is not difficult to show that the image of (4) is actually contained in the invariant
submodule (

K∗(X
σ ,CG(σ ))geom⊗3 R̃(σ )3

)wG(σ ),

so that we get a map

ψσ,X : K∗(X,G)3 −→
(
K∗(X

σ ,CG(σ ))geom⊗3 R̃(σ )3
)wG(σ ).

Our basic map is

9X,G
.
=

∏
σ∈C (G)

ψσ,X : K∗(X,G)3

−→

∏
σ∈C (G)

(
K∗(X

σ ,CG(σ ))geom⊗3 R̃(σ )3
)wG(σ ). (5)

Note that9X,G is a morphism of R(G)-algebras as a composition of morphisms of
R(G)-algebras.

The following technical lemma is used in Propositions3.5and4.6.

LEMMA 2.8
Let G be a linear algebraic k-group acting with finite stabilizers on a Noetherian
separated k-algebraic space X, and let3

.
= 3(G,X). Let H ⊆ G be a subgroup, and

let σ be an essential dual cyclic subgroup contained in the center of H. Consider the
composition

K ′∗(Y
σ , H)3 −→ K ′∗(Y

σ , H)3 ⊗3 R(σ )3 −→ K ′∗(Y
σ , H)geom⊗3 R̃(σ )3, (6)
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where the first morphism is induced by the product morphismσ × H → H (recall
Lem.2.7) and the second is the tensor product of the geometric localization morphism
with the projectionR(σ )3 → R̃(σ )3. Then (6) factors through K′∗(Y

σ , H)3 →
K ′∗(Y

σ , H)σ , yielding a morphism

θH,σ : K
′
∗(Y

σ , H)σ −→ K ′∗(Y
σ , H)geom⊗3 R̃(σ )3. (7)

Proof
Let S1 (resp.,Sσ ) be the multiplicative subset in R(H)3 consisting of elements going
to 1 via the homomorphism rkH,3 : R(H)3 → 3 (resp., R(H)3 → R̃(σ )3). Ob-
serve thatK ′∗(X

σ , H)3⊗3 R(σ )3 (resp.,K ′∗(X
σ , H)geom⊗3 R̃(σ )3) is canonically

an R(H)3 ⊗ R(σ )3-module (resp., anS−1
1 R(H)3 ⊗ R̃(σ )3-module) and therefore

an R(H)-module via the coproduct ring morphism

1σ : R(H)3 −→ R(H)3 ⊗ R(σ )3(
resp., via the ring morphism

fσ : R(H)3
1σ
−→ R(H)3 ⊗ R(σ )3 −→ S−1

1 R(H)3 ⊗ R̃(σ )3
)
.

If we denote byA′ the R(H)3-algebra fσ : R(H)3 −→ S−1
1 R(H)3 ⊗ R̃(σ )3, it is

enough to show that the localization homomorphism

l ′σ : A′ −→ S−1
σ (A′)

is an isomorphism, because in this case the morphism (7) is induced by theSσ -
localization of (6). Let A denote the R(H)3-algebra

λ1⊗ 1 : R(H)3 −→ S−1
1 R(H)3 ⊗ R̃(σ )3,

whereλ1 : R(H)3 → S−1
1 R(H)3 denotes the localization homomorphism. It is a

well-known fact that there is an isomorphism of R(H)3-algebrasϕ : A′→ A; this is
exactly the dual assertion to “the actionH × σ → σ is isomorphic to the projection
on the second factorH × σ → σ .” Therefore, we have a commutative diagram

A′
ϕ

−−−−→ A

l ′σ

y ylσ

S−1
σ A′ −−−−→

S−1
σ ϕ

S−1
σ A

wherelσ denotes the localization homomorphism, and it is enough to prove thatlσ is
an isomorphism. To see this, note that the ringR̃(σ )3 is a free3-module of finite rank
(equal toφ(|σ |), φ being the Euler function), and there is a norm homomorphism

N : R̃(σ )3 −→ 3
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sending an element to the determinant of the3-endomorphism of̃R(σ )3 induced by
multiplication by this element; obviously, we have

N−1(3∗) =
(
R̃(σ )3

)∗
.

Analogously, there is a norm homomorphism

N′ : A′ = S−1
1 R(H)3 ⊗ R̃(σ )3 −→ S−1

1 R(H)3,

and
N−1((S−1

1 R(H)3)
∗
)
=

(
S−1

1 R(H)3 ⊗ R̃(σ )3
)∗
.

There is a commutative diagram

S−1
1 R(H)3 ⊗ R̃(σ )3

N′
−−−−→ S−1

1 R(H)3

rkH,3⊗ id
y yrkH,3

R̃(σ )3 −−−−→
N

3

and, by definition ofS1, we get rk−1
H,3(3

∗) = (S−1
1 R(H)3)∗. Therefore, by definition

of Sσ , Sσ /1 consist of units inA, and we conclude the proof of the lemma.

The following lemma, which is an easy consequence of a result of Merkurjev, is the
main tool in reducing the proof of the main theorem fromG = GLn,k to its maximal
torusT .

LEMMA 2.9
Let X be a Noetherian separated algebraic space over k with an action of a split
reductive group G over k such thatπ1(G) (see [Me, Par. 1.1]) is torsion free. Then if
T denotes a maximal torus in G, the canonical morphism

K ′∗(X,G)⊗R(G) R(T) −→ K ′∗(X, T)

is an isomorphism.

Proof
Let B ⊇ T be a Borel subgroup ofG. Since R(B) ' R(T) and K ′∗(X, B) '
K ′∗(X, T) (see [Th4, proof of Th. 1.13, p. 594]), by [Me, Prop. 4.1], the canonical
ring morphism

K ′∗(X,G)⊗R(G) R(T) −→ K ′∗(X, T)

is an isomorphism.



16 VEZZOSI and VISTOLI

Since Merkurjev states his theorem for a scheme, we briefly indicate how it ex-
tends to a Noetherian separated algebraic spaceX overk. By [Th1, Lem. 4.3], there
exists an open denseG-invariant separated subschemeU ⊂ X. Since Merkurjev’s
map commutes with localization, by the localization sequence and Noetherian induc-
tion it is enough to know the result forU . And this is given in [Me, Prop. 4.1]. Note
that by [Me, Prop. 1.22], R(T) is flat (actually free) over R(G), and therefore the
localization sequence remains exact after tensoring with R(T).

The following is [Vi1, Lem. 3.2]. It is used frequently in the rest of the paper, and it
is stated here for the convenience of the reader.

LEMMA 2.10
Let W be a finite group acting on the left on a setA , and letB ⊆ A be a set of
representatives for the orbits. Assume that W acts on the left on a product of abelian
groups of the type

∏
α∈A Mα in such a way that

sMα = Msα

for any s∈ W.
For eachα ∈ B, let us denote by Wα the stabilizer ofα in W. Then the canonical

projection ∏
α∈A

Mα −→

∏
α∈B

Mα

induces an isomorphism( ∏
α∈A

Mα

)W
−→

∏
α∈B

(Mα)
Wα .

3. The main theorem: The split torus case
In this section,T is a split torus overk.

PROPOSITION3.1
Let T′ ⊂ T be a closed subgroup scheme (diagonalizable, by [SGA3, Exp. IX, par.
8.1]), finite over k. Then the canonical morphism

δ : R(T ′)3T ′
−→

∏
σ dual cyclic

σ⊆T ′

R̃(σ )3T ′

is a ring isomorphism.

Proof
Since both R(T ′)3T ′

and
∏

R̃(σ )3T ′
are free3T ′-modules of finite rank, it is enough
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to prove that, for any nonzero primep - |T ′|, the induced morphism ofFp-vector
spaces

R(T ′)3T ′
⊗Z Fp −→

∏
σ dual cyclic

σ⊆T ′

R̃(σ )3T ′
⊗Z Fp (8)

is an isomorphism. Now, for any finite abelian groupA, we have an equality|A| =∑
A�C ϕ(|C|), whereϕ denotes the Euler function,|H | denotes the order of the

group H , and the sum is extended to all cyclic quotients ofA; applying this to the
group of characterŝT ′ (so that the corresponding cyclic quotientsC are exactly the
group of characterŝσ for σ dual cyclic subgroups ofT ′), we see that the ranks of
both sides in (8) coincide with|T ′|, and it is then enough to prove that (8) is injective.
Define a morphism

f :
∏

τdual cyclic
τ⊆T ′

R̃(τ )3T ′
−→

∏
σdual cyclic
σ⊆T ′

R(σ )3T ′

of R(T ′)3T ′
-modules by requiring, for any dual cyclic subgroupσ ⊆ T ′, the commu-

tativity of the following diagram:∏
τ dual cyclic
τ⊆T ′

R̃(τ )3T ′

f
−−−−→

∏
σ dual cyclic
σ⊆T ′

R(σ )3T ′

Prσ

y yprσ∏
τ⊆σ R̃(τ )3T ′

˜
←−−−−

ϕ
R(σ )3T ′

where Prσ and prσ are the obvious projections andϕ is the isomorphism

R(σ )3T ′

∏
τ⊆σ resστ
−−−−−−→

∏
τ⊆σ

R(τ )3T ′

(p̃rτ )τ
−−−→

∏
τ⊆σ

R̃(τ )3T ′

induced by (1). Obviously, f ◦ δ coincides with the map∏
σ dual cyclic
σ⊆T ′

resT
′

σ : R(T
′)3T ′

−→

∏
σ dual cyclic
σ⊆T ′

R(σ )3T ′
,

so we are reduced to proving that

R(T ′)3T ′
⊗Z Fp −→

∏
σ dual cyclic
σ⊆T ′

R(σ )3T ′
⊗Z Fp

is injective, that is, that ifA is a finite abelian group andp - |A|, then

ϕ : Fp[A] −→
∏

C∈{cyclic quotients ofA}

Fp[C] (9)
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is injective. If Â = HomAbGrps(A,C∗) denotes the complex characters group ofA,
then R(Â) ' Z[A] and

ϕ =
∏
Ĉ

reŝA
Ĉ
: R(Â) −→

∏
Ĉ∈{cyclic subgroups of̂A}

R(Ĉ).

Sincep - |A|, it is enough to prove that ifξ ∈ R(Â) ⊗̇Z Z[1/|A|] has image via

reŝA
Ĉ
⊗Z[1/|A|] : R(Â) ⊗Z Z[1/|A|] −→ R(Ĉ)⊗Z Z[1/|A|]

contained in p
(
R(Ĉ) ⊗Z Z[1/|A|]

)
for each cyclic Ĉ ⊆ Â, then ξ ∈

p
(
R(Â) ⊗̇Z Z[1/|A|]

)
.

By [Se, p. 73], there exists(θ ′
Ĉ
)Ĉ ∈

∏
Ĉ∈{cyclic subgroups of̂A}R(Ĉ) ⊗Z Z[1/|A|]

such that
1=

∑
Ĉ

(
indĈ

Â
⊗ Z[1/|A|]

)
(θ ′

Ĉ
);

therefore

ξ =
∑
Ĉ

ξ
(
indĈ

Â
⊗ Z[1/|A|]

)
(θ ′

Ĉ
)

=

∑
Ĉ

(
indĈ

Â
⊗ Z[1/|A|]

)(
θ ′

Ĉ
(reŝA

Ĉ
⊗Z[1/|A|])(ξ)

)
(by the projection formula), and we conclude the proof of the proposition.

Remark 3.2
The proof of Proposition3.1is similar to [Vi1, proof of Prop. 1.5], which is, however,
incomplete; that is why we have decided to give all the details here.

COROLLARY 3.3
We have the following.
(i) If σ 6= σ ′ are dual cyclic subgroups of T , we havẽR(σ )σ ′ = 0 andR̃(σ )σ =

R̃(σ ).
(ii) If T ′ ⊂ T is a closed subgroup scheme, finite over k, and ifσ is a dual cyclic

subgroup of T , we haveR(T ′)σ = 0 if σ * T ′.
(iii) If T ′ ⊂ T is a closed subgroup scheme, finite over k, the canonical morphism

of R(T)-algebras
R(T ′)3T ′

−→

∏
σ dual cyclic

σ⊆T ′

R(T ′)σ

is an isomorphism.
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Proof
(i) Supposeσ 6= σ ′, and letT ′ ⊂ T be the closed subgroup scheme ofT generated
by σ andσ ′. The obvious morphismπ : R(T)3T ′

→ R̃(σ )3T ′
× R̃(σ ′)3T ′

factors
through R(T ′)3T ′

→ R̃(σ )3T ′
× R̃(σ ′)3T ′

, which is an epimorphism by Proposition
3.1. If ξ ∈ R(T)3T ′

with π(ξ) = (0,1)⊗ 1, we have

ξ ∈ Sσ ′ ∩ ker
(
R(T)3T ′

→ R̃(σ )3T ′

)
.

ThenR̃(σ )σ ′ = 0. The second assertion is obvious.
(ii) and (iii) These follow immediately from (i) and Proposition3.1.

Now let X be a regular Noetherian separatedk-algebraic space on whichT acts with
finite stabilizers, and let3

.
= 3(T,X). Obviously,C (T) is just the set of essential dual

cyclic subgroups ofT sinceT is abelian.

PROPOSITION3.4
We have the following.
(i) If jσ : Xσ ↪→ X denotes the inclusion, the pushforward( jσ )∗ induces an

isomorphism
K ′∗(X

σ , T)σ −→ K ′∗(X, T)σ .

(ii) The canonical localization morphism

K ′∗(X, T)3 −→
∏

σ∈C (T)

K ′∗(X, T)σ

is an isomorphism, and the product on the left is finite.

Proof
(i) The proof is the same as that of [Th5, Th. 2.1], but we substitute Corollary3.3(ii)
for [Th5, Th. 2.1] since we use a localization different from Thomason’s.

(ii) By the generic slice theorem for torus actions (see [Th1, Prop. 4.10]), there
exist aT-invariant nonempty open subspaceU ⊂ X, a closed (necessarily diagonal-
izable) subgroupT ′ of T , and aT -equivariant isomorphism

U ' T/T ′ × (U/T) ' (U/T)×T ′ T.

SinceU is nonempty andT acts onX with finite stabilizers,T ′ is finite overk
and K ′∗(U, T) ' K ′∗(U/T) ⊗Z R(T ′), by Morita equivalence theorem (see [Th3,
Prop. 6.2]) and [Th1, Lem. 5.6]. By Corollary3.3(ii), the proposition forX = U fol-
lows from Corollary3.3(iii). By Noetherian induction and the localization sequence
for K ′-groups (see [Th3, Th. 2.7]), the statement forU implies the same forX.

Again using Noetherian induction, Thomason’s generic slice theorem for torus
actions, and (i), one similarly shows that the product

∏
σ∈C (T) K ′∗(X, T)σ is finite.
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By Proposition3.4, there is an induced isomorphism (of R(T)-modules, not a ring
isomorphism due to the composition with pushforwards)∏

σ∈C (T)

K ′∗(X
σ , T)σ −→ K ′∗(X, T)3. (10)

As shown in Lemma2.8, the product morphismσ × T → T induces a morphism

θT,σ : K
′
∗(X

σ , T)σ −→ K ′∗(X
σ , T)geom⊗ R̃(σ )3. (11)

PROPOSITION3.5
For anyσ ∈ C (T), θT,σ is an isomorphism.

Proof
We writeθX,σ for θT,σ in order to emphasize the dependence of the map on the space.
We proceed by Noetherian induction onXσ . Let X′ ⊆ Xσ be aT-invariant closed
subspace, and let us suppose that (11) is an isomorphism withX replaced by anyT-
invariant proper closed subspaceZ of X′. By Thomason’s generic slice theorem for
torus actions (see [Th1, Prop. 4.10]), there exist aT-invariant nonempty open sub-
schemeU ⊂ X′, a (necessarily diagonalizable) subgroupT ′ of T , and aT-equivariant
isomorphism

Uσ
≡ U ' T/T ′ × (U/T) ' (U/T)×T ′ T.

SinceU is nonempty andT acts onX with finite stabilizers,T ′ is finite overk and,
obviously,3T ′ ⊆ 3. Let Zσ ≡ Z

.
= X′�U . Since

// K ′∗(Z
σ , T)σ //

θZ,σ

��

K ′∗(X
′σ , T)σ //

θY′ ,σ

��

K ′∗(U
σ , T)σ //

θU,σ

��

//

// K ′∗(Z
σ , T)geom⊗ R̃(σ )3 // K ′∗(X

′σ , T)geom⊗ R̃(σ )3 // K ′∗(U
σ , T)geom⊗ R̃(σ )3 //

is commutative, by the induction hypothesis and the five-lemma it is enough to show
that θU,σ is an isomorphism. By Morita equivalence theorem (see [Th3, Prop. 6.2])
and [Th1, Lem. 5.6],K ′∗(U, T) ' K ′∗(U/T)⊗Z R(T ′), so it is enough to prove that

θSpeck,σ : K
′

0(Speck, T ′)σ = R(T ′)σ → K ′0(Speck, T ′)geom⊗ R̃(σ )3

= R(T ′)geom⊗ R̃(σ )3

is an isomorphism. But this follows immediately from Corollary3.3(i) and (iii).

Combining Proposition3.5with (10), we get an isomorphism

8X,T :
∏

σ∈C (T)

K ′∗(X
σ , T)geom⊗ R̃(σ )3 −→ K ′∗(X, T)3. (12)
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The following lemma is a variant of [Th5, Lem. 3.2], which already proves it after
tensoring withQ.

LEMMA 3.6
Let X be a Noetherian regular separated algebraic space over k on which a split
k-torus acts with finite stabilizers, and letσ ∈ C (T). Let Xσ denote the regular
σ -fixed subscheme, let jσ : Xσ ↪→ X be the regular closed immersion (see [Th5,
Prop. 3.1]), and letN ( jσ ) be the corresponding locally free conormal sheaf. Then,
for any T -invariant algebraic subspace Y of Xσ , the cap-product

λ−1
(
N ( jσ )

)
∩ (−) : K ′∗(Y, T)σ −→ K ′∗(Y, T)σ

is an isomorphism.

Proof
We proceed by Noetherian induction on closedT-invariant subspacesY of Xσ . The
statement is trivial forY = ∅, so let us supposeY nonempty and

λ−1
(
N ( jσ )

)
∩ (−) : K ′∗(Z, T)σ −→ K ′∗(Z, T)σ

an isomorphism for any properT-invariant closed subspaceZ of Y. By Thoma-
son’s generic slice theorem for torus actions (see [Th1, Prop. 4.10]), there exist a
T-invariant nonempty open subschemeU ⊂ Y, a closed (necessarily diagonalizable)
subgroupT ′ of T , and aT -equivariant isomorphism

Uσ
≡ U ' T/T ′ × (U/T).

SinceU is nonempty andT acts onX with finite stabilizers,T ′ is finite overk. Using
the localization sequence and the five-lemma, we reduce ourselves to showing that

λ−1
(
N ( jσ )

)
∩ (−) : K ′∗(U, T)σ −→ K ′∗(U, T)σ

is an isomorphism. For this, it is enough to show that (the restriction of)λ−1(N ( jσ ))
is a unit inK0(U, T)σ ' K0(U/T)3 ⊗R(T ′)σ (see [Th3, Prop. 6.2]). Decomposing
N ( jσ ) according to the characters ofT ′, we may write, shrinkingU if necessary,

N ( jσ ) =
⊕
ρ∈T̂ ′

O
rρ
U/T ⊗Lρ,

whereLρ is the line bundle attached to theT ′-characterρ andrρ ≥ 0, and there-
fore λ−1(N ( jσ )) =

∏
ρ∈T̂ ′(1− ρ)

rρ in K0(U/T) ⊗ R(T ′). The localization map

R(T ′)3→ R(T ′)σ ' R̃(σ )3 coincides with the composition

R(T ′)3
πσ
−→ R(σ )3

pσ
−→ R̃(σ )3
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of the restriction toσ followed by the projection (see Cor.3.3), and then

(idK0(U/T)3 ⊗πσ )
(
N ( jσ )

)
=

⊕
χ∈σ̂\{0}

O
rχ
U/T ⊗Lχ ,

in K0(U/T)3 ⊗R(σ )3, where the summand omits the trivial character since the de-
composition ofN ( jσ ) according to the characters ofσ has vanishing fixed subsheaf
N ( jσ )0 (see, e.g., [Th5, Prop. 3.1]). Therefore,

λ−1
(
(idK0(U/T)3 ⊗πσ )(N ( jσ ))

)
=

∏
χ∈σ̂\{0}

(1− χ)rχ ,

and it is enough to show that the image of 1− χ in R̃(σ )3 via pσ is a unit for any
nontrivial characterχ of σ . Now, the image of such aχ in

R̃(σ )3 '
3[t]

(8|σ |)

(8|σ | being the|σ |th cyclotomic polynomial) is of the form[t l
] for some 1≤ l < |σ |,

where[−] denotes the class mod8|σ |; therefore the cokernel of the multiplication by
1− [t l

] in 3[t]�(8|σ |) is
3[t]

(8|σ |,1− t l )
= 0

since8|σ | and(1− t l ) are relatively prime in3[t] for 1≤ l < |σ |. Thus 1− [t l
] is a

unit in3[t]�(8|σ |), and we conclude the proof of the lemma.

We are now able to prove our main theorem forG = T .

THEOREM 3.7
If X is a regular Noetherian separated k-algebraic space, then

9X,T : K∗(X, T)3 −→
∏

σ∈C (T)

K∗(X
σ , T)geom⊗ R̃(σ )3

is an isomorphism ofR(T)-algebras.

Proof
Recall (see appendix) thatK∗(X, T) ' K ′∗(X, T) and K∗(Xσ , T) ' K ′∗(X

σ , T),
since bothX and Xσ are regular (see [Th5, Prop. 3.1]). Since8X,T is an isomor-
phism of R(T)-modules, it is enough to show that the composition9X,T ◦8X,T is an
isomorphism. A careful inspection of the definitions of9X,T and8X,T easily reduces
the problem to proving that, for anyσ ∈ C (T), the composition

K ′∗(X
σ , T)σ

jσ∗
−→ K ′∗(X, T)σ

j ∗σ
−→ K ′∗(X

σ , T)σ
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is an isomorphism,jσ : Xσ ↪→ X being the natural inclusion. Sincejσ is regular,
there is a self-intersection formula

j ∗σ ◦ jσ∗(−) = λ−1
(
N ( jσ )

)
∩ (−), (13)

N ( jσ ) being the conormal sheaf associated tojσ , and we conclude by Lemma3.6. To
prove the self-intersection formula (13), we adapt [Th5, proof of Lem. 3.3]. First, by
Proposition3.4(i), jσ∗ is an isomorphism, so it is enough to prove thatjσ∗ j ∗σ jσ∗(−) =
jσ∗(λ−1(N ( jσ )) ∩ (−)). By the projection formula (see Prop. A.5), we have

jσ∗ j ∗σ jσ∗(−) = jσ∗ j ∗σ (1) ∩ jσ∗(−) = jσ∗ j ∗σ (OX) ∩ jσ∗(−)

= jσ∗(OXσ ) ∩ jσ∗(−) = jσ∗
(

j ∗σ (OXσ ) ∩ (−)
)
.

Now, as explained in the appendix, to computej ∗σ (OXσ ) we choose a complexF∗ of
flat quasi-coherentG-equivariant modules onX which is quasi-isomorphic toOXσ ,
and then

j ∗σ (OXσ ) = [ j
∗
σ (F

∗)] = [F∗ ⊗ OXσ ] =
∑

i

(−1)i [H i (F∗ ⊗ OXσ )].

But F∗ is a flat resolution ofOXσ , so H i (F∗ ⊗ OXσ ) = TorOX
i (OXσ ,OXσ ) '∧iN ( jσ ), where the last isomorphism (see [SGA6, Exp. VII, par. 2.5]) is natural

and henceT-equivariant. Therefore,j ∗σ (OXσ ) = λ−1(N ( jσ )), and we conclude the
proof of the theorem.

4. The main theorem: The case ofG = GLn,k

In this section we use the result for9X,T to deduce the same result for9X,GLnk.

THEOREM 4.1
Let X be a Noetherian regular separated algebraic space over a field k on which
G = GLn,k acts with finite stabilizers. Then the map defined in (5),

9X,G : K∗(X,G)3(G,X)

−→

∏
σ∈C (G)

(
K∗(X

σ ,C(σ ))geom⊗3(G,X) R̃(σ )3(G,X)
)wG(σ ), (14)

is an isomorphism ofR(G)-algebras and the product on the right is finite.

Throughout this section, entirely devoted to the proof of Theorem4.1, we simply
write G for GLn,k, 3 for 3(G,X), andT for the maximal torus of diagonal matrices
in GLn,k. First, let us observe that we can choose eachσ ∈ C (G) contained inT .
Moreover,3(T,X) = 3(G,X).
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We need the following three preliminary lemmas (Lems.4.2, 4.3, 4.4).
If σ, τ ⊂ T are dual cyclic subgroups, they are conjugate under theG(k)-action

if and only if they are conjugated via an element in the Weyl groupSn. For any group
schemeH with a dual cyclic subgroupσ ⊆ H , we denote bymH

σ the kernel of

R(H)3 → R̃(σ )3 and by ̂R(H)3,σ the completion of R(H)3 with respect to the
idealmH

σ .
The following lemma is essentially a variant of Lemma2.9for σ -localizations.

LEMMA 4.2
Let G= GLn,k, let T be the maximal torus of G consisting of diagonal matrices, and
let X be an algebraic space on which G acts with finite stabilizers.
(i) For any essential dual cyclic subgroupσ ⊆ T , the morphisms

ωσ,geom : K
′
∗

(
Xσ ,CG(σ )

)
geom⊗R(CG(σ ))3 R(T)3 −→ K ′∗(X

σ , T)geom,

ωσ : K
′
∗

(
Xσ ,CG(σ )

)
σ
⊗R(CG(σ ))3 R(T)3 −→ K ′∗(X

σ , T)σ

induced by T↪→ CG(σ ) are isomorphisms.
(ii) For any essential dual cyclic subgroupσ ⊆ T ,

(mCG(σ )
σ )N · K ′∗

(
Xσ ,CG(σ )

)
σ
= 0, N � 0,

and the morphism induced by T↪→ CG(σ ),

ω̂σ : K
′
∗

(
Xσ ,CG(σ )

)
σ
⊗ ̂R(CG(σ ))3,σ

R̂(T)3,σ −→ K ′∗(X
σ , T)σ ,

is an isomorphism.

Proof
(i) Since CG(σ ) is isomorphic to a product of general linear groups overk and since
T is a maximal torus in CG(σ ), by Lemma2.9the canonical ring morphism

K ′∗
(
X,CG(σ )

)
⊗R(CG(σ )) R(T) −→ K ′∗(X, T) (15)

is an isomorphism. IfH ⊆ G is a subgroup scheme, we denote bySH
σ the multi-

plicative subset of R(H)3 consisting of the elements sent to 1 by the canonical ring
homomorphism R(H)3→ R̃(σ )3. By (15), ωσ coincides with the composition

K ′∗
(
Xσ ,CG(σ )

)
σ
⊗R(CG(σ ))3 R(T)3

' K ′∗(X
σ , T)⊗R(CG(σ ))3

(
(SCG(σ )
σ )−1R(CG(σ ))3

)
⊗R(CG(σ ))3 R(T)3

id⊗νσ
−−−→ K ′∗

(
Xσ ,CG(σ )

)
⊗R(CG(σ ))3 (S

T
σ )
−1R(T)3 ' K ′∗(X

σ , T)σ ,
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where

νσ : (S
CG(σ )
σ )−1R

(
CG(σ )

)
3
⊗R(CG(σ ))3 R(T)3→ (ST

σ )
−1R(T)3 (16)

is induced byT ↪→ CG(σ ) and the last isomorphism follows from (15); the same is
true forωσ,geom. Therefore, it is enough to prove thatνσ and

νσ,geom : (S
CG(σ )
1 )−1R

(
CG(σ )

)
3
⊗R(CG(σ ))3 R(T)3→ (ST

1 )
−1R(T)3

are isomorphisms; that is, ifSτ denotes the image ofSCG(σ )
1 via the restriction map

R
(
CG(σ )

)
3
−→ R(T)3,

thenST
τ /1 consists of units in(Sτ )−1R(T)3 for τ = 1 andτ = σ . If 1σ denotes the

Weyl group of CG(σ ), which is a product of symmetric groups, we have R(CG(σ )) '

R(T)1σ and therefore

(SCG(σ )
τ )−1R

(
CG(σ )

)
3
'

(
(Sτ )

−1R(T)3
)1σ

since R(T) is torsion free. Moreover, there is a commutative diagram

(SCG(σ )
τ )−1R

(
CG(σ )

)
3

ψ

��

� � // (Sτ )−1R(T)3

.
=ϕttjjjjjjjjjjjjjjjjj

��
R̃(τ )3 ' (ST

τ )
−1R(τ )3 (ST

τ )
−1R(T)3

(ST
τ )
−1 resTτ

oo

whereψ is induced bỹπτ and the isomorphism̃R(τ )3 ' (ST
τ )
−1R(τ )3 is obtained

from Proposition3.1and Corollary3.3. If we define the map

M : (Sτ )
−1R(T)3 −→

(
(Sτ )

−1R(T)3
)1σ ,

ξ 7−→
∏

g∈1σ

g · ξ ,

it is easily checked that forξ ∈ (Sτ )−1R(T)3, ξ is a unit if M(ξ) is a unit, and that
ψ(M(ξ)) = 1 implies thatξ is a unit in((Sτ )−1R(T)3)1σ . But ϕ is1σ -equivariant,
and thereforeST

τ /1 consists of units in(Sτ )−1R(T)3 for τ = 1 orσ .
(ii) Since R(CG(σ ))→ R(T) is faithfully flat, by (i) it is enough to prove that

(mT
σ )

N K ′∗(X
σ , T)σ = 0 for N � 0. (17)

But (17) can be proved using the same technique as in the proof of, for example,
Proposition3.5, that is, Noetherian induction together with Thomason’s generic slice
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theorem for torus actions. The second part of (ii) follows, arguing as in (i), from the
fact that (16) is an isomorphism since

K ′∗
(
Xσ ,CG(σ )

)
σ
⊗

R
(
CG(σ )

)
3

̂R
(
CG(σ )

)
3,σ
' K ′∗

(
Xσ ,CG(σ )

)
σ
,

K ′∗(X
σ , T)σ ⊗R(T)3 R̂(T)3,σ ' K ′∗(X

σ , T)σ .

If σ, τ ⊂ T are dual cyclic subgroups conjugated underG(k), they are conjugate
through an element of the Weyl groupSn and we writeτ ≈Sn σ ; moreover, we have
mG
σ = mG

τ because conjugation by an element inSn (actually, by any element inG(k))
induces the identity morphism onK -theory and, in particular, on the representation
ring. Then there are canonical maps

̂R(G)3,σ ⊗R(G)3 R(T)3 −→
∏

τ dual cyclicτ≈Snσ

R̂(T)3,τ , (18)

̂R
(
CG(σ )

)
3,σ
⊗R(CG(σ ))3 R(T)3 −→ R̂(T)3,σ . (19)

LEMMA 4.3
Maps (18) and (19) are isomorphisms.

Proof
Since R(G) = R(T)Sn → R(T) is finite, the canonical map ̂R(G)3,σ ⊗R(G)3

R(T)3 → R̂(T)3
mG
σ (where R̂(T)3

mG
σ denotes themG

σ -adic completion of the
R(G)3-module R(T)3) is an isomorphism. Moreover, R(G)3 = (R(T)3)Sn implies
that √

mG
σ R(T)3 =

⋂
τ dual cyclic
τ≈Snσ

√
mT
τ =

⋂
τ dual cyclic
τ≈Snσ

mT
τ ,

and, by Corollary3.3(i), mT
τ + mT

τ ′
= R(T)3 if τ 6= τ ′. By the Chinese remainder

lemma, we conclude that (18) is an isomorphism.
Arguing in the same way, we get that the canonical map

̂R
(
CG(σ )

)
3,σ
⊗R(CG(σ ))3 R(T)3 −→

∏
τ dual cyclic
τ≈1σ σ

R̂(T)3,τ

is an isomorphism, where1σ = Sn∩CG(σ ) is the Weyl group of CG(σ ) with respect
to T and we writeτ ≈1σ σ to denote thatτ andσ are conjugate through an element
of 1σ . But1σ ⊂ CG(σ ), so thatτ ≈1σ σ if and only if τ = σ , and we conclude
that (19) is an isomorphism.
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LEMMA 4.4
For any essential dual cyclic subgroupσ ⊆ G, the canonical morphism

̂R(G)3,σ −→ ̂R
(
CG(σ )

)
3,σ

is a finiteétale Galois cover (see [SGA1, Exp. V]) with Galois groupwG(σ ).

Proof
Since R(T) is flat over R(G) = R(T)Sn , we have

̂R(G)3,σ ' ̂R(G)3,σ ⊗R(G)3

(
R(T)3

)Sn

'
̂(

R(G)3,σ ⊗R(G)3 R(T)3
)Sn

'

( ∏
τ dual cyclic
τ≈Snσ

R̂(T)3·τ
)Sn
,

the last isomorphism being given in Lemma4.3. By Lemma2.10, we get

R̂(G)σ '
(
R̂(T)σ

)Sn,σ ,

whereSn acts on the set of dual cyclic subgroups ofT which areSn-conjugated toσ
and whereSn,σ denotes the stabilizer ofσ . Analogously, denoting by1σ the Weyl
group of CG(σ ), by Lemma4.2(ii) we have

̂R
(
CG(σ )

)
3,σ
'

̂R
(
CG(σ )

)
3,σ
⊗

R
(
CG(σ )

)
3

(
R(T)3

)1σ
'

( ̂R(CG(σ ))3,σ ⊗R(CG(σ ))3 R(T)3
)1σ

'
(
R̂(T)3,σ

)1σ ,
where the last isomorphism is given by Lemma4.3. From the exact sequence

1→ 1σ −→ Sn,σ −→ wG(σ )→ 1,

we conclude that
̂R(G)3,σ '

( ̂R(CG(σ ))3,σ
)wG(σ ). (20)

By [SGA1, Prop. 2.6, Exp. V], it is now enough to prove that the stabilizers of ge-
ometric points (i.e., the inertia groups of points) of Spec

( ̂R(CG(σ ))3,σ
)

under the
wG(σ )-action are trivial.

First, let us observe that Spec(R̃(σ )3) is a closed subscheme of
Spec( ̂R(CG(σ ))3,σ ). This can be seen as follows. It is obviously enough to
show that ifs denotes the order ofσ , the map

πσ : R
(
CG(σ )

)
3
−→ R(σ )3 =

3[t]

(ts− 1)
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is surjective. First, consider the case whereσ is contained in the center ofG.
Since R(σ )3 is of finite type over3, we show that for any prime∗ p - s the

induced map
πσ,p : R

(
CG(σ )

)
3
⊗ Fp −→ R(σ )3 ⊗ Fp

is surjective. Note that ifE denotes the standardn-dimensional representation ofG,
πσ sends

∧r E to
(n
r

)
tr . If p - n, thenπσ,p is surjective (in fact,πσ (E) = nt and

n is invertible inFp). If p | n, let us writen = qm, with q = pi and p - m. Since
(s,q) = 1, tq is a ring generator of R(σ )3, and to proveπσ,p is injective, it is enough
to show thatp -

(n
q

)
. This is elementary since the binomial expansion of

(1+ X)n = (1+ Xq)m

in Fp[X] yields
(n
q

)
= m in Fp. For a generalσ ⊆ T , let CG(σ ) =

∏l
i=1 GLdi ,k,

where
∑

di = n, and letσi denote the image ofσ in GLdi ,k, i = 1, . . . , l . Since
σ ⊆

∏l
i=1 σi is an inclusion of diagonalizable groups, the induced map

R
( l∏

i=1

σi

)
=

l⊗
i=1

R(σi ) −→ R(σ )

is surjective (e.g., see [SGA3, Vol. II]). But R(CG(σ ))3→ R(σ )3 factors as

R
(
CG(σ )

)
3
=

l⊗
i=1

R(GLdi ,k)3 −→

l⊗
i=1

R(σi )3 −→ R(σ )3,

and also the first map is surjective (by the previous case, sinceσi is contained in the
center of GLdi ,k and|σi | divides|σ |). This proves that Spec(R̃(σ )3) is a closed sub-

scheme of Spec( ̂R(CG(σ ))3,σ ). Since ̂R(CG(σ ))3,σ is the completion of R(CG(σ ))3

along the ideal
ker

(
R(CG(σ ))3→ R̃(σ )3

)
,

any nonempty closed subscheme of Spec
( ̂R(CG(σ ))3,σ

)
meets the closed sub-

scheme Spec(R̃(σ )3). To prove thatwG(σ ) acts freely on the geometric points of
Spec

( ̂R(CG(σ ))3,σ
)
, it is then enough to show that it acts freely on the geometric

points of Spec(R̃(σ )3).
Actually, more is true: the mapq : Spec(R̃(σ )3) → Spec(3) is a (Z/sZ)∗-

torsor†. In fact, if Spec(�)→ Spec(3) is a geometric point, the corresponding geo-
metric fiber ofq is isomorphic to the spectrum of∏

αi∈µ̃s(�)

�[t]

(t − αi )
'

∏
αi∈µ̃s(�)

�

∗Recall thatσ is essential; hences is invertible in3.
†Recall that the constant group scheme associated to(Z/sZ)∗ is isomorphic to Autk(σ ).
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and(Z/sZ)∗ acts by permutation on the primitive roots̃µs(�), by α 7→ αk, (k, s) =
1. In particular, the action of the subgroupwG(σ ) ⊂ (Z/sZ)∗ on Spec(R̃(σ )3) is
free.

PROPOSITION4.5
The canonical morphism

K ′∗(X,G)3 −→
∏

σ∈C (G)

(
K ′∗(X

σ ,CG(σ ))σ
)wG(σ )

is an isomorphism.

Proof
By Lemma2.9, the canonical ring morphism

K ′∗(X,G)⊗R(G) R(T) −→ K ′∗(X, T)

is an isomorphism. Since R(G)→ R(T) is faithfully flat, it is enough to show that

K ′∗(X, T)3 ' K ′∗(X,G)3 ⊗R(G)3 R(T)3

−→

∏
σ∈C (G)

(
K ′∗(X

σ ,CG(σ ))σ
)wG(σ )

⊗R(G)3 R(T)3

is an isomorphism. By Proposition3.4(ii), we are left to prove that∏
σ∈C (G)

(
K ′∗(X

σ ,CG(σ ))σ
)wG(σ )

⊗R(G)3 R(T)3 '
∏

σ dual cyclic
σ⊂T

K ′∗(X, T)σ . (21)

For anyτ ∈ C (G) (τ ⊆ T , as usual), we have

K ′∗
(
Xτ ,CG(τ )

)
τ
⊗

R̂(G)3,τ
R̂(T)3,τ

'
(
K ′∗(X

τ ,CG(τ ))τ ⊗ ̂R(CG(τ ))3,τ
̂R(CG(τ ))3,τ

)
⊗

R̂(G)3,τ
R̂(T)3,τ

'
(
K ′∗(X

τ ,CG(τ ))τ ⊗R̂(G)3,τ
̂R(CG(τ ))3,τ

)
⊗ ̂R(CG(τ ))3,τ

R̂(T)3,τ .

By Lemma4.4, for anyR̂(G)3,τ -moduleM , we have

M ⊗
R̂(G)3,τ

̂R
(
CG(τ )

)
3,τ
' wG(τ )× M

since a torsor is trivial when base changed along itself. Therefore,

K ′∗
(
Xτ ,CG(τ )

)
τ
⊗

R̂(G)3,τ
R̂(T)3,τ

' wG(τ )×
(
K ′∗(X

τ ,CG(τ ))τ ⊗ ̂R(CG(τ ))3,τ
R̂(T)3,τ

)
(22)
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with wG(τ ) acting on left-hand side by left multiplication onwG(τ ). Applying
Lemma4.2(ii) to the left-hand side, we get

K ′∗
(
Xτ ,CG(τ )

)
τ
⊗

R̂(G)3,τ
R̂(T)3,τ ' wG(τ )× K ′∗(X

τ , T)τ ,

and taking invariants with respect towG(τ ),(
K ′∗(X

τ ,CG(τ ))τ ⊗R̂(G)3,τ
R̂(T)3,τ

)wG(τ )
' K ′∗(X

τ , T)τ . (23)

Comparing (21) to (23), we are reduced to proving that for anyσ ∈ C (G) there is an
isomorphism(

K ′∗(X
σ ,CG(σ ))σ

)wG(σ )
⊗R(G)3 R(T)3

'

∏
τ dual cyclic
τ≈Snσ

(
K ′∗(X

τ ,CG(τ ))τ ⊗R̂(G)3,τ
R̂(T)3,τ

)wG(τ ).

SinceR̂(T)3,τ is flat over R̂(G)3,τ andwG(τ ) acts trivially on it, we have (see
[SGA1])(

K ′∗(X
τ ,CG(τ ))τ ⊗R̂(G)3,τ

R̂(T)3,τ
)wG(τ )

'
(
K ′∗(X

τ ,CG(τ ))3,τ
)wG(τ )

⊗
R̂(G)3,τ

R̂(T)3,τ .

By Lemma4.3, we have isomorphisms(
K ′∗(X

σ ,CG(σ ))σ
)wG(σ )

⊗R(G)3 R(T)3

'
(
K ′∗(X

σ ,CG(σ ))σ
)wG(σ )

⊗
R̂(G)3,σ

̂R(G)3,σ ⊗R(G)3 R(T)3

'

∏
τ dual cyclic
τ≈Snσ

(
K ′∗(X

σ ,CG(σ ))σ
)wG(σ )

⊗
R̂(G)3,σ

R̂(T)3,τ .

(Recall that ̂R(G)3,σ = R̂(G)3,τ for any τ ≈Sn σ , sincemG
σ = mG

τ .) For each
τ , choosing an elementg ∈ Sn such thatgσg−1

= τ determines an isomorphism
K ′∗(X

σ ,CG(σ ))σ ' K ′∗(X
τ ,CG(τ ))τ whose restriction to invariants(

K ′∗(X
σ ,CG(σ ))σ

)wG(σ )
'

(
K ′∗(X

τ ,CG(τ ))τ
)wG(τ )

is independent of the choice ofg. Therefore, we have a canonical isomorphism(
K ′∗(X

σ ,CG(σ ))σ
)wG(σ )

⊗R(G)3 R(T)3

'

∏
τ dual cyclic
τ≈Snσ

(
K ′∗(X

σ ,CG(σ ))σ
)wG(σ )

⊗
R̂(G)3,σ

R̂(T)3,τ

'

∏
τ dual cyclic
τ≈Snσ

(
K ′∗(X

τ ,CG(τ ))τ
)wG(τ )

⊗
R̂(G)3,τ

R̂(T)3,τ ,
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as desired.

SinceK∗(X,G) ' K ′∗(X,G) and K∗(Xσ ,CG(σ )) ' K ′∗(X
σ ,CG(σ )), comparing

Proposition4.5with (14), we see that the proof of Theorem4.1can be completed by
the following.

PROPOSITION4.6
For anyσ ∈ C (G), the morphism given by Lemma2.8 and induced by the product
CG(σ )× σ → CG(σ ),

θCG(σ ),σ : K
′
∗

(
Xσ ,CG(σ )

)
σ
−→ K ′∗

(
Xσ ,CG(σ )

)
geom⊗ R̃(σ )3,

is an isomorphism.

Proof
To simplify the notation, we writeθσ for θCG(σ ),σ . As usual, we may supposeσ
contained inT . Since CG(σ ) is isomorphic to a product of general linear groups
over k, we can takeT as its maximal torus, and by Lemma2.9, the canonical ring
morphism

K ′∗
(
X,CG(σ )

)
⊗R(CG(σ )) R(T) −→ K ′∗(X, T)

is an isomorphism. Moreover, R(CG(σ )) → R(T) being faithfully flat, it is enough
to prove thatθσ⊗ idR(T) is an isomorphism. To prove this, let us consider the com-
mutative diagram

K ′∗
(
Xσ ,CG(σ )

)
σ
⊗R(CG(σ ))3 R(T)3

θσ⊗id //

ωσ

��

(
K ′∗(X,CG(σ ))geom⊗ R̃(σ )3

)
⊗R(CG(σ ))3 R(T)3

γ̃σ

��
K ′∗(X

σ , T)σ
θT,σ

// K ′∗(X
σ , T)geom⊗ R̃(σ )3

where
• K∗(Xσ ,CG(σ ))geom⊗ R̃(σ )3 is an R(CG(σ ))3-module via the coproduct

ring morphism1CG(σ ) : R(CG(σ ))3 → R(CG(σ ))3 ⊗ R̃(σ )3 (induced by
the product CG(σ )× σ → CG(σ ));

• ωσ is the canonical map induced by the inclusionT ↪→ CG(σ ) and is an
isomorphism by Lemma4.2;

• θT,σ is an isomorphism as shown in the proof of Theorem3.7;
• γ̃σ sends(x ⊗ u) ⊗ t to (1T (t) · x|T ) ⊗ u, for x ∈ K∗(Xσ ,CG(σ ))geom,

u ∈ R̃(σ )3, t ∈ R(T)3,1T : R(T)3→ R(T)3⊗R̃(σ )3 being the coproduct
induced by the productT × σ → T .

So we are left to prove that̃γσ is an isomorphism.



32 VEZZOSI and VISTOLI

First, let us observe that ifR is a ring,A→ A′ is a ring morphism, andM is an
A-module, there is a natural isomorphism

(M ⊗Z R)⊗A⊗Z B (A
′
⊗Z R) −→ (M ⊗A A′)⊗Z R,

(m⊗ r1)⊗ (a
′
⊗ r2) 7−→ (m⊗ a′)⊗ r1r2.

Applying this to M = K∗(Xσ ,CG(σ ))geom, R = R̃(σ )3, A = R(CG(σ ))3, A′ =
R(T)3 and using Lemma4.2, we get a canonical isomorphism

f : K ′∗(X
σ , T)geom⊗ R̃(σ )3

−→
(
K ′∗(X

σ ,CG(σ ))geom⊗ R̃(σ )3
)
⊗R(CG(σ ))3⊗R̃(σ )3

(
R(T)3 ⊗ R̃(σ )3

)′
, (24)

where we have denoted by(R(T)3 ⊗ R̃(σ )3)′ the R(CG(σ ))3 ⊗ R̃(σ )3-algebra

res⊗ id : R
(
CG(σ )

)
3
⊗ R̃(σ )3 −→ R(T)3 ⊗ R̃(σ )3.

It is an elementary fact that there are mutually inverse isomorphismsαCG(σ ), βCG(σ ),
andαT , βT fitting into the commutative diagrams

R
(
CG(σ )

)
3
⊗ R̃(σ )3

αCG(σ )

��

R
(
CG(σ )

)
3

1CG(σ )
66mmmmmmmmmmmmm

id⊗1 ((QQQQQQQQQQQQQ

R
(
CG(σ )

)
3
⊗ R̃(σ )3

(25)

R(T)3 ⊗ R̃(σ )3

αT

��

R(T)3

1T

77ooooooooooo

id⊗1 ''OOOOOOOOOOO

R(T)3 ⊗ R̃(σ )3

(26)

and compatible with restriction maps induced byT ↪→ CG(σ ). This is exactly the
dual assertion to the general fact that “an actionH ×Y→ Y is isomorphic overX to
the projection on the second factor pr2 : H × Y→ Y,” for any group schemeH and
any algebraic spaceY. From (25) we get an isomorphism

α̃ :
(
R(CG(σ ))3 ⊗ R̃(σ )3

)′
⊗R(CG(σ ))3 R(T)3 −→ R(T)3 ⊗ R̃(σ )3,
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where
(
R(CG(σ ))3 ⊗ R̃(σ )3

)′ denotes the R(CG(σ ))3-algebra

1CG(σ ) : R
(
CG(σ )

)
3
→ R

(
CG(σ )

)
3
⊗ R̃(σ )3.

Therefore, if we denote by(R(T)3 ⊗ R̃(σ )3)′′ the R(CG(σ ))3 ⊗ R̃(σ )3-algebra

(res⊗ id) ◦ αT : R
(
CG(σ )

)
3
⊗ R̃(σ )3 −→ R(T)3 ⊗ R̃(σ )3,

the composition(
K ′∗(X

σ ,CG(σ ))geom⊗ R̃(σ )3
)′
⊗R(CG(σ ))3 R(T)3

=
(
K ′∗(X

σ ,CG(σ ))geom⊗ R̃(σ )3
)⊗

R(CG(σ ))3⊗R̃(σ )3

((
R(CG(σ ))3 ⊗ R̃(σ )3

)′
⊗R(CG(σ ))3 R(T)3

)
id⊗α̃
−→

(
K ′∗(X

σ ,CG(σ ))geom⊗ R̃(σ )3
)⊗

R(CG(σ ))3⊗R̃(σ )3

(
R(T)3 ⊗ R̃(σ )3

)′′
id⊗βT
−→

(
K ′∗(X

σ ,CG(σ ))geom⊗ R̃(σ )3
)⊗

R(CG(σ ))3⊗R̃(σ )3

(
R(T)3 ⊗ R̃(σ )3

)′
' K ′∗(X

σ , T)geom⊗ R̃(σ )3

is an isomorphism and it can be easily checked to coincide withγ̃σ .

5. The main theorem: The general case
In this section, we use Theorem4.1 to deduce the same result for the action of a
linear algebraick-groupG, having finite stabilizers, on a regular separated Noetherian
k-algebraic spaceX. We write3 for 3(G,X).

We start with a general fact.

PROPOSITION5.1
Let X be a regular Noetherian separated k-algebraic space on which a linear alge-
braic k-group G acts with finite stabilizers. Then there exists an integer N> 0 such
that if a1, . . . ,aN ∈ K0(X,G)geomhave rank zero on each connected component of
X, then the multiplication by

∏N
i=1 ai on K′∗(X,G)geom is zero.

In particular, we have the following.



34 VEZZOSI and VISTOLI

COROLLARY 5.2
Let X be a regular Noetherian separated k-algebraic space with a connected action of
a linear algebraic k-group G having finite stabilizers. Then the geometric localization

rk0,geom : K0(X,G)geom−→ 3

of the rank morphism has a nilpotent kernel.

Proof of Proposition5.1
Let us choose a closed immersionG ↪→ GLn,k (for somen > 0). By Morita equiva-
lence,

K ′∗(X,G) ' K ′∗(X ×
G GLn,k,GLn,k)

and
K0(X,G) ' K0(X ×

G GLn,k,GLn,k).

Moreover,3(X×GGLn,k,GLn,k)
= 3. Let ξ = x/s ∈ K ′∗(X,G)geom with x ∈

K ′∗(X,G)3 and s ∈ rk−1(1) where rk : R(G) → 3 is the rank morphism,
and letai = αi /si with αi ∈ K0(X,G)3 and si ∈ rk−1(1) for i = 1, . . . , N.
Let us consider the elementsx/1 in K ′∗(X ×

G GLn,k,GLn,k)geom, and αi /1 in
K0(X ×G GLn,k,GLn,k)geom for i = 1, . . . , N. Since the canonical homomorphism

K ′∗(X ×
G GLn,k,GLn,k)geom−→ K ′∗(X,G)geom

is a morphism of modules over the ring morphism

K0(X ×
G GLn,k,GLn,k)geom−→ K0(X,G)geom,

if the theorem holds forG = GLn,k and if N is the corresponding integer, the product∏
i αi /1 in K0(X,G)geom annihilatesx/1 ∈ K ′∗(X,G)geom and a fortiori

∏
i ai an-

nihilatesξ in K ′∗(X,G)geom. So, we may assumeG = GLn,k. Let T be the maximal
torus of diagonal matrices inG. By Lemma4.2(i) with σ = 1, there are isomorphisms

ω1,geom : K0(X,GLn,k)geom⊗R(GLn,k)3 R(T)3 ' K0(X, T)geom,

K ′∗(X,GLn,k)geom⊗R(GLn,k)3 R(T)3 ' K ′∗(X, T)geom.

Since R(GLn,k)→ R(T) is faithfully flat and the diagram

K0(X,GLn,k)geom⊗R(GLn,k)3 R(T)3
rk0,geom⊗ id
−−−−−−−→ 3⊗R(GLn,k) R(T)3

ω1,geom

y yid3⊗ rkT

K0(X, T)geom −−−−→
rk0,geom

3
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commutes, we reduce ourselves to proving the proposition forG = T , a split torus.
To handle this case, we proceed by Noetherian induction onX. By [Th1,

Prop. 4.10], there exist aT-invariant nonempty open subschemej : U ↪→ X, a
closed diagonalizable subgroupT ′ of T , and aT-equivariant isomorphism

U ' T/T ′ × (U/T).

SinceU is nonempty andT acts onX with finite stabilizers,T ′ is finite overk
andK ′∗(U, T) ' K ′∗(U/T)⊗R(T) R(T ′), by Morita equivalence theorem (see [Th3,
Prop. 6.2]). Leti : Z ↪→ X be the closed complement ofU in X, and letN′ be an in-
teger satisfying the proposition for bothZ andU . Consider the geometric localization
sequence

K ′∗(Z, T)geom
i∗
−→ K ′∗(X, T)geom

j ∗
−→ K ′∗(U, T)geom,

and letξ ∈ K ′∗(X, T)geom. Let a1, . . . ,a2N′ ∈ K0(X, T)geom. By our choice ofN′,

j ∗(aN′+1 · . . . · a2N′ ∪ ξ) = 0;

thusaN′+1 · . . . · a2N′ ∩ ξ = i∗(η) for someη in K ′∗(Z, T)geom. By the projection
formula, we get

a1 · . . . · a2N′ ∪ ξ = i∗
(
i ∗(a1) · . . . · i

∗(aN′) ∪ η
)
,

which is zero by our choice ofN′ and by the fact that rank morphisms commute with
pullbacks. Thus,N

.
= 2N′ satisfies our proposition.

Remark 5.3
By Corollary5.2, K∗(X,G)geomis isomorphic to the localization ofK∗(X,G)3 at the
multiplicative subset(rk0)

−1(1), where rk0 : K0(X,G)3→ 3 is the rank morphism.
Therefore, ifX is regular,K∗(X,G)geom depends only on the quotient stack[X/G]
(see [LMB]) and not on its presentation as a quotient.

The main theorem of this paper is the following.

THEOREM 5.4
Let X be a Noetherian regular separated algebraic space over a field k, and let G
be a linear algebraic k-group with a sufficiently rational action on X having finite
stabilizers. Suppose, moreover, that for any essential dual cyclic k-subgroup scheme
σ ⊆ G, the quotient algebraic space G/CG(σ ) is smooth over k (which is the case if,
e.g., G is smooth or abelian). ThenC (G) is finite, and the map defined in (5),

9X,G : K∗(X,G)3 −→
∏

σ∈C (G)

(
K∗(X

σ ,C(σ ))geom⊗ R̃(σ )3
)wG(σ ),

is an isomorphism ofR(G)-algebras.
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Remark 5.5
In Section 5.1 we also give less restrictive hypotheses onG under which Theorem5.4
still holds.

Note also that ifX has the “G-equivariant resolution property” (i.e., anyG-
equivariant coherent sheaf is theG-equivariant epimorphic image of aG-equivariant
locally free coherent sheaf), then in Theorem5.4one can replace ourK∗ with Quillen
K -theory ofG-equivariant locally free coherent sheaves. This happens, for example,
if X is a scheme andG is smooth or finite (see [Th3]).

5.1. Proof of Theorem 5.4
Let us choose, for somen, a closed immersionG ↪→ GLn,k and consider the algebraic
space quotient

Y
.
= GLn,k×

G X.

We claim that if the theorem holds forY with the induced GLn,k-action, then it holds
for X with the givenG-action. First, let us note thatY is separated. The action mapψ :
G×(GLn,k×X)→ (GLn,k×X)×(GLn,k×X) is proper (hence a closed immersion)
since its composition with the separated map

p123 : GLn,k×X ×GLn,k×X→ GLn,k×X ×GLn,k

(here we use thatX is separated) is just idX ×a, wherea is the action map ofG on
GLn,k; hence it is proper (see [EGAI, Rem. 5.1.7], which obviously carries over to
algebraic spaces). LetP

.
= X ×GLn,k. In the Cartesian diagram

P ×Y P
j

−−−−→ P × Py yπ×π
Y −−−−→

1Y
Y × Y

P ×Y P ' G × P sinceπ : P→ Y is aG-torsor, andπ is faithfully flat; therefore,
1Y is a closed immersion; that is,Y is separated.

Note that3(Y,GLn,k) = 3.
Consider the morphism defined in (5),

9X,G : K∗(X,G)3 −→
∏

σ∈C (G)

(
K∗(X

σ ,CG(σ ))geom⊗ R̃(σ )3
)wG(σ ). (27)

By Theorem4.1, the map

9Y,GLn,k : K∗(Y,GLn,k)3

−→

∏
ρ∈C (GLn,k)

(
K∗(Y

ρ,CGLn,k(ρ))geom⊗ R̃(ρ)3
)wGLn,k (ρ)
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is an isomorphism, and by the Morita equivalence theorem (see [Th3, Prop. 6.2]),
K∗(Y,GLn,k)3 ' K∗(X,G)3. We prove the theorem by constructing an isomor-
phism∏

ρ∈C (GLn,k)

(
K∗(Y

ρ,C(ρ))geom⊗ R̃(ρ)
)wGLn,k (ρ)

−→

∏
σ∈C (G)

(
K∗(X

σ ,CG(σ ))geom⊗ R̃(σ )3
)wG(σ ) (28)

commuting with the9 ’s and Morita isomorphisms.
Let α : C (G) → C (GLn,k) be the natural map. IfYρ 6= ∅, there exists a dual

cyclic subgroupσ ⊆ G, GLn,k-conjugate toρ (and Xσ 6= ∅); therefore,Yρ = ∅
unlessρ ∈ im(α), and we may restrict the first product in (28) to thoseρ in the image
of α and suppose im(α) ⊆ C (G) as well. The following proposition describes the
Yρ ’s that appear.

PROPOSITION5.6
Let X be a Noetherian regular separated algebraic space over a field k, and let G
be a linear algebraic k-group with a sufficiently rational action on X having finite
stabilizers. Suppose, moreover, that for any essential dual cyclic k-subgroup scheme
σ ⊆ G, the quotient algebraic space G/CG(σ ) is smooth over k. Let G↪→ GLn,k

be a closed embedding, letρ ∈ im(α) be an essential dual cyclic subgroup, and let
Y
.
= GLn,k×

G X be the algebraic space quotient for the left diagonal action of G. If
CGLn,k,G(ρ) ⊆ C (G) denotes the fiberα−1(ρ), then
(i) choosing for eachσ ∈ CGLn,k,G(ρ) an element uρ,σ ∈ GLn,k(k) such that

uρ,σσu−1
ρ,σ = ρ (in the obvious functor-theoretic sense) determines a unique

isomorphism of algebraic spaces over k,

jρ :
∐

σ∈CGLn,k,G(ρ)

NGLn,k(σ )×
NG(σ ) Xσ −→ Yρ;

(ii) CGLn,k,G(ρ) is finite.

Proof
Part (ii) follows from (i) sinceYρ is quasi-compact. The proof of (i) requires several
steps.

(a) Definition of jρ . If σ ∈ CGLn,k,G(ρ), let Nσ be the presheaf on the category
Sch/k of k-schemes which associates toT → Speck the set

Nσ (T)
.
=

NGLn,k(σ )(T)× Xσ (T)

NG(σ )(T)
;
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since NG(σ ) acts freely on NGLn,k(σ ) × Xσ (on the left), the flat sheaf associated to
Nσ is NGLn,k(σ ) ×

NG(σ ) Xσ . Let Ŷρ be the presheaf on Sch/k which associates to
T → Speck the set

Ŷρ(T)
.
=

{
[A, x] ∈

GLn,k(T)× X(T)

G(T)

∣∣∣∀T ′
→ T,∀r ∈ ρ(T ′), [r AT ′, xT ′] = [AT ′, xT ′]

}
;

the flat sheaf associated tôYρ is Yρ (e.g., see [DG, Chap. II, §1, n. 3]). Ifuρ,σ ∈
GLn,k(k) is such thatuρ,σσu−1

ρ,σ = ρ (in the obvious functor-theoretic sense), the
presheaf map

ĵρ,σ : Nσ −→ Ŷρ,

ĵρ,σ (T) : Nσ (T) 3 [B, x] −→ [uρ,σ B, x] ∈ Ŷρ(T)

is easily checked to be well defined. Letjρ,σ : NGLn,k(σ ) ×
NG(σ ) Xσ → Yρ denote

the associated sheaf map, and definejρ
.
=

∐
σ∈CGLn,k,G(ρ)

jρ,σ .

(b) The map jρ induces a bijection on geometric points.This is an elementary
check. Letξ ∈ Yρ(�) be a geometric point. Then there exist an fppf coverT0 →

Spec� and an element[A, x] ∈ Ŷρ(T0) representingξ . Therefore, for eachT → T0

and eachr ∈ ρ(T) there existsg ∈ G(T) such that

r AT g−1
= AT ,

gxT = xT .

ThenA−1ρA defines (functorially overT0) a dual cyclic subgroup schemeσ ′0 of G(T0)

overT0. Sinceσ ′0 is isomorphic to someµn,T0, it descends to a dual cyclic subgroup
σ ′ of G over k which is GLn,k-conjugate toρ sinceT0 → Spec� has a section
and GLn,k satisfies our rationality condition(RC) (see Rem.2.2(i)). By definition of
CGLn,k,G(ρ), there exists a uniqueσ ∈ CGLn,k,G(ρ) which isG-conjugated toσ ′ over
k; that is,

gσ ′g−1
= σ

(functorially) for someg ∈ G(k). Sinceσ ∈ CGLn,k,G(ρ), there is an element
u ∈ GLn,k(k) such thatuσu−1

= ρ. Therefore,u−1Ag−1 restricted toT0 is
in NGLn,k(σ )(T0), gx ∈ Xσ (T0), and if [u−1Ag−1, gx]∼ denotes the element in
(NGLn,k(σ ) ×

NG(σ ) Xσ )(�) represented by the element[u−1Ag−1, gx] in Nσ (T0),
we havejρ,σ (�)([u−1Ag−1, gx]∼) = ξ by definition of jρ,σ . Thus, jρ(�) is surjec-
tive.

Now, let η ∈ (NGLn,k(σ ) ×
NG(σ ) Xσ )(�)

(
resp.,η′ ∈ (NGLn,k(σ

′) ×NG(σ
′)

Xσ
′

)(�)
)

for σ andσ ′ in CGLn,k,G(ρ). Choosing a common refinement, we can as-
sume that there exists an fppf coverT0 → Spec� such thatη (resp.,η′) is repre-
sented by an element[B, y] ∈ Nσ (T0) (resp.,[B′, y′] ∈ Nσ ′(T0)). If jρ(�)(η) =
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jρ(�)(η′), there exists an fppf coverT1 → T0 such that[uρ,σ B, y] = [uρ,σ ′B′, y′]
in GLn,k(T1)× X(T1)/G(T1); that is, there is an elementg ∈ G(T1) such that

uρ,σ Bg−1
= uρ,σ ′B

′ in GLn,k(T1),

gy= y′ in X(T1).

Then it is easy to check thatσ = g−1σ ′g overT1 and, as in the proof of surjectivity
of jρ(�), sinceT1 → Spec� has a section andG satisfies our rationality condition
(RC), σ andσ ′ areG-conjugated overk as well, and thereforeσ = σ ′ as elements
in CGLn,k,G(ρ). In particular,g ∈ NG(σ )(T1) and[B, y] = [B′, y′] in Nσ (T1). Since
T1→ Spec� is still an fppf cover, we haveη = η′ and jρ(�) is injective.

(c) Each jρ,σ is a closed and open immersion.It is enough to show that eachjρ,σ
is an open immersion because in this case it is also a closed immersion,Yρ being
quasi-compact. Since NGLn,k(ρ) acts on both

∐
σ∈CGLn,k,G(ρ)

NGLn,k(σ ) ×
NG(σ ) Xσ

andYρ and sincejρ is equivariant, it will be enough to prove thatjρ,ρ is an open
immersion. We prove first thatjρ,ρ is injective and unramified and then conclude
the proof by showing that it is also flat (in fact, anétale injective map is an open
immersion).

(c1) The map jρ,ρ is injective and unramified.It is enough to show that the inverse
image underjρ,ρ of a geometric point is a (geometric) point. Consider the commuta-
tive diagram

NGLn,k(ρ)× Xρ
l

−−−−→ GLn,k×X

p
y yπ

NGLn,k(ρ)×
NG(ρ) Xρ −−−−→

iρ◦ jρ,ρ
Y

wherel andiρ : Yρ ↪→ Y are the natural inclusions and wherep, π are the natural
projections. Lety0 be a geometric point ofY in the image ofiρ ◦ jρ,ρ ; using the action
of NGLn,k(ρ) on NGLn,k(ρ)×

NG(ρ) Xρ andYρ , we may suppose thaty0 is of the form
[1, x0] ∈ Yρ(�), with � an algebraically closed field andx0 ∈ Xρ(�). Obviously,
(1, x0) ∈ NGLn,k(ρ) ×

NG(ρ) Xρ(�) is contained inj−1
ρ,ρ(y0), and, by faithful flatness

of p, j−1
ρ,ρ(y0) = (1, x0) if

p−1((1, x0)
)
= π−1(y0) ∩

(
NGLn,k(ρ)×

NG(ρ) Xρ
)
. (29)

But G(�) ' π−1(y0) via g 7→ (g−1, gx0) and NG(ρ)(�) ' p−1((1, x0)) via h 7→
(h−1, hx0); therefore, (29) follows from NG(ρ) = NGLn,k(ρ) ∩ G.

(c2) The map jρ,ρ is flat. This fact is proved in Section 5.2, where we also sin-
gle out a more general technical hypothesis for the action ofG on X under which
Proposition5.6still holds.
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The remaining part of this subsection is devoted to the conclusion of the proof of
Theorem5.4using Proposition5.6. First we show that Proposition5.6(ii) allows one
to define a canonical isomorphism∏

ρ∈C (GLn,k)

(
K∗(Y

ρ,CGLn,k(ρ))geom⊗ R̃(ρ)3
)wGLn,k (ρ)

'

∏
σ∈C (G)

(
K∗(NGLn,k(σ )×

NG(σ ) Xσ ,CGLn,k(σ ))geom⊗ R̃(σ )3
)wGLn,k (σ );

next we show, using Lemma2.10, that each factor in the right-hand side is isomorphic
to (

K∗(CGLn,k(σ )×
CG(σ ) Xσ ,CGLn,k(σ ))geom⊗ R̃(σ )3

)wG(σ ).

The conclusion (i.e., the isomorphism (28)) is then accomplished by establishing,
for any regular Noetherian separated algebraic spaceZ on whichG acts with finite
stabilizers, a “geometric” Morita equivalence

K∗(GLn,k×
G Z,GLn,k)geom' K∗(Z,G)geom.

First, note that the choice of a family{uρ,σ | σ ∈ CGLn,k,G(ρ)} of elements
uρ,σ ∈ GLn,k(k) such thatuρ,σσu−1

ρ,σ = ρ, which uniquely definesjρ in Proposi-
tion 5.6, also determines a unique family of isomorphisms{

int(uρ,σ ) : CGLn,k(ρ)→ CGLn,k(σ )
∣∣σ ∈ CGLn,k,G(ρ)

}
(where int(uρ,σ ) denotes conjugation byuρ,σ ), and this family gives us an action of
CGLn,k(ρ) on ∐

σ∈CGLn,k,G(ρ)

NGLn,k(σ )×
NG(σ ) Xσ

(since NGLn,k(σ ), and then CGLn,k(σ ), acts naturally on NGLn,k(σ )×
NG(σ ) Xσ by left

multiplication on NGLn,k(σ )). With this action, jρ becomes a CGLn,k(ρ)-equivariant
isomorphism, and since int(uρ,σ ) induces an isomorphism R(CGLn,k(ρ)) '

R(CGLn,k(σ )) commuting with rank morphisms,jσ induces an isomorphism

K∗
(
Yρ,CGLn,k(ρ)

)
geom⊗ R̃(ρ)3

'

∏
σ∈CGLn,k,G(ρ)

K∗
(
NGLn,k(σ )×

NG(σ ) Xσ ,CGLn,k(σ )
)
geom⊗ R̃(σ )3

which, by definition of the action of NGLn,k(ρ) on each NGLn,k(σ )×
NG(σ ) Xσ , induces
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an isomorphism(
K∗(Y

ρ,CGLn,k(ρ))geom⊗ R̃(ρ)3
)wGLn,k (ρ)

'

∏
σ∈CGLn,k,G(ρ)

(
K∗(NGLn,k(σ )×

NG(σ ) Xσ ,CGLn,k(σ ))geom⊗ R̃(σ )3
)wGLn,k (σ ).

(30)

Now, if j ′ρ is induced, as in Proposition5.6, by another choice of a family{vρ,σ |
σ ∈ CGLn,k,G(ρ)} of elementsvρ,σ ∈ GLn,k(k) such thatvρ,σσv−1

ρ,σ = ρ, then
v−1
ρ,σuρ,σ ∈ NGLn,k(σ )(k) and there is a commutative diagram

NGLn,k(σ )×
NG(σ ) Xσ

(v−1
ρ,σuρ,σ )· //

jρ ((PPPPPPPPPPPPP
NGLn,k(σ )×

NG(σ ) Xσ

j ′ρvvnnnnnnnnnnnnn

Yρ

Therefore, isomorphism (30) on the invariants is actuallyindependentof the choice
of the family{uρ,σ | σ ∈ CGLn,k,G(ρ)}. SinceCGLn,k,G(ρ) = α

−1(ρ) and, as already
observed,Yρ = ∅ unlessρ ∈ im(α), this gives us a canonical isomorphism∏

ρ∈C (GLn,k)

(
K∗(Y

ρ,CGLn,k(ρ))geom⊗ R̃(ρ)3
)wGLn,k (ρ)

'

∏
σ∈C (G)

(
K∗(NGLn,k(σ )×

NG(σ ) Xσ ,CGLn,k(σ ))geom⊗ R̃(σ )3
)wGLn,k (σ ).

Now, let us fixσ ∈ C (G), and let us choose a setA ⊂ NGLn,k(σ )(k) such that
the classes inwGLn,k(σ ) of the elements inA constitute a set of representatives for
thewG(σ )-orbits inwGLn,k(σ ); A is a finite set. Since

CGLn,k(σ )×
CG(σ ) Xσ ↪→ NGLn,k(σ )×

NG(σ ) Xσ

is an open and closed immersion, the morphism∐
A

CGLn,k(σ )×
CG(σ ) Xσ −→ NGLn,k(σ )×

NG(σ ) Xσ ,

[C, x]Ai∈A 7−→ [Ai · C, x]

(in the obvious functor-theoretic sense), which is easily checked to induce an iso-
morphism on geometric points, is an isomorphism. Therefore, there is an induced
isomorphism∏

A

K∗
(
CGLn,k(σ )×

CG(σ ) Xσ ,CGLn,k(σ )
)
geom⊗ R̃(σ )3

' K∗
(
NGLn,k(σ )×

NG(σ ) Xσ ,CGLn,k(σ )
)
geom⊗ R̃(σ )3.
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SincewGLn,k(σ ) acts transitively onA with stabilizerwG(σ ), by Lemma2.10we get
a canonical isomorphism(

K∗(NGLn,k(σ )×
NG(σ ) Xσ ,CGLn,k(σ ))geom⊗ R̃(σ )3

)wGLn,k (σ )

'
(
K∗(CGLn,k(σ )×

CG(σ ) Xσ ,CGLn,k(σ ))geom⊗ R̃(σ )3
)wG(σ ).

Since, by Morita equivalence (see [Th3, Prop. 6.2]),

K∗
(
CGLn,k(σ )×

CG(σ ) Xσ ,CGLn,k(σ )
)
' K∗

(
Xσ ,CG(σ )

)
, (31)

to conclude the proof of Theorem5.4we need only show that the natural morphism

K∗
(
CGLn,k(σ )×

CG(σ ) Xσ ,CGLn,k(σ )
)
geom' K∗

(
Xσ ,CG(σ )

)
geom (32)

induced by (31) is still an isomorphism. Since the diagram

K∗
(

GLn,k×
CG(σ )Xσ ,GLn,k

)
geom

α //

γ
++WWWWWWWWWWWWWWWWWWWWW

K∗
(
CGLn,k (σ )×

CG(σ ) Xσ ,CGLn,k (σ )
)
geom

β

��
K∗

(
Xσ ,CG(σ )

)
geom

is commutative and, by Morita equivalence,

K∗
(
CGLn,k(σ )×

CG(σ ) Xσ ,CGLn,k(σ )
)

' K∗
(

GLn,k×
CGLn,k (σ )CGLn,k(σ )×

CG(σ ) Xσ ,GLn,k
)

' K∗
(

GLn,k×
CGLn,k (σ )Xσ ,GLn,k

)
,

to show thatβ is an isomorphism it is enough to prove that for any regular separated
algebraic spaceZ on whichG acts with finite stabilizers, Morita equivalence induces
an isomorphism

K∗(GLn,k×
G Z,GLn,k)geom' K∗(Z,G)geom (33)

since in this case bothα andγ are isomorphisms.
Let π : R(GLn,k) → R(G) be the restriction morphism, letρ : R(G) →

K0(Z,G) be the pullback alongZ → Speck, let rk′ : R(GLn,k) → 3 and
rk : R(G) → 3 be the rank morphisms, and letS′

.
= (rk′)−1(1), S

.
= (rk)−1(1),

andT
.
= π(S′) ⊆ S; the following diagram commutes:

T−1K0(Z,G)3
rk0,T //

��

3

K0(Z,G)geom

rkgeom

99rrrrrrrrrrr
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where rkgeom and rk0,T denote the localizations of the rank morphism rk0 :

K0(Z,G)3 → 3. By Morita equivalence, the natural map (which commutes with
the induced rank morphisms)

K0(GLn,k×
GZ,GLn,k)geom−→ T−1K0(Z,G)3

is an isomorphism, and then, by Proposition5.1, ker(rk0,T : T−1K0(Z,G)3 → 3)

is nilpotent. Now, ifs ∈ S, then rk0,T (ρ(s)/1) = rk(s) = 1, and therefore

T−1K0(Z,G)3→ K0(Z,G)geom

and
K0(GLn,k×

GZ,GLn,k)geom→ K0(Z,G)geom

are both isomorphisms. SinceK∗(GLn,k×
GZ,GLn,k)3 is naturally a K0(GLn,k

×
GZ,GLn,k)3-module and an R(GLn,k)3-module via the pullback ring morphism

ρ′ : R(GLn,k)3→ K0(GLn,k×
GZ,GLn,k)3,

we have

K ′∗(GLn,k×
GZ,GLn,k)geom

' K ′∗(GLn,k×
GZ,GLn,k)3 ⊗K0(GLn,k×

GZ,GLn,k)3
K0(GLn,k×

GZ,GLn,k)geom

' K ′∗(Z,G)3 ⊗K0(Z,G)3 K0(GLn,k×
GZ,GLn,k)geom

' K ′∗(Z,G)3 ⊗K0(Z,G)3 K0(Z,G)geom

' K ′∗(Z,G)geom,

which proves (32), and we conclude the proof of Theorem5.4.

5.2. Hypotheses on G
In this subsection we conclude the proof of Proposition5.6, showing that (this is part
(c2) of the proof)

jρ,ρ : NGLn,k(ρ)×
NG(ρ) Xρ −→ Yρ

is flat. This is the only step in the proof of Proposition5.6where we make use of the
hypothesis that the quotient algebraic spaceG/CG(ρ) is smooth overk. Actually, our
proof works under the following weaker hypothesis. LetSdenote the spectrum of the
dual numbers overk,

S= Spec(k[ε]),

and for anyk-group schemeH , let H
1
(S, H) denote thek-vector space of isomor-

phism classes of pairs(P→ S, y), whereP→ S is anH -torsor andy is ak-rational
point on the closed fiber ofP. Then Proposition5.6, and hence Theorem5.4, still
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holds with hypothesis
(S) for any essential dual cyclic subgroup schemeσ ⊆ G, the quotientG/CG(σ )

is smooth overk
replaced by the following:
(S′) for any essential dual cyclick-subgroup schemeσ ⊆ G, we have

dimH
1(

S,CG(σ )
)
= dim

(
H

1
(S,G)

)σ
.

First we prove thatjρ,ρ is flat assuming(S′) holds. Then we show that (S) implies
(S′). Sincep : NGLn,k(ρ)× Xρ → NGLn,k(ρ)×

NG(ρ) Xρ is faithfully flat, it is enough
to prove thatj

ρ

.
= jρ,ρ ◦ p is flat. Letπ : GLn,k×X→ Y be the projection, and let

f : GLn,k×X × G −→ GLn,k×X,

(A, x, g) 7−→ (Ag−1, gx).

Consider the following Cartesian squares:

U
uρ //

��

π−1(Yρ)

��

� � // GLn,k×X

π

��
NGLn,k(ρ)× Xρ

j
ρ

// Yρ
� � // Y

(34)

Sinceπ is faithfully flat, it is enough to prove thatuρ is flat. But the squares

U
� � //

��

GLn,k×X × G

pr12

��

f // GLn,k×X

π

��
NGLn,k(ρ)× Xρ � � // GLn,k×X

π
// Y

(35)

are Cartesian and (in the obvious functor-theoretic sense)

U =
{
(A, x, g) ∈ GLn,k×X × G

∣∣A−1ρA = ρ, x ∈ Xρ
}
' NGLn,k(ρ)× Xρ × G.

Moreover, if P
.
= {A ∈ GLn,k | A−1ρA ⊆ G}, the map

π−1(Yρ) =
{
(A, x) ∈ NGLn,k(ρ)× X

∣∣A−1ρA ⊆ G, x ∈ XA−1ρA}
−→ P × Xρ,

(A, x) 7−→ (A, Ax)

is an isomorphism. Therefore, we are reduced to proving that the map

vρ : NGLn,k(ρ)× Xρ × G −→ P × Xρ,

(A, x, g) 7−→ (Ag−1, Ax)
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is flat. But since the diagram

NGLn,k(ρ)× Xρ × G
vρ
−−−−→ P × Xρ

pr13

y ypr1

NGLn,k(ρ)× G −−−−→
2ρ

P

(where2ρ(A, g)
.
= (Ag−1)) is easily checked to be Cartesian, it is enough to show

that zρ is flat. To do this, let us observe thatρ acts by conjugation on GLn,k /G
(quotient by theG-action on GLn,k by right multiplication), and we have a Cartesian
diagram

P
� � //

τ

��

GLn,k

��
(GLn,k /G)ρ � � // GLn,k /G

Thenτ is aG-torsor and2ρ is G-equivariant. Thus, the following commutative dia-
gram, in which the vertical arrows areG-torsors,

NGLn,k(ρ)× G
2ρ
−−−−→ P

pr1

y yτ
NGLn,k(ρ) −−−−→

χρ
(GLn,k /G)ρ

(whereχρ(A)
.
= [A] ∈ GLn,k /G) is Cartesian, and we may reduce ourselves to prove

that χρ is flat. Now, observe that NGLn,k(ρ) acts on the left of both NGLn,k(ρ) and
(GLn,k /G)ρ in such a way thatχρ is NGLn,k(ρ)-equivariant. Therefore, it is enough
to prove thatχρ is flat when restricted to the connected component of the identity in
NGLn,k(ρ), that is, that the map

χ ′ρ : CGLn,k(ρ) −→ (GLn,k /G)ρ

is flat. Now, CGLn,k(ρ) = (GLn,k)
ρ , whereρ acts by conjugation; both(GLn,k)

ρ and
(GLn,k /G)ρ are smooth by [Th5, Prop. 3.1] (since GLn,k and GLn,k /G are smooth);
each fiber ofχ ′ρ has dimension equal to dim(CG(ρ)) becauseχ ′ρ is CGLn,k(ρ)-
equivariant for the natural actions; and all the fibers are obtained from(χ ′ρ)

−1([1]) =
CG(ρ) by the CGLn,k(ρ)-action. Therefore,χ ′ρ is flat if

dim
(
CGLn,k(ρ)

)
= dim

(
CG(ρ)

)
+ dim

(
(GLn,k /G)ρ

)
. (36)

Note that, in any case,

dim
(
CGLn,k(ρ)

)
≤ dim

(
CG(ρ)

)
+ dim

(
(GLn,k /G)ρ

)
. (37)
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Since GLn,k is smooth, dim((GLn,k /G)ρ) = dimk(T1(GLn,k /G)ρ), where T1 de-

notes the tangent space at the class of 1∈ GLn,k. Moreover, sinceH
1
(S,GLn,k) = 0,

there is an exact sequence ofk-vector spaces

0→ Lie(G) −→ Lie(GLn,k) −→ T1(GLn,k /G) −→ H
1
(S,G)→ 0 (38)

which,ρ being linearly reductive overk, yields an exact sequence ofρ-invariants

0→ Lie(G)ρ −→ Lie(GLn,k)
ρ
−→ T1(GLn,k /G)ρ −→ H

1
(S,G)ρ → 0. (39)

But GLn,k is smooth, so

dimk
(
Lie(GLn,k)

ρ
)
= dim(GLn,k)

ρ
= dim

(
CGLn,k(ρ)

)
,

and, since Lie(CG(ρ)) = Lie(G) ∩ Lie(CGLn,k(ρ)), we get

dimk
(
Lie(G)ρ

)
= dimk

(
Lie(CG(ρ))

)
.

By (39), we get

dimk
(
H

1
(S,G)ρ

)
= dimk

(
T1(GLn,k /G)ρ

)
− dim

(
CGLn,k(ρ)

)
+ dimk

(
Lie(CG(ρ))

)
= dim

(
(GLn,k /G)ρ

)
− dim

(
CGLn,k(ρ)

)
+ dim

(
CG(ρ)

)
+ dimk

(
Lie(CG(ρ))

)
− dim

(
CG(ρ)

)
; (40)

hence (36) is satisfied if

dimk
(
H

1
(S,G)ρ

)
= dimk

(
Lie(CG(ρ))

)
− dim

(
CG(ρ)

)
. (41)

But
dimk

(
H

1
(S,CG(ρ))

)
= dimk

(
Lie(CG(ρ))

)
− dim

(
CG(ρ)

)
by the exact sequence (analogous to (38) with G replaced by CG(ρ))

0→ Lie
(
CG(ρ)

)
−→ Lie(GLn,k) −→ T1

(
GLn,k /CG(ρ)

)
−→ H

1(
S,CG(ρ)

)
→ 0;

hence (41) holds by hypothesis(S′). We complete the proof of Proposition5.6 by
showing that (S) implies(S′). Since CG(ρ) ⊆ G, we have a natural map

ε : H
1(

S,CG(ρ)
)
−→ H

1
(S,G)ρ,

and by (40) and (37), we get

dimk
(
H

1
(S,G)ρ

)
≥ dimk

(
H

1
(S,CG(ρ))

)
. (42)
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Now, if (S) holds, that is, ifG/CG(ρ) is smooth, and if[P → S, y] is a class in

H
1
(S,G)ρ , P/CG(ρ) → S is smooth andy induces a point in the closed fiber of

P/CG(ρ)→ S; we may reduce the structure group to CG(ρ), thus showing thatε is
surjective. By (42), we conclude thatε is an isomorphism, and this implies(S′).

5.3. Final remarks

PROPOSITION5.7
Let X be a Noetherian regular separated algebraic space over k, and let G be a finite
group acting on X. There is a canonical isomorphism of R(G)-algebras

K∗(X,G)geom⊗ Z
[
1/|G|

]
' K∗(X)

G
⊗ Z

[
1/|G|

]
.

Proof
Since ker

(
rk : K0(X)→ H0(X,Z[1/|G|])

)
is nilpotent by Corollary5.2, the canon-

ical homomorphism
π∗ : K∗(X,G) −→ K∗(X)

G

induces a ring homomorphism (still denoted byπ∗)

π∗ : K∗(X,G)geom⊗ Z
[
1/|G|

]
−→ K∗(X)

G
⊗ Z

[
1/|G|

]
.

Moreover, the functor
π∗ : F 7−→

⊕
g∈G

g∗F ,

defined on coherentOX-modules, induces a homomorphism

π∗ : K
′
∗(X)

G
⊗ Z[1/|G|] −→ K ′∗(X,G)geom⊗ Z[1/|G|],

and (recalling thatK∗(X,G) ' K ′∗(X,G)) we obviously get

π∗π∗(F ) = |G| ·F .

On the other hand, we have

π∗π
∗(F ) ' F ⊗ π∗OX .

But rk(π∗OX) = |G|, and thereforeπ∗π∗ is an isomorphism, too, because of Corol-
lary 5.2.

As a corollary of this result and of Theorem5.4, we recover [Vi1, Th. 1], which was
proved there in a completely different way.
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We conclude the paper with a conjecture expressing the fact thatK∗(X,G)geom

should be theK -theory of the quotientX/G, if X/G is regular, after inverting the
orders of all the essential dual cyclic subgroups ofG.

CONJECTURE5.8
Let X be a Noetherian regular separated algebraic space over a field k, and let G
be a linear algebraic k-group acting on X with finite stabilizers in such a way that
the quotient X/G exists as a regular algebraic space. Let N denote the least common
multiple of the orders of all the essential dual cyclic subgroups of G, and let3 =

Z[1/N]. If p : X→ X/G is the quotient map, the composition

K∗(X/G)3
p∗
−→ K∗(X,G)3 −→ K∗(X,G)geom

is an isomorphism.

Remark 5.9
Bertrand Toen pointed out to us that ifX/G is smooth, it follows from the results of
[EG] that the composition

K0(X/G)⊗Q −→ K0(X,G)⊗Q −→ K0(X,G)geom⊗Q

is an isomorphism.

Appendix. Higher equivariant K -theory of Noetherian regular separated alge-
braic spaces
In this appendix we describe theK -theories we use in the paper and their relation-
ships. We essentially follow the example of [ThTr, Sec. 3]. We also adopt the language
of [ThTr].

Let us remark that it is strongly probable that there exist equivariant versions of
most of the results in [ThTr, Sec. 3]. In particular, there should exist a higherK -
theory ofG-equivariant cohomologically bounded pseudocoherent complexes onZ
(resp., ofG-equivariant perfect complexes onZ) for any quasi-compact algebraic
spaceZ having most of the alternative models described in [ThTr, Pars. 3.5 – 3.12].
The arguments below can also be considered as a first step toward an extension of
[ThTr, Lems. 3.11, 3.12] to the equivariant case on algebraic spaces. However, to
keep the paper to a reasonable size, we have decided to give only the results we need,
and, moreover, we have made almost no attempt to optimize the hypotheses.

We would also like to mention the paper [J] (in particular, Section 1) in which,
among many other results, the general techniques of [ThTr] are used as guidelines for
the K -theory of arbitrary Artin stacks.
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We work in a slightly more general situation than required in the rest of the paper.
Let Sbe a separated Noetherian scheme, and letG be a group scheme affine over

Swhich is finitely presented, separated, and flat overS. We denote byG-AlgSpreg the
category of regular Noetherian algebraic spaces separated overSwith an action ofG
overSand equivariant maps.

Definition A.1
If X ∈ G-AlgSpreg, we denote byK∗(X,G) (resp.,K ′∗(X,G), resp.,K naive

∗ (X,G))
the WaldhausenK -theory of the complicial bi-Waldhausen category (see [ThTr])
W1,X of complexes of quasi-coherentG-equivariantOX-modules with bounded co-
herent cohomology (resp., the QuillenK -theory of the abelian category ofG-
equivariant coherentOX-modules, resp., the QuillenK -theory of the exact category
of G-equivariant locally free coherentOX-modules).

PROPOSITIONA.2
Let Z → S be a morphism of Noetherian algebraic spaces such that the diagonal
Z → Z ×S Z is affine, and let H→ S be an affine group space acting on Z. Let
F be an equivariant quasi-coherent sheaf on Z of finite flat dimension; then there
exists a flat equivariant quasi-coherent sheafF ′ on Z together with a surjective H-
equivariant homomorphismF ′→ F .

In particular, if Z is regular, this holds for all equivariant quasi-coherent sheaves
F on Z.

The hypotheses of Proposition A.2 ensure that the usual morphismZ×SH → Z×SZ
is affine. In fact, the projectionZ ×S H → Z is obviously affine, the projection
Z ×S Z → Z has affine diagonal, so this follows from the elementary fact that if
Z → U → V are morphisms of algebraic spaces,Z → V is affine, andU → V has
affine diagonal, thenZ → U is affine. Consider the quotient stackZ = [Z/H ] (see
[LMB]); the argument above implies that the diagonalZ → Z ×SZ is affine. Since
an H -equivariant quasi-coherentOZ-module is the same as a quasi-coherent module
overZ , now Proposition5.3follows from the more general result below.

PROPOSITIONA.3
Let S be a Noetherian algebraic space, and letX be a Noetherian algebraic stack
over S with affine diagonal. LetF be a quasi-coherent sheaf of finite flat dimension on
X ; then there exists a flat quasi-coherent sheafF ′ on X together with a surjective
homomorphismF ′→ F .
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Proof
Take an affine schemeU with a flat morphismf : U → X ; then f is affine, and, in
particular, the pushforwardf∗ on quasi-coherent sheaves is exact. Consider a quasi-
coherent sheafF on X of finite flat dimension, with the adjunction mapF →

f∗ f ∗F . This map is injective; callQ its cokernel. Clearly, the flat dimension of
f∗ f ∗F is the same as the flat dimension ofF ; we claim that the flat dimension ofQ

is at most equal to the flat dimension ofF . Now, if there were a sectionX → U of
f , then the sequence

0→ F → f∗ f ∗F → Q→ 0

would split and this would be clear. However, to compute the flat dimension ofQ, we
can pull back to any flat surjective map toX ; in particular, after pulling back toU ,
we see thatf acquires a section, and the statement is checked. NowU is an affine
scheme, so we can take a flat quasi-coherent sheafP on U with a surjective map
u :P → f ∗F . Call F ′ the kernel of the compositionf∗P → f∗ f ∗F → Q; then
F ′ surjects ontoF , and it fits into an exact sequence 0→ F ′ → f∗P → Q → 0.
But f∗P is flat overX , so the flat dimension ofF ′ is less than the flat dimension
of Q, unlessQ is flat. But since the flat dimension ofQ is at most equal to the flat
dimension ofF , we see that the flat dimension ofF ′ is less than the flat dimension
of F , unlessF is flat. The proof is completed with a straightforward induction on
the flat dimension ofF .

THEOREM A.4
Let X be an object in G-AlgSpreg. The obvious inclusions of the following compli-
cial biWaldhausen categories induce homotopy equivalences on the Waldhausen K-
theory spectra K(i )(X)

.
= K (Wi,X), i = 1,2,3. In particular, the corresponding

Waldhausen K-theories K(i )∗ (X,G) coincide.
(i) W1,X = (complexes of quasi-coherent G-equivariantOX-modules with

bounded coherent cohomology).
(ii) W2,X = (bounded complexes in G− CohX).

(iii) W3,X = (complexes of flat quasi-coherent G-equivariantOX-modules with
bounded coherent cohomology).

Moreover, the Waldhausen K-theory of any of the categories above coincides
with Quillen K -theory K′∗(X,G) of G-equivariant coherentOX-modules.

Proof
By [Th2, Par. 1.13], the inclusion ofW2,X in W1,X induces an equivalence ofK -theory
spectra. Proposition5.3, together with [ThTr, Lem. 1.9.5] (applied toD = (flat G-
equivariantOX-modules) andA = (G-equivariantOX-modules)), implies that for
any objectE∗ in W1,X there exist an objectF∗ in W3,X and a quasi-isomorphism
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F∗ −̃→ E∗. Therefore, by [ThTr, Par. 1.9.7 and Th. 1.9.8], the inclusion ofW3,X in
W1,X induces an equivalence ofK -theory spectra.

The last statement of the theorem follows immediately from [Th2, Par. 1.13, p.
518].

Since any complex inW3,X is degreewise flat andX is regular (hence boundedness of
cohomology is preserved under tensor product∗), the tensor product of complexes
makes the WaldhausenK -theory spectrum ofW3,X into a functor K (3) from G-
AlgSpreg to ring spectra, with product

K (3)
∧ K (3)

−→ K (3),

exactly as described in [ThTr, Par. 3.15]. In particular, by Theorem5.3, K∗ is a functor
from G-AlgSpreg to graded rings. In the same way, the tensor product with complexes
in W3,X gives a pairing

K (3)
∧ K (1)

−→ K (1)

between the corresponding functors fromG-AlgSpreg to spectra, so thatK (1)
∗ (X,G)

becomes a module over the ringK (3)
∗ (X,G) functorially in (X,G) ∈ G-AlgSpreg.

We denote the corresponding cap-product by

∩ : K (3)
∗ (X,G)⊗ K (1)

∗ (X,G) −→ K (1)
∗ (X,G),

which becomes the ring product inK∗(X,G) with the identifications allowed by
Theorem5.3. Note that there is an obvious ring morphismη : K naive

∗ (X,G) →
K (3)
∗ (X,G), and if

∩
naive
: K naive
∗ (X,G)⊗ K

′

∗(X,G) −→ K ′∗(X,G)

denotes the usual “naive” cap-product on QuillenK -theories, there is a commutative
diagram

K naive
∗ (X,G)⊗ K ′∗(X,G)

∩
naive

−−−−→ K ′∗(X,G)

η⊗u

y yu

K (3)
∗ (X,G)⊗ K (1)

∗ (X,G) −−−−→
∩

K (1)
∗ (X,G)

whereu is the isomorphism of Theorem5.3. Because of that, we simply write∩ for
both the naive and nonnaive cap-products. Note that, as shown in [Th2, Par. 1.13, p.
519],K ′∗(−,G) (and thereforeK∗(X,G) under our hypotheses) is a covariant functor

∗In fact, this is a nonequivariant statement and a local property in the flat topology, so it reduces to the
same statement for regular affine schemes, which is elementary (see also [SGA6]).
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for proper maps inG-AlgSpreg; on the other hand, since any map inG-AlgSpreg

has finite Tor-dimension,K∗(−,G) is a controvariant functor fromG-AlgSpreg to
(graded) rings. In fact, iff : X −→ Y is a morphism inG-AlgSpreg, the same
argument in [ThTr, Par. 3.14.1] shows that there is an induced pullback exact functor
f ∗ : W3,Y → W3,X , and then we use Theorem A.4 to identifyK (3)

∗ (−,G) with
K∗(−,G).

PROPOSITIONA.5 (Projection formula)
Let j : Z −→ X be a closed immersion in G-AlgSpreg. Then, ifα is in K∗(X,G) and
β in K ′∗(Z,G), we have

j∗
(

j ∗(α) ∩ β
)
= α ∩ j∗(β)

in K ′∗(X,G).

Proof
Since j is affine, j∗ is exact on quasi-coherent modules and therefore induces an exact
functor of complicial bi-Waldhausen categoriesj∗ : W1,Z → W1,X (the condition of
bounded coherent cohomology being preserved by regularity ofZ andX). Therefore,
the maps

(α, β) 7−→ j∗
(

j ∗(α) ∩ β
)
,

(α, β) 7−→ α ∩ j∗(β)

from K∗(X,G) × K∗(Z,G) to K ′∗(X,G) ' K∗(X,G) are induced by the exact
functorsW3,X ×W1,Z −→ W1,X ,

(F∗, E∗) 7−→ j∗
(

j ∗(F∗)⊗ E∗
)
,

(F∗, E∗) 7−→ F∗ ⊗ j∗(E
∗). (43)

But for any equivariant quasi-coherent sheafF on X andG on Z, there is a natural
(hence, equivariant) isomorphism

j∗( j ∗F ⊗ G ) ' F ⊗ j∗G

which, again by naturality, induces an isomorphism between the two functors in (43);
therefore, we conclude by [ThTr, Par. 1.5.4].

Remark A.6
Since we need the projection formula only for (regular) closed immersion in this pa-
per, we have decided to state the result only in this case. However, since, by [Th2,
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Par. 1.13 p. 519],K∗(X,G) coincides also with WaldhausenK -theory of the cat-
egoryW4,X of complexes ofG-equivariant quasi-coherent injective modules onX
with bounded coherent cohomology, therefore, by Theorem5.3, it also coincides
with WaldhausenK -theory of the categoryW5,X complexes ofG-equivariant quasi-
coherent flasque modules onX with bounded coherent cohomology. For any proper
map f : X→ Y in G-AlgSpreg, we have an exact functorf∗ : W5,X → W5,Y, which
therefore gives a “model” for the pushforwardf∗ : K∗(X,G) → K∗(Y,G) (cf.
[ThTr, Par. 3.16]). Now, the proof of [ThTr, Prop. 3.17] should also give a proof of
Proposition3 with j replaced by any proper map inG-AlgSpreg because it only uses
[ThTr, Th. 2.5.5], which obviously holds forX andY Noetherian algebraic spaces,
and [SGA4, Exp. XVII, par. 4.2], which should give a canonicalG-equivariant Gode-
ment flasque resolution of any complex ofG-equivariant modules on any algebraic
space inG-AlgSpreg since it is developed in a general topos.

It is very probable that Theorem5.3 and therefore the functoriality with respect to
morphisms of finite Tor-dimension still hold without the regularity assumption on the
algebraic spaces. On the other hand, it should also be true that withG andX as above
(therefore,X regular), the WaldhausenK -theory of the category ofG-equivariant
perfect complexes onX coincides withK ′∗(X,G). This last statement should fol-
low (with a bit of work to identifyK ′∗(X,G) with the WaldhausenK -theory ofG-
equivariant pseudocoherent complexes with bounded cohomology onX) from [J, Th.
1.6.2].

Acknowledgments.We wish to thank the referee for useful and precise remarks. We
also thank Bertrand Toen, who pointed out the content of Remark5.9to us.
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Birkhäuser, Boston, 1990, 247 – 435.MR 92f:19001 6, 48, 49, 50, 51, 52, 53
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