
Acylphosphatase interferes with SERCA2a–PLN association

Chiara Nediani, Alessandra Celli, Claudia Fiorillo,
Vanessa Ponziani, Lara Giannini, and Paolo Nassi*

Dipartimento di Scienze Biochimiche, Universit�aa di Firenze, viale Morgagni 50, 50134 Firenze, Italy

Received 2 January 2003

Abstract

We previously reported that acylphosphatase, a cytosolic enzyme present in skeletal and heart muscle, actively hydrolyzes the

phosphoenzyme (EP) of cardiac sarcoplasmic reticulum (SR) Ca2þ-ATPase (SERCA2a), inducing an increased activity of this

pump. We hypothesized that acylphosphatase-induced stimulation of SERCA2a, in addition to enhanced EP hydrolysis, may be due

to a displacement of phospholamban (PLN), removing its inhibitory effect. To verify this hypothesis co-immunoprecipitation ex-

periments were performed by adding recombinant muscle acylphosphatase to solubilized heart SR vesicles, used as a source of

SERCA2a and PLN. With anti-acylphosphatase antibodies only SERCA2a was co-immunoprecipitated in an amount which in-

creased in parallel to the concentrations of our enzyme. Conversely, using anti-SERCA2a antibody, both PLN and acylphosphatase

were co-immunoprecipitated with SERCA2a, and the PLN amount in the precipitate decreased with increasing acylphosphatase

concentrations. SERCA2a and PLN were co-immunoprecipitated by anti-phospholamban antibodies, but while the amount of

precipitated phospholamban increased in the presence of acylphosphatase, the level of SERCA2a decreased. These preliminary

results strengthen the supposed displacement of phospholamban by acylphosphatase.

� 2003 Elsevier Science (USA). All rights reserved.
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Sarco(endo)plasmic reticulum Ca2þ-ATPases (SER-

CAs) are 110-kDa transmembrane proteins that trans-

port Ca2þ ions from the sarcoplasm to the lumen of the

membrane system [1]. The energy for Ca2þ transport is

provided by ATP; intermediate steps involve the forma-

tion and hydrolysis of a phosphoenzyme intermediate
(EP) [2]. The cardiac sarcoplasmic reticulum (SR) Ca2þ-

ATPase (SERCA2a) is regulated by its interactions with

the intrinsic membrane protein phospholamban. Phos-

pholamban (PLN) inhibits the activity of SERCA2a, but

its phosphorylation by protein kinase A or Ca2þ-cal-

modulin kinase reverses the inhibitory interaction, pre-

sumably through dissociation of phosphorylated

phospholamban from SERCA2a [3]. An additional reg-
ulatory effect on SERCA2a could be exerted by acyl-

phosphatase (EC 3.6.1.7), a cytosolic 11 kDa enzyme well

represented in cardiac muscle that catalyzes the hydro-

lysis of acylphosphates [4–6]. In previous studies we have

shown that acylphosphatase actively hydrolyzes the EP

intermediate of this transport system, an effect that results

in an enhanced activity of the SR Ca2þ pump [7,8]. We

have also demonstrated that acylphosphatase, in addi-

tion to its hydrolytic activity on EP, stimulated SER-

CA2a activity through another mechanism, probably due
to its conformational properties. In fact, using an acyl-

phosphatase mutant, Asn41Ser, devoid of catalytic ac-

tivity but unchanged as for the three-dimensional

structure [9], the stimulatory effect on SERCA2a was

retained, but disappeared when the conformational

structure of the mutant was altered by thermal denatur-

ation. To explain these results we supposed that acyl-

phosphatase could interact with SERCA2a taking the
place of unphosphorylated PLN whose inhibitory effect

could be removed [8]. In fact, NMR studies showed that

acylphosphatase contains a structural motif where 12

residues (from 55 to 66) form an amphipathic a-helix with
a prevalence of basic groups [10] that resembles that of

the PLN cytoplasmic 1A domain, essential for the asso-

ciation with SERCA2a [11].
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In the present study, as a first approach to verify the
supposed interaction, we performed a series of co-

immunoprecipitation experiments. Mixtures of solubi-

lized cardiac SR vesicles, used as a source of SERCA2a

and PLN, and recombinant muscle acylphosphatase

were incubated with antibodies against each of these

proteins and the composition of the obtained immuno-

precipitates was determined by Western blot analysis.

Materials and methods

Materials. All reagents were of analytical grade and were obtained

from Sigma. Monoclonal (mouse) anti-SERCA2a ATPase antibody

(clone 2A7-A1) was obtained from Affinity Bioreagents (Golden, CO),

monoclonal (mouse) anti-phospholamban antibody (clone A1) was

from Upstate biotechnology (Lake Placid, NY), and acylphosphatase

recombinant form was obtained according to Modesti et al. [12].

Anti-acylphosphatase antibodies were raised in rabbit using the

recombinant protein and purified by affinity chromatography [13].

Peroxidase coniugated anti-mouse or anti-rabbit secondary antibody

was from Amersham. Super Signal enhanced chemiluminescent kit was

from Pierce.

Preparation of SR vesicles (SRVs). Cardiac SRVs were isolated

from rabbit heart according to Nediani et al. [14] and measured for

protein [15].

Co-immunoprecipitation. SRVs were solubilized with 1% SDS in the

immunoprecipitation buffer (10mM Tris–HCl, pH 7, 150mM NaCl,

1mM EGTA, and 1mM EDTA) at room temperature for 1 h and

centrifuged for 150 at 16,000g. The supernatants were rotated with 1%

bovine serum albumin-treated G-Sepharose for 300 and centrifuged to

remove proteins bound non-specifically to G-Sepharose. The super-

natants, at a final concentration of 0.5mg/ml protein, were then

incubated with monoclonal anti-SERCA2a or polyclonal anti-acyl-

phosphatase or monoclonal anti-PLN antibody in the absence and in

the presence of 5 or 10 lg of acylphosphatase recombinant form on ice

for 1 h. The samples were rotated for 1 h with G-Sepharose and cen-

trifuged and the pellets were washed three times in the immunopre-

cipitation buffer and solubilized for 100 at 90 �C in Laemmli�s sample
buffer [16].

Western blot analysis of SERCA2a, phospholamban, and acylphos-

phatase. Samples were resolved by 10% and 15% SDS–PAGE and

transferred to PVDF membranes. After blocking, the membrane were

incubated with monoclonal anti-SERCA2a, or polyclonal anti-human

muscle acylphosphatase or monoclonal anti-PLB antibody, washed

three times in T-TBS solution (50mM Tris–HCl, pH 7.4, 150mM

NaCl, and 0.1% Tween 20), and treated with horseradish peroxidase-

conjugated anti-mouse or anti-rabbit secondary antibody. The signals

were detected with a chemiluminescence kit and the signal densities

corresponding to SERCA2a or PLN immunoprecipitated were quan-

tified by laser densitometry using Quantity One software (Bio-Rad

laboratories).

Results and discussion

Taken together, the results of this study agree with

the possibility that acylphosphatase, owing to its con-

formational properties, displaces PLN from SERCA2a.
In this connection, we have previously demonstrated a

physical interaction between SERCA2a and acylphos-

phatase since in controlled immunoprecipitation exper-

iments the two proteins were co-precipitated by a

monoclonal anti-SERCA2a antibody. In the same
study, however, we found that thermally denaturated

acylphosphatase was not more precipitated, suggesting

that the maintenance of the native conformation of this

enzyme was required for its binding to SERCA2a [8].

Now, in addition to confirming a physical association

between SERCA2a and acylphosphatase, the present

results also indicate that this binding could interfere

with SERCA2a–PLN interaction. This, at least, emerges
from the experiments that we performed by incubating

SERCA2a and PLN (in the form of solubilized cardiac

SR vesicles) with monoclonal anti-SERCA2a antibody

in the absence and in the presence of increasing amounts

of purified recombinant acylphosphatase. As shown in

the Fig. 1A, when acylphosphatase was lacking Western

blot analysis of the immunoprecipitate revealed two

clear bands at 110 kDa and 25–27 kDa, corresponding,
respectively, to SERCA2a and to the PLN pentameric

form: a result which was expected since the well-known

interaction between these proteins. On the other hand,

in the presence of acylphosphatase, the analysis of the

immunoprecipitate showed another band at 11 kDa,

suggesting the co-immunoprecipitation of this enzyme

together with the other two proteins. Moreover, as

Fig. 1. Effect of acylphosphatase (ACP) on co-immunoprecipitation of

SERCA2a with PLN using monoclonal anti-SERCA2a antibody.

Solubilized SRVs were incubated with monoclonal anti-SERCA2a

antibody as described under ‘‘Materials and methods’’ in the absence

(0) and in presence of 5 or 10 lg of ACP. Immunoprecipitates were

analyzed by Western blotting (A) and PLN signals were quantified by

densitometric analysis (B). Each bar represents the mean value� SD of

four different blots. *p < 0:05 vs 0 by Student�s t test.
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indicated by densitometric analysis (Fig. 1B), the
amount of PLN found in the immunoprecipitated sig-

nificantly decreased with increasing acylphosphatase

concentrations, with a diminution that, compared to the

control values, was 17% for the lower (5 lg) and 37% for

the higher acylphosphatase levels (10 lg). Besides these
findings that clearly strengthen the supposed displace-

ment of phospholamban by acylphosphatase, also other

results of the present study support such an interpreta-
tion. In fact, when the above described mixtures of

solubilized heart SR vesicles plus acylphosphatase were

added with anti-acylphosphatase antibody (Fig. 2A)

only this enzyme and SERCA2a were co-immunopre-

cipitated and the amount of SERCA2a detected in the

precipitate increased significantly with the increase in

acylphosphatase concentration. While, on one hand,

these data corroborate the view of a selective interaction
between acylphosphatase and SERCA2a, on the other

hand the constant absence of PLN in the immunopre-

cipitate obtained with anti-acylphosphatase antibody

strongly suggests that acylphosphatase, through a sort

of competitive binding with SERCA2, can effectively

displace PLN from its association with heart SR Ca2þ

pump. Also the results obtained with monoclonal anti-
phospholamban antibody agree with this conclusion. In

fact, as shown in the Fig. 3, the amount of SERCA2a,

which was co-immunoprecipitated with PLN by this

antibody, was markedly reduced when 10 lg of acyl-

phosphatase was added to the reaction mixture. The

presence of acylphosphatase also resulted in an in-

creased amount of PLN in the precipitate; a finding that

may be explained admitting, as suggested by other au-
thors [17], that the interaction with SERCA2a prevents,

to a certain extent, PLN from reaching with its

own antibody: this hindrance could be removed in

consequence of the displacement produced by acyl-

phosphatase. Much attention has been directed to

SERCA2a–PLN interactions which, by affecting intra-

cellular Ca2þ homeostasis, play a key role in the regu-

lation of cardiac contractility and relaxation [2,3,17]. In
this regard, recent studies reported that overexpression

of a superinhibitory PLN mutant induces cardiac hy-

pertrophy in mouse, impairing contractility and relaxa-

tion of heart muscle [18,19]; on the contrary, PLN

ablation or overexpression of SERCA2a mutant lacking

the functional association with PLN resulted in both

Fig. 2. Co-immunoprecipitation of SERCA2a and acylphosphatase

(ACP) with polyclonal anti-ACP antibody. Solubilized SRVs were

incubated with polyclonal anti-ACP antibody as described under

‘‘Materials and methods’’ in the presence of 5 and 10lg of ACP.

Immunoprecipitates were analyzed by Western blotting (A) and

SERCA2a signals were quantified by densitometric analysis (B). Each

bar represents the mean value� SD of four different blots. *p < 0:05 vs

5 lg by Student�s t test.

Fig. 3. Effect of acylphosphatase (ACP) on co-immunoprecipitation of

SERCA2a with PLN using monoclonal anti-PLN antibody. Solubi-

lized SRVs were incubated with monoclonal anti-SERCA2a antibody

as described under ‘‘Materials and methods’’ in the absence (0) and in

the presence of 10 lg of ACP. Immunoprecipitates were analyzed by

Western blotting (A) and SERCA2a and PLN signals were quantified

by densitometric analysis (B). Each bar represents the mean

value�SD of four different blots. �, (0); , 10 lg of ACP. *p < 0:05

vs 0 by Student�s t test.
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attenuation of cardiac hypertrophy and enhancement of
cardiac contractility in a mouse dilated cardiomyopathy

model [20] and in a mice pressure-overload model [21],

suggesting that the removal of PLN inhibition on

SERCA2a may be a new strategy to treat and to prevent

heart failure. In this context it is our opinion that, al-

though preliminary, the present data may be of special

interest because they suggest a novel physiological

mechanism which could contribute to modulate SER-
CA–PLN interactions, all the more so since in a recent

study we found that, in a model of volume overload,

increased acylphosphatase expression was associated to

a recovery of SR function and an improved heart con-

tractility [22].

On the basis of these considerations we think that it

would be of interest to probe more deeply the molecular

basis of the interaction between SERCA2a and acyl-
phosphatase. More in particular, further studies will be

aimed, in our intention, at identifying the residues that

are involved in this interaction and to determine, with

site-specific mutagenesis, the mutations that could cause

a loss of the native conformation of acylphosphatase

and a reduction of its hypothesized displacement effect.

Acknowledgments

The financial support of Telethon-Italy (Grant No. 1132) is

gratefully acknowledged. We are grateful to Dr. ssa Letizia Niccolai

for the assistance.

References

[1] D.H. MacLennan, W.J. Rice, N.M. Green, The mechanism of

Ca2þ transport by sarco(endo)plasmic reticulum Ca2þ-ATPases, J.

Biol. Chem. 272 (1997) 28815–28818.

[2] M. Tada, M. Kadoma, M. Inui, J. Fujii, Regulation of Ca2þ pump

from cardiac sarcoplasmic reticulum, in: S. Fleischer, B. Fleisher

(Eds.), Methods in Enzymology, 157, Academic Press, London,

1988, pp. 107–154.

[3] K. Simmerman, L.R. Jones, Phospholamban: protein structure,

mechanism of action, and role in cardiac function, Physiol. Rev.

78 (1998) 921–947.

[4] A. Berti, M. Stefani, G. Liguri, G. Camici, G. Manao, G.

Ramponi, Acylphosphatase action on dicarboxylic acylphos-

phates, Ital. J. Biochem. 26 (1977) 377–378.

[5] G. Ramponi, F. Melani, A. Guerritore, Azione dell� acilfosfatasi
di muscolo sul carbamilfosfato, J. Biochim. 10 (1961) 189–196.

[6] G. Ramponi, C. Treves, A. Guerritore, Hydrolytic activity of

muscle acylphosphatase on 3-phosphoglyceroyl-phosphate, Ex-

perientia 23 (1967) 1019–1020.

[7] C. Nediani, C. Fiorillo, E. Marchetti, A. Pacini, G. Liguri, P.

Nassi, Stimulation of cardiac sarcoplasmic reticulum calcium

pump by acylphosphatase. Relationship to phospholamban

phosphorylation, J. Biol. Chem. 271 (1996) 19066–19073.

[8] C. Nediani, C. Fiorillo, S. Rigacci, F. Magherini, M. Francalanci,

G. Liguri, A. Pacini, P. Nassi, A novel interaction mechanism

accounting for different acylphosphatase effects on cardiac and

fast twitch skeletal muscle sarcoplasmic reticulum calcium pumps,

FEBS Lett. 443 (1999) 308–312.

[9] N. Taddei, M. Stefani, F. Magherini, F. Chiti, A. Modesti, G.

Raugei, G. Ramponi, Looking for residues involved in the muscle

acylphosphatase catalytic mechanism and structural stabilization:

role of Asn41, Thr42, and Thr46, Biochemistry 35 (1996) 7077–

7083.

[10] A. Pastore, V. Saudek, G. Ramponi, R.J.P. Williams, Three-

dimensional structure of acylphosphatase. Refinement and struc-

ture analysis, J. Mol. Biol. 224 (1992) 427–440.

[11] T. Toyofuku, K. Kurzydlowsky, M. Tada, D.H. MacLennan,

Amino acids Glu2 to Ile18 in the cytoplasmic domain of

phospholamban are essential for functional association with the

Ca2þ-ATPase of sarcoplasmic reticulum, J. Biol. Chem. 269 (1994)

3088–3094.

[12] A. Modesti, N. Taddei, F. Chiti, M. Bucciantini, F. Magherini, S.

Rigacci, M. Stefani, G. Raugei, G. Ramponi, Expression,

purification, and characterization of acylphosphatase muscular

isoenzyme as fusion protein with glutathione-S-transferase, J.

Prot. Chem. 15 (1996) 27–34.

[13] A. Berti, G. Liguri, M. Stefani, P. Nassi, G. Ramponi, Purifica-

tion of horse muscle acylphosphatase antibodies by affinity

chromatography, Physiol. Chem. Phys. 14 (1982) 307–311.

[14] C. Nediani, L. Formigli, A.M. Perna, L. Ibba-Manneschi, S.

Zecchi-Orlandini, C. Fiorillo, V. Ponziani, C. Cecchi, P. Liguori,

G. Fratini, P. Nass, Early changes induced in the left ventricle by

pressure overload. An experimental study on swine heart, J. Mol.

Cell Cardiol. 32 (2000) 131–142.

[15] G. Beisenherz, H.J. Boltze, T.H. Bucher, R. Czok, K.H. Garbade,

E. Meyer-Arendt, G. Pfleiderer, Diphosphofructosealdolase,

phosphoglyceraldehyd-dehydrogenase, milchsauredehydrogenase,

and pyruvat-kinase aus kaninchen-muskulature in einern arbeits-

gang, Z. Naturforsch. 8b (1953) 555.

[16] U.K. Laemmly, Cleavage of structural proteins during the

assembly of the head of bacteriophage T4, Nature 227 (1970)

680–685.

[17] Y. Kimura, M. Inui, Recostitution of the cytoplasmic interaction

between phospholamban and Ca2þ-ATPase of cardiac sarcoplas-

mic reticulum, Mol. Pharmacol 61 (2002) 667–673.

[18] J. Zhai, A.G. Schmidt, B.D. Hoit, Y. Kimura, D.H. MacLennan,

E.G. Kranias, Cardiac-specific overexpression of a superinhibi-

tory pentameric phospholamban mutant enhances inhibition of

cardiac function in vivo, J. Biol. Chem. 275 (2000) 10538–10544.

[19] E. Zvaritch, P.H. Backx, F. Jirik, Y. Kimura, S. de Leon, A.G.

Schmidt, B.D. Hoit, J.W. Lester, E.G. Kranias, D.H. MacLen-

nan, The transgenic expression of highly inhibitory monomeric

forms of phospholamban in mouse heart impairs cardiac con-

tractility, J. Biol. Chem. 275 (2000) 14985–14991.

[20] S. Minamisawa, M. Hoshijima, G. Chu, C.A. Ward, K. Frank,

Y. Gu, M.E. Martone, Y. Wang, J. Ross Jr., E.G. Kranias,

W.R. Giles, K.R. Chien, Chronic phospholamban–sarcoplasmic

reticulum calcium-ATPase interaction is the critical calcium

cycling defect in dilated cardiomyopathy, Cell 99 (1999) 313–

322.

[21] H. Nakayama, K. Otsu, O. Yamaguchi, K. Nishida, M. Date, K.

Hongo, Y. Kusakari, T. Toyofuku, S. Hikoso, K. Kashiwase, T.

Takeda, Y. Matsumura, S. Kurihara, M. Hori, M. Tada, Cardiac-

specific overexpression of high Ca2þ affinity mutant of SERCA2a

attenuates in vivo pressure overload cardiac hypertrophy, FASEB

J., (2002) published online Nov 1.

[22] C. Nediani, L. Formigli, A.M. Perna, A. Pacini, V. Ponziani, P.A.

Modesti, L. Ibba-Manneschi, S. Zecchi-Orlandini, C. Fiorillo, C.

Cecchi, P. Liguori, G. Fratini, S. Vanni, P. Nassi, Biochemical

changes and their relationship with morphological and functional

findings in pig heart subjected to lasting volume overload: a

possibile role of acylphosphatase in the regulation of sarcoplas-

mic reticulum calcium pump, Basic Res. Cardiol. 97 (2002) 469–

478.

C. Nediani et al. / Biochemical and Biophysical Research Communications 301 (2003) 948–951 951


	Acylphosphatase interferes with SERCA2a-PLN association
	Materials and methods
	Results and discussion
	Acknowledgements
	References


