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Flavonoids and hydroxycinnamic derivatives of turnip tops (Brassica rapa L. subsp. sylvestris L.)
were characterized for the first time in four samples from different origins. Turnip tops exhibit a high
polyphenols content (ranging from 107 to 191 mg/100 g, fresh weight) and a good antiradical activity,
determined with the DPPH• test. After a liquid-liquid extraction and fractionation procedures, most
flavonoids (isorhamnetin, kaempferol, and quercetin glycosides) and hydroxycinnamic derivatives
were identified by means of HPLC-DAD/MS techniques. Isorhamnetin glycosides were the main
flavonoid derivatives, differing from that found in the vegetables belonging to the Brassica oleracea
group.
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INTRODUCTION

Brassicavegetables are used as food all over the world, and
there is evidence that a diet rich in vegetables (and fruits) is
associated with a decreased risk of some chronic diseases (1).
It is generally assumed that antioxidants (such as ascorbic acid,
R-tocopherol, andâ-carotene) are responsible for the beneficial
effects of this food (2). The antioxidant activity of phenolics,
which act as reducing agents and hydrogen donors, has been
studied also in relation to polyphenol content (3-5). Further-
more, the composition of the polyphenol mixture is of great
importance in view of the different biological actions of its
components on human metabolism (6). The polyphenol com-
position of members of the Brassicaceae family has been
investigated, in particular, for broccoli (7), cabbage (8), white
cabbage (9), and Italian kale (10). Most studies deal with the
total phenolic composition as determined by HPLC or by the
Folin-Ciocalteu method (11, 12). Some recent publications
describe the nearly complete composition of the polyphenol
mixture of Brassicavegetables or byproducts (13-15). All of
the above-mentioned vegetables belong to theBrassica oleracea
group.

The groupBrassica rapaincludes many significant crops such
as Chinese cabbage; in Italy this group is mainly represented
by turnip tops [B. rapa L. subsp.sylVestris (L.) Janch var.
esculentaHort.], which are used as a cooked vegetable and are
known as “cime di rapa”. It is cultivated as a winter vegetable,

and it is regarded as a typical product in many Italian regions.
The only report on minor components ofB. rapa vegetable
concerns the determination of glucosinolates, a group of
secondary metabolites withâ-thioglucose, which is character-
istics of the genusBrassica, in Japanese “nabana” turnip rape
(16). Mineral and vitamin contents have been determined (17).

The purpose of this study was to identify and characterize
polyphenols from turnip tops and to assess their antiradical
activity with respect to the known characteristics of members
of the B. oleraceagroup.

MATERIALS AND METHODS

Plant Material. The vegetables were purchased in February 2005
from farmers selling in open markets (samples A-C) and from a
supermarket (sample D) in Florence (Italy).

Standards. Authentic standards of isorhamnetin 3-O-glucoside,
kaempferol 3-O-glucoside, quercetin 3-O-glucoside, and chlorogenic
and gallic acids were purchased from Sigma-Aldrich (St. Louis, MO).

Solvents. All solvents used were of HPLC grade purity (BDH
Laboratory Supplies, Poole, U.K.).

Extraction and Purification of Polyphenols. The edible part (leaves
and flowers) of each sample was frozen in liquid nitrogen and stored
at -80 °C before proceeding with the analysis. Frozen tissues were
ground in a mortar with a pestle under liquid nitrogen. A quantity of
1.5 g of tissue was extracted in 20 mL of 70% ethanol (pH 3.2 with
formic acid) overnight. The extracts were filtered and defatted with 3
× 15 mL of petroleum ether. The defatted extracts were evaporated to
dryness under vacuum at room temperature and finally redissolved in
EtOH/H2O (70:30), adjusted to pH 3.2 with formic acid, to a final
volume of 4 mL.

Liquid-Liquid Extraction (LLE).A quantity of 14 g of frozen leaves
was extracted in 200 mL of 70% ethanol (pH 3.2 with formic acid)
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overnight. The extract was filtered and defatted with 3× 100 mL of
petroleum ether. The defatted extract was then evaporated under vacuum
at room temperature to eliminate the organic solvent, and finally the
aqueous solution was extracted with ethyl acetate (5× 50 mL). The
ethyl acetate extract and the aqueous solution were evaporated to
dryness under vacuum at room temperature and finally redissolved in
EtOH/H2O (70:30), adjusted to pH 3.2 with formic acid, to a final
volume of 25 mL.

HPLC-DAD Analysis. Analyses of flavonols and hydroxycinnamic
derivatives were carried out using a HP 1100L liquid chromatograph
equipped with a diode array detector (DAD) and managed by a HP
9000 workstation (Agilent Technologies, Palo Alto, CA). Flavonols
and hydroxycinnamic derivatives were separated by using a 250× 4
mm, i.d. 5 µm, RP-18, LiChroCART column (Merck, Darmstadt,
Germany), operating at 27°C, with a three-step linear solvent gradient
system as follows (13): from 80% H2O (adjusted to pH 3.2 by
H3PO4)-20% methanol to 50% at 35 min and 20% H2O at 37 min,
with a final step to wash the column, over a 42-min period. at a flow
rate of 1.0 mL/min and a 150× 3 mm, i.d. 5µm, RP-18, Luna RP-18
column (Phenomenex), operating at 27°C, with a five-step linear
solvent gradient system starting from 100% H2O to 75% H2O/25%
acetonitrile, over a 70-min period, at flow rate of 0.8 mL/min. UV-
vis spectra were recorded in the 190-600 nm range, and the
chromatograms were acquired at 260, 280, 330, and 350 nm.

HPLC-MS Analyses. Analyses were performed using a HP 1100L
liquid chromatograph linked to a HP 1100 MSD mass spectrometer
with an API/electrospray interface (Agilent Technologies, Palo Alto,
CA). The mass spectrometer operating conditions were as follows: gas
temperature, 350°C; nitrogen flow rate, 11.0 L/min; nebulizer pressure,
40 psi; quadrupole temperature, 100°C; and capillary voltage, 4000
V. The mass spectrometer was operated in positive and negative mode
at 80-180 eV.

Flow Injection Analysis Electrospray Ionization Mass Spectrom-
etry (FIA/ESI/MS). FIA/ESI/MS was performed using a HP 1100
MSD mass spectrometer with an API/electrospray interface (Agilent
Technologies). The analyses were performed by alternating both positive
and negative ionization modes or the capillary voltage.

Identification and Quantification of Individual Polyphenols.
Identification of individual polyphenols was carried out using their
retention times and both spectroscopic and mass spectrometric data.
Quantification of individual polyphenolic compounds was directly
performed by HPLC-DAD using a five-point regression curve (r2 g
0.998) in the range of 0-30 µg on the basis of standards. In particular,
flavonols (such as kaempferol, quercetin, and isorhamnetin derivatives)
were determined at 350 nm using isorhamnetin 3-O-glucoside as
reference compound. Hydroxycinnamic derivatives were determined
at 330 nm using chlorogenic acid as reference compound. In all cases,
actual concentrations of the derivatives were calculated after corrections
for differences in molecular weight had been applied. Three samples
were collected from each site so as to express the analytical results as
an average with its standard deviation. For the quantitative analysis
high values of polyphenols recovery (>95%) were obtained. The
extraction yield was controlled by adding gallic acid as internal standard.
The choice of this molecule was based on its absence in our samples
and on its retention time, which falls in an empty zone of the
chromatogram (RT) 3.68 min).

Total Phenolic Content.The total phenolic content was determined
using the Folin-Ciocalteu method, described by Singleton et al. (18)
and slightly modified according to th procedure of Dewanto et al. (19).
To 125µL of the suitably diluted sample extract were added 0.5 mL
of deionized water and 125µL of the Folin-Ciocalteu reagent. The
mixture was kept for 6 min, and then 1.25 mL of a 7% aqueous
Na2CO3 solution was added. The final volume was adjusted to 3 mL
with water. After 90 min, the absorption was measured at 760 nm
against water as a blank. The amount of total phenolics is expressed
as gallic acid equivalents (GAE, milligrams of gallic acid per 100 g of
sample) through the calibration curve of gallic acid. The calibration
curve ranged from 20 to 500µg/mL (R2 ) 0.9969).

Antiradical Activity. Free radical scavenging activity was evaluated
with the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•) assay. The
antiradical capacity of the sample extracts was estimated according to

the procedure reported by Brand-Williams (20) and slightly modified.
Two milliliters of the sample solution, suitably diluted with ethanol,
was added to 2 mL of an ethanol solution of DPPH• (0.0025 g/100
mL) and the mixture kept at room temperature. After 20 min, the
absorption was measured at 517 nm with a Lambda 25 spectropho-
tometer (Perkin-Elmer) versus ethanol as a blank. Each day, the
absorption of the DPPH• solution was checked. The antiradical activity
is expressed as IC50, the antiradical dose required to cause a 50%
inhibition. IC50 was calculated by plotting the ratio (Ablank - Asample/
Asample) × 100, whereAblank is the absorption of the DPPH• solution
andAsampleis the absorption of the DPPH• solution after the addition of
the sample, against the concentration of the sample. IC50 is expressed
as milligrams of sample per milligram of DPPH•.

RESULTS AND DISCUSSION

The four turnip top samples extracted with ethanol/water (see
Materials and Methods) gave rise to the HPLC profiles reported
in Figure 1. Because the identification of phenolic components
was the main goal of this work, a solvent and a procedure (see
Materials and Methods), which are suited for the recovery of a
wide range of phenolics (21), were chosen. Owing to the
complicated nature of the chromatograms and its numerous
peaks, a LLE was considered to be more appropriate to make
a first rough separation prior to the HPLC-MS analysis. The
chromatograms of the ethyl acetate and aqueous solutions are
reported inFigure 2A,B, whereas the HPLC method was well-
suited for the ethyl acetate extract; for the aqueous solutions a
different method was chosen (Figure 2C).

From HPLC-DAD data, all flavonoids are glycosylated
derivatives of three flavonols, that is, kaempferol (266, 294sh,
and 349 nm for 3-glycosides and 266, 318sh, and 349 nm for
3,7-diglycosides), quercetin (255, 266sh, and 355 nm for
3-glycosides and 255, 266sh, 294sh, and 354 nm for 3,7-
diglycosides), and isorhamnetin (255, 268sh, 294sh, and 354
nm for 3-glycosides and 255, 268sh, and 354 nm for 3,7-
diglycosides). However, several compounds coeluted in the same
peak, and therefore their UV spectra were not very useful for
identification. To determine the best conditions for the recording
of MS spectra, a FIA/ESI/MS analysis was performed. Under
the best conditions selected, all of the flavonols and most
hydroxycinnamic derivatives gave rise to fragments.

Table 1 reports all of the identified compounds with the most
frequent ions after the fragmentation. The structures were
assigned on the basis of the MS data, literature reports (13),
retention times, and UV-vis spectra. InFigure 3 are reported
the chemical structures of the major components.

Flavonols 2, 4, and 12, which were not identified, are
probably quercetin derivatives on the basis of them/z949, 787,
625, and 463 ions. Flavonol10, which exhibits the same
fragmentation and the same UV-vis spectrum as flavonol11,
may be regarded as a kaempferol derivative. Under our
experimental conditions, some hydroxycinnamic derivatives did
not give rise to any fragmentation; among them compounds17,
20, and26 are caffeoyl derivatives on the basis of their UV-
vis spectra. Compounds31 and 32, which gave rise to high
molecular weight fragments and exhibit high retention times,
can be regarded, on the basis of their UV-vis spectra, as
caffeoyl derivatives.

In Table 2 the quantitative data of the four samples analyzed
are reported. No important qualitative differences were observed
among the four samples; the only difference concerns the
quantitative results of the phenol classes. Flavonols were always
the most represented compounds; hydroxycinnamic derivatives
were also found in the 5.77-52.54 mg/100 g range in all
analyzed samples. It should be noted that the total polyphenol
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amount is quite high as compared withB. oleracearesults (11).
In contrast to otherB. oleraceavegetables, the most abundant
polyphenols were isorhamnetin derivatives (data not shown).
In the case of broccoli (7, 13), cauliflower (15), kale (22), and
Italian kale (10) the main flavonoids were kaempferol and

quercetin glycosides; only kaempferol glycosides were found
in tronchuda cabbage (14). Isorhamnetin-3,7-O-di-â-D-glucoside
has been found in the corolla ofB. rapa, playing the role of
nectar guide (23), suggesting that isorhamnetin glycosides may
be the primary flavonoids in theB. rapagroup. Isorhamnetin-

Figure 1. Chromatographic profiles acquired by HPLC-DAD (350 nm) of the hydroalcoholic (ethanol/water 70:30, pH 3.2) extracts of four samples of
turnip top (A−D).

Figure 2. Chromatographic profiles acquired by HPLC-DAD (350 nm) with the LiChroCART RP-18 column of the ethyl acetate (A) and the aqueous (B)
solutions and chromatographic profile acquired by HPLC-DAD (350 nm) with the Luna RP-18 column of the aqueous extract (C) of a turnip top sample.
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3,7-O-di-â-D-glucoside was the major compound in sample C,
whereas isorhamnetin-3-O-â-D-glucoside was the major com-
pound in the other three samples (A, B, and D). Among
kaempferol and quercetin derivatives, kaempferol-3-O-â-D-
glucoside and quercetin-3-O-sinapoylsophotrioside-7-O-gluco-
side are the most abundant, respectively.

It should be pointed out that the polyphenol content of turnip
top is quite high; in the case of flavonoids the content is from
about 3 to 10 times higher than that of all other Brassicaceae
(5, 7, 9, 22, 24). Within one variety, as in the case of turnip
top, there is a great variation of the flavonoid content; such
occurrence is probably related to these peculiar products of
secondary metabolism, the amount of which is affected by light,
environment, and plant phytopathological conditions (25-27),
making the comparison of data very difficult.

Table 3 reports the IC50 values, that is, the concentration
which inhibits by 50% the activity of 1 mg of DPPH•. The
values are quite similar and are not correlated to the total
phenolic content as obtained with the Folin-Ciocalteu method.
If we consider the IC50 values of ascorbic acid (0.195), quercetin
(0.153), kaempferol (0.514), and quercitrin (0.294), the antiradi-
cal activity of turnip tops seems extremely low. However, on
the basis of their flavonoid content, the values inTable 3 can
be modified. Assuming a mean value of 550 for the IC50

parameter, if we considered only the flavonoid content, an IC50

value of 0.638 was obtained, that is i.e., the same magnitude as
those found for pure standards.

The results obtained in this study show that turnip tops are
an appreciable source of polyphenols, especially flavonoids.
Even if polyphenols undergo numerous reactions during pro-
cessing and cooking (7, 24), their presence in fresh food is
related to their antiradical activity and may help in promoting
the cultivation of vegetables with a known geographical origin.
Furthermore, in this case the presence of isorhamnetin, a
flavonoid not present in theB. oleraceafamily, and of its
derivatives has been pointed out, indicating that the qualitative
data are important in the definition of the flavonoid mixture. In
fact, isorhamnetin diglucoside, isolated from mustard leaf (B.
juncea), showed a strong activity in reducing serum levels of
glucose in diabetes mellitus through an antioxidant activity (28).
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