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Matzoh ball soup: Heat conductors
with a stationary isothermic surface

By Rolando Magnanini and Shigeru Sakaguchi*

Abstract

We consider a bounded heat conductor that satisfies the exterior sphere
condition. Suppose that, initially, the conductor has temperature 0 and, at all
times, its boundary is kept at temperature 1. We show that if the conductor
contains a proper sub-domain, satisfying the interior cone condition and having
constant boundary temperature at each given time, then the conductor must
be a ball.

1. Introduction

A matzoh ball is a dumpling, made of special unleavened crackers, that one
takes from the refrigerator and drops into boiling stock (see [R-R] for a recipe).
The physical situation at hand can be modeled in the general Euclidean space
RN as an initial-boundary value problem for the heat equation: in a bounded
domain Ω — the matzoh ball — the normalized temperature u = u(x, t) at a
point x ∈ Ω and time t > 0 satisfies the heat equation:

(1.1) ut = ∆u in Ω × (0,+∞),

and the two conditions:

u = 1 on ∂Ω × (0,+∞),(1.2)

u = 0 on Ω × {0}.(1.3)

A conjecture, posed in [Kl] by M. S. Klamkin and referred to by L. Zalcman
in [Z] as the Matzoh Ball Soup, was settled affirmatively by G. Alessandrini
in [A1]–[A2]. In [A2], under the assumption that every point of ∂Ω is regular
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with respect to the Laplacian, it was proved that if all the spatial isothermic
surfaces of u are invariant with time then Ω must be a ball. (Of course, the
values of u vary with time on its spatial isothermic surfaces.)

The case where the homogeneous initial data in (1.3) is replaced by a
function in the space L2(Ω) was also considered in [A1]–[A2] and, with the
help of J. Serrin’s celebrated symmetry theorem for elliptic equations [Ser],
was settled in the following terms: if all the spatial isothermic surfaces of the
solution u to (1.1) with homogeneous Dirichlet boundary condition and initial
data ϕ ∈ L2(Ω) are invariant with time, then either ϕ is an eigenfunction of
the Laplacian or Ω is a ball.

The analogous question where condition (1.2) is replaced by the homo-
geneous Neumann boundary condition was examined and answered positively
(see [Sa1, Theorem 1]) with the aid of the classification theorem for isopara-
metric hypersurfaces in Euclidean space due to T. Levi-Civita and B. Segre (see
[LC], [Seg]). The method used in [Sa1] can be applied to give an alternative
proof of Alessandrini’s results.

An important observation is that, in order to prove Klamkin’s conjecture
[Kl], both methods employed in [A1]–[A2] and [Sa1] need to assume that in-
finitely many isothermic surfaces of u are invariant with time. As a natural
consequence of this remark, one may wonder if the requirement that a finite
number (possibly only one) of level surfaces of u are invariant with time implies
that Ω is a ball.

Our main result in this direction is the following.

Theorem 1.1. Let Ω be a bounded domain in RN , N ≥ 2, satisfying the
exterior sphere condition and suppose that D is a domain, with boundary ∂D,

satisfying the interior cone condition, and such that D ⊂ Ω.

Assume that the solution u to problem (1.1)–(1.3) satisfies the following
condition:

(1.4) u(x, t) = a(t), (x, t) ∈ ∂D × (0,+∞),

for some function a : (0,+∞) → (0,+∞).
Then Ω must be a ball.

We recall that Ω satisfies the exterior sphere condition if for every y ∈ ∂Ω
there exists a ball Br(z) such that Br(z) ∩ Ω = {y}, where Br(z) denotes an
open ball centered at z ∈ RN and with radius r > 0. Also, D satisfies the
interior cone condition if for every x ∈ ∂D there exists a finite right spherical
cone Kx with vertex x such that Kx ⊂ D and Kx ∩ ∂D = {x}.

When Ω is convex, we observe that there is no need to require that D

satisfies the interior cone condition. Indeed, a classical result shows that the
function x �→ log(1 − u(x, t)) is concave for each given time t > 0 (see [B-L],
[Ko]). This fact and the analyticity of u in x, imply that, for each t > 0, there
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exists a point x(t) ∈ Ω — the cold spot — such that

{x ∈ Ω : ∇u(x, t) = 0} = {x ∈ Ω : u(x, t) = min
y∈Ω

u(y, t)} = {x(t)}.

Thus, we can conclude that, with the exception of the cold spot and the bound-
ary ∂Ω, the isothermic surfaces in a convex conductor are always smooth closed
convex hypersurfaces. The following result is then an easy consequence of
Theorem 1.1.

Corollary 1.2. Let Ω be a bounded convex domain in RN , N ≥ 2, and
suppose that D is a domain such that D ⊂ Ω. Assume that the solution u to
problem (1.1)–(1.3) satisfies condition (1.4).

Then Ω must be a ball.

The proof of Theorem 1.1 exploits arguments different from the ones used
in [A1]–[A2] and [Sa1]. Our technique is essentially based on two ingredients.

One ingredient is a careful study of the asymptotic behavior of u(x, t) as
t → 0+ or, more conveniently, the asymptotic behavior as s → +∞ of the
function W = W (x, s) defined by

(1.5) W (x, s) = s

+∞∫
0

u(x, t) e−s tdt, s > 0.

Notice that W is the solution of the following elliptic boundary value problem:

∆W − s W = 0 in Ω,(1.6)

W = 1 on ∂Ω.(1.7)

A result in [Va] (see also [F-W] and [E-I]) shows that, as s → +∞, the
function − 1√

s
log W (x, s) converges uniformly on Ω to the function d = d(x)

defined by

(1.8) d(x) = dist (x, ∂Ω), x ∈ Ω.

Moreover, if u satisfies (1.4), then for any fixed s > 0, W is constant on ∂D:
indeed,

(1.9) W (x, s) = s

+∞∫
0

a(t) e−s tdt := A(s), x ∈ ∂D.

In Section 3, by using these observations, we will show two facts:

(i) Ω = D + BR(0), where BR(0) is the ball centered at the origin and with
radius

(1.10) R = lim
s→+∞

{− 1√
s

log A(s)};

in other words ∂Ω and ∂D are parallel surfaces;
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(ii) ∂D is analytic and, since ∂D is a level surface of d, also ∂Ω must be real
analytic.

The second ingredient of our proof is the balance law proved in Theo-
rem 2.1. Let G be a domain in RN ; a solution v = v(x, t) to the heat equation
in G × (0,+∞) is such that v(x0, t) = 0, for some x0 ∈ G and for every t > 0,

if and only if

(1.11)
∫

∂Br(x0)

v(x, t) dSx = 0, for every r ∈ [0, d∗) and every t > 0,

where d∗ = dist (x0, ∂G). If v is bounded, we introduce a function V = V (x, s)
defined as in (1.5) by replacing u with v and we derive from (1.11) that

(1.12)
∫

∂Br(x0)

V (x, s) dSx = 0, for every r ∈ [0, d∗) and every s > 0.

By (1.12) and the study of the asymptotic behavior of the integral in
(1.12) as s → +∞ (see Theorem 2.3) we will show in Theorem 3.2 that if the
solution u to (1.1)–(1.3) satisfies (1.4) then

(1.13)
N−1∏
j=1

[
1
R

− κj(x)
]

= constant, for every x ∈ ∂Ω.

Here, κj(x), j = 1, . . . , N −1, denotes the jth principal curvature of the surface
∂Ω at the point x ∈ ∂Ω (we refer to §2 for a definition of κj).

If N = 2, condition (1.13) directly implies that Ω is a ball. When N ≥ 3,
we derive the same conclusion with the help of A. D. Aleksandrov’s uniqueness
theorem [Alek].

Theorem 2.1 was stated without proof in [M-S2]. To make the present
paper self-contained, we present a short proof of Theorem 2.1 together with a
new proof of a result (Corollary 2.2) proved in [M-S1]. A more general version
of Theorem 2.3 will appear in a forthcoming paper ([M-S3]).

2. A balance law and an asymptotic estimate

In this section, we shall construct the two main tools for proving our
symmetry results. One of them is the following balance law.

Theorem 2.1. Let G be a domain in RN , N ≥ 2, let x0 be a point in
G and set d∗ = dist (x0, ∂G). Suppose that v = v(x, t) is a solution of the heat
equation in G × (0,+∞).

Then the following assertions are equivalent :

(i) v(x0, t) = 0 for every t ∈ (0,+∞);
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(ii) for every (r, t) ∈ [0, d∗) × (0,+∞)

(2.1)
∫

∂Br(x0)

v(x, t) dSx = 0.

Proof. By a translation, we can suppose that x0 = 0, the origin of RN .

If (2.1) holds, then v(0, t) = 0 for every t ∈ (0,+∞) clearly. If v(0, t) = 0
for every t ∈ (0,+∞), we will show that the function p = p(r, t) defined in
[0, d∗) × (0,+∞) by

(2.2) p(r, t) =
∫

∂B1(0)

v(rx, t) dSx,

which is analytic with respect to r in [0, d∗), is a solution of the initial value
problem:

pt = prr +
N − 1

r
pr in (0, d∗) × (0,+∞),(2.3)

p(0, t) = pr(0, t) = 0, t ∈ (0,+∞).(2.4)

Hence, (2.1) follows from the fact that

∂kp

∂rk
(0, t) = 0, t ∈ (0,+∞), k = 0, 1, 2, . . . ,

by induction on the integer k (see [Sa2] for a similar argument).
It is evident that p(0, t) = 0 for every t ∈ (0,+∞). As in [M-S1], by using

the heat equation in radial coordinates, we write

0 =
∫

∂B1(0)

(
∂t − ∂2

r − N − 1
r

∂r −
1
r2

∆SN−1

)
v(rx, t) dSx,

where ∆SN−1 denotes the Laplace-Beltrami operator on SN−1 ≡ ∂B1(0). Then
(2.3) follows from the fact that

∫
∂B1(0) ∆SN−1v(rx, t) dSx = 0.

Finally, from (2.3), we have

pr(0, t) =
1

N − 1
lim
r→0

r (pt − prr) = 0

for every t ∈ (0,+∞).

The following corollary provides another proof of a result first demon-
strated in [M-S1].

Corollary 2.2. Assume G, x0, d∗ and v as in Theorem 2.1. Then the
following assertions are equivalent :

(i) ∇v(x0, t) = 0 for every t ∈ (0,+∞);
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(ii) for every (r, t) ∈ [0, d∗) × (0,+∞)

(2.5)
∫

∂Br(x0)

(x − x0) v(x, t) dSx = 0.

Proof. Since each component of ∇v(x, t) satisfies the heat equation, by
Theorem 2.1 we have that (i) is equivalent to∫

∂Br(x0)

∇v(x, t) dSx = 0 for every (r, t) ∈ [0, d∗) × (0,+∞).

Integrating the latter formula with respect to r yields∫
Br(x0)

∇v(x, t) dx = 0 for every (r, t) ∈ [0, d∗) × (0,+∞),

which, by the divergence theorem, is equivalent to (2.5).

Theorem 2.3 below provides our second tool for the proofs of our symmetry
results. In order to state it, we need to introduce some notation and definitions.

Take a point x ∈ ∂Ω and a unit vector ω ∈ Tx(∂Ω) — the tangent space to
∂Ω at x — and let σ �→ γ(σ) be a smooth curve on ∂Ω, parametrized according
to its arclength σ ∈ [0, L], such that γ(0) = x and γ′(0) = ω.

Define a function Sx : {ω ∈ Tx(∂Ω) : |ω| = 1} → R by

Sx(ω) = γ′′(0) · ν(x),

where ν(x) is the interior unit normal vector to ∂Ω at x and the dot denotes
scalar product. Notice that Sx(ω) is the curvature of the curve γ at x, by the
Frenet-Serret formulae.

Let d(x) be defined by (1.8); since ν(x) = ∇d(x) and γ′(σ) · ν(γ(σ)) = 0
for every σ ∈ [0, L], by differentiating with respect to σ this latter equation,
we obtain:

γ′′(σ) · ν(γ(σ)) = −γ′(σ) · [∇2d(γ(σ)) γ′(σ)],

where ∇2d denotes the Hessian matrix of d, and hence

(2.6) Sx(ω) = −ω · [∇2d(x) ω], ω ∈ Tx(∂Ω) with |ω| = 1.

We can extend Sx to a bilinear form — the shape operator at x — on RN =
Tx(RN ) by observing that ω · [∇2d(x) ω] = 0 for every ω proportional to
ν(x) = ∇d(x); in fact, ∇2d(x) ∇d(x) = 0, since |∇d|2 = 1 on Ω (see [G-H-L]).
The critical values of Sx(ω) on the unit sphere SN−1 — the eigenvalues of
−∇2d(x) – are 0 and the principal curvatures κ1(x), . . . , κN−1(x) of ∂Ω at x

(see [G-T, Lemma 14.17]).
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Theorem 2.3. Let Ω ⊂ RN be a domain with C2 boundary ∂Ω and let
κ1, . . . , κN−1 denote the principal curvatures of ∂Ω.

Let BR(x0) ⊂ Ω be an open ball with radius R > 0 centered at x0 and sup-
pose that the set ∂Ω∩ ∂BR(x0) is made of a finite number of points p1, . . . , pK

such that κj(pk) < 1
R for every j = 1, . . . , N − 1 and every k = 1, . . . , K.

Let W = W (x, s) be the solution to problem (1.6)–(1.7). Then, the follow-
ing formula holds for every function ϕ continuous on RN :

lim
s→+∞

s
N−1

4

∫
∂BR(x0)

ϕ(x) W (x, s) dSx(2.7)

= (2π)
N−1

2

K∑
k=1

ϕ(pk)




N−1∏
j=1

[
1
R

− κj(pk)]




− 1
2

.

The proof of Theorem 2.3 is based on Lemma 2.4 below, where we show
that the two functions

(2.8) W±
ε (x, s) = exp{−

√
s(1 ∓ ε) d(x)},

where d(x) is defined by (1.8), provide respectively an upper and a lower barrier
for W in Ω for large values of s.

Lemma 2.4. Let Ω be a bounded domain in RN with C2 boundary ∂Ω.
Let W (x, s) be the solution to (1.6)–(1.7).

Then, for every ε > 0, there exists a positive number sε such that

(2.9) W−
ε (x, s) ≤ W (x, s) ≤ W+

ε (x, s)

for every x ∈ Ω and every s ≥ sε, where W−
ε (x, s) and W+

ε (x, s) are defined
in (2.8).

Proof. Choose a number δ > 0 such that the function d = d(x) defined in
(1.8) is of class C2 in the set Ωδ where

(2.10) Ωδ = {x ∈ Ω : d(x) < δ}.

Let W±
ε (x, s) be given by (2.8). A straightforward computation gives

∆W±
ε − s W±

ε = ∓ε
√

s {
√

s ±
√

(1 ∓ ε)
ε

∆d} W±
ε in Ωδ.

Set Mδ = max
Ωδ

|∆d|; if s ≥ 1+ε
ε2 M2

δ , then

(2.11)
∆W+

ε − s W+
ε ≤ 0

∆W−
ε − s W−

ε ≥ 0
in Ωδ.
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Since the function − 1√
s
log W (x, s) converges uniformly on Ω to d(x) as

s → +∞, (see [Va], [E-I]), there exists a number s∗ > 0 such that

−δ(1 −
√

1 − ε) ≤ − 1√
s

log W (x, s) − d(x) ≤ δ(
√

1 + ε − 1), x ∈ Ω,

for every s ≥ s∗. Hence, since d(x) ≥ δ for every x ∈ Ω \ Ωδ, we obtain

(2.12) W−
ε (x, s) ≤ W (x, s) ≤ W+

ε (x, s), x ∈ Ω \ Ωδ,

for every s ≥ s∗. Moreover,

(2.13) W−
ε (x, s) = W (x, s) = W+

ε (x, s) = 1, x ∈ ∂Ω,

for every s > 0, clearly.
Choose sε = max(s∗, 1+ε

ε2 M2
δ ). Then by the comparison principle, from

(2.11), (2.12) and (2.13), we have

(2.14) W−
ε (x, s) ≤ W (x, s) ≤ W+

ε (x, s), x ∈ Ωδ,

for every s ≥ sε. Combining (2.14) with (2.12) yields (2.9).

Proof of Theorem 2.3. We will show preliminarily that

lim
s→+∞

s
N−1

4

∫
∂BR(x0)

ϕ(x) e−
√

s d(x) dSx(2.15)

= (2π)
N−1

2

K∑
k=1

ϕ(pk)




N−1∏
j=1

[
1
R

− κj(pk)]




− 1
2

.

Let ph ∈ {p1, . . . , pK}; by using a partition of unity, we can suppose that
supp ϕ does not contain the point 2x0 − ph and any pk different from ph.

Let RN−1 
 σ = (σ1, . . . , σN−1) �→ x(σ) ∈ ∂BR(x0) be a parametrization
of ∂BR(x0) such that x(0) = ph; a convenient choice of x(σ) is the stereographic
projection from the point 2x0 − ph onto the tangent space to ∂BR(x0) at ph.
Precisely, take an orthonormal basis ξ1, . . . , ξN of RN with ξN = (x0 − ph)/R,
and put:

x(σ) =
2R|σ|2

4R2 + |σ|2 ξN +
4R2

4R2 + |σ|2
N−1∑
j=1

σjξ
j + ph.

By this change of coordinates, the integral in (2.15) becomes∫
∂BR(x0)

ϕ(x) e−
√

s d(x) dSx =
∫

RN−1

ϕ(x(σ)) e−
√

s d(x(σ))J(σ) dσ,

where

J(σ) ≡

√√√√det

(
∂x(σ)
∂σi

· ∂x(σ)
∂σj

)
=

(
4R2

4R2 + |σ|2

)N−1

,
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since

(2.16)
∂x(σ)
∂σi

· ∂x(σ)
∂σj

=

(
4R2

4R2 + |σ|2

)2

δij , i, j = 1, . . . , N − 1.

Here δij is Kronecker’s symbol.
Let d∗(σ) = d(x(σ)). Then d∗(0) = 0. We will later observe that

∇d∗(0) = 0 and ∇2d∗(0) is positive definite. Moreover, since supp ϕ does
not contain any pk different from ph, we may assume that d∗(σ) > 0 if σ �= 0.

Hence, by Laplace’s method (see [deB, p. 71] for example), or by the stationary
phase method (see [Ev, pp. 208–217] for example), we infer that

lim
s→+∞

s
N−1

4

∫
RN−1

ϕ(x(σ))e−
√

s d(x(σ))J(σ) dσ(2.17)

= (2π)
N−1

2 ϕ(ph) J(0) (det∇2d∗(0))−
1
2 .

Formula (2.15) will result from (2.17) by observing that J(0) = 1 and that

(2.18) det∇2d∗(0) =
N−1∏
j=1

[
1
R

− κj(ph)],

as it will be clear from the following argument.
Differentiating d∗(σ) twice yields:

∂2d∗

∂σi∂σj
(σ) =

∂x

∂σi
(σ) ·

(
∇2d(x(σ))

∂x

∂σj
(σ)

)
(2.19)

+ ∇d(x(σ)) · ∂2x

∂σi∂σj
(σ), i, j = 1, . . . , N − 1,

for every σ ∈ RN−1, where the dot stands for scalar product of vectors in RN .

Since x(σ) ∈ ∂BR(x0) for every σ ∈ RN−1, we obtain:

∂x

∂σi
(σ) · (x(σ) − x0) = 0, i = 1, . . . , N − 1,

∂2x

∂σi∂σj
(σ) · (x(σ) − x0) +

∂x

∂σi
(σ) · ∂x

∂σj
(σ) = 0, i, j = 1, . . . , N − 1,

for every σ ∈ RN−1. The fact that −∇d(ph) = (x(0) − x0)/R then yields that

∇d(ph) · ∂x

∂σi
(0) = 0, i = 1, . . . , N − 1,

∇d(ph) · ∂2x

∂σi∂σj
(0) =

1
R

∂x

∂σi
(0) · ∂x

∂σj
(0), i, j = 1, . . . , N − 1,
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and hence

∇d∗(0) = 0,

∂2d∗

∂σi∂σj
(0) =

∂x

∂σi
(0) ·

{[
∇2d(ph) +

1
R

I

]
∂x

∂σj
(0)

}
, i, j = 1, . . . , N − 1,

by (2.19), where I is the N × N identity matrix.
By (2.16), the vectors ∂x

∂σi
(0), i = 1, . . . , N −1, make an orthonormal basis

of the tangent space Tph
(∂Ω) = Tph

(∂BR(x0)); therefore, we conclude that the
eigenvalues of ∇2d∗(0) are 1

R − κj(ph) (j = 1, . . . , N − 1) and hence (2.18)
holds.

We now prove formula (2.7). It suffices to prove it for any nonnegative
ϕ, since any ϕ can be written as ϕ = ϕ+ − ϕ− where ϕ+ = max{ϕ, 0} and
ϕ− = max{−ϕ, 0}.

By Lemma 2.4, we have for every s ≥ sε and for every nonnegative ϕ:∫
∂BR(x0)

ϕ(x) W−
ε (x, s) dSx ≤

∫
∂BR(x0)

ϕ(x) W (x, s) dSx ≤
∫

∂BR(x0)

ϕ(x) W+
ε (x, s) dSx;

then, (2.15) and the definition (2.8) of W±
ε (x, s) give

lim sup
s→+∞

s
N−1

4

∫
∂BR(x0)

ϕ(x) W (x, s) dSx

≤ (
2π√
1 − ε

)
N−1

2

K∑
k=1

ϕ(pk)




N−1∏
j=1

[
1
R

− κj(pk)]




− 1
2

and

lim inf
s→+∞

s
N−1

4

∫
∂BR(x0)

ϕ(x) W (x, s) dSx

≥ (
2π√
1 + ε

)
N−1

2

K∑
k=1

ϕ(pk)




N−1∏
j=1

[
1
R

− κj(pk)]




− 1
2

,

for every ε > 0. By letting ε tend to 0, we obtain (2.7) and the proof is
concluded.

3. Symmetry results

In Lemma 3.1 below, we prove analyticity of ∂D and ∂Ω by using our
balance law.
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Lemma 3.1. Let Ω be a bounded domain in RN , N ≥ 2, satisfying the
exterior sphere condition and suppose that D is a domain satisfying the interior
cone condition and such that D ⊂ Ω.

Assume that the solution u = u(x, t) to problem (1.1)–(1.3) satisfies con-
dition (1.4). Let R be the positive constant given by (1.10).

Then the following assertions hold:

(i) for every x ∈ ∂D, d(x) = R, where d is defined by (1.8);

(ii) ∂D is analytic;

(iii) ∂Ω is analytic and ∂Ω = {x ∈ RN : dist(x, D) = R};

(iv) the mapping : ∂D 
 x �→ y(x) ≡ x − R ν∗(x) ∈ ∂Ω is a diffeomorphism,
where ν∗(x) denotes the interior unit normal vector to ∂D at x ∈ ∂D;

(v) for every x ∈ ∂D, ∇d(y(x)) = ν∗(x) and BR(x) ∩ ∂Ω = {y(x)};

(vi) let κj(y), j = 1, . . . , N − 1 denote the jth principal curvature at y ∈ ∂Ω
of the analytic surface ∂Ω; then κj(y) < 1

R , j = 1, . . . , N − 1, for every
y ∈ ∂Ω.

Proof. (i) As already observed, under our assumptions, for each fixed
s > 0, the function W = W (x, s), defined by (1.5), is the solution to problem
(1.6)–(1.7) and satisfies (1.9). Since Ω enjoys the exterior sphere condition, we
can apply a result in [Va] (see also [E-I] and [F-W]): as s → +∞, the function
− 1√

s
log W (x, s) converges uniformly on Ω to the function d(x) defined by (1.8),

and hence we get (i).

(ii) It suffices to show that, for every point x ∈ ∂D, there exists a time
t∗ > 0 such that ∇u(x, t∗) �= 0; then, analyticity of ∂D will follow from ana-
lyticity of u with respect to the space variable.

Assume by contradiction that there exists a point x0 ∈ ∂D such that
∇u(x0, t) = 0 for every t > 0. Since u is continuous up to ∂Ω × (0,+∞), by
Corollary 2.2 (ii), we can infer that∫

∂BR(x0)
(x − x0) u(x, t) dSx = 0 for every t > 0;

hence

(3.1)
∫

∂BR(x0)
(x − x0) W (x, s) dSx = 0 for every s > 0,

in view of (1.5).
On the other hand, since D satisfies the interior cone condition, there

exists a finite right spherical cone K with vertex at x0 such that K ⊂ D and
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K ∩ ∂D = {x0}. By translating and rotating if needed, we can suppose that
x0 = 0 and that K is the set {x ∈ Bρ(0) : xN < −|x| cos θ}, where ρ ∈ (0, R)
and θ ∈ (0, π

2 ).
Since K ⊂ D and K ∩ ∂D = {0}, assertion (i) implies that

(3.2) d(x) > R for every x ∈ K.

The set defined by

(3.3) V = {x ∈ ∂BR(0) : xN ≥ R sin θ}
is such that

(3.4) ∂Ω ∩ ∂BR(0) ⊂ V,

because, otherwise, there would be a point in K contradicting (3.2).
Thus, from (3.4) it follows that we can choose a number δ > 0 such that

(3.5) d(x) ≥ 5δ for every x ∈ ∂BR(0) ∩ {xN ≤ 0}.
Since we know that − 1√

s
log W (x, s) converges uniformly on Ω to d(x) as

s → +∞, we can choose s∗ > 0 such that∣∣∣∣− 1√
s

log W (x, s) − d(x)
∣∣∣∣ < δ,

for every x ∈ Ω and every s ≥ s∗. This latter inequality, together with (3.3),
(3.4), and (3.5), gives, for every s ≥ s∗, the following two estimates:∫

∂BR(0)∩{xN≤0}

xN W (x, s) dSx ≥ −1
2
R e−4δ

√
s HN−1 (∂BR(0)) ,(3.6)

∫
V ∩Ω2δ

xN W (x, s) dSx ≥ R sin θ e−3δ
√

s HN−1
(
V ∩ Ω2δ

)
.

Here HN−1(·) denotes the (N − 1)-dimensional Hausdorff measure and Ω2δ is
defined by (2.10).

A consequence of (3.6) is that, for every s ≥ s∗,∫
∂BR(0)

xN W (x, s) dSx

≥
∫

V ∩Ω2δ

xN W (x, s) dSx +
∫

∂BR(0)∩{xN≤0}
xN W (x, s) dSx

≥ R e−3δ
√

s
[
sin θ HN−1

(
V ∩ Ω2δ

)
− 1

2
e−δ

√
s HN−1 (∂BR(0))

]
.

Therefore, we obtain a contradiction by observing that the first term of
this chain of inequalities equals zero, by (3.1), while the last term can be made
positive by choosing s > 0 sufficiently large.

(iii), (iv), and (v). Let

Γ = {x ∈ R
N : dist (x, D) = R};
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it is clear that Γ ⊂ ∂Ω. Take any point x ∈ ∂D. Then, there exists a unique
point y ∈ ∂Ω such that BR(x)∩∂Ω = {y}. Indeed, since ∂D is analytic by (ii),
if ỹ ∈ BR(x) ∩ ∂Ω and ỹ �= y, then

y − x

|y − x| = −ν∗(x) =
ỹ − x

|ỹ − x| ,

where ν∗(x) is the interior unit normal vector to ∂D at x, which is a contra-
diction. Since Ω enjoys the exterior sphere property, there exists a ball Br(z)
such that Br(z) ∩ Ω = {y}, and hence Br(z) ∩ BR(x) = {y}. Therefore,

(3.7) dist (z, D) = r + R and Br+R(z) ∩ D = {x}.
Let κ∗

j , j = 1, . . . , N − 1, denote the principal curvatures of the surface ∂D;
(3.7) implies that

κ∗
j (x) ≥ − 1

r + R
, j = 1, . . . , N − 1.

Since κ∗
j > − 1

R on ∂D, for every j = 1, . . . , N − 1, Γ is an analytic hypersur-
face diffeomorphic to ∂D (see [G-T, Lemma 14.16]), and hence Γ equals ∂Ω.

Assertions (iii), (iv), and (v) then follow at once.

(vi) Take any point y ∈ ∂Ω. Assertions (iii) and (iv) imply that there
exists a unique x ∈ ∂D such that BR(y) ∩ D = {x}. Since ∂D is analytic, D

satisfies the interior sphere condition, that is there exists a ball Br(z) ⊂ D

such that Br(z) ∩ ∂D = {x}. Therefore,

(3.8) d(z) = r + R and Br+R(z) ∩ ∂Ω = {y},
and consequently

κj(y) ≤ 1
r + R

, j = 1, . . . , N − 1.

Assertion (vi) is proved.

Theorem 3.2. Let Ω be a bounded domain in RN , N ≥ 2, satisfying
the exterior sphere condition and suppose that D is a domain satisfying the
interior cone condition with boundary ∂D and such that D ⊂ Ω.

Assume that the solution u = u(x, t) to problem (1.1)–(1.3) satisfies con-
dition (1.4).

Then, ∂Ω is analytic and (1.13) holds with R given by (1.10). In particular,
if N = 2, Ω must be a ball.

Proof. First of all, by Lemma 3.1, both ∂Ω and ∂D are analytic. Let p

and q be two distinct points in ∂Ω and let

(3.9) P = p + R ∇d(p), Q = q + R ∇d(q).

Assertions (iv) and (v) from Lemma 3.1 guarantee that P, Q ∈ ∂D and P �= Q.

(In fact, p = y(P ) and q = y(Q) in (iv).)
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For x ∈ BR(0), consider the function

(3.10) v(x, t) = u(x + P, t) − u(x + Q, t);

v = v(x, t) satisfies the heat equation in BR(0) × (0,+∞) and by (1.4)

v(0, t) = u(P, t) − u(Q, t) = 0,

for every t > 0. Since v is continuous up to ∂BR(0)× (0,+∞), by Theorem 2.1
we obtain ∫

∂BR(0)

v(x, t) dSx = 0

for every t > 0, and hence∫
∂BR(P )

u(x, t) dSx =
∫

∂BR(Q)

u(x, t) dSx

for every t > 0. Therefore, in view of (1.5), we have

(3.11)
∫

∂BR(P )

W (x, s) dSx =
∫

∂BR(Q)

W (x, s) dSx

for every s > 0. Assertions (v) and (vi) from Lemma 3.1 make sure that we
can apply Theorem 2.3 (with ϕ = 1) to (3.11). We multiply both sides of
(3.11) by s

N−1
4 and take the limits as s → +∞. Since ∂BR(P )∩ ∂Ω = {p} and

∂BR(Q) ∩ ∂Ω = {q}, after some manipulation, we obtain:

N−1∏
j=1

[
1
R

− κj(p)
]

=
N−1∏
j=1

[
1
R

− κj(q)
]
,

that is (1.13) holds.

We quote A. D. Aleksandrov’s uniqueness theorem from [Alek, p. 412],
adjusted to our notations. A special case of this theorem is the well-known
Soap-Bubble Theorem (see also [R]).

Theorem 3.3 (Aleksandrov). Let Φ = Φ(κ1, · · · , κN−1) be a continu-
ously differentiable function, defined for κ1 ≥ · · · ≥ κN−1, and subject to the
condition ∂Φ

∂κi
> 0 (i = 1, · · · , N − 1).

Suppose that in RN we have a twice-differentiable closed surface S without
self -intersections and with bounded principal curvatures.

If on the surface S the function Φ of its principal curvatures κ1, · · · , κN−1

has at all points one and the same value, then S is a sphere.

Proof of Theorem 1.1. By Theorem 3.2, it suffices to consider the case
where N ≥ 3.
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We set

(3.12) Φ = Φ(κ1, · · · , κN−1) = −
N−1∏
j=1

[
1
R

− κj

]

and observe that

∂Φ
∂κi

> 0 (i = 1, · · · , N − 1), if max
1≤j≤N−1

κj <
1
R

.

Since condition (1.13) holds by Theorem 3.2, we infer that the function Φ is
constant on ∂Ω.

Therefore, by applying Theorem 3.3 to each connected component of ∂Ω,

we conclude that ∂Ω must be a sphere.

Remark. The method of proof of Theorem 3.3 is called Aleksandrov ’s
reflection principle or the method of moving planes, which is based on the
maximum principle for elliptic partial differential equations of second order.

In fact, by using local coordinates, the condition Φ(κ1, . . . , κN−1) = con-
stant on the surface S can be converted into a second order partial differential
equation which is of elliptic type, since ∂Φ

∂κi
> 0 (i = 1, · · · , N − 1). In the case

the function Φ is given by (3.12), we obtain an equation of Monge-Ampère
type.
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