
Chapter twenty-eight

Understanding the impact

of invasive crayfish

Francesca Gherardi

INTRODUCTION

In a rather provocative article, Parker et al. (1999) claimed that, up to then,

little scientific attention had been placed on developing either theoretical or

operational generalizations about the impact of invasive species. Specifically, the

authors lamented the lack of a general framework in which to discuss ‘‘what

impact is, or how we decide that the non-indigenous species exceeds that of

another, or how we decide that the impact of a particular species is greater in

one place than in another’’ (Parker et al. 1999, p. 4). Today, this scenario seems

to have changed for several freshwater non-indigenous species (NIS), e.g. the

zebra mussel Dreissena polymorpha (Pallas) (e.g. Karatayev et al. 2002, Ricciardi

2003), but it has remained practically unaltered for other widely diffused

bioinvaders that have, however, attracted much scientific attention in these

latest years, such as freshwater crayfish.

Crayfish are the largest and amongst the longest lived invertebrate organisms

in temperate freshwater environments, and often exist at high densities. Most

species are keystone consumers (Nyström et al. 1996), feeding on benthic

invertebrates, detritus, macrophytes, and algae in lotic and lentic waters (e.g.

Whitledge and Rabeni 1997). They also constitute the main prey of several

species, including otter (Slater and Rayner 1993), fish (e.g. Blake 1995), and

birds (Rodrı́guez et al. 2005). Because of their capability to integrate into the

food web at many levels and to persist on the substantial energy reserves of the

detrital pool, crayfish are good candidates for invading aquatic systems (Moyle

and Light 1996).
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Crayfish native biodiversity is large but unequally distributed throughout

the continents. Over 600 species have been described worldwide (Crandall

2002), the majority occurring in North and Central America (75% of the world’s

total). About 100 indigenous species live in the southern hemisphere, five in

Europe, four in Asia, and none in continental Africa and in Antarctica (Hobbs

1988, Fitzpatrick 1995, Taylor et al. 1996, Taylor 2002). We know today that

much of their present distribution is due to human intervention, even for the

most celebrated ‘‘indigenous’’ species. For instance, as reported by Linnaeus

(1746, p. 358) and confirmed by Pontoppidan (1775, p. 175), the noble crayfish

Astacus astacus (Linnaeus) seems to have been imported into Sweden from Russia

by John III (King of Sweden since 1568) and later into Finland (Westman 1973).

Similarly, the white-clawed crayfish Austropotamobius pallipes (Lereboullet) might

have been introduced into Ireland by monastic orders from France in the 12th

century, as suggested by Reynolds (1997). Genetic evidence for this hypothesis

has recently been obtained by Gouin et al. (2003).

In the last few decades, as a result of the exponential growth in the volume

and complexity of the international trade, the world distribution of crayfish has

dramatically changed (e.g. Pérez et al. 1997) mostly due to transcontinental or

interstate translocations of a still relatively small proportion of crayfish species

(hereafter referred to as NICS, i.e. non-indigenous crayfish species) – 20 accord-

ing to Hobbs et al. (1989), but increasing all the time. Human-mediated trans-

locations have been often accidental (in ballast, via canals, by escapes from

holding facilities) but the introduction of some crayfish species was deliberate

(for aquaculture and stocking, for food, as aquarium pets, as live bait, and for

snail and weed control; see Lodge et al. 2000, Chapter 2). In Africa, the

introduction of North American and Australian species from the 1970s on-

wards (Arrignon et al. 1990) was aimed to broaden the range of commercial

fisheries in lakes and dams (Mikkola 1996) and to control freshwater snails that

carry human schistosomiasis (Hofkin et al. 1991, Chapter 4). Indeed, most

crayfish introductions were motivated by our desire to eat them (Holdich

1999a) that in its turn generates economic interests. Some species are in fact

highly valued as food, and in countries like Scandinavia and Louisiana feasting

on them has become a cultural icon. As a consequence, for instance in Europe,

wild stocks are managed, leading to annual catches of more than 4,000 tons,

and some species are cultivated with a total production of about 150 tons

(Ackefors 1999).

Hence, crayfish introductions have certainly provided economic benefits

to several countries, because of (1) restoring the productivity of indigenous

stocks (e.g. in Sweden), (2) compensating for their lack (e.g. in Spain), or (3)

developing extensive or semiintensive cultivation systems (e.g. in the People’s

Republic of China) (Ackefors 1999). However, once introduced for stocking and

aquaculture and kept in outdoor ponds, crayfish of several species almost

inevitably escape (Hobbs et al. 1989) and a proportion of them is able to

establish self-sustaining populations in the colonized habitats. The invasion
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process may continue: while some populations remain localized around the

point of introduction, others spread widely, becoming invasive (Kolar and

Lodge 2001). Compared to other aquatic species, the spread of this taxon is

favored by the ability of some species to stay for relatively long periods out of

water and to travel long distances, sometimes overland [e.g. Procambarus clarkii

(Girard), Gherardi and Barbaresi 2000]. Contradicting the predictions made by

the tens rule (Williamson 1996), the majority of the naturalized populations has

the potential to become noxious. For instance, of the eight NICS imported into

Britain since 1970 five have been found in the wild and four of these have

become established, three being now officially classified as pests (Holdich

1999b). Today, the list of species that are causing concern in the introduced

areas includes Pacifastacus leniusculus (Dana) in California (USA), Europe, and

Japan, Orconectes limosus (Rafinesque) in Europe, Orconectes rusticus (Girard) in

North America, P. clarkii in Africa, California, Europe, and Japan, Astacus

leptodactylus Eschscholtz in some European countries, and Cherax destructor

Clark in Africa and Australia (Holdich 1999a). Other species, like Cherax quadri-

carinatus (von Martens) in Ecuador, are expected to lead problems in the near

future (Romero 1997).

Concerns relate to the modifications that NICS may induce in the structure of

freshwater food webs (e.g. Lodge et al. 1998) and the economic damage they

may inflict through, for instance, reduced recruitment of commercially valuable

fish stocks (Nyström 1999). In the short term, they may decrease the biomass

and species richness of macroinvertebrates, macrophytes, and periphyton

(e.g. Lodge and Lorman 1987) and, in the long term, they may contribute to

the decline of several invertebrate taxa, including indigenous crayfish species,

amphibians, and fish (e.g. Guan and Wiles 1997, Chapter 29). Once added to a

system, NICS have the potential to impose ‘‘considerable environmental stress’’

and, in most instances, they may induce ‘‘irreparable shifts in species diversity’’

(Hobbs et al. 1989, p. 309).

In this chapter, the literature focusing on the multiform ‘‘environmental

stress’’ that NICS have been found to pose to the colonized areas around the

world will be reviewed, as well as the ‘‘shifts in species diversity’’ that they have

caused. In addition, information about their effects upon human economy and

health will be discussed. By identifying several gaps in the existing literature,

I will suggest the directions that research should take to extend and strengthen

the current knowledge of the impact of NICS and to help prioritize interventions

in freshwater systems.

THE LITERATURE ON THE IMPACT OF NICS

Since the 1980s, the effects exerted by NICS on the environment, indigenous

species, national economies, and human health have been abundantly

publicized (e.g. Holdich 1988, 1999a, Hobbs et al. 1989, Gherardi and Holdich
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1999, Lodge et al. 2000). The International Association of Astacology largely

contributed in heightening awareness about the negative impact of NICS

by adopting a resolution in 1987 (VII Symposium Lausanne, Switzerland),

in which governments were recommended to ‘‘find the means to stop the

importation of living crayfish into their countries for any purpose . . . except

for governmentally approved research, restockings or introductions’’. This reso-

lution was subsequently renewed (in: 1997, Florence, Italy; 1998, Amsterdam,

Holland and Augsburg, Germany, and 2002, Querétaro, Mexico).

The consequent surge of interest in NICS encouraged more proactive research

and led, since 1987, to a sharp increase, mostly in Europe, in the number of

publications, that included 18 reviews (e.g. Holdich 1999a, Lodge et al. 2000,

Nyström 2002, Westman 2002, Geiger et al. 2005), focused on describing the

impact of some NICS (Fig. 1), particularly P. clarkii and P. leniusculus (Fig. 2).

The studies that have attempted to quantify impacts have often done so using

an experimental approach (reviewed in Chapter 30). However, short-term

researches largely prevailed: only 12% of the 85 quantitative studies here

analyzed monitored the effects of NICS on a system for more than 1 year.

Some of these studies adopted classical in situ enclosure/exclosure experiments

to analyze the effects of NICS on the abundance of several components of the
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Fig. 1 The rise in the number of publications that described the impact of non-

indigenous crayfish species (NICS). Papers (reaching a total of 103) were identified via

keywords from Biosis (1967–February 2006), ASFA (1960–March 2006), and Zoo-

logical Record (1978–March 2006). Only papers reporting quantitative data published

before 2006 (83) are included here.
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resident community. Lodge et al. (1994) pioneered this experimental approach

by revealing the control of O. rusticus on the trophic interactions existing in the

littoral zone of some North American lakes.

Several other studies applied a correlative approach by comparing NICS and

indigenous crayfish species for growth rate, densities, vulnerability to predators,

predatory ability, and behavioral dominance over food and shelter. On the one

hand, the impact exerted on macrophytes and benthic invertebrate abundance

has been elegantly compared between invasive and indigenous species through

a combination of field and laboratory experiments (e.g. Olsen et al. 1991). On

the other, to test the ability of several NICS to outcompete indigenous crayfish,

experiments were mostly run in the laboratory (e.g. Söderbäck 1991, Holdich

et al. 1995, Vorburger and Ribi 1999, Gherardi and Cioni 2004).

Ideally, much knowledge of the effects of NICS on the community should

derive from the comparison (1) of one site before and after their invasion and/or

(2) of different sites, with and without an invader present, at the same time.

Unfortunately, only a small minority of studies (e.g. Rodrı́guez et al. 2005,

McCarthy et al. 2006) adopted this comparative approach, in large part because

the interest in an invasive species most often arises after it has spread exten-

sively and only when it has already had an impact. An obvious drawback of

these studies is that results may be confounded by temporal or spatial trends

in the environment such as pollution, harvesting, or climate change; they

should therefore be accompanied by a thorough documentation of other

contemporary modifications in the habitat.
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Fig. 2 The number of publications describing the impact of NICS (103, see Fig. 1)

distributed among crayfish species. Cd¼Cherax destructor; Cq¼C. quadricarinatus;

Ol¼Orconectes limosus; Or¼O. rusticus; Ov¼O. virilis; Pc¼Procambarus clarkii;

Pl¼Pacifastacus leniusculus.
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Finally, there is a surprising lack in the literature on NICS of any quantitative

estimate of the relative impact of a species between its native and invaded

habitats. Indeed, this comparison would be critical to assess the varying success

of an invasive species. Evolutionary history in fact plays a major role in this

process and invasive species may display greater impacts in systems without

co-evolved predators, parasites, and prey (see e.g. the ‘‘enemy release’’ hypoth-

esis, Torchin et al. 2003). This is well illustrated by the impact of the

North American P. leniusculus in the UK (Holdich et al. 2004).

THE FIVE LEVELS OF ECOLOGICAL IMPACTS

According to Parker et al. (1999), the impact of an invader can be measured at

five levels of biological complexity: (1) effects on individuals (life history, morph-

ology, behavior); (2) population dynamic effects (abundance, population

growth, etc.); (3) genetic effects (including hybridization); (4) community effects

(species richness, diversity, trophic structure); and (5) effects on ecosystem

processes (nutrient availability, primary productivity, etc). An overview of the

literature on NICS clearly shows that some of these effects are documented

much more than others (Fig. 3). The most understudied impacts were genetic

changes that, on the contrary, should require much more attention by invasion

biologists. They may in fact give rise to new invasive forms, induce decline of the
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Fig. 3 The number of studies (85) reporting quantitative data on the impact of NICS

at five different biological levels: individual (ind), population (pop), genetic (gen), com-

munity (com), and ecosystem function (eco). Single studies that reported impacts at more

than one level were classified on the basis of the most prominent one.
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indigenous species through e.g. introgressive hybridization, and eventually lead

to long-term evolutionary shifts (Cox 2004).

The best examples of studies, classified at the biological level, which have

quantified the impact of NICS, are reviewed below.

Effects on individuals and populations

The development of predator-prey or competitive interactions is expected to

induce changes in the life history, morphology, and behavior of the interacting

species. These changes are obviously adaptive as they should reduce the risks for

the ‘‘weaker’’ species to be preyed upon or to be outcompeted by the ‘‘stronger’’

species (e.g. Lima 1998). When, on the contrary, no adaptation appears or the

changes undergone do not suffice to develop a balance between the prey and the

new predator or between competitors, the abundance, population dynamics, or

distribution of the ‘‘weaker’’ species – usually the indigenous species – may be

strongly affected. The most extreme effect at the population level is extinction, at

the local or even at the global level.

Several studies have focused on an NICS acting as a predator upon a naı̈ve

species, either invertebrate or vertebrate. Most often they showed lethal or

sublethal effects. For instance, P. leniusculus easily consumes Lymnaea snails

and induces tail-cuts to Rana temporaria (Linnaeus) tadpoles (Nyström et al.

2001); P. clarkii (1) is able to prey upon the embryos and free swimming larvae

of up to 13 amphibian species (Cruz and Rebelo 2005); (2) takes a significantly

shorter time than the indigenous A. pallipes to capture Triturus vulgaris

(Linnaeus) larvae and Rana esculenta Linnaeus tadpoles (Renai and Gherardi

2004); or (3) is not deterred by toxins contained in Californian newt [Taricha

torosa (Rathke)] eggs (Gamradt and Kats 1996).

Obviously, lethal or sublethal effects exerted by NICS are mostly due to the

relatively short coevolutionary history between them and the naı̈ve prey that

does not allow the latter to develop efficient antipredator behaviors, morpho-

logical structures, or chemical repellents. The absence of these mechanisms has

been evoked to explain, for instance, the sharp decline of the California newt

recorded in three streams in the Santa Monica Mountains of southern California

after about 10 years from the introduction of P. clarkii (Gamradt and Kats

1996).

However, historical coexistence in the area of origin seems not to be the

only prerequisite for the exhibition of efficient antipredator behaviors: notwith-

standing their common history in the area of origin, naturalized mosquitofish

[Gambusia holbrooki (Girard)], once exposed to visual and chemical stimuli of

P. clarkii in a confined environment in Portugal, did not decrease their activity

and did not avoid spaces with high predation risks (Leite et al. 2005). Mosquito-

fish were therefore subject to a strong predation pressure by the NICS as

confirmed from the frequent occurrence of their remains in crayfish gut content

(Gutiérrez-Yurrita et al. 1998, Correia 2003).
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Often, prior experience with a predator species is not required by the prey to

exhibit avoidance behaviors. These are on the contrary stimulated by chemical

cues released by injured conspecifics (alarm odors). For instance, when exposed

to alarm odors, the snail Physa gyrina (Say) significantly increases its use of

spatial refugia by moving to the waterline, floating at the surface, or crawling

out of the water (McCarthy and Dickey 2002). These behaviors were indepen-

dent of the predator’s identity and therefore were exhibited in the presence of

both the known Orconectes juvenilis (Hagen) and the unknown P. clarkii.

In only one case was it found that the prey, although naı̈ve, had quickly

acquired the ability to recognize an NICS as a predator. An ecological study,

conducted in Pennsylvania (USA), revealed that the snail P. gyrina moved under

cover in the presence of pumpkinseed sunfish but moved to the water surface in

the presence of O. rusticus; the combined effects of fish and crayfish were

intermediate to their individual effects (Turner et al. 2000). On the one hand,

these results can explain why periphyton standing crop in covered habitats was

the lowest in the fish treatment when covered habitat use by snails was the

highest, and the highest in the control and in the crayfish treatment when

covered habitat use by snails was the lowest. On the other hand, they showed

that the prey has learned some stimuli emitted by the NICS (possibly its odor)

and behaves accordingly to avoid it. This is not the typical response shown by

the snail to a generalized predator. On the contrary, the snail seems to be able to

distinguish the specific identity of O. rusticus with respect to fish predators. Other

behavioral responses to predatory NICS by potential prey, leading, for instance,

to changes in their microhabitat selection, diurnal activity or foraging patterns,

have never been studied.

As regards to competitive interactions, few studies have analyzed the effects

induced on non-crayfish species by resource competition with NICS. In the

laboratory setting, Carpenter (2005) conducted density manipulation experi-

ments to analyze the competition between O. virilis, established in the Colorado

River basin, and two endemic fish species, the Gila chub, Gila intermedia

(Girard), and the flannelmouth sucker, Catostomus latipinnis (Baird and Girard).

The results showed that growth of flannelmouth suckers, but not of Gila chub,

was affected by crayfish more than by intraspecific competition, leading to the

conclusion that each case of competitive interaction should be taken as a

separate case. At a population level, the ability of crayfish to outcompete some

fish species, for instance by expelling individuals from their shelters and there-

fore by making them more vulnerable to piscivorous fish, may have detrimental

effects. In six riffles of the River Great Ouse (England), the numbers of

P. leniusculus and of the two dominant benthic fish, bullhead [Cottus gobio

(Linnaeus)] and stone loach [Noemacheilus barbatulus (Linnaeus)], were

inversely correlated (Guan and Wiles 1997; other examples in Chapter 29).

The most commonly documented impact of NICS on competitive interactions

is the agonistic dominance they show over indigenous crayfish species (Chapter

31), with the only known exception of Astacopsis franklinii (Gray), endemic to
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Tasmania, which dominated equally sized specimens of the non-indigenous C.

destructor (Elvey et al. 1996). When exposed in the laboratory to an NICS,

indigenous crayfish changed their posture and behavior, quickly assuming the

role of subordinates [e.g. Procambarus acutus acutus (Girard) vs. P. clarkii, Gher-

ardi and Daniels 2004]. When, however, stable dominance hierarchies between

NICS and indigenous crayfish species cannot be formed, as observed in the dyad

P. clarkii and A. pallipes (Gherardi and Cioni 2004), the repetition of escalated

fights may lead to injuries usually suffered by the weaker indigenous crayfish

followed by its likely death. Indeed, NICS, e.g. P. leniusculus, may prey upon the

indigenous A. pallipes and A. leptodactylus, and predation may have contributed

to the gradual decline of A. pallipes, at least in England (Holdich and Doma-

niewski 1995).

Dominance hierarchies usually translate into a differential capability to com-

pete for resources, such as shelters. It is known that shelters act as a ‘‘principal

resource bottleneck’’ in crayfish populations (Hobbs 1991) serving to minimize

predation risks and in some species to attract mates (Gherardi 2002). They are

usually limited so that an inferior ability to compete for them may lead to a

higher susceptibility to predation in subordinate species, being therefore the

cause of their increased mortality (Gherardi and Cioni 2004). When tested in

the laboratory, dominant NICS were most often found to competitively exclude

subordinate indigenous crayfish from the offered shelter [in: O. rusticus vs. other

Orconectes species, Hill and Lodge 1999; P. leniusculus vs. A. astacus, Söderbäck

1991; and P. leniusculus vs. Cambaroides japonicus (De Haan), Usio et al. 2001,

Nakata and Goshima 2003] also when NICS showed a low preference for the

shelter in a noncompetitive context [P. clarkii vs. A. pallipes, Gherardi and Cioni

2004, and vs. P. acutus acutus, Gherardi and Daniels 2004; but not P. leniusculus

vs. Austropotamobius torrentium (Schrank), Vorburger and Ribi 1999]. Although

conducted in an artificial setting, the results of these experimental studies are

both informative and predictive, being a reflection of the documented range

expansion of NICS. In fact, those crayfish species that were found to replace

other crayfish species are also dominant in interspecific contests staged in the

laboratory (e.g. Capelli 1982, Söderbäck 1991, Hill and Lodge 1994).

Predation and competition, both acting at the individual level and coupled

with the potential for reproductive interference (i.e. females or males of a species

may choose mates of the other species; Söderbäck 1994), enhance the effects of

habitat loss, overexploitation, and pollution in inducing a dramatic decline of

crayfish biodiversity. Of the 67 threatened species in North America, 5% were

subject to interference by NICS, 62% to habitat degradation or habitat loss, and

33% to pollution (Wilcove et al. 1998). NICS have already contributed to the

global extinction of other crayfish species: Pacifastacus nigrescens (Stimpson),

once common in the creeks of the San Francisco Bay area in northern

California, is now extinct due to the combined pressures of urbanization,

overexploitation, and introductions of NICS (Bouchard 1977). In the same

area, a similar process is ongoing. Shasta crayfish [Pacifastacus fortis (Faxon)],

The impact of invasive crayfish 515



designated endangered in 1988, is now limited to small, isolated populations,

having been displaced at several locations in its native watershed by habitat

loss and interactions with P. leniusculus (Light et al. 1995). Subject to similar

threats from NICS, the European indigenous species A. astacus, A. pallipes, and

A. torrentium have been designated as vulnerable by Groombridge (1993) and

as protected in Appendix III of the Bern Convention. The European Habitats

Directive (Directive 92/43/EEC) considers them as species whose exploit-

ation and harvesting should be subject to control. Austropotamobius pallipes

and A. torrentium are also listed in Appendix V, as species that require the

setting up of special areas of conservation for their protection (Souty-Grosset

et al. 2006).

Population effects on indigenous species may also be caused by indirect

mechanisms, for instance through the transmission of pathogens and diseases.

There is an extensive literature showing that North American crayfish species

carry a subclinical infection of the oomycete Aphanomyces astaci Schikora, the

aetiological agent of the crayfish plague (e.g. Alderman and Polglase 1988,

Diéguez-Uribeondo and Söderhäll 1993). This disease does not require its host

in order to spread, as the spores can become attached to damp surfaces and be

transported in this manner. So, crayfish plague has spread and is still spreading

via the hundreds of thousands of crayfish trappers and their gear. A large

number of European crayfish populations has been decimated by the plague

since 1860, leading to reduced production of A. astacus and A. leptodactylus by

up to 90% particularly in Scandinavia, Germany, Spain, and Turkey. For

example, in Sweden 90 tons were exported in 1908 (from a total catch of 200

tons), but export dropped to 30 tons by 1910 (Holdich 1999a). In Finland

exports declined from 16 million A. astacus in 1890 to less than 2 million in

1910 (Westman 1991). When the plague spread to Turkey in the 1980s, the

annual catch of A. leptodactylus plunged from 7,000 to 2,000 tons (Köksal

1988). It declined even further in the early 1990s, reaching 200 tons in

1991, which virtually eliminated exports from Turkey to western Europe.

However, since then there has been a steady increase in stocks (Harlioğlu

2004). The impact of the crayfish plague is still high in Europe; to mitigate

this, it has even been suggested that plague-resistant strains of native species

should be created through genetic engineering (Westman 2002), which, in

their turn, might pose additional threats to the original biodiversity.

The large emphasis that researchers have given to A. astaci has created, as

Edgerton et al. (2004) lamented, a kind of ‘‘inertia’’ in astacology, ‘‘which has

curtailed researchers, state fish-disease diagnosticians, and resource managers

from fully assessing and considering the existence of other serious pathogens of

crayfish and the ensuing consequences for the native species’’ (p. 1473).

Indeed, notwithstanding that the range of crayfish diseases is repeatedly

assumed to be much wider than previously thought (e.g. Vogt 1999), espe-

cially in North America, little attention has been given to commensals or

parasites other than A. astaci. It seems unlikely that these pathogens are
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species-specific; so, introduced crayfish might bring a host of organisms that

may profoundly affect indigenous species. To make the picture worse, some

commensals or parasites of crayfish may affect other animals, humans included

(helminth parasites of vertebrates; Hobbs et al. 1989; bacterial fish diseases,

enteric redmouth, Dunlin et al. 1976; infectious pancreatic necrosis, Halder

and Ahne 1988). As a consequence, there is an urgent need for researchers to

address the issue of crayfish diseases from a broader perspective than has been

done up to now.

Genetic effects

Invaders may exert indirect genetic impacts on indigenous species, resulting in

altered patterns of natural selection or gene flow within indigenous populations.

They may change selection regimes or, in a subtler way, disrupt gene flow due,

for instance, to their fragmenting populations of indigenous species and lead

them to risky bottlenecks. Hybridization between an invader and an indigenous

species is a direct effect that may have three possible consequences: (1) the

creation of a new invasive genotype; (2) the production of sterile hybrids with

the resulting waste of gametes and resource competition with indigenous

species; and (3) the production of a hybrid swarm and widespread introgression,

leading to a virtual extinction of indigenous taxa through ‘‘genetic pollution’’

(Parker et al. 1999).

There has been little mention in the literature of the occurrence of hybridiza-

tion between indigenous and invading crayfish, e.g. A. astacus and A. leptodac-

tylus (Cukerzis 1968), although in that case both belonged to the same family

and were of European origin. Unique genetic documentation has been provided

by Perry et al. (2001, 2002) for hybridization between indigenous and invading

Orconectes species. Using diagnostic nuclear and mitochondrial DNA markers

along with morphological data, these authors compared crayfish from allopatric

and sympatric populations of the invasive O. rusticus and of the indigenous

Orconectes propinquus (Girard) and O. virilis (Hagen) in Wisconsin (USA).

Hybridization occurred between O. rusticus and O. propinquus in sympatric

sites, whereas O. virilis hybridized with neither of these species. A detailed

study of the dynamics of hybridization conducted in Trout Lake showed that

over 6% of the crayfish were F1 hybrids, 4% were F2 individuals (hybrid�
hybrid origin), and 13% were backcrosses (product of hybrid� parental mat-

ings). The majority of F1 hybrids (95%) were the result of O. rusticus females

mating with O. propinquus males; only 1% of the total crayfish population was

the product of F1 hybrids backcrossing to O. propinquus, whereas 13% represent

backcrosses to O. rusticus. The F1 hybrids, therefore, appeared to mate dispro-

portionately with pure O. rusticus that led to much greater genetic introgression

of nuclear DNA from O. propinquus to O. rusticus than in the reverse direction.

A consequence of this is the gradual elimination of O. propinquus genes from the

population.
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These results add to the wide morphological evidence of putative hybrids

among crayfish species (Perry et al. 2002). The implication of Perry et al.’s

(2002) study is clear that hybridization and introgression pose a substantial

threat to the conservation of crayfish biodiversity and that further research is

required to test the potential for hybridization among resident and invasive

species. These studies have the potential to predict species at risk of losing

their genetic identity.

Effects on communities

While NICS clearly cause direct impacts on prey or on competitors and alter

their abundance and distribution, they may also indirectly change interactions

within communities that sometimes result in trophic cascades.

A large variety of articles has shown that, because of their omnivorous

nature, introduced crayfish can profoundly modify the trophic structure of

freshwater communities at several levels, often acting as keystone species

(sensu Paine 1966). They also display a wide plasticity in their feeding behavior,

switching from detritivore/scavenger to herbivore/carnivore habits in response

to food availability (Hobbs et al. 1989). For instance, the large niche breadth

and trophic diversity shown in the gut contents of a naturalized P. clarkii

population in Portugal denoted that a wide variety of aquatic macroinverte-

brates is consumed by this species and that the specific composition of the prey

changes according to its seasonal availability (Correia 2002).

Several experimental studies, most often conducted in the littoral zone of

lentic systems (an exception in Stenroth and Nyström 2003), have detailed

the direct and indirect trophic effects that NICS have on the food web structure.

On the contrary, little is known about the influence directly or indirectly exerted

by NICS on e.g. the pelagic compartments of the invaded systems. Figure 4 is an

attempt to summarize the trophic links that NICS may produce in littoral zones

of ponds and lakes (see also Nyström 1999, 2002). All these effects are most

often density dependent (e.g. Charlebois and Lamberti 1996) even if relatively

low densities of the potentially invasive O. virilis (Chambers et al. 1990), and of

the invasive O. rusticus (e.g. Lodge et al. 1994) and P. clarkii (Gherardi and

Acquistapace 2007) can dramatically reduce biomass and species richness of

submersed macrophytes and the abundance of invertebrate prey. The impact on

food web structure may also be influenced by the digestion rate of the crayfish

species (e.g. Bernardo and Ilhéu 1994), the species composition of

the community (Nyström 2002), and the presence of a second introduced

predator (Nyström et al. 2001), all conditions that make any generalizations

provisional.

Young and adult NICS are represented in Fig. 4 as different components of the

food web, as supported by the literature (Nyström 1999). In fact, although adult

crayfish, at least in the laboratory, can efficiently prey upon juvenile or small

fish, amphibian eggs and tadpoles, and macroinvertebrates (e.g. Gherardi et al.
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2001, Renai and Gherardi 2004) including juvenile crayfish, the guts of many

species contain a large proportion of organic detritus and plants, especially

macrophytes, whereas juveniles feed predominantly upon macroinvertebrates

(Momot et al. 1978, Momot 1995). For instance, in a Swedish stream, 46% of

the adult P. leniusculus were found to have consumed invertebrates as opposed

to 87% of the juveniles (Nyström 1999). In a laboratory study, adult P. clarkii

even exhibited feeding preference for plant food over animal food when the

energetic cost of active predation was high (Ilhéu and Bernardo 1993a, 1995).

When kept together, juveniles may be easily cannibalized by adults. However,

the cannibalistic behavior of crayfish has not been confirmed in field studies

(Momot 1995), although it is expected to be most severe upon molting individ-

uals in the wild (Reynolds and O’Keeffe 2005). The presence of crayfish remains

in crayfish stomachs in enclosures was assumed to derive from the crayfish

consumption of their exuviae (Stenroth and Nyström 2003). Additionally, both

large predatory invertebrates and fish can reduce the abundance of juvenile

crayfish (Nyström 1999). Subsequently, young crayfish have less influence on
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Juvenile crayfish

Snails

Macrophytes

Detritus

Large predatory fish

Juvenile predatory fish

Amphibians

Birds
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4
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Mammals
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Fig. 4 Food web links (those numbered are discussed in the text) in a littoral zone of a

lake or pond. Arrow thickness denotes the hypothesized strength of the interactions. The

most important interactors in the food web are in bold.
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the food web structure than adult crayfish due to the strong negative effects

exerted on them by vertebrate and invertebrate predators.

Typically, adult NICS affect the biomass of organic detritus (link 1, Fig. 4) and

of macrophytes (link 2, Fig. 4). In their turn, changes in detritus and macrophyte

biomass have multiple non-trophic effects on the community, because of their

role of either protective cover or substrate and breeding sites for a multitude of

organisms. Detritus is considered to be a highly nutritive food for crayfish for its

‘‘microbial conditioning’’ or ‘‘chemical-defense leaching’’ (Newman 1991) and

for their easier handling by crayfish (Cronin et al. 2002). It may be preferred to

green plants in laboratory experiments (Ilhéu and Bernardo 1995) and has been

often found in gut contents of P. clarkii (Ilhéu and Bernardo 1993b, Gutiérrez-

Yurrita et al. 1998) and P. leniusculus (Stenroth and Nyström 2003).

The intense grazing on aquatic macrophytes by O. rusticus, P. leniusculus,

and P. clarkii (e.g. Lodge et al. 1994, Nyström et al. 1996, Gherardi and

Acquistapace 2007), coupled with their non-consumptive plant clipping and

uprooting (Lodge et al. 1994, Nyström and Strand 1996, Smart et al. 2002,

Gherardi and Acquistapace 2007) and their preference for seedlings rather than

for older plants (Nyström and Strand 1996), may induce a significant decline in

macrophyte abundance. In enclosure/exclosure experiments, O. rusticus abun-

dance of 19 g m�2 reduced total macrophyte biomass of 64%, while abundance

>140 g m�2 eliminated all macrophytes in 12 weeks (Lodge and Lorman

1987). More than 80% of macrophyte biomass was lost about 20 years after

P. clarkii’s introduction in the Doñana National Park (Spain) (Gutiérrez-Yurrita

et al. 1998). The destruction of much more plant tissue than the crayfish can eat

(Lodge 1991) may induce a positive effect to the system, because fragmentation

could produce nutritious coarse particulate organic matter (CPOM) (Vannote

et al. 1980). However, macrophyte destruction in nutrient-rich conditions,

particularly in eutrophic shallow lakes, is generally followed by a switch from

a clear to a turbid state dominated by surface microalgae, like Microcystis,

growth (Rodrı́guez et al. 2003). In its turn, this may lead to a decrease in

primary production of macrophytes and periphyton due to the reduced light

penetration.

By feeding selectively (Lodge and Lorman 1987, Nyström et al. 1996),

crayfish may reduce the biodiversity of macrophytes and even control aquatic

weeds (Warner and Green 1995). Cronin et al. (2002) studied feeding prefer-

ences of P. clarkii among 14 species of freshwater macrophytes (including

macroscopic algae) and measured this species’ response to manipulation of

the combined plant traits of morphology, toughness, and surface features, and

their response to chemistry. The preference of crayfish was related to plant

phenolics, protein, nitrogen, fiber, lignin, cellulose, ash, and carbon. Like most

generalist herbivores or omnivores (reviewed in Cirujano et al. 2004, Anastácio

et al. 2005a), P. clarkii seems to base its feeding decisions on multiple plant

traits, such as morphology, structure, chemical defenses, and nutritive value.

Often, it feeds upon plants whose finely branched or filamentous morphologies

520 Francesca Gherardi



make them easier to handle and to consume, and not because of their nutri-

tional value. Similarly, O. rusticus consumes single-stemmed species more than

rosulate or highly branched forms (Lodge and Lorman 1987). NICS usually

avoid plants, which are chemically defended by multiple compounds, notwith-

standing their high concentrations of protein, nitrogen, and dry mass (Bolser

et al. 1998). The preference for some macrophyte species (e.g. Chara hispida

Linnaeus vs. Ceratophyllum submersum Linnaeus) can even influence P. clarkii’s

distribution and abundance, as found in a Spanish wetland (Cirujano et al.

2004).

However, no single macrophyte trait appears to be a good predictor of its

palatability and factors other than plant tissue quality and morphology, such as

cover or protection from predators afforded by the plant (e.g. Damman 1987),

the consumer’s state or hunger (e.g. Cronin and Hay 1996), and the consumer’s

prior feeding experiences (e.g. Dorn et al. 2001), may also be important in

determining feeding decisions. Differences in the impact of crayfish on macro-

phyte growth were also found to be related to crayfish sex and activity, and to

the abundance of alternative foods (Chambers et al. 1990).

NICS may affect periphytic algae (link 3, Fig. 4) in a number of ways that may

result in positive (þ) or negative (�) effects by: (1) consuming and dislodging

periphyton during feeding, movement, or burrowing (�), (2) reducing the

abundance of algivorous invertebrates (or vertebrates), which can indirectly

increase algal abundance (þ) (Luttenton et al. 1998); (3) fertilizing periphyton

with their faeces (þ) (Charlebois and Lamberti 1996); and (4) consuming or

destroying macrophytes on which some algae grow (�) (Lodge et al. 1994).

Therefore, periphyton responses to the crayfish impact are expected to vary in

function of the effect that prevails in the system. Due to the morphology of their

feeding apparatus, O. rusticus and P. leniusculus are not as efficient grazers on

microalgae as snails are (Lodge et al. 1994, Luttenton et al. 1998, Nyström et al.

1999, Nyström et al. 2001) and their consumption is not so intense as to

outweigh the positive indirect effect of the crayfish-induced reduction in snail

densities (the crayfish–snail–periphyton link is strong). Other potential periph-

yton grazers, e.g. amphibian tadpoles (Nyström 1999) and herbivorous insects,

may be preyed on by crayfish but probably their consumption is not so extensive

to produce an indirect positive effect on microalgal abundance (the cray-

fish–amphibian–periphyton and the crayfish–insect grazers–periphyton links

are weak; Lodge et al. 1994, Nyström et al. 1999). As a result, because snails

are both the prey group primarily affected by crayfish and the functionally most

important grazer group among the many other grazing taxa, crayfish may

indirectly generate an increased abundance of microalgae by relaxing them

from the grazing pressure of snails (link 4, Fig. 4), thus inducing – although

being omnivorous – a trophic cascade in the food webs of the littoral zones of

lakes or ponds. However, in the habitats characterized by abundant filamentous

algae, the intense grazing from crayfish seems not to be sufficient to compensate

for the reduced grazing from snails (Nyström et al. 1996).

The impact of invasive crayfish 521



A correlation between the density of P. clarkii and the abundance and

composition of surface (but not pelagic) microalgae (link 5, Fig. 4) has been

recently found in an in situ experiment conducted in a Mediterranean wetland

(Gherardi and Lazzara 2006). Six areas (10�7 m) were delimited along a

channel in the ‘‘Padule di Fucecchio’’ (Italy) to host crayfish populations at

either low (1 m�2) or high (14 m�2) density. The analysis of chlorophylls a, b,

and c, and phaeopigments showed that biomass of surface microalgae, mostly

composed of Cyanobacteria, was strongly affected by the presence of dense

populations of P. clarkii. The potential of their direct consumption by P. clarkii

was confirmed by behavioral studies that showed crayfish on macrophytes

feeding on the floating film.

In both lentic and lotic systems, crayfish can have direct and indirect negative

effects on the biomass and species richness of macroinvertebrates (links 6, 7, and

8, Fig. 4) as the result of several mechanisms (Charlebois and Lamberti 1996),

i.e.: (1) consumption; (2) increased drift through prey escape and incidental

dislodgment by their foraging; and (3) possible inhibition of invertebrate colon-

ization. Each of these mechanisms could have different consequences (e.g. direct

mortality vs. displacement to downstream areas) for the local macroinvertebrate

assemblage. When crayfish become abundant in lentic systems, species com-

position of invertebrates may change towards less vulnerable prey species.

Gastropoda are the taxon most affected by NICS (link 6, Fig. 4) and are

sometimes eliminated. In Trout Lake, Wisconsin, snails declined from >10,000

to <5 individuals m�2 after 19 years of colonization by O. rusticus (Wilson et al.

2004). Also bivalves may be affected by NICS; for instance, predation by

O. rusticus may have a significant impact on the colonization rate of zebra mussels

(Perry et al. 1997, 2000).

NICS are selective in their choice of snails, thin-shelled snails being preferred

to thick-shelled species because they are easier to handle (Nyström and Pérez

1998). Hence, in systems invaded by NICS, snail species composition may be

altered from the thin-shelled Lymnaea spp. to the thick-shelled Bithynia spp.

(Nyström et al. 2001). Large snails are also less profitable, because handling

time of shells increases exponentially: adult P. leniusculus took less than a

minute to feed upon small Lymnaea stagnalis (Linnaeus) but spent more than

27 minutes handling and consuming large snails. However, in complex habi-

tats such as macrophyte beds crayfish may be less indiscriminate in their

selection (Nyström and Pérez 1998). Also crayfish naı̈veté to a mollusk, al-

though never definitively proved, may influence consumption. In a laboratory

experiment Correia et al. (2005) showed that P. clarkii is able to capture the

exotic snail Physa acuta (Draparnaud), but never preyed upon the Asian clam

Corbicula fluminea (Muller). Possibly, prior experience coupled with the avail-

ability of alternative prey may be decisive as to whether the predator will

proceed with or abort an attack.

The direct impact of NICS on non-snail macroinvertebrates (links 7 and 8,

Fig. 4) largely depends on the life style and behavior of any single species.
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In lentic waters, crayfish predation is weak on species that: (1) move quickly

enough to escape tactile-feeding crayfish (e.g. isopods, amphipods, some

Diptera, Heteroptera, and Coleoptera); (2) circumvent crayfish recognition abil-

ity by living in cases (e.g. Trichoptera); or (3) avoid contact by living in

the sediment (e.g. some Diptera) (Lodge et al. 1994, Nyström et al. 1996). In

streams, crayfish may have less predictable effects on invertebrate communities

than in lentic waters (Stenroth and Nyström 2003) even if, also in these

systems, slow-moving species are expected to decline (i.e. leeches, dragonflies,

caddisflies, isopods, and mollusks) whereas more mobile prey or prey living in

sediments seem to be less affected (i.e. chironomids and stoneflies).

The indirect impact of NICS on zoobenthic communities is particularly com-

plex. Through consumption and destruction of macrophytes, crayfish can alter

littoral habitats, leading to declines in macrophyte-associated taxa (Nyström

et al. 1996). Crayfish may also influence detrital substrates through bioturbi-

dation and feeding: the reduction in detritus has potential consequences for

zoobenthic communities, particularly collector-gatherers (e.g. some Ephemer-

optera, Trichoptera, and Diptera). Finally, crayfish predation upon, or competi-

tion with other zoobenthic predators such as Odonata larvae could reduce their

occurrence, subsequently leading to an increase in the abundance of their prey

(McCarthy et al. 2006).

Recently, the effects of O. rusticus – and of other NICS – on benthic inverte-

brate densities were examined by McCarthy et al. (2006) by applying a fixed-

effect model meta-analysis on pre-existing data. A comparison was made among

cage experiments conducted in 14 studies that excluded crayfish as the control

and maintained a given density of crayfish as the treatment. The negative effect

of crayfish on the total invertebrate abundance appeared to be driven by

the significant decline of a few taxonomic orders, specifically Gastropoda and

Diptera (Fig. 5). However, the abundance of Amphipoda, Coleoptera, Epheme-

roptera, Oligochaeta, and Trichoptera was also reduced in crayfish treatments,

although results for these taxa were not significant. Comparisons across orders

showed that the greatest negative impact was exerted on Gastropoda (followed

by Diptera, Amphipoda, and Ephemeroptera).

Finally, NICS can be prey items for fish, birds, and mammals, constituting a

new resource for higher trophic levels in several areas of their introduction.

In the Lower Guadalquivir Basin (Spain), before the introduction of P. clarkii,

eels mostly preyed upon fish species (mosquitofish and carp). After crayfish

introduction, only 17% of their stomachs (vs. 50% before crayfish introduction)

contained other fish species, whereas the dominant prey item was P. clarkii

reaching 67% of occurrence (Montes et al. 1993). As they readily feed upon

P. clarkii, eels were proposed as selective biological control organisms (Mueller

and Frutiger 2001). Still in southern Spain, P. clarkii is also an important

part of the diet of at least six bird species, in particular white storks, night

herons, and little egrets, whose diet is composed of up to 80% of crayfish

(Rodrı́guez et al. 2005). Though no quantitative study has been yet made,
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the appearance of P. clarkii has been considered responsible for the increase in a

number of avian species, like some Ardaeidae, together with cormorants, in

some European areas, such as in Massaciuccoli Lake (Tuscany) (Barbaresi and

Gherardi 2000). In Doñana National Park it has also become the most common

prey category of the otter, Lutra lutra (Linnaeus) (Delibes and Adrian 1987).

Notwithstanding the large amount of available data, much information

derives from short-term studies and therefore the long-lasting strength of each

link can only be hypothesized. A few long-term studies have attempted to

analyze – all the other factors being equal – changes in species richness after

the introduction of NICS. The study of Rodrı́guez et al. (2005) reviewed the

existing information on the communities before the appearance of P. clarkii in

Chozas Lake (Spain) and compared it with the data collected after its invasion.

For macroinvertebrates, data from proximal non-invaded wetlands were also

used in the analysis. The results (Table 1) were clear in showing the decline in

submerged vegetation and the decrease of macroinvertebrate populations, both

leading to a dramatic depletion of food resources, shelters, and breeding sites for

fish, amphibians, and birds.

In a northern temperate lake in Wisconsin, USA (Sparkling Lake), McCarthy

et al. (2006) conducted a 24-year time series analysis of O. rusticus and

zoobenthos abundances. As a confirmation of a companion study (see above),
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this crayfish species was found to exert a significant, although variable, impact

on zoobenthic communities, its abundance being negatively correlated with the

abundance of total zoobenthos and of Diptera, Ephemeroptera, Odonata, and

Trichoptera. However, the authors proved that the invertebrate taxa had much

resilience in the long term. Nearly all invertebrate taxa were negatively affected

by the crayfish within a 1-year lag, but no taxa exhibited sustained declines

over the course of the O. rusticus invasion. Several factors may explain this

pattern. Large-bodied invertebrate taxa, such as snails and crayfish, have slower

generation times and are not as productive as smaller taxa, and are thus less

able to respond numerically following population reductions of crayfish. In

addition, aquatic insect larvae have a winged adult stage and, as a consequence,

great dispersal ability – thus facilitating quick recovery. Whatever the explan-

ation might be, McCarthy et al.’s (2006) results are illustrative in underlining

the importance of a long-term monitoring of the invaded community to capture

the complex picture of the impact of NICS.

Effects on ecosystems

As compared with the individual, population, and community levels, documen-

ted changes to ecosystem processes have been rarely reported in the literature

on NICS. This probably reflects a lack of measurements of ecosystem processes

rather than a lack of impact on these processes. The abundantly documented

community effects are on the contrary expected to determine significant

changes in energy flux and nutrient cycling in the invaded systems.

Essentially, the introduction of NICS may alter the pathways of the energy

flux in two ways, i.e. through augmenting connectance by feeding at several

trophic levels and through increasing the availability of autochthonous carbon

as a food source for higher trophic levels (Stenroth and Nyström 2003). This

was clearly proved by Geiger et al. (2005) in temporary freshwater marshes in

Spain. Before the introduction of P. clarkii (Fig. 6a), macrophytes and the

associated periphyton were the dominant primary producers. Only a small

portion of the energy was transmitted from them to herbivores, whereas most of

Table 1 Changes in the vegetation cover and faunal abundance as occurred in

Chozas Lake (Spain) after the introduction of an NICS (Procambarus clarkii). (Modified

after Rodrı́guez et al. 2005)

Before After Loss (%)

Vegetation cover (%) 95 <3 99

Macroinvertebrates (genera, number) 31 9 71

Waterfowl (species, number) 50 26 52

Amphibians (species, number) 6 1 83
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it was lost to the detritus pool, which accumulated large amounts of organic

matter. Detritivores, mainly macroinvertebrates (oligochaetes, chironomids)

and meiofauna (nematodes, ostracods), used only a small fraction of the
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Carnivores III
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Fig. 6 Hypothesized energy flows in a marshland system before (A) and after (B) the

introduction of an NICS (Procambarus clarkii). (Modified after Geiger et al. 2005)
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deposited material. This system was characterized by a high diversity of herbi-

vores and consisted of a minimum of four levels of consumers. Due to the large

number of trophic levels and losses of energy to the detritus pool, the energy

transferred to top predators such as birds and mammals was comparatively low.

After the introduction of crayfish (Fig. 6B), much of the detritus was consumed

by P. clarkii and the energy gained was directly transferred to the top predator

level (fish, birds, and mammals). This resulted in a decreased importance of

macrophytes, herbivores, and primary carnivores but offered a larger availability

of energy for vertebrate predators.

The role that NICS may play through their benthic activity on physical and

chemical characteristics of water and sediments was investigated by Angeler

et al. (2001) in a floodplain wetland in Spain. Procambarus clarkii was hypothe-

sized to affect the ecosystem processes by: (1) recycling sediment bound nutri-

ents and (2) resuspending sediments associated with crayfish foraging,

burrowing, and locomotory activity (walking, tail flipping) (Fig. 7). Compared

to the control, the enclosures with crayfish showed a significant increase in both

dissolved inorganic nutrients (soluble reactive phosphorus and ammonia) and

total suspended solids as a result of crayfish bioturbation. At the same time,

crayfish reduced the content of organic matter in the sediment and slightly
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Fig. 7 Effects of the benthic activity of an NICS (Procambarus clarkii) on physical and

chemical characteristics of water and sediments in a floodplain wetland in Spain.

(Modified after Angeler et al. 2001)
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increased total phosphorus and nitrogen content in sediments as the effect of its

benthic activity.

Crayfish-mediated bioturbation has the general effect of impoverishing

water quality by increasing total suspended solids and hence turbidity and by

reducing light penetration and plant productivity (Anastácio and Marques

1997, Rodrı́guez et al. 2003). Crayfish may also alter sediment characteristics

as a result of oxygen supply due to their activity. Bioturbation is often associated

with crayfish constructing burrows, as commonly observed in P. clarkii,

P. leniusculus, and C. destructor (e.g. Sommer and Goldman 1983, Gutiérrez-

Yurrita and Montes 1999). However, crayfish, like O. limosus, can also move

bottom sediments due to the friction between the extremities of its pereopods

and the bottom during walking, the force exerted above the bottom by the

uropods and the telson of escaping crayfish, and the pressure of the uropods and

claws into the substrate to slow its movement while walking in fast currents

(Maude and Williams 1983). In experimental flumes, Statzner et al. (2000,

2003) showed that O. limosus at a fixed biomass (174 g m�2) significantly

affected sand and gravel erosion. Its effect of bioturbator varied in function of

the presence of refugia and aggression: sediment erosion averaged 2.8 and

1.4 kg dry weight m�2 d�1 when crayfish hierarchies were established and

refugia were available. Once the refugia were removed, these rates increased to

4.0 and 3.2 kg dry weight m�2 d�1. Additionally, bioturbation by crayfish was

found to change bedform roughness, physical particle consolidation, proportion

of sand in gravel interstices, sand cover by gravel, and the cover of filamentous

algae. Such changes, in turn, may affect the abundance and structure of the

entire benthic community, e.g. by modifying their substrate or by reducing

algae and biofilm available for grazers. Also, sand reduction among gravel

might alter the egg survival of gravel-breeding fish, like salmonids.

WHY DO NICS CAUSE MORE PROBLEMS THAN

INDIGENOUS CRAYFISH?

In areas without any indigenous ecological equivalent, the changes caused

by the introduction of NICS may be complex and usually affect all levels of

ecological organization. Impacts range from subtle behavioral modifications of

resident species to altered energy and nutrient fluxes in the ecosystem. Impacts

at the community level can be strong when the introduced crayfish experience

little predation or competition from native predators and have prey that

lack efficient defense adaptations to them (Nyström et al. 2001). The modes of

resource acquisition by NICS and their capacity to develop new trophic rela-

tionships, coupled with their action as bioturbator, may lead to dramatic direct

and indirect effects on the ecosystem.

When NICS replace an indigenous ecological equivalent, their resource-

acquisition mode should not be novel to the colonized community and therefore

528 Francesca Gherardi



the resulting impact is expected to be weak. But the overall effect of NICS can be

strong if, once introduced, they are capable of building high densities and/or of

reaching large size. Indeed, several introduced crayfish often reach much higher

densities than indigenous crayfish, e.g. P. leniusculus vs. A. pallipes (Guan and

Wiles 1996). Densities of O. limosus ranged between 0.4 and 77 m�2 in a

reservoir in Poland, of O. rusticus between 0.18 and 21 m�2 in North American

streams, and of P. leniusculus between 3.7 and 21.7 m�2 in an English river

(reviewed in Nyström 1999). On the contrary, densities of the indigenous

species have been estimated to reach a maximum of 14.3 m�2 for A. astacus

(in a Swedish lake), 3 m�2 for A. pallipes (in France), 3.6 m�2 for C. japonicus

(in Japan), 0.83 m�2 for P. fortis (in USA), and 3.3 m�2 for Paranephrops

planifrons White (in New Zealand) (references in Nyström 1999). The drastic

decline of biota recorded by Wilson et al. (2004) in Trout Lake, Wisconsin

(USA), when O. rusticus catches reached a threshold of nine crayfish trap�1,

suggests that its high abundance is the primary reason for its large impact, even

in lakes with pre-existing crayfish populations.

Several biological traits contribute to the achievement by crayfish of high

densities/large size. Relatively to indigenous crayfish, some NICS are character-

ized by higher fecundity, faster growth rates, and better physiological tolerances

to changing environmental conditions (Lindqvist and Huner 1999, Chapter

12). They also might be better at coping with changes induced by human

activities that cause pollution and habitat destruction. For instance, P. clarkii

is a good colonizer of disturbed aquatic habitats and can survive in anoxic

conditions in burrows (Gherardi 2006). Also, higher survival rate, hence

leading to higher densities and/or larger sizes, is expected when a species is

introduced without a full complement of specific parasites, pathogens, and

enemies. And large sizes, in their turn, make crayfish both resistant to gape-

size limited predators (such as many fish) and agonistically superior in resource

fights. As a consequence, because of their large numbers, coupled with their

wide trophic plasticity, NICS exert a greater direct (through consumption)

or indirect (through competition) effect on the other biota, particularly on

crayfish species, benthic fish, mollusks, and macrophytes (Nyström et al.

1996). This is also true for those species that apparently have not caused

much environmental degradation, such as A. leptodactylus in England whose

high numbers are producing considerable problems for anglers (Holdich

1999b). Obviously, large size usually translates into an overall higher energy

and nutrient demand, but NICS may also be more efficient energy converters

and may display higher metabolic rate when compared with similarly sized

crayfish species.

As a consequence, a combination of larger size and greater weight-specific

consumption of macrophytes and snails may explain the greater ecological

impact suffered by those North American lakes where O. rusticus had replaced

its congeners (Olsen et al. 1991) (Table 2), whereas the more efficient grazing

by P. leniusculus than A. astacus seems to be the cause of the dramatic decrease
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of macrophytes biomass (including the extinction of several rare Chara species),

as recorded by Nyström and Strand (1996) in Sweden.

EFFECTS ON HUMAN ECONOMY AND HEALTH

From an anthropocentric perspective, a useful approach to measure impacts is

to assess the damage caused by NICS by calculating the economic cost they

induce to human societies, also in terms of the social and ethical problems

associated with their potential harm to human health. A review of the existing

literature in the matter shows that much of the discussion has been purely

anecdotal. A negative consequence is the often encountered difficulty in justi-

fying to decision makers the need of containing the spread of NICS and of

mitigating the risks they pose.

The introduction of NICS has been often assumed to have contributed in

a positive way to human economy by: (1) restoring some traditions proper to

the cultural heritage of a country, e.g. crayfishing in Sweden and Finland

(Kirjavainen and Sipponen 2004); (2) producing some economic benefits for

many families in poorly developed areas, e.g. in Andalusia, Spain (Geiger et al.

2005); (3) leading to a diversification of agriculture to include astaciculture, e.g.

by crayfish farmers in Britain and in Spain (Holdich 1999a); and (4) increasing

trade between countries inside Europe as well as between European and extra-

European countries (Ackefors 1999).

There are, however, several examples showing that often the introduction

of commercially valuable crayfish has also led to negative results in the market-

place. Despite the original aim of crayfish farmers in Britain to produce crayfish

for export to the Scandinavian market where they fetch a high price (Holdich

1993), most of the exports are now being made with crayfish harvested from

Table 2 Summary of test results after Olsen et al. (1991) for mechanisms governing

the greater impact of Orconectes rusticus (Or) relative to O. propinquus (Op) and O. virilis

(Ov) on a benthic community structure.

Mechanisms Replace Op Replace Ov

1. Individual size Or > Op Or < Ov

2. Population density Or < Op Or < Ov

3. Population biomass Or < Op Or < Ov

4. Weight-specific consumption, C,

and sublethal damage, D, of snails

C: Or > Op

D: Or¼Op

C: Or > Ov

D: Or > Ov

5. Weight-specific selection for single-stemmed

macrophytes

Or¼Op Or¼Ov

6. Weight-specific consumption, C, and destruction,

D, of macrophytes

C: Or > Op

D: Or¼Op

C: Or¼Ov

D: Or¼Ov
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natural waters and not from farming (Holdich 1999b). Similarly, in Africa, very

few of the several projects that led to crayfish importations since the 1960s

can be regarded as successful (de Moor 2002). For instance, in Lake Naivasha,

Kenya, only about 40 metric tons of P. clarkii are now caught annually

exclusively for local consumption (mainly tourism), after their first harvests in

1975 of several hundred tons per year (Smart et al. 2002). Crayfish were

reported to spoil valuable fish (tilapia and largemouth bass) caught in gillnets

(up to 30% of the catch) and to damage fish nets (de Moor 2002). They are also

responsible for the decline of the rooted vegetation and therefore of the increase

of phytoplankton, decrease of water transparency, and reduction of fish, includ-

ing commercial species, in the littoral zone (de Moor 2002).

In several countries, introduced crayfish have today much lower commercial

values than indigenous species, as exemplified by the Scandinavian market

where consumers are willing to pay substantially higher prices for the indigen-

ous A. astacus than for the naturalized P. leniusculus (Holdich 1999a). Crayfish-

ing, in its turn, may produce extensive environmental impacts and associated

costs, as the result of the continuous roaming of fishermen, causing a physical

alteration of the habitat and the capture of non-target organisms (e.g. turtles) in

the crayfish traps (Geiger et al. 2005).

There are several examples of damage to other human activities. Procambarus

clarkii is a recognized pest in rice cultures in various parts of the world.

Although in Louisiana (USA) double cropping crayfish and rice are practiced

with success (Chien and Avault 1980), the species produces economic costs in

rice fields in Portugal (Correia 1993). As an example, economic losses per ha of

Euro 43.40 of the 2004 rice production (a 6.3% decrease in profits) was

reported in the ‘‘Baixo Mondego’’ area exclusively due to crayfish (Anastácio

et al. 2005a). Damage to rice production primarily consists of crayfish consum-

ing seedlings, but negative effects derive from the increased turbidity and

decreased dissolved oxygen content due to the crayfish bioturbation (Anastácio

et al. 2005a, b, c).

Burrowing by several NICS (e.g. P. clarkii, P. leniusculus, and C. destructor) can

be a problem in areas other than agricultural, e.g. lawns, golf courses, levees,

dams, dykes, and in rivers and lakes (e.g. Anastácio and Marques 1997). A few

authors have lamented the damage caused by C. destructor burrowing to dam

walls and irrigation canals (de Moor 2002). More often cited is the effect

of P. clarkii to ‘‘honeycomb’’ banks, with their consequent structural damage

(Huner 1977) that seriously affects areas with extensive canal irrigation

systems and water control structures (Adão and Marques 1993). Although

not recorded as a burrowing species in its native North American habitat

(Holdich 1999a), P. leniusculus causes considerable damage to river banks by

burrowing in the UK (Sibley 2000).

Indeed, if a monetary value were to be assigned to species extinctions and

losses in biodiversity, ecosystem services, and aesthetics, the total economic

damage of introduced crayfish might be enormous. Neither do we have records
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of the financial costs of control and remediation, except an estimate of

US$4.5 million for the restitution of P. fortis in California (USA) (US Fish and

Wildlife Service) and the £100,000 spent trying, unsuccessfully, to eradicate

P. leniusculus from rivers in Scotland (Collins 2006).

Up to today, little attention has been paid to the potential harm that NICS

pose to human health. NICS, such as P. clarkii, often live in areas contaminated

by sewage and toxic industrial residues and may have high heavy metal

concentrations in their tissues (Geiger et al. 2005); they were found to bioaccu-

mulate metals such as nickel, lead, and zinc in their tissues and organs at a

significantly higher rate than the indigenous species (Gherardi et al. 2002).

Their potential to transfer contaminants to their consumers, including man, is

obviously high. Measurements of accumulation of heavy metals in waterfowl

and other wetland birds living and feeding in a toxic spill area of Spain showed

that heavy metals like arsenic have entered the food chain and were detected in

some bird species, such as white storks, spoonbills and grey herons, all predators

of crayfish (Geiger et al. 2005).

The finding that P. clarkii may consume Cyanobacteria is of increasing

concern for human health (Gherardi and Lazzara 2006). Several Cyanobacteria

release a wide range of toxins and BMAA (b-N-methylamino-l-alanine) that

may produce lethal animal and human intoxications (e.g. Carmichael 1988,

Cox et al. 2005). Among the few organisms so far investigated, P. leniusculus

and P. clarkii were found to accumulate such toxins in their tissues (Lirås et al.

1998, Vasconcelos et al. 2001), being therefore able to transfer them to more

sensitive organisms, man included.

The other side of the coin is the ability of P. clarkii to control, through

predation and competition, populations of the pulmonate snails Biomphalaria

and Bulinus known to host Schistosoma mansoni and S. haematobium, the agents

of human schistosomiasis (Chapter 4). Schistosomiasis is one of the most

widespread diseases in Africa: in Kenya alone, it is known to affect 3.5 million

individuals with 12 million more at risk of infection. As suggested by Mkoji et al.

(1999), due to the quick spread of this crayfish in African waterbodies, the

epidemiology of schistosomiasis is expected to be significantly altered with time

although the possibilities remain that African snails will soon evolve measures

to avoid crayfish predation before their extinction or that the parasite will

change its host.

WHAT COMES NEXT?

Despite the considerable attention that NICS have received since 1987, a review

of the many papers published in the last few years has revealed the absence in the

literature of a general framework about their impact. Nonetheless, a global view

is required to help us coordinate and improve both control and research efforts

for the existing NICS and hopefully predict the impact of future introductions.
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First, this review lamented the general lack of simultaneous measurements of

the impact of NICS at multiple ecological levels. This is unfortunate, because

information about responses at several levels of organization is required to

fully understand the range of the impact observed (Simon and Townsend

2003). Also, little effort has been made to study the impact of NICS at the

genetic level. We cannot even guess therefore what their role might be in

determining the future evolutionary pathway that the invaded system will

follow after the introduction of NICS. Neither do we have quantitative estimates

about direct or indirect monetary (and social) costs induced by NICS to the

human economy and health. And only a few paradigmatic invasive species,

namely P. leniusculus, P. clarkii, and O. rusticus, have been extensively studied,

whereas information is scanty or even absent about other species, like

C. destructor.

Short-term laboratory and field studies have revealed a myriad of direct and

indirect effects of crayfish on some compartments of the invaded ecosystem

(most often the littoral zone). Their results were certainly able to provide

mechanistic insights into the interactions between crayfish and the other

organisms in the community and to quantify the immediate impact of NICS.

However, these sometimes complex interactions have been only seldom inves-

tigated at larger levels. Few comparative field studies (e.g. Charlebois and

Lamberti 1996) and even fewer long-term studies (Wilson et al. 2004,

McCarthy et al. 2006) have been conducted to examine the dynamic relation-

ships among organisms, including the prolonged effects of crayfish invaders on

native communities over multiple generations.

Indeed, coupling the results of small- and large-scale studies may help capture

a more realistic picture of the impact of NICS. As held by McCarthy et al. (2006),

each method is not without its own biases. Along with characterizing only

short-term ecological responses, small-level studies may suffer from experimen-

tal artifacts. In contrast, long-term studies certainly provide important insights

into the long-term threats of an NICS and the potential adaptability of the native

taxa to it, but their results may also be confounded by environmental factors

that cannot be controlled (Parker et al. 1999). Because the disadvantage of one

approach is the advantage of another, coupling multiple levels of analyses

certainly provides a method in which interactions at one level can be success-

fully translated to another.

Finally, we need much more intensive work on the whole-system impact of

crayfish invasion; specifically, we need to learn more about the natural vari-

ability among systems and the extent to which the impact of an NICS depends

on the community or ecosystem where it is measured. So, on what level can we

generalize across systems? And how often does the impact of a crayfish invader

depend on the presence of other NIS? Not before having answered to these and

to the other questions above will we be able to generalize, and even predict,

which species is more likely to have the greatest impact in aquatic systems

(Parker et al. 1999).
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