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Abstract

We introduce a matrix model for noncommutative gravity, based on the gauge group

U(2)⊗U(2). The vierbein is encoded in a matrix Yµ, having values in the coset space

U(4)/(U(2)⊗U(2)), while the spin connection is encoded in a matrix Xµ, having values

in U(2) ⊗ U(2). We show how to recover the Einstein equations from the θ → 0 limit

of the matrix model equations of motion. We stress the necessity of a metric tensor,

which is a covariant representation of the gauge group in order to set up a consistent

second order formalism. We finally define noncommutative gravitational instantons as

generated by U(2) ⊗ U(2) valued quasi-unitary operators acting on the background of

the Matrix model. Some of these solutions have naturally self-dual or anti-self-dual

spin connections.
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1 Introduction

Unification of noncommutative geometry with gravity theories is a very challenging goal for

a theoretical physicist [1]-[11]. Till now only gauge theories are proved to be consistent after

deforming the ordinary product of fields into a noncommutative star product.

Gravity theories are usually constructed by requiring either diffeomorphism invariance

or local Lorentz invariance. Since the Moyal star product breaks global Lorentz invariance

in gauge theories, it also breaks diffeomorphism invariance in a gravity theory. Therefore

in the noncommutative case it is possible to preserve only local Lorentz invariance, with

the gauge group extended to U(1, d − 1) instead of SO(1, d − 1), in order that the gauge

transformations multiplied with the star product are closed between them.

This approach has still many problems, mainly because the metric becomes complex,

and the antisymmetric part of the metric may have nonphysical propagating modes [3]-[5].

It is however worth to explore all the consequences that such a new theory can give, before

taking an opinion about it. In this paper we attempt to give a more solid construction of

noncommutative gravity theory by introducing a new matrix model based on the U(2)⊗U(2)

group ( for Euclidean gravity ) or U(1, 1) ⊗ U(1, 1) for the U(2, 2) case.

In this respect the first-order formalism, based on the vierbein and spin connection,

turns out to be superior to the second order formalism, since it permits the definition of a

matrix model, without the necessity of inverting the metric, which would be a rather difficult

obstacle.

The vierbein is encoded in a matrix Yµ, having values in the coset space U(4)
U(2)⊗U(2)

, while

the spin connection is encoded in a matrix Xµ, having values in the gauge group U(2)⊗U(2).

The action is a 4-form, thus preventing the use of any metric, and the corresponding equations

of motion are proved to be a natural generalization of the Einstein equations, provided a

certain separation between odd powers in θ and even powers in θ is made ( as done in Ref.

[9] and Ref. [12] ).

We confirm the necessity of a complex metric tensor, but we point out a property which

was not discussed before, i.e. the metric tensor cannot be defined to be invariant under local

Lorentz invariance, but at most it can be a covariant representation of the gauge group.

We believe that the introduction of a multiplet of metric tensors is necessary to set up a

consistent second order formalism. Each component of this multiplet has no direct physical

meaning, since it can be mixed with the other components by a gauge redefinition of the

vierbein and spin connection.

In the last part of the article, we attack the problem of defining noncommutative gravita-
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tional instantons [13]-[17]. In this sense, our formalism based on the Matrix model approach

turns out to be fruitful, since then the finite action solutions of the equations of motion are

generated by quasi-unitary operators, as it has been successfully found in the Yang-Mills

case [18]-[23]. The ultimate source of our quasi-unitary operator is a projector, with values

in U(2)left ⊗U(2)right. We find that if the projector is restricted to be pure left or pure right,

then the corresponding spin connection is self-dual or anti-self-dual, an important property

which can make the bridge between our definition of gravitational instantons and the clas-

sical standard definition. However our class of solutions is more general than only self-dual

ones. We finally outline how to construct examples of quasi-unitary operators giving rise to

their sources, the U(2)⊗U(2) projectors. An important tool to construct these examples is

the use of duality in noncommutative theory [24]-[25].

2 Matrix model for noncommutative gravity

We are going to introduce a gravity theory on a noncommutative plane defined by the

commutators:

[x̂i, x̂j] = iθij det|θij| 6= 0. (2.1)

We remember that instead of using the commutation relations in full generality, it is

possible to reduce them in a diagonal form as follows

[x̂1, x̂2] = iθ1

[x̂3, x̂4] = iθ2, (2.2)

which is basically solved by two types of raising and lowering oscillator operators.

With the experience in the Yang-Mills case [23], we attack the problem of noncommu-

tative gravity. Our proposal is based on gauging the local Lorentz symmetry, extended to

U(2) ⊗ U(2) for consistency.

Firstly we define two types of matrices Xµ, Yµ, where Xµ is, at least in the Euclidean

case, a hermitian matrix with values in the group U(2) ⊗ U(2), while Yµ is a hermitian

matrix with values in the coset space U(4)
U(2)⊗U(2)

. Then we write the Einstein action for the

noncommutative case as

SE = βE Tr[γ5 ǫµνρσYµYν([Xρ, Xσ] − iθ−1
ρσ )]
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Y †
µ = Yµ X†

µ = Xµ γ5 = γ0γ1γ2γ3. (2.3)

This action can be derived as a part of a more symmetric action ( inspired by Ref. [2]

and Ref. [9] ), based on two U(4) fields X±
µ

X±
µ = Xµ ± Yµ, (2.4)

given by the sum of two similar contributions:

S = β Tr[γ5 ǫµνρσ([X+
µ , X+

ν ] − iθ−1
µν )([X+

ρ , X+
σ ] − iθ−1

ρσ ]

+ β Tr[γ5 ǫµνρσ([X−
µ , X−

ν ] − iθ−1
µν )([X−

ρ , X−
σ ] − iθ−1

ρσ ]. (2.5)

With the trick of adding the second term, the odd powers in Yµ all vanish and we are left

with three terms; the term with zero powers of Yµ is a pure topological term, representing

noncommutative topological gravity, the term with two powers of Yµ reproduces the action

(2.3) which is the starting point of our article, and a term proportional to the square of the

torsion Tµν , defined as

Tµν = [Xµ, Yν] − [Xν , Yµ], (2.6)

while the term with four powers of Yµ gives rise to the cosmological constant term.

Being the dependence from the torsion Tµν quadratic, it is possible to set it equal to zero,

because the variation of the other terms are consistent with this choice.

Neglecting the topological term and the cosmological constant term we can continue to

discuss the action (2.3) as the basis for noncommutative gravity.

In this paper we mainly discuss the U(4) and U(2, 2) cases for simplicity, since we are

mainly interested to introduce the noncommutative version of gravitational instantons, and

we need to work with the Euclidean case. In the Euclidean case U(4), the gamma matrices

satisfy the hermitian condition

γ†
a = γa γ

†
5 = γ5. (2.7)

The matrix Yµ can be developed in terms of basic U(1) valued matrices :

Yµ = ea
µγa + ifa

µγaγ5. (2.8)
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The hermitian condition of the Yµ is reflected on a hermitian condition on the component

vierbeins as follows:

(ea
µ)† = ea

µ

(fa
µ)† = fa

µ . (2.9)

It is possible to define left and right combinations of the vierbeins as follows:

e±a
µ = ea

µ ± ifa
µ (e+a

µ )† = e−a
µ , (2.10)

which are related by hermitian conjugation. These matrices have the nice property to be

closed under the U(2) ⊗ U(2) gauge transformations. In fact a left-right decomposition can

be made at the level of the Yµ defining

Yµ = Y +
µ + Y −

µ

Y ±
µ = e±a

µ γa

(

1 ± γ5

2

)

. (2.11)

In terms of Y ±
µ the action can be rewritten as

SE = −βE Tr[ǫµνρσ(Y +
µ Y −

ν + Y −
µ Y +

ν )([Xρ, Xσ] − iθ−1
ρσ )]. (2.12)

Note that since Y +
µ Y +

ν = 0, it is not possible to define an action containing only left

combinations of the vierbein, but both left and right vierbeins are required to make SE

hermitian.

The matrix Xµ can be developed in terms of the basic matrices:

Xµ = p̂µ + ω1
µ + ω5

µγ
5 + iωab

µ γab γab =
1

2
[γa, γb], (2.13)

where the component matrices are all hermitian by construction:

p̂†µ = p̂µ ω1 †
µ = ω1

µ ω5 †
µ = ω5

µ ωab †
µ = ωab

µ . (2.14)

We have introduced the distinction between p̂µ and ω1
µ since in a matrix model for non-

commutative gravity it is necessary to separate the background from the fluctuations [23].
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In general, the background for the matrix model of noncommutative gravity will be defined

as

Xµ = p̂µ p̂µ = −θ−1
µν x̂ν

Yµ = δa
µγa, (2.15)

and the fluctuations are generated by the matrices

ω1
µ, ω5

µ, ωab
µ , ea

µ − δa
µ, fa

µ . (2.16)

The background is chosen to satisfy the equations of motion of the matrix model and to

introduce the noncommutative coordinates as noncommutative analogues of the concepts of

derivatives of the fields, as we normally do in the Yang-Mills case. Therefore the commutation

relation , for example, of the background p̂µ with the matrix ω1
ν is equivalent, at a level of

the corresponding symbol, to a derivative action:

[p̂µ, ω
1
ν ] → ∂µω

1
ν . (2.17)

Moreover the operator products are transformed into star products of the corresponding

symbols ( through the Weyl map, see Ref. [24] for details ).

In general, the matrix model is built on the gauge invariance

Xµ → U−1XµU

Yµ → U−1YµU, (2.18)

where U is the gauge transformation of U(2) ⊗ U(2); these types of transformations

reproduce, in the commutative limit, the standard local Lorentz transformations for the

vierbein and the spin connection. The gauge transformations of U(2) ⊗ U(2) are defined

from the generators 1, γ5, γab and obey the unitary condition:

U †U = UU † = 1. (2.19)

Therefore introducing the anti-hermitian matrix Λ

U = exp[Λ] Λ† = −Λ (2.20)
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Λ can be developed in terms of basic gauge parameters:

Λ = iΛ0 + iΛ5γ5 + Λabγab, (2.21)

where the component parameters are all hermitian matrices:

Λ†
0 = Λ0 Λ†

5 = Λ5 Λab † = Λab. (2.22)

What does it change in the U(2, 2) scenario ? The action is always the same (2.3) with

γ5 = γ0γ1γ2γ3 ( see Appendix ). The matrix Yµ is a matrix with values in the coset space
U(2,2)

U(1,1)⊗U(1,1)
, and the matrix Xµ has values in U(1, 1) ⊗ U(1, 1).

To define the hermitian conjugation of these matrices, let us recall that Γ0 = γ0γ1 is the

hermitian conjugation matrix for the gamma matrices in the U(2, 2) case:

γ2
0 = γ2

1 = −γ2
2 = −γ2

3 = 1 {γa, γb} = 2ηab (+ + −−)

γ†
a = Γ0γaΓ0 γ

†
5 = γ5 γ5Γ0 = Γ0γ5. (2.23)

Then we define the hermitian conjugation for the matrices Yµ, Xµ as

Y †
µ = Γ0YµΓ0

X†
µ = −Γ0XµΓ0. (2.24)

Again Yµ can be developed in terms of the basic components as follows:

Yµ = ea
µγa + ifa

µγaγ5

(ea
µ)† = ea

µ (fa
µ)† = fa

µ , (2.25)

and Xµ

Xµ = p̂µ + ω1
µ + ω5

µγ5 + iωab
µ γab, (2.26)

where all the components are hermitian.

In general the U(2, 2) matrix model is built on the gauge invariance
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Xµ → U−1XµU

Yµ → U−1YµU, (2.27)

where U is a gauge transformation of U(1, 1) ⊗ U(1, 1). The gauge transformations of

this group are again defined from the generators 1, γ5, γab and obey the condition

U †Γ0U = Γ0

UΓ0U
† = Γ0. (2.28)

This reality condition assures that the matrix Xµ, once that it is gauge transformed,

respects again the hermitian condition (2.24).

By defining U = exp[Λ] it follows that

Λ† = Γ0ΛΓ0. (2.29)

The matrix Λ can be developed in terms of the basic parameters:

Λ = iΛ0 + iΛ5γ5 + Λabγab (2.30)

with all hermitian components.

Finally let us discuss the decomposition in U(2) left and U(2) right of the Euclidean U(2)⊗

U(2) gauge transformations. This decomposition is obtained by requiring that the generators

of U(2) left are given by

(1, γab)

(

1 + γ5

2

)

. (2.31)

The application of the projector operator 1+γ5

2
on γab reduces the number of generators

from six to three. To see this property in detail we recall the identity:

γ5γab = −
1

2
ǫabcdγcd. (2.32)

Therefore the generators of SU(2) left read

Mab =
1

2
[γab −

1

2
ǫabcdγcd]. (2.33)
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Since Mab = −1
2
ǫabcdMcd is anti-self-dual, the only independent generators are three

M0i =
1

2
[γ0i −

1

2
ǫijkγjk] = −i

(

σi 0

0 0

)

. (2.34)

Analogously the generators of U(2) right are given by

(1, γab)

(

1 − γ5

2

)

, (2.35)

where

Nab =
1 − γ5

2
γab =

1

2
[γab +

1

2
ǫabcdγcd] (2.36)

is self-dual

Nab =
1

2
ǫabcdNcd. (2.37)

Therefore the only independent generators are

N0i =
1

2
[γoi +

1

2
ǫijkγjk] = i

(

0 0

0 σi

)

. (2.38)

What happens in the U(1, 1) ⊗ U(1, 1) case ?

The generators of U(1, 1) left are given by

(1, γab)
1 + γ5

2
, (2.39)

where now the identity (2.32) reads γ5γab = −1
2
ǫabcdγ

cd.

One can always define the generators of U(1, 1) left and U(1, 1) right as

Mab =
1

2
[γab −

1

2
ǫabcdγ

cd]

Nab =
1

2
[γab +

1

2
ǫabcdγ

cd], (2.40)

where now for su(1, 1) left
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M01 =
1

2
[γ01 − γ23] = −i

(

σ1 0

0 0

)

M02 =
1

2
[γ02 + γ31] =

(

σ2 0

0 0

)

M03 =
1

2
[γ03 + γ12] =

(

σ3 0

0 0

)

(2.41)

and for su(1, 1) right

N01 =
1

2
[γ01 + γ23] = i

(

0 0

0 σ1

)

N02 =
1

2
[γ02 − γ31] = −

(

0 0

0 σ2

)

N03 =
1

2
[γ03 − γ12] = −

(

0 0

0 σ3

)

. (2.42)

Let us define the chiral decomposition of the gauge transformation as

U =
1 + γ5

2
UL +

1 − γ5

2
UR. (2.43)

The left part UL must obey the hermitian condition

U
†
L

1 + γ5

2
Γ0UL =

1 + γ5

2
Γ0

1 + γ5

2
Γ0 = iσ1

(

1 0

0 0

)

. (2.44)

Therefore reducing eq. (2.44) to the upper 2 × 2 subspace, we find

U
†
Lσ1UL = σ1 (2.45)

and analogously for UR

U
†
Rσ1UR = σ1, (2.46)
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which are completely equivalent to the usual U(1, 1) condition

U †σ3U = σ3. (2.47)

By defining

UL,R = exp[ΛL,R] Λ†
L,R = −σ1ΛL,Rσ1, (2.48)

it follows that Λ can be expanded as

Λ = iΛ0 + iΛ1σ1 + Λ2σ2 + Λ3σ3, (2.49)

where all the components are hermitian.

3 Equations of motions

Let us discuss the equations of motion of the matrix model. Since there are two independent

matrices, we need to vary the action with respect to δXµ and δYµ independently, therefore

obtaining two types of equations of motion.

The first one is due to the variation with respect to δXµ

δS = Tr[γ5YµYν(δXρXσ + XρδXσ)ǫ
µνρσ] (3.1)

that is vanishing if the following tensor is null

Tµν = [Xµ, Yν] − [Xν , Yµ] = 0 (3.2)

i.e. it is equivalent to the condition of null torsion.

The other equation of motion is obtained by varying with respect to δYµ

δS = Tr[γ5ǫ
µνρσ(δYµYν + YµδYν)Rρσ] (3.3)

where

Rµν = [Xµ, Xν] − iθ−1
µν (3.4)
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and it is vanishing if the following condition is met

ǫµνρσ{Yν , Rρσ} = 0. (3.5)

The two equations of motion (3.2) and (3.5) are not completely independent, since it

exists, at the noncommutative level, an identity similar to the covariant conservation of the

tensor Gµν

DµGµν = 0 Gµν = R
µν
E −

1

2
gµνRE (3.6)

where we have distinguished R
µν
E , the Einstein Ricci tensor, from the antisymmetric

matric Rµν introduced before.

In fact, let us evaluate

ǫµνρσ[Xµ, {Yν, Rρσ}] = 0. (3.7)

We will prove that it corresponds to a trivial identity. It is enough to observe that (3.7)

can be decomposed into a sum of terms which are zero

ǫµνρσ[Xµ, Yν] = 0 (3.8)

because of the null torsion condition, and

ǫµνρσ[Xµ, Rρσ] = 0 (3.9)

because of the Jacobi identity.

Let us write the equations of motion (3.2) and (3.5) in components, to recognize the

usual form of the Einstein equations in the commutative limit.

By introducing the parameterizations (2.8) and (2.13) of the Euclidean case we find that

Tµν = 0 is equivalent to

[p̂µ, e
a
ν ] + [ω1

µ, e
a
ν ] − i{ω5

µ, f
a
ν } + 2i{ωab

µ , eb
ν} − ǫabcd[ω

bc
µ , fd

ν ]

= (µ ↔ ν)

[p̂µ, f
a
ν ] + [ω1

µ, f
a
ν ] + i{ω5

µ, e
a
ν} + 2i{ωab

µ , f b
ν} + ǫabcd[ω

bc
µ , ed

ν ]

= (µ ↔ ν). (3.10)
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Therefore it is not possible to make the two vierbeins ea
µ and fa

µ proportional, because of

the term proportional to ω5
µ and ǫabcd.

These two equations relate all the components of the spin connection ω1
µ, ω5

µ, ω
ab
µ in terms

of the generic vierbeins (ea
µ, f

a
µ), treating them independently.

To help intuition, it is possible to restrict the general equations of motion (3.10) such

that the symbol corresponding to the first operator equation contains only even powers of θ,

while the symbol corresponding to the second equation contains only odd powers of θ ( we

refer to Ref. [9] for a detailed discussion on this point ).

This reduction requires that the symbols of the operators ea
µ, ω

ab
µ have an expansion in θ

with only even powers, while the symbols of the operators fa
µ , ω1

µ, ω
5
µ have only odd powers.

In this scenario, the usual free torsion condition for ea
µ is recovered in the commutative limit

since

[ω1
µ, e

a
ν ] ∼ {ω5

µ, f
a
ν } ∼ [ωbc

µ , fa
ν ] ∼ O(θ2), (3.11)

taking into account that the commutator of operators, corresponding to the antisymmet-

ric part of the star product, gives another odd contribution to the powers of θ, while the

anticommutator is even.

Let us analyze in the same scenario the other equation of motion (3.5) which should give

rise to the usual Einstein equations. Firstly let us compute the components of Rµν as follows

Rµν = [Xµ, Xν] − iθ−1
µν =

= R1
µν + R5

µνγ
5 + Rab

µνγab

R1
µν = [p̂µ, ω

1
ν] − [p̂ν , ω

1
µ] + [ω1

µ, ω
1
ν ] + [ω5

µ, ω
5
ν ]

= −2[ωab
µ , ωba

ν ]

R5
µν = [p̂µ, ω

5
ν] − [p̂ν , ω

5
µ] + [ω1

µ, ω
5
ν ] − [ω1

ν , ω
5
µ]

= −ǫabcd[ω
ab
µ , ωcd

ν ]

Rab
µν = i[p̂µ, ωab

ν ] − i[p̂ν , ω
ab
µ ] + i[ω1

µ, ωab
ν ] − i[ω1

ν , ω
ab
µ ]

−
i

2
ǫabcd([ω

5
µ, ω

cd
ν ] − [ω5

ν , ω
cd
µ ]) + 2{ωbc

µ ωca
ν } − 2{ωac

µ ωcb
ν }. (3.12)

Following the same reasoning done for the vierbein ( from now on the distinction between

odd and even powers of θ is always intended true for the symbols of the corresponding

operators ), it is possible to restrict Rµν such that R1
µν , R

5
µν contain only odd powers of θ,
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while Rab
µν contains only even powers of θ, and therefore in the commutative limit only Rab

µν

survives.

Then we are ready to compute the equations of motion (3.5):

ǫµνρσ[{ea
ν , R

1
ρσ} + i[fa

ν , R5
ρσ] + 2[eb

ν , R
ba
ρσ] + iǫabcd{fd

ν , Rbc
ρσ}] = 0

ǫµνρσ[{fa
ν , R1

ρσ} − i[ea
ν , R

5
ρσ] + 2[f b

ν , R
ba
ρσ] − iǫabcd{ed

ν , R
bc
ρσ}] = 0. (3.13)

Again it is not possible to make the two vierbeins proportional because of the odd terms

R5
ρσ and ǫabcd.

While the first equation of (3.13) can be restricted to odd powers of θ, the second one

can contain only even powers of θ. Since

{fa
ν , R1

ρσ} ∼ [ea
ν , R

5
ρσ] ∼ [f b

ν , R
ba
ρσ] ∼ O(θ2) (3.14)

the only surviving term in the commutative limit is

ǫµνρσǫabcd{e
d
ν , R

bc
ρσ} = 0 (3.15)

which is in fact completely equivalent to the usual Einstein equations, where

Rbc
ρσ ∼ ∂ρω

bc
σ − ∂σωbc

ρ + 2{ωcd
ρ , ωdb

σ } − 2{ωbd
ρ , ωdc

σ } (3.16)

is the usual antisymmetric classical tensor.

4 Gauge transformations of Yµ and Xµ

Before analyzing the gauge transformations of Yµ and Xµ, we recall that the distinction

between odd and even powers of θ must be made also at a level of the gauge group U(2)⊗U(2),

to be consistent.

Recalling the results of Ref. [12], it is possible to reduce the gauge symmetry from

U(2) ⊗ U(2) to SO(4)∗, where the gauge parameter Λ

U = exp[Λ] Λ = iΛ0 + iΛ5γ
5 + Λabγab (4.1)
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has the following property, i.e. Λ0, Λ5 contains only odd powers of θ, while Λab contains

only even powers of θ. This is a group property in the sense that the commutator of two

gauge parameters has the same distinction.

We are now ready to analyze the gauge transformations of Yµ and Xµ. The vierbein Yµ

transforms under U(2) ⊗ U(2) following the law

Yµ → U †YµU. (4.2)

At an infinitesimal level, it transforms as

δYµ = [Yµ, Λ]. (4.3)

By introducing the decomposition of Yµ and Λ in terms of basic components we find

δea
µ = i[ea

µ, Λ0] + 2{eb
µ, Λ

ba} − {fa
µ , Λ5} + iǫabcd[f

d
µ , Λbc]

δfa
µ = i[fa

µ , Λ0] + 2{f b
µ, Λ

ba} + {ea
µ, Λ5} − iǫabcd[e

d
µ, Λbc]. (4.4)

A rapid check shows that the first equation can be reduced to contain, in the case of

SO(4)∗ transformations, only even powers of θ, while the second equation only odd powers

of θ, taking always into account the additional odd contribution coming from the commutator

of two operators.

In the commutative limit, since the terms

[ea
µ, Λ0] ∼ {fa

µ , Λ5} ∼ ǫabcd[f
d
µ , Λbc] ∼ O(θ2), (4.5)

the usual transformation of the vierbein under local Lorentz transformations is recovered

δea
µ = 2{eb

µ, Λ
ba}. (4.6)

The vierbein transformations are diagonal at a level of the combination e±a
µ , as already

anticipated

δe±a
µ = i[e±a

µ , Λ0] + 2{e±b
µ , Λba} ± i{e±a

µ , Λ5} ± iǫabcd[e
±d
µ , Λbc]. (4.7)

Analogously the spin connection transforms under U(2) ⊗ U(2) according to the law
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Xµ → U †XµU (4.8)

and at an infinitesimal level

δXµ = [Xµ, Λ]. (4.9)

In components this equation reads

δω1
µ = i[p̂µ, Λ0] + i[ω1

µ, Λ0] + i[ω5
µ, Λ5] + 2i[ωab

µ , Λba]

δω5
µ = i[p̂µ, Λ5] + i[ω1

µ, Λ5] + i[ω5
µ, Λ0] + iǫabcd[ω

ab
µ , Λcd]

δωab
µ = −i[p̂µ, Λ

ab] − i[ω1
µ, Λ

ab] +
i

2
ǫabcd[ω

5
µ, Λcd] + i[ωab

µ , Λ0]

−
i

2
ǫabcd[ω

cd
µ , Λ5] + 2{ωac

µ , Λcb} − 2{ωbc
µ , Λca}. (4.10)

The same considerations made for the vierbein apply here, i.e. the spin connections ω1
µ

and ω5
µ, restricted to odd powers of θ, and ωab

µ restricted to even powers of θ, maintain this

property if the gauge parameters belong to SO(4)∗.

In the classical limit we notice that the only terms which survive are all the expected

ones:

δωab
µ = −i[p̂µ, Λab] + 2{ωac

µ , Λcb} − 2{ωbc
µ , Λca}. (4.11)

These properties can also be made more clear and transparent by using the chiral de-

composition for Xµ:

Xµ = XL
µ

(

1 + γ5

2

)

+ XR
µ

(

1 − γ5

2

)

(4.12)

where

XL
µ = p̂µ + (ω1

µ + ω5
µ) + iωab

µ γab

(

1 + γ5

2

)

. (4.13)

By using the property

γab

(

1 + γ5

2

)

=
1

2
[γab −

1

2
ǫabcdγcd] (4.14)
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the su(2) left part can be simplified to

iωab
µ γab

(

1 + γ5

2

)

=
i

2
(ωab

µ −
1

2
ωcd

µ ǫabcd)γab

(

1 + γ5

2

)

= iω̃L ab
µ γab

(

1 + γ5

2

)

. (4.15)

It is not difficult to show that ω̃L ab
µ is an anti-self-dual gauge connection:

ω̃L ab
µ =

1

2
(ωab

µ −
1

2
ωcd

µ ǫabcd)

ω̃L ab
µ = −

1

2
ǫabcdω̃L

µ cd. (4.16)

Analogously XR
µ is made by a self-dual gauge connection:

XR
µ = p̂µ + (ω1

µ − ω5
µ) + iω̃R ab

µ γab

(

1 − γ5

2

)

ω̃R ab
µ =

1

2
(ωab

µ +
1

2
ωcd

µ ǫabcd)

ω̃R ab
µ =

1

2
ǫabcdω̃R

µ cd. (4.17)

Reducing the gauge group to a pure left part by taking:

U = UL

(

1 + γ5

2

)

+

(

1 − γ5

2

)

UR = 1 (4.18)

then only the left part of the spin connection changes according to

XL
µ → U

†
LXL

µ UL

XR
µ → XR

µ . (4.19)

The implications of this observation are interesting, since applying a pure left unitary

transformation to the background connection Xµ = p̂µ one constructs a ( pure gauge )

anti-self-dual spin connection, while XR
µ remains pure background.

Decomposing the gauge parameter Λ into chiral components leads to:
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Λ = ΛL

(

1 + γ5

2

)

+ ΛR

(

1 − γ5

2

)

(4.20)

where

ΛL = iΛ0
L + Λ̃ab

L γab

(

1 + γ5

2

)

Λ̃ab
L =

1

2
(Λab −

1

2
ǫabcdΛcd)

ΛR = iΛ0
R + Λ̃ab

R γab

(

1 − γ5

2

)

Λ̃ab
R =

1

2
(Λab +

1

2
ǫabcdΛcd)

Λ0
L = Λ0 + Λ5 Λ0

R = Λ0 − Λ5. (4.21)

Defining ωL
µ = ω1

µ + ω5
µ, ωR

µ = ω1
µ − ω5

µ, XL
µ can be rewritten as:

XL
µ = p̂µ + ωL

µ + iω̃ab
µ γab

(

1 + γ5

2

)

(4.22)

and the gauge property of XL
µ now reads:

δXL
µ = [XL

µ , ΛL]

δωL
µ = i[p̂µ, Λ0

L] + i[ωL
µ , Λ0

L] + 4i[ω̃L ab
µ , Λ̃ba

L ]

δω̃L ab
µ = −i[p̂µ, Λ̃

L ab] − i[ωL
µ , Λ̃L ab] + i[ω̃L ab

µ , Λ0
L]

+ 2{ω̃L ac
µ , Λ̃cb

L } − 2{ω̃L bc
µ , Λ̃ca

L }. (4.23)

In the classical limit the anti-self-dual spin connection ω̃L ab
µ transforms under the anti-

self-dual gauge parameter Λ̃ab
L .

5 Definition of the metric

It has been already pointed out in the literature that the metric is given by the star product

of two vierbeins and it is no more symmetric, but these observations are not conclusive in

my opinion. There is one more difficulty to set up a consistent second order formalism for

noncommutative gravity, i.e. that the metric tensor is not even invariant under the gauge

group U(2) ⊗ U(2), on which the model is defined.

The only way out to this further obstacle is to allow for a more general definition of metric,

as a bilinear combination of the vierbein which is at least covariant under U(2) ⊗ U(2), i.e.

a representation of the basic gauge group of the theory.
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We have in fact at disposition the bilinear form

YµYν = Gµν + iBµν Gµν =
1

2
{Yµ, Yν} Bµν = −

i

2
[Yµ, Yν] (5.1)

which transforms in a covariant way under U(2)⊗U(2), having the same transformation

properties of the spin connection Xµ ( apart from the presence of two world indices instead

of one ).

Decomposing (5.1) into chiral parts one finds:

YµYν = Y +
µ Y −

ν

(

1 − γ5

2

)

+ Y −
µ Y +

ν

(

1 + γ5

2

)

. (5.2)

Therefore we conclude that it is not possible to define a covariant metric tensor with only

one vierbein e+a
µ , but it is necessary the presence of both vierbeins.

Expanding the bilinear form (5.1) into components one finds:

YµYν = Y 0
µν + Y 5

µνγ5 + Y ab
µν γab (5.3)

with

Y 0
µν = ηab(e

a
µe

b
ν − fa

µf b
ν)

Y 5
µν = iηab(e

a
µf

b
ν − fa

µeb
ν)

Y ab
µν =

1

2
(e[ a

µ eb ]
ν − f [ a

µ f b ]
ν ) −

i

2
ǫabcd(e

c
µf

d
ν − f c

µe
d
ν) (5.4)

where the symbols between parenthesis [ ] mean that we must take the antisymmetric

combination of the indices.

The tensor Gµν is symmetric and hermitian and its components are given by

Gµν = g0
µν + g5

µνγ5 + gab
µνγab =

=
1

2
[({ea

µ, e
b
ν} + {fa

µ , f b
ν}ηab + i([ea

µ, f b
ν ] + [ea

ν , f
b
ν ])ηabγ5

+ ([ea
µ, e

b
ν ] + [fa

µ , f b
ν ] −

i

2
ǫabcd({ec

µ, f
d
ν } + {ec

νf
d
µ}))γab]. (5.5)

The g0
µν and g5

µν parts can be restricted to contain only even powers of θ, while gab
µν

contains only odd powers of θ, and since obviously
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g5
µν ∼ O(θ2) (5.6)

the only part which survives the commutative limit is

g0
µν =

1

2
{ea

µ, e
b
ν}ηab. (5.7)

Under a gauge transformation, Gµν transforms as

Gµν → U †GµνU (5.8)

or at an infinitesimal level

δGµν = [Gµν , Λ]. (5.9)

In components one finds

δg0
µν = i[g0

µν , Λ0] + i[g5
µν , Λ

5] + 2i[gab
µν , Λ

ba]

δg5
µν = i[g0

µν , Λ
5] + i[g5

µν , Λ
0] + iǫabcd[g

ab
µν , Λ

cd]

δgab
µν = −i[g0

µν , Λ
ab] +

i

2
ǫabcd[g

5
µν , Λ

cd] + i[gab
µν , Λ0]

−
i

2
ǫabcd[g

cd
µν , Λ5] + 2{gac

µν , Λ
cb} − 2{gbc

µν , Λ
ca}. (5.10)

It is clear that δg0
µν ∼ O(θ2), therefore one reobtains that g0

µν is gauge invariant in the

classical limit.

For the antisymmetric and hermitian part Bµν one finds analogous gauge transformations

properties, and in this case the components B0
µν , B5

µν can be restricted to contain only odd

powers of θ, while Bab
µν only even powers of θ. In the classical limit there is one term which

survives

Bab
µν = −

i

4
({ea

µ, e
b
ν} − (a ↔ b)) (5.11)

and it transforms in a covariant way as we can see from the formula (5.10). This anti-

symmetric part however decouples from the Einstein equations, and it can be neglected.

In conclusion, in order to setup a consistent second order formalism we believe that it

is necessary to include all these components into the game. Some results contained in [11]

confirm indirectly this picture.
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6 Gravitational instantons

Given a solution of the equations of motion (3.2) and (3.5), it is possible to generate another

one which is not trivially connected to the first one by introducing a quasi-unitary operator,

which in the case of U(2) ⊗ U(2) is of the type

UU † = 1 U †U = 1 − P0

Xµ → U †XµU Yµ → U †YµU (6.1)

where P0 is a projector with values in U(2) ⊗ U(2).

In particular we can start from the vacuum, which is defined by the background of the

matrix model:

Xµ = p̂µ

Yµ = δa
µγa (6.2)

and compute the following transformations

Xµ = U †p̂µU

Yµ = U †δa
µγaU. (6.3)

These are automatically solutions to the equations of motion of the matrix model (3.2)

and (3.5), due to the property UU † = 1, and give a finite contribution to the matrix model

action since then:

[Xµ, Xν ] − iθ−1
µν = iθ−1

µν P0 (6.4)

this commutator is a projector, and the trace defining the action is projected on a finite

number of states. We call this generic solution a noncommutative gravitational instanton.

Obviously one can introduce more structure into the game, by requiring that the noncom-

mutative solutions have a smooth θ-limit and coincide in the commutative limit with some

known and classified solution [13]-[17]. It is not the purpose of the present paper, however

we believe that our definition can be adjusted to achieve all these goals. For the moment we
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limit ourself to indicate some general property of our finite action solutions of the equations

of motion.

Firstly the projector P0 can be decomposed into chiral parts

P0 = P L
0

(

1 + γ5

2

)

+ P R
0

(

1 − γ5

2

)

(6.5)

where P L
0 and P R

0 are two independent U(2)-valued projectors. Let us note that in the

particular case in which one of these two projectors is null, the corresponding quasi-unitary

operator is of the form:

U = UL

(

1 + γ5

2

)

+

(

1 − γ5

2

)

or U =

(

1 + γ5

2

)

+ UR

(

1 − γ5

2

)

(6.6)

and it produces a nontrivial spin connection only for the left or right sector:

Xµ = U
†
Lp̂µUL

(

1 + γ5

2

)

+ p̂µ

(

1 − γ5

2

)

(6.7)

or

Xµ = p̂µ

(

1 + γ5

2

)

+ U
†
Rp̂µUR

(

1 − γ5

2

)

. (6.8)

The corresponding spin connection is automatically anti-self-dual or self-dual, according

to the choice P R
0 = 0 or P L

0 = 0.

Therefore solutions with self-dual or anti-self-dual spin connections are naturally imple-

mented, although the class of solution defined by (6.5) is more general.

What is the generic form of the projector P L
0 with values in U(2) left ? We don’t have

the general proof but we believe that the more general solution is of the form

P L
0 = P+

0

(

1 + σ3

2

)

+ P−
0

(

1 − σ3

2

)

(6.9)

where P±
0 are two independent projectors of U(1), apart from eventual isomorphisms of

the Hilbert space, which are implemented by unitary transformations of the type

P0 → U †P0U U †U = UU † = 1. (6.10)
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We can therefore reduce the general problem of projectors with values in U(2)⊗U(2) to

the U(1) case.

This is also clear from the duality between U(2) and U(1) gauge groups on the noncom-

mutative plane which can be described as follows.

Consider the Hilbert space created by the commutation rules of the coordinates and label

it with a quantum number n. The correspondence between U(2) and U(1) is obtained by,

firstly enlarging the one-oscillator basis to the U(2) basis

|n; a > ∀n ∈ N a = 0, 1 (6.11)

and noting the isomorphism between Hilbert spaces:

H → H |n : a >→ |2n + a > a = 0, 1. (6.12)

Therefore we can relabel the tensorial product of the Hilbert space of one oscillator and

the gauge group U(2) with a new quantum number n′ = 2n+a that describes only oscillator

states with U(1) gauge group [24].

Once that the general U(2) ⊗ U(2) projector is reduced to a U(1) projector, we need to

build quasi-unitary operators with gauge group U(1) in four dimensions.

In four dimensions the Hilbert space on which the quasi-unitary operator acts is ( see

Ref. [24] ) generally the tensorial product of two Hilbert spaces of one oscillator

H×H |n1, n2 > ∀ n1, n2 ∈ N. (6.13)

We can therefore introduce a duality between four dimensions and two dimensions, by

observing that a couple of numbers can be made isomorphic to a number, for example

(n1, n2) →
(n1 + n2)(n1 + n2 + 1)

2
+ n2 H×H → H (6.14)

and therefore we can relabel the Hilbert space with only one quantum number.

Explicitly the construction of a general class of quasi-unitary operators with values in

U(1) in four dimensions follows these steps. Let us define two new quantum numbers

n = n1 + n2 k = n2 (6.15)

and let us introduce a short notation for the state:
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|n1, n2 >≡ |
n(n + 1)

2
+ k >= |n; k > . (6.16)

A basis of the two-dimensional Hilbert space is determined by the states

|n; k > 0 ≤ k ≤ n ∀n ∈ N. (6.17)

We must allow the continuation of the notation (6.17) to states with k ≥ n keeping in

mind the following equivalence relation:

|n; k >= |n + 1; k − n − 1 > . (6.18)

In the two-dimensional basis, the generic finite projector operator P0 can be represented

in the following form, apart from an isomorphism of the Hilbert space,

P0 =
m−1
∑

i=0

|i >< i| (6.19)

that represents a configuration with instanton number m.

In the two-dimensional basis it is easy to derive the quasi-unitary operator U that pro-

duces the projector operator P0:

UU † = 1 U †U = 1 − P0

U =

∞
∑

n=0

n
∑

k=0

|n; k >< n; k + m|

U † =
∞
∑

n=0

n
∑

k=0

|n; k + m >< n; k|. (6.20)

To derive the quasi-unitary operator in the equivalent basis |n1, n2 > we must pullback

the duality from the four-dimensional plane and the two-dimensional one. The problem

is complicated in general, and it is simple to perform it only in the simplest case, with a

configuration with instanton number m. Then the quasi-unitary operator can be reexpressed

as:

U =
∞
∑

n1=0

∞
∑

n2=0

|n1 + 1, n2 >< n1, n2 + 1|
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+
∞
∑

n1=n2=0

|0, n2 >< n1 + 1, 0|

U † =
∞
∑

n1=0

∞
∑

n2=0

|n1, n2 + 1 >< n1 + 1, n2|

+
∞
∑

n1=n2=0

|n1 + 1, 0 >< 0, n2|. (6.21)

In summary, the construction of gravitational instantons can be derived as in the Yang-

Mills case by introducing quasi-unitary operators with values in U(2) ⊗ U(2). Self-dual or

anti-self-dual solutions can be achieved restricting the gauge group to its left part or right

part only, being the general solution defined by eqs. (6.5) without any particular symmetry.

The question of the smoothness of the classical limit remains to be investigated, as well as

the ( noncommutative ) characterization of these solutions in terms of topological invariants.

7 Conclusions

In this paper we have attempted to define noncommutative gravity theory with a Matrix

model approach. The noncommutative plane is taken as a background solution of the Matrix

model, and the fluctuations are the vierbein and spin connections.

Two types of vierbein are needed to make the formalism consistent at the noncommutative

level. It is not possible to make them proportional, but it is possible to restrict the equations

of motion in such a way that one type of vierbein has only even powers of θ, and the other

one only odd powers of θ, recovering in the classical limit the usual gravity theory with only

one vierbein.

The spin connection has other two U(1) parts, which however can be restricted to contain

only odd powers of θ and therefore are negligible in the θ → 0 limit.

These properties can be respected by gauge transformations, if the gauge parameters are

restricted to the SO(4)∗, the smallest subgroup of U(2) ⊗ U(2) , consistent with the star

product. The distinction between odd and even powers of θ is fruitful also in the discussion

of the θ → 0 limit of the equations of motion, in which we recover the Einstein equations.

We have then attacked the problem of defining a consistent second order formalism.

The metric tensor which is bilinear in the vierbein cannot be defined to be invariant under

U(2) ⊗ U(2) or even SO(4)∗ in the noncommutative case, but only covariant. The need

of a multiplet of metric tensors, each one having no direct physical meaning, is confirmed

indirectly by the computations of ref. [11].
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Finally we have attempted to give a definition of noncommutative gravitational instan-

tons. We have introduced U(2) ⊗ U(2) valued quasi-unitary operators which generate, once

that are applied to the background, nontrivial solutions of the equations of motion.

In the case of a pure left or right quasi-unitary operators, the corresponding solution

has a self-dual or anti-self-dual spin connection, a property which defines the commutative

gravitational instantons. Our class of finite action solutions is more general. We have then

constructed explicit examples of quasi-unitary operators based on the concept of duality of

Hilbert spaces, which is typical of the noncommutative plane.

Finally let us briefly mention the problems left; firstly the construction of a consistent

second-order formalism, with the use of the multiplet of metric tensors outlined in this paper,

secondly the careful analysis of the physical degrees of freedom of the metric tensor, and the

cancellation of the unphysical ones and thirdly a more careful analysis of the noncommutative

gravitational instantons and of their link with the commutative case. The last project will

require to take control of the θ → 0 limit of the nonperturbative solutions constructed in

this article, and the introduction of topological invariants for the noncommutative case. In

any case we believe that the language of matrices, introduced in this paper, which is more

familiar to a physicist than the star product formalism, will help in making progress in this

research field.

A Appendix

The gamma matrices are known to generate the U(4) and U(2, 2) algebra. In this appendix

we recall some basic properties, like the basic representations and commutation properties

which are used during this paper.

Firstly we repeat the U(4) ( Euclidean ) case. We must solve the anticommutation

relations

{γa, γb} = 2δab (A.1)

with the constraints γ†
a = γa. The solution to this requirements is ( the so-called chiral

representation )

γ0 =

(

0 1

1 0

)

γi =

(

0 iσi

−iσi 0

)

(A.2)

where σi are the Pauli matrices. The properties
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γ2
5 = 1 γ

†
5 = γ5 (A.3)

identify γ5 as the combination

γ5 = γ0γ1γ2γ3 γ5 =

(

1 0

0 −1

)

. (A.4)

In the case of U(2, 2), we have to solve the anticommutation relations:

{γa, γb} = 2ηab (+ + −−) (A.5)

with the constraints

γ
†
0 = γ0 γ

†
1 = γ1 γ

†
2 = −γ2 γ

†
3 = −γ3. (A.6)

A possible choice is , in the chiral representation

γ0 =

(

0 1

1 0

)

γ1 =

(

0 −iσ1

iσ1 0

)

γ2 =

(

0 −σ2

σ2 0

)

γ3 =

(

0 −σ3

σ3 0

)

. (A.7)

Again γ5 identified with the properties (A.3) can be chosen as in the Euclidean case

(A.4).

The hermitian conjugation property can be encoded in the following property

γ†
a = Γ0γaΓ0 (A.8)

where Γ0 = γ0γ1.

The composition properties of gamma matrices can be summarized as follows:

[γa, γbc] = 2ηabγc − 2ηacγb

{γa, γbc} = 2ǫabcdγ5γ
d

[γab, γcd] = 2(ηadγbc + ηbcγad − ηacγbd − ηbdγac)

{γab, γcd} = 2(ηadηbc − ηacηbd) + 2ǫabcdγ5

γ5γab = −
1

2
ǫabcdγ

cd (A.9)
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where we raise the indices with the tensor ηab. Of course in the Euclidean case the

distinction between upper and lower indices is superfluous.
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