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Abstract: BS methods are a special class of Linear Multistep Methods defined using B–
spline functions. These methods are always convergent and have good stability properties
when used as Boundary Value Methods. In addition, if k is the number of steps, a Ck

spline of degree k + 1 can be computed with low computational cost and this serves as
a continuous extension to the solution. It is shown that the continuous solution and the
discrete solution both share the same order of convergence. In this paper we introduce
this class of methods in the general case of a non-uniform mesh and we present numerical
results showing their performance when dealing with some singularly perturbed Boundary
Value Ordinary Differential Equations.
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1 Introduction

We deal with the solution of the following Boundary Value Ordinary Differential Equation (BVODE):

{
y′(x) = f(x,y(x)), a ≤ x ≤ b,
g(y(a),y(b)) = 0,

(1)

where y ∈ IRd, d ≥ 1 and f and g are sufficiently smooth functions. This class of problems arises
in many applications and its most popular numerical solvers are based on Runge-Kutta schemes
such as Mono Implicit Runge Kutta (MIRK) [5, 8], or on spline collocation [1]. Recently, a class
of Linear Multistep Methods (LMMs), called Top Order Methods, has also been successfully used
[13, 14]. For problems having different time scales, the numerical schemes need non-uniform meshes
in order to be efficient. Moreover, in the case of nonlinear problems, when the mesh is changed the
numerical solution has to be extended to off–mesh points in order to continue the process. In such
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cases the knowledge of an accurate continuous extension of the numerical solution is important.
In [11] we have analyzed the BS methods, which are a class of LMMs based on B-Splines with
distinct knots [4, 11] and can be interpreted as collocation methods. This means that, for a k–step
BS method, a k+ 1 degree spline function, continuous up to the k–th derivative, can be associated
with the numerical solution. In particular the convergence and the stability properties of the
methods were analyzed and it was shown that the continuous extension gives an approximation
of the solution with the same convergence order as the numerical scheme. Here we extend the
BS methods to the case of a non-uniform mesh and we describe an accurate and relatively cheap
algorithm to compute the coefficients of the methods.

After necessary preliminaries given in Section 2, in Section 3 we briefly describe the BS methods
and their relation with B-spline functions in the uniform case. The non-uniform case is introduced
in Section 4 while in Section 5 an efficient algorithm for computing the coefficients of the methods is
presented. A special class of additional methods (corresponding to the not–a–knot spline condition)
is then described in Section 6. Finally, some numerical results are reported in Section 7.

2 Preliminaries

Let {yi, i = 0, . . . , N} be the numerical solution of (1) computed on the mesh π = {a = x0 <
x1 < . . . < xN = b} using a Linear Multistep Method (LMM). As is well known, a k–step LMM
must be combined with k − 1 additional and suitably chosen linear methods, in order to get the
uniqueness of the associated numerical solution. These additional methods can be split into k1− 1
and k2 = k − k1 left and right methods, respectively. The appropriate value of k1 depends on
the class of LMMs considered. If k2 6= 0 this means that the LMM is used as a Boundary Value
Method (BVM) [2, 3].

In the case of a uniform mesh with constant step size h = b−a
N , the numerical solution satisfies

the following linear equations,

k2∑

j=−k1

αj+k1
yi+j = h

k2∑

j=−k1

βj+k1
fi+j , i = k1, . . . , N − k2, (2)

where α := (α0, . . . , αk)T ∈ IRk+1 and β := (β0, . . . , βk)T ∈ IRk+1, are the two coefficient vectors
characterizing the method and fi := f(xi,yi).

In the general case of a non-uniform mesh, the equations (2) are replaced by

k2∑

j=−k1

α
(i)
j+k1

yi+j = hi

k2∑

j=−k1

β
(i)
j+k1

fi+j , i = k1, . . . , N − k2, (3)

with hi := xi − xi−1 and α(i) and β(i) depending on i.
The order condition p ≥ r, which in the uniform case corresponds to a set of r+ 1 scalar linear

conditions on the coefficient vectors α and β (see for instance [3, 7]), can be briefly expressed by
the following condition [3],

W
(r)
i,k1,k

(t)α(i) + hiW
(r) ′

i,k1,k
(t)β(i) = 0, i = k1, . . . , N − k2, (4)

where t ∈ IR,W
(r) ′

i,k1,k
(t) = d

dtW
(r)
i,k1,k

(t) and W
(r)
i,ν,k(t) is defined as follows with ν ∈ IN, 1 ≤ ν ≤ k,

W
(r)
i,ν,k(t) :=




(t− xi−ν)0 . . . (t− xi+k−ν)0

...
...

...
(t− xi−ν)r . . . (t− xi+k−ν)r


 . (5)
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Table 1: uniform BS coefficients.

k −α̂0 −α̂1 −α̂2 −α̂3 −α̂4 β̂0 β̂1 β̂2 β̂3 β̂4

1 1 1
3 1 3 1 11
5 1 25 40 1 57 302
7 1 119 1071 1225 1 247 4293 15619
9 1 501 14106 73626 67956 1 1013 47840 455192 1310354

3 The BS methods on uniform meshes

The BS methods were introduced in [9, 10] by using a knot spline collocation approach to solve
numerically the Cauchy problem. By using standard results on splines, it was proved that the
values of the resulting spline at the knots could also be generated by a special class of LMMs
that, for simplicity, we have called BS methods [11]. In the same papers such methods were used
as Initial Value Methods and it was proved that their convergence is not guaranteed if k ≥ 3. In
[11] we have revisited them from the point of view of Boundary Value Methods, establishing their
convergence and stability features. For the sake of clearness and completeness, we summarize here
the results obtained.

Let B(·) denote the B–spline of degree (k+ 1) with uniform integer active knots 0, 1, . . . , k+ 2,
(see e.g. [4]). By using the values of B(·) and B ′(·) at the inner knots, we define the entries of the
vectors α = (α0, . . . , αk)T and β = (β0, . . . , βk)T as follows,





αi := B′(k − i+ 1),
i = 0, . . . , k.

βi := B(k − i+ 1).
(6)

The αi and βi in equation (6) are used as coefficients in (2) and the methods obtained are
called BS methods. From the symmetry of B(·), it turns out that such methods are symmetric,
that is

αi = −αk−i; βi = βk−i, i = 0, . . . , k.

In particular, the trapezoidal and the Simpson rules are obtained for k = 1, 2, respectively. In
Table 1 we report the normalized coefficients α̂i = αi k! and β̂i = βi (k + 1)!, i = 0, . . . , bk2 c of the
methods for all odd values of k, up to 9.

In [11] it was first proved that the k–step BS methods have convergence order p ≥ k + 1.
Choosing k1 = dk2 e (and, consequently, k2 = bk2 c), it is then proved that they are always 0k1,k2

–
stable and Ak1,k2

–stable (the concepts of 0k1,k2
–stability and of Ak1,k2

–stability are generalizations
of 0–stability and A–stability, respectively, [2], [3]). Finally it was also proved that, if k is odd,
the k–step BS methods are also perfectly Ak1,k2

– stable, (i.e. the A–stability region coincides with
C−). This explains the use of odd values of k.

4 The BS methods on non-uniform meshes

In this section we introduce two sets of vectors α(i) and β(i) ∈ IRk+1, i = k1, . . . , N − k2 (with
k1 = dk2 e), satisfying (4) with r = k + 1 and reducing to the vectors α and β given in (6) when
the mesh is uniform. Their entries define the coefficients of the non-uniform BS methods defined
in (3).

Let Sk,N be the set of all Ck polynomial splines of degree k + 1 defined in [a , b] with knots
x0, . . . , xN whose dimension is N + k + 1. We represent any s ∈ Sk,N in the k + 1 degree B–spline
basis Bi(x), i = −(1 + k), . . . , N − 1 which can be defined after prescribing 2 sets of additional
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(k + 1) knots, {xi, i = −(1 + k), . . . ,−1} (left auxiliary knots), with x−1−k ≤ . . . ≤ x0, and
{xi, i = N + 1, . . . , N +k+ 1} (right auxiliary knots), with xN ≤ xN+1 ≤ . . . ≤ xN+k+1 , [4]. Thus
we can write Sk,N = 〈B−(1+k), . . . , BN−1〉.

Then, ∀i = k1, . . . , N − k2, we can define the following matrix

G(i) :=

[
A

(i−k1)T
1 −hiA(i−k1)T

2

0T eT

]
, (7)

with e := (1, . . . , 1)T ∈ IRk+1, and A
(j)
1 , A

(j)
2 , j ∈ IN, defined as,

A
(j)
1 :=




Bj−k−1(xj), . . . , Bj+k−1(xj)
...

...
...

Bj−k−1(xj+k), . . . , Bj+k−1(xj+k)




(k+1)×(2k+1)

A
(j)
2 :=




B′j−k−1(xj), . . . , B′j+k−1(xj)
...

...
...

B′j−k−1(xj+k), . . . , B′j+k−1(xj+k)




(k+1)×(2k+1)

(8)

The two vectors α(i) and β(i) ∈ IRk+1 are defined as the solution of the following linear system,

G(i) (α(i)T ,β(i)T )T = e2k+2, (9)

where e2k+2 = (0, . . . , 0, 1)T ∈ IR2k+2. Note that the last equation in (9),
∑k
j=0 β

(i)
j = 1, is just

a normalization condition. The non singularity of G(i) is proved in Corollary 1 reported in the
Appendix.

In the following two Theorems we show that the vectors α(i) and β(i) satisfy (4) with r = k+1
and reduce to the vectors α and β in the case of a uniform mesh.

Theorem 1 The vectors α(i) and β(i), which are the solutions of (9), satisfy the order condition
(4) with r = k + 1.

Proof : Let us consider the following result concerning B–splines [15],

(t− x)k+1 =

N−1∑

i=−(1+k)

φ
(k+1)
i (t)Bi(x), ∀x ∈ [a , b], ∀t ∈ IR, (10)

where φ
(k+1)
i (t) :=

∏i+k+1
j=i+1 (t−xj). Taking the derivatives of (10) j times with respect to t and dif-

ferentiating once more with respect to x, (j = 0, . . . , k+ 1), the following expressions are obtained,





(k + 1)(j) (t− x)k+1−j =
∑N−1
i=−(1+k)

djφ
(k+1)
i

djt (t)Bi(x),

j = 0, . . . , k + 1

−(k + 1)(j+1) (t− x)k−j =
∑N−1
i=−(1+k)

djφ
(k+1)
i

djt (t)B′i(x).

(11)

Thus, evaluating (11) at all xl, l = i− ν, . . . , i+ k − ν, the following relations are obtained,





W
(k+1)
i,ν,k (t) = ∆k Z

(k+1)
i−ν−k−1,2k(t)A

(i−ν)T
1 ,

−W (k+1)′

i,ν,k (t) = ∆k Z
(k+1)
i−ν−k−1,2k(t)A

(i−ν)T
2 ,

(12)
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where ∆k := diag( 1
(k+1)(k+1) ,

1
(k+1)(k) , . . . ,

1
k+1 , 1), W

(k+1)
i,ν,k (t) is the Vandermonde matrix defined

in (5), and

Z
(k+1)
j,s (t) :=




dk+1

dk+1t
φ

(k+1)
j (t) . . . dk+1

dk+1t
φ

(k+1)
j+s (t)

...
...

...

φ
(k+1)
j (t) . . . φ

(k+1)
j+s (t)


 . (13)

Thus, (9), together with (12) used with ν = k1, immediately implies (4) with r = k + 1, that is
the k–step BS method has order p ≥ k + 1.

Theorem 2 Let hi = xi−xi−1 = h, i = −k, . . . , N+k+1. Then the vector (αT ,βT )T with α,β ∈
IRk+1 having entries defined in (6) is the solution of the linear system (9) ∀i = k1, . . . , N − k2.

Proof : In the uniform case the B–splines are scaled translations of the reference B–spline B(x)
of degree k + 1 with integer active knots 0, . . . , k + 2,

Bj(x) = B(
x− xj
h

), j = −(1 + k), . . . , N − 1.

Thus, for all j, A
(j)
1 and A

(j)
2 are bandwise Toeplitz matrices whose non zero elements in the first

row are the first (k + 1) entries and they are B(k + 1), . . . , B(1) and B ′(k + 1)/h, . . . , B′(1)/h,
respectively. Thus if α and β ∈ IRk+1 are the two vectors defined in (6), it is easy to verify that both

A
(i−k1)T
1 α and hA

(i−k1)T
2 β are just their convolution and then they are equal. Considering that

eTβ = 1 because of the unity partition property of B–splines, we can conclude that, (αT , βT )T

is the solution of (9).

From a numerical point of view, it is convenient to re–write the linear system (9) in an equivalent
but more structured form. This is done by introducing the following two permutation matrices
P2r and Q2r, where l = b r2c

{
P2r := [er+1 , e1 , . . . , er+l , el , el+1 , er+l+1 , . . . , er , e2r]

T
,

Q2r := [e1 , . . . , er , e2r , er+1 , . . . , e2r−1]
T
,

(14)

where es is the s–th unit vector of IR2r. Thus, by introducing the matrix,

Ĝ(i) := Q2(k+1)G
(i)PT2(k+1), (15)

(9) can be replaced with the following equivalent linear system,where l = b k+1
2 c

Ĝ(i) (β
(i)
0 , α

(i)
0 , · · · , β(i)

l−1, α
(i)
l−1, α

(i)
l , β

(i)
l , · · · , α(i)

k , β
(i)
k )T = ek+2. (16)

Considering the B–spline properties, Ĝ(i) turns out to be a (2 × 2)–block banded diagonal
matrix with bandwidth equal to 2d k2 e + 1. More precisely we can say that, among all the square

submatrices of Ĝ(i) sharing with it the diagonal and antidiagonal (2 × 2)–blocks, the one having
no zero block and maximum dimension has size 2m×2m, with m = k+3 − 2d k+2

3 e (see Figure 1).

Concerning the algebraic properties of Ĝ(i), in Corollary 2 appearing in the Appendix it is proved
that all the principal submatrices of Ĝ(i) of order s, s ≤ 2bk2 c, are non singular and that this is
also true for all the bottom–to–top principal submatrices (i.e. submatrices whose first diagonal

element is any Ĝ
(i)
j,j and whose last diagonal element is Ĝ

(i)
2k+2,2k+2) of the same order.
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


∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗




10×10

,




∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗




12×12

Figure 1: The common structures of the matrices Ĝ(i), for k even (left) and odd (right) (each symbol represents
a 2× 2 block).

5 Computation of the coefficients

In this section we describe a symmetric bidirectional factorization algorithm for solving the linear
system

Ĝ z = ek+2, (17)

where ek+2 is the (k+ 2)nd unit vector of IR2k+2, z ∈ IR2k+2 and Ĝ is any one of the matrices Ĝ(i)

of size 2k + 2 (whose structure is represented in Figure 1).
Owing to the non singularity of all the principal and bottom–to–top principal submatrices of

Ĝ(i) of order s, s ≤ 2bk2 c, (see corollary 2 in the appendix), we can introduce a simultaneous up–

down and down–up Gaussian elimination algorithm which in l = k + 1−m = 2(d k+2
3 e − 1) steps

defines a factorization of Ĝ, i.e. Ĝ = S DT. The algorithm works as follows,

T (1) := Ĝ, T (j+1) := SjT
(j), j = 1, . . . , l

where Sj is the non singular matrix performing a bidirectional Gaussian elimination, that is,

Sj := I2k+2 − c(j)eTj , − r(j)eTj∗ , (18)

with j∗ := 2k + 3− j and c(j), r(j) denoting two vectors of length (2k + 2) defined as,

c(j) :=
1

T
(j)
j,j




0
...
0




j

T
(j)
j+1,j

...

T
(j)
2k+2,j




, r(j) :=
1

T
(j)
j∗,j∗




T
(j)
1,j∗

...

T
(j)
j∗−1,j∗

0
...
0




j




. (19)

In order to highlight the diagonal part of the final matrix, we define the diagonal matrix D,

D := diag(T
(1)
1,1 , . . . , T

(l)
l,l ,

2k+2−2l︷ ︸︸ ︷
1, . . . , 1, T

(l)
2k+3−l,2k+3−l, . . . , T

(1)
2k+2,2k+2),

and we define T := D−1 T (l+1).
Finally, denoting by S = S−1

1 · · ·S−1
l , we get Ĝ = S DT (observe that each Sj is non–singular

and in particular that S−1
j = I2k+2 + c(j)eTj + r(j)eTj∗). The final structure of T is,

T =



Tl Tlc 0
0 Tc 0
0 Trc Tr


 , (20)
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where Tl (Tr) is a l× l upper (lower) triangular matrix (with diagonal entries all equal to 1) and Tc
is a full matrix. It is easy to check that T−1 has the same block structure as T and that its diagonal
blocks are the inverses of the corresponding blocks of T shown in (20). Thus, considering that Tl
and Tr are triangular, the solution of a linear system having T as coefficient matrix requires only
the factorization of the full matrix Tc. This could be performed using a standard LU factorization
with pivoting. Observe also that this symmetric factorization algorithm is particularly efficient
when used to solve (17) because its right hand side remains unchanged when it is left multiplied
by D−1 S−1. As a consequence, we can say that (17) is equivalent to the system

T z = ek+2. (21)

We conclude this section by giving a table where the conditioning number κ2 (in the Euclidean
norm) of Ĝ and of T are compared in the case of a uniform mesh for different values of k. Looking
at table 2, it is clear that when smooth non–uniform meshes are used, replacing (17) with the
equivalent system (21) can increase the accuracy of the numerically computed BS coefficients.

Table 2: Comparison between κ2(Ĝ) and κ2(T ) for different values of k.

k 3 4 5 6 7 8 9

κ2(Ĝ) 7.6 101 6.4 102 1.0 104 1.9 105 5.1 106 1.7 108 7.0 109

κ2(T ) 5.7 100 2.7 101 2.6 101 1.0 102 4.2 102 4.4 102 1.7 103

6 The additional methods

Similarly to what happens when fixing the additional conditions in spline interpolation, there are
several possible choices of the additional k1 − 1 = dk2 e − 1 left and k2 = bk2 c right methods. In the
general non-uniform case the left methods are expressed as follows,

k−i∑

j=−i
α

(i)
j+i yi+j = hi

k−i∑

j=−i
β

(i)
j+i fi+j , i = 1, . . . , k1 − 1, (22)

and the right ones as

N−i∑

j=N−i−k
α

(i)
j−N+i+k yi+j = hi

N−i∑

j=N−i−k
β

(i)
j−N+i+k fi+j , i = N − k2 + 1, . . . , N, (23)

where the coefficient vectors α(i) ,β(i), i = 1, . . . , k1 − 1 and i = N − k2 − 1, . . . , N characterize
the selected methods. In order to keep the approximation order equal to p (where p is the order
of the main scheme) these additional methods must have order greater than p− 2 [3].

Considering the uniform case, in [11] we have proved that, if the numerical solution verifies (2)

with coefficients defined as in (6), there is a unique (vector) spline sk(·) =
∑N−1
i=−1−k ciBi(·), ci ∈

IRd, such that, 



sk(xi) = yi
i = 0, . . . , N.

s′k(xi) = fi

(24)

In the forthcoming paper [12], using a similar argument, we prove that this result can be extended
to the case of non-uniform meshes. This spline extension verifies additional requirements which
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are a consequence of the additional methods (22) and (23) needed by the main method. This
means that they can be interpreted in the BS setting as additional requirements to the associated
collocation spline.

Considering for the sake of brevity the scalar case d = 1 and only the left methods, in this
section we first derive the additional methods imposing the condition that the spline sk(·) verifies

the not–a–knot condition at the knots xi, i = 1, . . . , k1 − 1, that is s
(k+1)
k (x−i ) = s

(k+1)
k (x+

i ) (in
practice this condition removes the knot xi from the spline knot set but not from the collocation
point set). Then, in Theorem 4 we show that they have convergence order greater than k.

By using the piecewise constant (k+1)st–derivative of the spline extension, we define the vector
δ := (δ1, . . . , δN )T , where,

δi := s
(k+1)
k (x) / (k + 1)!, x ∈ [xi−1 , xi), i = 1, . . . , N. (25)

Considering the recursive formula for B–spline derivatives [4], it can be proved that δ satisfies the
following relation,

δ = Mk+1 . . .M1 c,

where c = (c−1−k, . . . , cN−1)T is the vector of the spline coefficients in the B–spline basis and Mi

is a bidiagonal rectangular matrix of size (N + k + 1− i)× (N + k + 2− i) defined as follows,

Mi :=




−1
x1−xi−k−1

1
x1−xi−k−1

0 · · · · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · · · · 0 −1

xN+k+1−i−xN−1

1
xN+k+1−i−xN−1




. (26)

As a consequence the not–a–knot condition at xi becomes

(ei − ei+1)T δ = (ei − ei+1)T Mk+1 · · ·M1 c = 0, (27)

where ei is the ith unit vector in IRN . Thus, by setting

ρi := MT
1 · · ·MT

k+1(ei − ei+1), (28)

the not a knot condition at xi can be formulated as follows in terms of the vector c,

ρTi c = 0. (29)

Consider now for all i = 1, . . . , k1 − 1, the non singular linear system,

G̃(k1)Di(α
(i)T ,β(i)T )T = (ρ̃Ti , 0)T , (30)

with

G̃(k1) :=

[
A

(0)T
1 −hk1

A
(0)T
2

0T ek+1
T

]
,

Di := diag(

k+1︷ ︸︸ ︷
1, . . . , 1,

k+1︷ ︸︸ ︷
hi/hk1

, . . . , hi/hk1
) and

ρ̃i := [I2k+1, 02k+1,N−k]ρi. (31)

Then, the following theorem allows us to derive the coefficients of the left additional methods
guaranteeing (29) for all i = 1, . . . , k1 − 1.
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Theorem 3 Let α(i) and β(i), 1 ≤ i ≤ k1 − 1, be the solution of the linear system (30). Then
if the numerical solution satisfies the ith method in (22), the coefficient vector c of the associated
spline extension sk(·) ∈ Sk,N satisfies (29).

Proof : Owing to the bidiagonal structure of all the matrices Mj , j = 1, . . . , k+ 1, ρi can be block

decomposed as ρi = (ρ̃Ti ,0
T
N−k)T , ∀i = 1, . . . , k1− 1, with ρ̃i ∈ IR2k+1 defined in (31). This allows

us to re–write (29) in the following way when i = 1, . . . , k1 − 1,

ρ̃Ti (c−k−1, . . . , ck−1)T = 0. (32)

Now, if α(i) and β(i) are the solution of (30), then

ρ̃i = A
(0)T
1 α(i) − hiA

(0)T
2 β(i). (33)

On the other hand, considering the local support of B–splines and considering that (24) holds,

it is possible to check that A
(0)
1 (c−k−1, . . . , ck−1)T = (y0, . . . , yk) and A

(0)
2 (c−k−1, . . . , ck−1)T =

(f0, . . . , fk). Substituting (33) in (32), we prove that (29) is equivalent to the ith method in (22).

In order to be sure that (22) does not destroy the convergence order of the main BS method,
we need to check the order conditions. To do this, we first prove the following lemma,

Lemma 1 The vectors ρ̃i, i = 1, . . . , k1−1 defined in (28) and (31) belong to the null space of the

matrix Z
(k+1)
−1−k,2k(t) defined in (13) (with j = −1− k, s = 2k).

Proof :
With some easy manipulation it is possible to check that

Z
(k+1)
−1−k,2k(t)Ĩ MT

1 = −
[

01,2k L
(1)
1

Z
(k)
−k,2k−1(t) L

(1)
2

]
,

where Ĩ := [I2k+1, 02k+1,N−k] and where L
(1)
1 and L

(1)
2 are matrices with suitable dimension. Thus,

using the same reasoning, we get

Z
(k+1)
−1−k,2k(t) Ĩ MT

1 . . .MT
k+1 = (−1)k+1

[
0k+1,k L

(k+1)
1

Z
(0)
0,k−1(t) L

(k+1)
2

]
,

where Z
(0)
0,k−1(t) ≡ eT , with e = (1, . . . , 1)T ∈ IRk. Thus, from (28) and (31) it follows that,

∀i = 1, . . . , k1 − 1,

Z
(k+1)
−1−k,2k(t)ρ̃i = Z

(k+1)
−1−k,2k(t) Ĩ MT

1 . . .MT
k+1(ei − ei+1) = 0k+2.

Now, we are ready to prove the following theorem,

Theorem 4 If (α(i)T ,β(i)T )T , 1 ≤ i ≤ k1 − 1, is the solution of (30), then the order condition
p ≥ k + 1, holds true for the corresponding additional left method (22).

Proof : For the ith additional left method (22) the order condition p ≥ k + 1 can be expressed as
follows in the general non-uniform case [3],

W
(k+1)
i,i,k (t)α(i) + hiW

(r) ′

i,i,k (t)β(i) = 0. (34)
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Now, the matrix relations (12) imply that W
(k+1)
i,i,k (t) = ∆k Z−1−k,2k A

(0)
1 and W

(k+1)′

i,i,k (t) =

−∆k Z−1−k,2k A
(0)
2 , with ∆k denoting a non singular diagonal matrix. Then, using (33), (34)

becomes
Z−1−k,2k (A

(0)
1 α(i) − hiA

(0)
2 β(i)) = Z−1−k,2k ρ̃i = 0.

This allows us to conclude that (34) is an immediate consequence of the result proved in the
previous lemma.

7 Numerical Results

In order to test the non-uniform BS methods with k odd, a variable stepsize implementation of
them has been used on some test problems [6] whose exact solution is known. This preliminary
implementation, written in Matlab, is very similar to the one presented in [13, 14] for the code
TOM, especially concerning the stepsize variation strategy and the solution of the nonlinear equa-
tions. The coefficients of the methods are computed using the algorithm described in Section 5,
the error estimation is done using a higher order method in the same class still with k odd. More
precisely, the computed solution is accepted when,

Em(ŷ) := max
i=0,...,N

‖(yi − ŷi) ./ max(1, |ŷi|)‖∞ < tol,

where ŷ is the numerical solution provided by the higher order method (”./” is the pointwise
division in the case of vector problems).

Observe that, when the test problem is a scalar differential equation of order greater than 1,
it has been rewritten as a first order system before applying to it the numerical scheme. For the
sake of brevity, further details concerning the implementation are skipped in this paper.

Problem 1
The first test problem is {

εy′′(x) = y(x), x ∈ [0 , 1], ε > 0,
y(0) = 1, y(1) = 0,

(35)

whose exact solution is y(x) = (exp(−x/√ε)−exp(−(2−x)/
√
ε))/(1−exp(−2/

√
ε)). The solution

has a boundary layer of width O(
√
ε) at x = 0. The problem is solved using different values of

both ε and tol and the results are shown in Table 3, where Nmax is the maximum number of mesh
points used, hmax/hmin is the ratio between the largest and the smallest step size, Em ≡ Em(y),
where y(x) is the exact solution.

The behavior of Em is consistent with the order of the methods. For lower values of the
tolerances higher order methods reach the solution using a smaller number of mesh points. As
expected, the ratio hmax/hmin increases as ε decreases.

Problem 2
The second test problem is

{
εy′′(x) + xy′(x) = −επ2 cos(πx)− πx sin(πx), x ∈ [−1 , 1], ε > 0,
y(−1) = −2, y(1) = 0,

(36)

whose exact solution is y(x) = cos(πx) + erf(x/
√

2ε)/erf(1/
√

2ε). The solution has a shock layer
of width O(

√
ε) near x = 0. We solve this problem using different values of ε and different values

of tol. The results, reported in Table 4, are similar to those presented for the first example.
The potential of the present schemes is even more evident when a much smaller value for ε (e.g.
ε = 10−14) with tol = 1e−3 is used. The order 4 BS method, which has k = 3, solves this problem
using only 351 mesh points, with an error Em = 3.8e− 6 and a value of hmax/hmin = 5.2e+ 6.
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Table 3: Test problem 1.
k=3 k=5 k=7

ε Nmax
hmax

hmin
Em Nmax

hmax

hmin
Em Nmax

hmax

hmin
Em

tol = 1e-4
10−2 21 1.0e0 2.3e-04 21 1.0e0 1.8e-05 21 1.0e0 1.6e-06
10−4 117 2.6e1 1.7e-06 55 3.9e0 1.0e-04 55 3.2e0 6.0e-05
10−6 203 1.6e2 7.2e-07 267 8.2e1 5.5e-08 185 4.4e3 4.5e-08

tol = 1e-6
10−2 47 2.7e0 8.9e-07 21 1.0e0 1.8e-05 21 1.0e0 1.6e-06
10−4 205 1.1e2 7.8e-08 159 3.9e1 3.2e-09 77 6.4e0 4.7e-07
10−6 377 6.8e2 2.2e-08 365 3.4e2 1.4e-09 221 2.1e3 1.3e-09

tol = 1e-8
10−2 175 1.1e1 4.1e-09 47 2.7e0 1.5e-09 21 1.0e0 1.6e-06
10−4 499 1.6e2 1.1e-08 285 1.2e2 4.9e-11 143 3.1e1 1.7e-11
10−6 1177 1.1e3 1.2e-08 417 3.4e2 4.6e-11 277 5.1e2 3.6e-11

Table 4: Test problem 2.
k=3 k=5 k=7

ε Nmax
hmax

hmin
Em Nmax

hmax

hmin
Em Nmax

hmax

hmin
Em

tol = 1e-4
10−2 45 7.1e0 5.8e-5 76 2.9e1 9.0e-06 85 2.6e1 4.2e-05
10−4 68 5.3e1 9.5e-4 77 2.6e1 3.6e-06 73 2.6e1 5.0e-07
10−6 141 4.7e2 1.5e-6 223 3.5e2 3.5e-08 289 8.7e1 3.0e-07

tol = 1e-6
10−2 113 9.8e0 1.9e-6 136 2.5e1 7.0e-07 171 2.5e1 2.3e-09
10−4 451 3.6e2 2.1e-7 205 4.3e1 1.2e-08 73 2.6e1 5.0e-07
10−6 433 4.6e2 1.6e-7 317 5.1e2 2.0e-08 261 3.5e2 1.2e-10

tol = 1e-8
10−2 699 3.4e1 7.7e-9 252 4.8e1 5.4e-08 171 2.5e1 2.3e-09
10−4 1125 7.2e2 2.9e-8 337 6.3e1 1.2e-10 441 1.4e2 1.8e-11
10−6 849 2.2e3 1.9e-8 639 5.0e2 6.9e-12 357 2.3e2 1.2e-12

Problem 3
The third test problem is a non linear one,

{
εy′′(x) = y(x) + y2(x)− exp(2x/√ε), x ∈ [0 , 1], ε > 0,
y(0) = 1, y(1) = exp(−1/

√
ε),

(37)

whose exact solution is y(x) = exp(−x/√ε) and has a boundary layer of width O(
√
ε) at x = 0.

Table 5 reports the results showing that the behavior of the BS schemes on this nonlinear problem
does not differ from that on linear ones.
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9 Appendix

In this section using the Witney–Schoenberg conditions for spline interpolation (e.g. see [4]) and
their generalization to the case of osculatory spline interpolation originally proved in [16], we first
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Table 5: Test problem 3.
k=3 k=5 k=7

ε Nmax
hmax

hmin
Em Nmax

hmax

hmin
Em Nmax

hmax

hmin
Em

tol = 1e-4
10−2 21 1.0e0 2.0e-04 21 1.0e0 1.1e-04 21 1.0e0 1.1e-04
10−4 97 2.7e1 3.8e-06 105 2.8e1 3.7e-06 99 2.0e1 3.7e-06
10−6 131 1.3e3 5.7e-07 133 1.3e3 2.9e-07 156 5.1e2 7.1e-08

tol = 1e-6
10−2 87 2.5e0 6.4e-08 21 1.0e0 1.5e-05 21 1.0e0 1.9e-06
10−4 169 1.3e1 1.8e-07 105 2.8e1 9.3e-08 99 2.0e1 9.1e-08
10−6 331 6.4e2 2.3e-07 233 3.0e2 3.6e-09 192 2.5e2 1.2e-09

tol = 1e- 8
10−2 173 4.5e0 4.8e-09 41 1.0e0 2.3e-07 41 1.0e0 6.0e-09
10−4 631 2.7e1 3.5e-09 185 1.4e1 6.8e-10 99 2.0e1 2.7e-09
10−6 1085 2.6e3 1.2e-08 249 3.0e2 6.0e-10 284 2.1e2 3.4e-11

prove the non singularity of the matrix G(i) defined in (7). Then we prove also that all the principal
and bottom–to–top principal submatrices of Ĝ(i) defined in (15), are non singular if they have even
order 2r, with r ≤ b k2 c.

Let us start by reporting the Witney–Schoenberg conditions and the above mentioned result
about osculatory spline interpolation in matrix form.

Theorem 5 ( Witney–Schoenberg) Let {Bi(x), i = −1− k, . . . , N − 1} be the k + 1 degree B–
spline basis with extended knot set X = {ξ−1−k, . . . , ξN+k+1}, where ξi ≤ ξi+1 and ξi < ξi+k+2

(whose span has dimension N + k + 1). Let T = {τ0, . . . , τN+k} be a strictly increasing sequence
of N + k+ 1 abscissae. Then the matrix B := (Bj(τi)) is non singular if and only if the following
conditions hold,

ξj−k−1 < τj < ξj+1, ∀j = 0, . . . , N + k. (38)

The previous result is relevant to spline interpolation of Lagrange type. For our purposes, the
following generalization to osculatory spline interpolation is particularly significant.

Theorem 6 ( Karlin–Ziegler) Let {Bi(x), i = −1 − k, . . . , N − 1} be the k + 1 degree B–spline
basis with extended knot set X = {ξ−1−k, . . . , ξN+k+1}, where ξi ≤ ξi+1 and ξi < ξi+k+2 (whose
span has dimension N + k+ 1). Let T = {τ0, . . . , τN+k} be a non decreasing sequence of N + k+ 1
abscissae such that τi < τi+k+2. In addition, let us assume that ∀i = 0, . . . , N + k

τi = · · · = τi+q = ξj = · · · = ξj+s =⇒ q + s ≤ k. (39)

Then if (38) holds, the following matrix is non singular

B :=




B
(0)
−1−k(t0) · · · B

(0)
N−1(t0)

...
...

...

B
(m0−1)
−1−k (t0) · · · B

(m0−1)
N−1 (t0)

...
...

...

B
(0)
−1−k(tf ) · · · B

(0)
N−1(tf )

...
...

...

B
(mf−1)
−1−k (tf ) · · · B

(mf−1)
N−1 (tf )




, (40)



BS linear multistep methods on non-uniform meshes 141

where T = {t0, . . . , tf} is the set of all distinct abscissae in T and mj denotes the multiplicity of

tj in T (thus,
∑f
j=0mj = N + k + 1).

The following two corollaries are useful for our purposes,

Corollary 1 The square matrix G(i) defined in (7) is non singular.

Proof : Since the proof is analogous for all the indices i, without loss of generality we assume
i = k1 and hi = 1. Then G(k1)T becomes,

G(k1)T =

[
A

(0)
1 0

−A(0)
2 e

]
. (41)

Now, first of all let us prove that the principal submatrix of G(k1)T of order 2k+1 is non singular. To
show this, let us consider the k+1 degree B–splines with extended knot set X = {x−1−k, . . . , x2k+1}
(whose span has dimension 2k + 1). The sequence T = {x0, x0, · · · , xk−1, xk−1, xk} verifies (39)
and (38) with respect to X. As a consequence, the related matrix B defined in (40) (where in this
case mj = 2,∀j = 0, . . . f − 1 and mf = 1 with f = k) is non singular. Considering that the
principal submatrix of order 2k + 1 of the matrix G(k1)T reported in (41) is just a permutation
of B, using Theorem 6 we can conclude that it is non singular, as well. Then, in order to prove
that G(k1)T is non singular, we have to show that its last column does not belong to the range

of A := [A
(0)T
1 − A

(0)T
2 ]T . Let us assume that it belongs to such space. Then, relating again

to the k + 1 degree B–splines with extended knot set X = {x−1−k, . . . , x2k+1}, it should be
possible to determine a non zero spline s belonging to their span such that it vanishes at each knot
xj , j = 0, . . . , k and has unitary derivative value at all these knots. Thus, it should be possible
to determine a set of k additional abscissae ηj ∈ (xj , xj+1), j = 0, . . . k − 1 such that s(ηj) = 0.
Considering that the sequence T = {x0, η0, . . . , xk−1, ηk−1, xk} verifies (38) with respect to X,
Theorem 5 implies a contradiction.

Corollary 2 All the principal and bottom–to–top principal submatrices of Ĝ(i) as defined in (15),
are non singular if they have order s, with s ≤ 2b k2 c.

Proof : Without loss of generality we can assume i = k1 and hi = 1. In addition, considering
the structure of Ĝ(k1), without loss of generality we can relate only to the principal submatrices.
Let us consider the k + 1 degree B–splines with extended knot set X = {x−1−k, . . . , x2k+1}. For
proving that the principal submatrix of order s = 2r, r ≤ b k2 c, is non singular, let us introduce the
following sequence of 2k + 1 abscissae

T = {
2r︷ ︸︸ ︷

x0, x0, . . . , xr−1, xr−1,

2(k−2r)︷ ︸︸ ︷
x2r, x2r, . . . , xk−1, xk−1,

2r+1︷ ︸︸ ︷
xk, . . . , xk}.

Since T verifies (39) and (38) with respect to X, using Theorem 6 we can conclude that the
associated matrix B defined in (40) (where in this case mj = 2, j = 0, . . . , f − 1,mf = 2r, with
f = k − r) is non singular. Now, considering that each Bj(·) has local support [xj , xj+k+2], we
can observe that B has the following block structure,

B =

[
B1,1 B1,2

0 B2,2

]
,

where B1,1 is of size 2r× 2r. Thus B1,1 is non singular as well. Considering that B1,1 comes out to

be just the transpose of the principal submatrix of Ĝ(k1) of order s = 2r, the proof is completed.
In the case s = 2r − 1 the proof is analogous, it is sufficient to choose
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T = {
2r−2︷ ︸︸ ︷

x0, x0, . . . , xr−2, xr−2, xr−1, x2r−1,

2(k−2r)︷ ︸︸ ︷
x2r, x2r, . . . , xk−1, xk−1,

2r+1︷ ︸︸ ︷
xk, . . . , xk}.
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