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In this paper we analyze the stability properties of the Wulff-shape in the crystalline
flow. It is well known that the Wulff-shape evolves self-similarly, and eventually shrinks
to a point. We consider the flow restricted to the set of convex polyhedra, we show that

the crystalline evolutions may be viewed, after a proper rescaling, as an integral curve
in the space of polyhedra with fixed volume, and we compute the Jacobian matrix of
this field. If the eigenvalues of such a matrix have real part different from zero, we can
determine if the Wulff-shape is stable or unstable, i.e., if all the evolutions starting close
enough to the Wulff-shape converge or not, after rescaling, to the Wulff-shape itself.
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1. Introduction

In the last few years, a considerable effort has been done in the analysis of geomet-

ric evolution problems, like for example the mean curvature flow. This research is

motivated by various applications coming from the theory of phase transitions and

crystal growth,12,11 and from the denoising problem in image reconstruction.2,7 In

some applications, particular directions are preferred by the evolving set, thus lead-

ing to anisotropic evolutions. In this paper we are concerned with a typical example

of such evolution, the so called crystalline mean curvature flow.11,5,3

This motion corresponds to a weighted L2–gradient flow for a (crystalline) sur-

face energy of the type

Pφ(E) :=

∫

∂E

φo(ν)dHn−1, (1.1)

where the function φo : R
n → R is positive definite, positively one-homogeneous

and piecewise linear. Functions φo with these properties are called crystalline

anisotropies. The fact that the function φo is not strictly convex makes more diffi-
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cult the study of the functional and of the related flow, since usual elliptic operators

are replaced by degenerate monotone operators.

A dual function φ : R
n → R defined by φ(ξ) = sup{〈ξ, ν〉 : φo(ν) ≤ 1}, is

naturally associated to the function φo. The function φ is a crystalline anisotropy

too and its unit ball Wφ := {ξ : φ(ξ) ≤ 1} is a convex polyhedron which is usually

called the Wulff-shape associated to the energy (1.1).

It turns out that the Wulff-shape is always a homothetic solution of the

anisotropic mean curvature flow (even if φo is not piecewise linear). In the case

of Euclidean curvature flow for embedded curves, i.e. when φo(x) = |x| and the

space dimension is n = 2, Gage and Hamilton proved4 that the evolution exists up

to an extinction time and that, if we suitably rescale the evolution (e.g. in such

a way that the volume is kept fixed), the curves converge to a circle. Shortly af-

terwards, Huisken proved6 that any convex set in R
n moving under the Euclidean

mean curvature flow, shrinks to a point in finite time, and after rescaling converges

to a ball.

Surprisingly, there are some obstructions to the extension of these results to the

crystalline setting. Despite the difficulties coming from the weak convexity of the

function φo, in two dimensions the analysis is much easier because the evolution

of a regular curve reduces to a simple ODE. For such evolutions many properties

are known, among them: the validity of a comparison principle and the existence

of the evolution up to a maximal time when the curve shrinks to a point.5 From

the work of Stancu,9 we also know that a stability result holds for two–dimensional

crystalline evolutions; more precisely, under the assumption that the anisotropy is

symmetric, i.e. φo(−x) = φo(x), and that the Wulff-shape is not a quadrilateral,

any embedded regular curve converges, after rescaling, to the Wulff-shape. On the

contrary, if the Wulff-shape is a square, any rectangle shrinks self-similarly under

the related crystalline flow, hence it is a stationary point for the rescaled flow.

However, as shown in the examples discussed in8,10 this result is not true in

higher dimensions. For example when the Wulff-shape is a cube any rectangular

prism (also very close to Wφ) has a rescaled evolution which becomes very different

from Wφ, and in most of the cases converges to a straight line or to a plane. The

cube is not the only unstable Wulff-shape, but we show that there exist many other

examples.

In the present paper we study the validity of Huisken’s convergence theorem for

crystalline anisotropies in R
3. In particular we give an explicit (but rather compli-

cated) formula by means of which we can determine if a given Wulff-shape is stable

or unstable.

The plan of the paper is the following. As a first step we restrict ourselves to a

finite dimensional case by considering only polyhedral sets obtained from the Wulff-

shape by not too large translations of the facets. If the Wulff-shape has N facets,

every such polyhedron can be identified by a point x ∈ R
N . We also assume that the

Wulff-shape is simple, which means that the number of facets meeting at a vertex

is exactly three. Non-simple polyhedra can suddenly change the number of edges at
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the beginning of the evolution and hence it is more complicated to deal with them.

However, in Section 5 we study a non-simple polyhedron by approximating it with

simple polyhedra.

We let Ω ⊂ R
N be the open set of the points corresponding to all the polyhedra

considered and x̄ ∈ Ω be the point corresponding to the Wulff-shape. We notice that

the class of polyhedral sets is not stable under crystalline mean curvature flow, since

“facet-breaking” phenomena may occur,3,13 hence the evolution we study coincides

with the crystalline evolution provided such singularities do not appear, however

this doesn’t happen if the evolving set is close enough to the Wulff-shape. In this

setting the crystalline evolution of a polyhedron becomes the solution x(t) to the

system of ODE’s

ẋ = κ(x)

where κ: Ω → R
N is the vector field representing the crystalline mean curvature.

We express this by saying that x(t) is an integral curve of the vector field κ.

The second step is to renormalize such evolutions up to rescaling and translation.

To achieve this we consider a N− 4-dimensional manifold M ⊂ Ω which represents

all the polyhedra which have the same volume and the same barycenter of the Wulff-

shape (so that x̄ ∈ M). We then consider a projection π: Ω → M which maps a

polyhedron x to the only polyhedron π(x) ∈ M which is homothetic to x. We then

show that the rescaled evolution y(t) = π(x(t)) is itself, up to reparameterization,

the integral curve of a N− 4-dimensional vector field η ∈ TM (Theorem 3.2). In

Theorem 3.1 we point out that every other choice for rescaling (e.g. by keeping

constant the perimeter instead of the volume) is, in some sense, equivalent.

The last step is to study the stability of the rescaled evolution ẏ = η(y). Clearly

η(x̄) = 0 since the Wulff-shape is self-similar under the crystalline evolution. Hence

the stability of the Wulff-shape can be determined by inspecting the eigenvalues of

the Jacobian matrix dη (Theorem 4.1). In fact if the real part of all the eigenvalues is

negative, then the Wulff-shape is stable. On the other hand, if at least one eigenvalue

has positive real part, then the Wulff-shape is unstable. Notice that even if the Wulff-

shape is stable, there might be some rescaled evolutions which do not converge to

the Wulff-shape. Indeed, there are evidences of anisotropies in which the Wulff-

shape is stable but there exist different stationary solutions of the rescaled flow.8

In Section 4 we explain how to compute the Jacobian matrix dη in terms of the

geometry of the Wulff-shape.

We conclude the paper discussing some numerical computation in which the

eigenvalues of the Jacobian matrix are computed for some polyhedron. The diagrams

show that if the number of faces is high enough and the shape is roughly spherical

then it is likely that the Wulff-shape is stable. There are also some evidences that

the stability as well as instability properties are preserved by small C0-perturbation

of the Wφ, in particular we expect the existence of regular and strictly convex

anisotropies which do not satisfy the convergence theorem.
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2. Notation

Let φ : R
3 → R be a positively one-homogeneous, convex and coercive function,

i.e. suppose that

(1) φ(λv) = λφ(v) for all v ∈ R
3 and λ ≥ 0;

(2) φ(v + w) ≤ φ(v) + φ(w);

(3) φ(v) = 0 if and only if v = 0.

Let Wφ := {v ∈ R
3 : φ(v) ≤ 1} be the unit ball with respect to φ. Wφ turns out

to be a convex closed neighborhood of 0 and is usually called Wulff-shape relative

to φ.

Let Fφ := {ξ ∈ R
3 : 〈ξ, v〉 ≤ 1 ∀v ∈ Wφ}. The bracket product 〈·, ·〉 is the

usual inner product of R
3: 〈(ξ1, ξ2, ξ3), (v1, v2, v3)〉 := ξ1v1 + ξ2v2 + ξ3v3. Fφ is

usually called Frank Diagram and is itself a unit ball with respect to a dual norm

φo which is defined by

φo(ξ) := max
φ(v)≤1

〈ξ, v〉.

It can be easily proved that φo is again positively one-homogeneous, convex and

coercive, moreover φoo = φ, Fφ = Wφo and Wφ = Fφo .

Given a set E ⊂ R
3 with Lipschitz boundary, we can define its perimeter with

respect to the anisotropy φ:

Pφ(E) :=

∫

∂E

φo(νE(x)) dH2(x).

Here νE(x) is the external unit normal to E and H2 is the Hausdorff area measure.

When φ(x) = |x| (the usual Euclidean norm of R
3) we have Wφ = Fφ = B1

(the closed unit ball) and Pφ is the usual Euclidean perimeter Pφ(E) = H2(∂E). In

this case the mean curvature of E can be viewed as minus the gradient of Pφ with

respect to the L2-norm of the variations of E.3

2.1. The crystalline setting

From now on we restrict to the case when Wφ (and hence Fφ) is a polyhedron

(crystalline case), i.e. when the function φ is piecewise linear. We call a polyhedron

simple if all its vertices are the intersection of exactly three facets; we also say that

a polyhedron is simplicial if every facet has three edges. In order to simplify the

computations, we shall assume that Wφ is simple, which in turn implies that Fφ is

simplicial.

Notice that there is a one-to-one correspondence between the vertices of Fφ and

the facets of Wφ, and that the vector representing a vertex of Fφ is orthogonal to

the corresponding facet of Wφ. Moreover, if ξ is a vertex of Fφ, then the facet of

Wφ corresponding to ξ is contained in the plane {v : 〈ξ, v〉 = 1} which has distance

1/|ξ| from the origin.
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We shall only consider sets E which are simple convex polyhedra with the same

number of facets of Wφ and such that every facet of E is parallel to a corresponding

facet of Wφ. In fact E will be regarded as a variation of Wφ, obtained by moving

the facets parallel to themselves. In this setting, the space of sets we consider can

be identified with an open subset of R
N , where N is the number of facets of Wφ.

Let ξ1, . . . , ξN be the vertices of Fφ. Given x ∈ R
N we define

E(x) := {v ∈ R
3 : 〈ξk, v〉 ≤ xk, ∀k = 1, . . . , N} = {v ∈ R

3 : Ξ · v ≤ x},
where Ξ := rows{ξ1, . . . , ξN} is the matrix generated by the vectors ξ1, . . . , ξN .

Notice that Wφ = E(x̄) where x̄ = (1, 1, . . . , 1) ∈ R
N .

So E(x) is a polyhedron with no more than N facets and it has exactly N facets

if x is close enough to x̄. Given k, j, i different indices in {1, 2, . . . , N} we define the

facets, edges and vertices of E(x) as

Ek(x) := {v ∈ E(x) : 〈ξk, v〉 = xk},
Ekj(x) := Ek(x) ∩ Ej(x), Ekji(x) := Ek(x) ∩ Ej(x) ∩ Ei(x),

together with their measures

m(x) := H3(E(x)), mk(x) := H2(Ek(x)),

mkj(x) := H1(Ekj(x)), mkji(x) := H0(Ekji(x)).

Moreover, we define the barycenters of the elements of E(x) as

b(x) :=
1

m(x)

∫

E(x)

z dH3(z), bk(x) :=
1

mk(x)

∫

Ek(x)

z dH2(z),

bkj(x) :=
1

mkj(x)

∫

Ekj(x)

z dH1(z).

Finally, we consider the sets of relevant indices of facets, edges and vertices:

I1 := {1, 2, . . . , N}, I2 := {(k, j) ∈ I2
1 : 0 < mkj(x̄) < ∞},

I3 := {(k, j, i) ∈ I3
1 : mkji(x̄) = 1}.

Notice that mkj = ∞ only if k = j and mkji ∈ {0, 1,∞}. Clearly #I1 is the number

of facets of Wφ, #I2 is twice the number of edges and, since Wφ is simple, #I3 is

six times the number of vertices.

We now restrict our study to the following subset of R
N :

Ω := {x ∈ R
n : mkji(x) = mkji(x̄), ∀(k, j, i) ∈ I3}.

This definition implies that for every x ∈ Ω the polyhedron E(x) has the same

number of facets, edges and vertices of Wφ = E(x̄). Being Wφ simple the set Ω is

open and clearly x̄ ∈ Ω.

In this finite dimensional setting the anisotropic perimeter Pφ is given by

P (x) := Pφ(E(x)) =
∑

k∈I1

φo(ξk/|ξk|)mk(x) =
∑

k

mk(x)

|ξk|
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so that P : Ω → R
+. It turns out that Ω should not be considered flat. Indeed on Ω

we put the Riemannian metric which corresponds to the L2-Φ-norm of variations of

the sets E(x). So given x ∈ Ω and v ∈ TxΩ = R
N , we can consider the polyhedron

E(x + v) as a variation of E(x). The L2-Φ-norm of the variation is then

‖v‖x :=

(

∑

k

mk(x)

|ξk|
v2

k

)
1

2

which is induced by the following scalar product

(v, w)x :=
N
∑

k=1

mk(x)

|ξk|
vkwk, v, w ∈ TxΩ.

This scalar product turns Ω into a Riemannian manifold of dimension N .

We can now define the crystalline curvature vector field κ : Ω → R
N simply by

κ(x) := −∇xP (x)

where (∇xP (x), v)x =
∑

j(∇P )jvjmj/|ξj | = ∂P
∂v

(x). So we obtain

κj(x) = − |ξj |
mj(x)

∂P

∂xj

(x).

3. Evolution and limit shape

The mean curvature evolution flow is then given (at least for a short time, due

to possible facet-breaking phenomena) by the solution of the following system of

ODE’s:
{

ẋ(t) = κ(x(t)),

x(0) = x0.
(3.1)

Notice that, since the function κ = −∇xP belongs to C∞(Ω), for any initial datum

x0 ∈ Ω problem (3.1) has a unique solution x(t) ∈ Ω defined on a maximal time

interval [0, T [.

First of all, notice that given x ∈ Ω and t ∈ R it holds P (tx) = t2P (x) which

implies

2P (x) =
d

dt
P (tx)|t=1 = (∇P (x), x)x = −(κ(x), x)x.

In particular κ(x) 6= 0 for all x ∈ Ω (recall that x ∈ Ω implies P (x) > 0). Moreover,

if x(t) is a solution to (3.1) we get

(ẋ(t), x(t))x(t) = −2P (x(t)) < 0,

hence there exists a time T > 0 such that

lim
t→T−

x(t) ∈ ∂Ω.
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Also notice that

d

dt
P (x(t)) =

(

∇P (x(t)), κ(x(t))
)

x(t)
= −(κ(x(t)), κ(x(t)))x(t) < 0;

hence P (x(t)) is a strictly decreasing function.

An important result about this evolution law is that for x0 = x̄ the solution

to (3.1) is the following:

x(t) =
√

1 − 2tx̄.

We notice that the evolution is self similar, defined for t < T = 1/2 and that for

t → T− we get x(t) → 0 ∈ ∂Ω. So the set E(x(t)) tends to {0} (in the sense of

Hausdorff convergence of sets) as t → T−. But we are more interested in the shape

of E(x(t)) which, in this case, is always Wφ.

As limit shape we mean the limits of a sequence of compact sets up to translation

an rescaling. More precisely: given a sequence Ek of compacts, non-empty subsets of

R
3, we say that a compact set E 6= ∅ is a limit shape of Ek if there exist a sequence

λk > 0 and a sequence zk ∈ R
3 such that

λk(Ek − zk) → E

with respect to the Hausdorff distance of compact sets.

Obviously if E is a limit shape than also λE + z is a limit shape for all λ > 0

and z ∈ R
3. Moreover every singleton {z} is always a limit shape. The following

theorem shows that apart from these pathologies the limit shape is unique.

Theorem 3.1. Let Ek, E, F be compact subsets of R
3, let λk, µk ∈ R, with λk, µk >

0, and xk, yk ∈ R
3. Suppose that

λk(Ek − xk) → E, µk(Ek − yk) → F

and suppose moreover that 0 < diamE, diamF < +∞. Then there exist λ > 0 and

x ∈ R
3 such that

E + x = λF.

Proof. Let λ = diamE/diamF . Since

λkdiamEk = diam(λk(Ek − xk)) → diamE,

µkdiamEk = diam (µk(Ek − yk)) → diamF

we get λk/µk → λ. So

λk(Ek − xk) + λk(xk − yk) = λk(Ek − yk) = λµk(Ek − yk) → λF

and since λk(Ek − xk) → E we get that λk(xk − yk) converges to some x ∈ R
3 with

E + x = λF .
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3.1. Renormalized evolution

We now want to define translations and rescaling on Ω ⊂ R
N . Notice that given

x ∈ Ω and λ > 0 one has λx ∈ Ω and

E(λx) = λE(x).

Given z ∈ R
3, we define the translation operator τz : Ω → Ω so that

E(τz(x)) = E(x) + z.

This implies that τz can be defined in coordinates as

(τz(x))k := xk + 〈ξk, z〉
that is τz(x) = x + Ξz.

Let now define the (N− 4)-dimensional manifold M ⊂ Ω which corresponds to

properly rescaled polyhedra

M := {x ∈ Ω : m(x) = m(x̄), b(x) = b(x̄)}
and let π: Ω → M be renormalization defined as

π(x) :=

(

m(x)

m(x̄)

)− 1

3

(τb(x̄)−b(x)(x))

so that m(π(x)) = m(x̄) and b(π(x)) = b(x̄). Notice that π(Ω) = M and that

π|M:M → M is the identity map on M.

Our aim is to study the stability of the self-similar evolutions, where self-similar

means here stationary for the flow up to homothety and translation. Given a solution

to ẋ(t) = κ(x(t)) we consider the rescaled evolution π(x(t)) and, in the following

theorem, we show that this evolution can be regarded as an integral curve in M
with respect to the vector field η ∈ TM given by η(y) := dπy ·κ(y), for all y ∈ M. So

we can study the stability of π(x(t)) by inspecting the eigenvalues of the Jacobian

(N− 4) × (N− 4)-dimensional matrix dη.

Theorem 3.2. Given x0 ∈ Ω let x(t) (t ∈ [0, T )) and y(s) (s ∈ [0, S)) be respec-

tively the maximal solutions to the following Cauchy problems:
{

ẋ(s) = κ(x(s))

x(0) = x0

{

ẏ(s) = η(y(s))

y(0) = π(x0)

Then there exists a reparameterization t 7→ s(t) such that π(x(t)) = y(s(t)).

Lemma 3.1. Let x ∈ Ω. Then

dπx · κ(x) =

(

m(x)

m(x̄)

)− 2

3

dππ(x) · κ(π(x)).

Proof. Let x0 ∈ Ω be a given point. Given x ∈ Ω define α(x) := (m(x̄)/m(x))
1

3 ∈
R and β(x) = b(x̄) − b(x) ∈ R

3. Recall that π(x) = α(x)τβ(x)(x). Consider the

application T : Ω → Ω defined by

T (x) := α(x0)τβ(x0)(x) = α(x0)(x + Ξβ(x0)).



October 26, 2004 15:49 WSPC/INSTRUCTION FILE novpao04

Stability of Crystalline Evolutions 9

Clearly T (x0) = π(x0). Moreover π(T (x)) = π(x) for all x ∈ Ω. Differentiating the

last equation in x0 we get

dππ(x0) · dTx0
= dπx0

.

Notice now that dTx = α(x0)Id and recall that κ(x) = α(x)κ(π(x)). So we obtain

dπx0
· κ(x0) = α2(x0)dππ(x0) · κ(π(x0))

which is the claim of the lemma.

Proof. [Theorem 3.2] Let α(x) be defined as in Lemma 3.1 and let

s(t) =

∫ t

0

α2(x(τ)) dτ.

Clearly s(t) is strictly increasing and hence invertible. Let t(s) be its inverse and

define

z(s) = π(x(t(s))).

We claim that z(s) = y(s) which concludes the proof. First notice that z(0) =

π(x(0)) = π(x0) = y(0). Being ṫ(s) = (α(x(t(s))))−2 and applying the previous

lemma we get

ż(s) = ṫ(s)dπx(t(s)) · κ(x(t(s))) = dπz(s) · κ(z(s)) = η(z(s)).

So z and y are solutions to the same Cauchy problem therefore by uniqueness we

get z = y.

4. The Stability Condition for Wφ

Let us assume that ȳ ∈ M corresponds to a self-similar evolving polyhedron. By

the previous results we may state this simply as η(ȳ) = 0 which means that ȳ is a

fixed point of the dynamical system ẋ = η(x). We know that x̄ (which represents the

Wulff-shape) has always this property, but in some cases there may exist self-similar

solutions different from Wφ.

We say that ȳ correspond to a stable self-similar evolution if there exists ρ > 0

such that for any x0 ∈ Bρ(ȳ) we have limt→T− π(x(t)) = ȳ. Conversely, we say that

ȳ correspond to an unstable evolution if there exists ρ > 0 such that for any ρ′ < ρ

there exists x′ ∈ Bρ′(ȳ) and τ = τ(x′) such that x′(τ) 6∈ Bρ(ȳ).

The following result follows by standard analysis on nonlinear ODE’s on

manifolds.1

Theorem 4.1. If η(ȳ) = 0 and all the eigenvalues of the linear mapping dηȳ have

strictly negative real part then ȳ corresponds to a stable evolution. On the other hand,

if η(ȳ) = 0 and the linear mapping dηȳ has an eigenvalue with strictly positive real

part, then ȳ corresponds to an unstable evolution.
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We want to write an explicit formula for dηȳ, i.e. an expression which involves

only the geometric quantities of the polyhedron E(ȳ): the measures and the barycen-

ters of edges and facets.

In order to make explicit computations of the eigenvalues of dηȳ, we want to

represent this linear mapping with an (N − 4) × (N − 4) matrix. To achieve this

we consider an extension η̃: Ω → R
N of η ∈ TM, defined on the whole Ω by the

formula

η̃(x) := dπx · κ(x).

Then we consider any orthonormal basis (v1, . . . , vN−4) of TȳM = dπȳ(RN ) and let

Q : TȳM → R
N be the (N− 4)×N matrix with columns v1, . . . , vN−4. The matrix

which represents dηȳ in these coordinates is

dηȳ = Qtdη̃ȳQ (4.1)

and we want to compute this matrix in terms of the geometric description of the

Wulff-shape. In order to accomplish this we have to compute the matrices dπȳ and

dη̃ȳ.

Given x ∈ Ω, we have

∂m(x)

∂xj

=
mj(x)

|ξj |
.

For (k, j) ∈ I2 we have

∂mk(x)

∂xj

=
mkj(x)

|ξj | sinαkj

with αkj := arccos
ξk · ξj

|ξk| |ξj |
,

and

∂mk(x)

∂xk

= − 1

|ξk|
∑

(j,k)∈I2

cotαkj mkj(x).

From the equation ∂
∂xk

∫

E(x)
z dz = 1

|ξk|

∫

Ek(x)
z dz we get

∂b(x)

∂xk

=
mk(x)

|ξk|m(x)
[bk(x) − b(x)].

Moreover, from ∂
∂xj

∫

Ek(x) z dz = 1
|ξj | sin αkj

∫

Ekj(x) z dz we obtain

∂bk(x)

∂xj

=
1

|ξj | sin αkj

mkj(x)

mk(x)
[bkj(x) − bk(x)],

while from ∂
∂xk

∫

Ek(x) z dz = vk

|ξk|2
mk(x) − 1

|ξk|

∑

(j,k)∈I2
cotαkj

∫

Ekj(x) z dz we get

∂bk(x)

∂xk

=
ξk

|ξk|2
− 1

|ξk|
∑

(j,k)∈I2

cotαkj [bkj(x) − bk(x)]
mkj(x)

mk(x)
.

Finally, for (k, j, i) ∈ I3 we have

∂mkj(x)

∂xi

=
|ξk × ξj |

|(ξk × ξj) · ξi|
,
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while, for (k, j) ∈ I2,

∂mkj(x)

∂xk

=
∑

(i,j,k)∈I3

(ξj × ξi) · (ξk × ξj)

|ξk × ξj | |(ξi × ξj) · ξk|
.

Notice that, since E(x) is simple, the last sum is composed by only two terms.

Now we deal with the derivatives of π. Recall that πk(x) = [m(x)/m(x̄)]−
1

3

{xk + ξk · [b(x̄) − b(x)]}, hence

∂πk(x)

∂xj

=

[

m(x)

m(x̄)

]− 4

3 mj(x)

m(x̄)|ξj |
(4.2)

·
{

−xk

3
+ δkj |ξj |

m(x)

mj(x)
+ ξk ·

[

4

3
b(x) − 1

3
b(x̄) − bj(x)

]}

,

where δkj = 1 if k = j and 0 otherwise.

We can now compute the components of dη̃ȳ = d(dπ · κ)ȳ, which are

∂η̃j(ȳ)

∂xi

=
N
∑

k=1

∂2πj(ȳ)

∂xi∂xk

κk(ȳ) +
N
∑

k=1

∂πj(ȳ)

∂xk

∂κk(ȳ)

∂xi

, (4.3)

where

κk(x) = − |ξj |
mk(x)

∂P (x)

∂xk

= −
∑

(j,k)∈I2

mkj(x)

mk(x)

|ξk| − |ξj | cosαkj

|ξk| |ξj | sin αkj

. (4.4)

So, gathering equations (4.2), (4.3) and (4.4) we are able to compute the matrix (4.1)

and hence the eigenvalues and eigenvectors of the linear mapping dηȳ in any point

ȳ ∈ M.

5. Numerical Computations

In this section we compute the eigenvalues of the matrix dηx̄ for some class of

polyhedra, and we discuss the results. Our computation shows that, at least in

these classes, such matrix has always real eigenvalues; we don’t know if this is a

general property of the matrix dηx̄.

In Figure 1 we plot the eigenvalues corresponding to the prisms which have a

regular n-agonal basis, with n ∈ {3, . . . , 30}. The ratio between the radius of the

basis and the height of the prism does not affect the eigenvalues.

Both the upper and lower diagram show the eigenvalues, but the lower one

has been magnified in the y-axis. We recall that for a polyhedron with N facets

(in this case N = n + 2) the corresponding matrix dηx̄ has dimension (N − 4) ×
(N− 4) and hence has N − 4 eigenvalues. We notice in particular that every prism

has the eigenvalue 1, which means that every prism is unstable. Examining the

corresponding eigenvector one can realize that this instability corresponds to a

“straightening” of the prism in the vertical direction. We also notice that: the cube

(n = 4) has 1 as a double eigenvalue, the pentagonal prism has three positive

eigenvalues (hence three different instabilities), and the hexagonal prism has 0 as
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Fig. 1. n-agonal prisms, with n ∈ {3, . . . , 30}.



October 26, 2004 15:49 WSPC/INSTRUCTION FILE novpao04

Stability of Crystalline Evolutions 13

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-50

-40

-30

-20

-10

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-19

-18

-17

-16

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

Fig. 2. 14-agonal prisms, with every other side of length l ∈ [0, 1].
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Fig. 3. Fourteen different perturbations of a non simple polyhedron with 24 facets.
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Fig. 4. Dodecahedron with height h ∈ [0, 1].

a double eigenvalue. For n ≥ 7 all prisms have the single eigenvalue 1, while all

other eigenvalues are negative and possibly double (hence all the other instabilities

disappear). It seems also that the set of the eigenvalues converges, as n → ∞, to

the expected (infinite) set of eigenvalues for the cylinder.

In Figure 2 we plot the eigenvalues corresponding to a prism which has a polygon

with 14 sides as basis. The basis is obtained from a regular heptagon by cutting the

vertices so that every new side of the resulting 14-agon is parallel to the sides of

the regular one (which we assume has sides of length 1) and has length l ∈ [0, 1]. So

for l = 0 we have the regular heptagonal prism, while for l = 1 we have the regular

14-agonal prism. We observe that the set of eigenvalues converges, as l → 0+, to

the set of eigenvalues of the regular heptagonal prism, in the sense that the first

five eigenvalues converge to the five eigenvalues of the heptagonal prism, whereas

the others go to −∞.

Considering these pictures, we expect some sort of stability of the eigenvalues

under small perturbations (in the Hausdorff distance) of the Wulff-shape, even in

the case when the Wulff-shape changes geometry. In particular we would expect

that every smooth Wulff-shape which is close enough to an unstable polyhedron is
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itself unstable for the corresponding anisotropic flow.

In Figure 3 we deal with one of the examples given by Paolini and Pasquarelli8.

The polyhedron considered is a small perturbation of an hexagonal prism. It has

twentyfour facets with unit distance from the origin and whose normal vectors are

(cos(kα) cos ε, sin(kα) cos ε,± sin ε), (cos(kα) sin δ, sin(kα) sin δ,± cos δ)

where α = π/3, k ∈ {1, . . . , 6}, ε = 0.1, δ = 0.1. This polyhedron is not simple,

hence our computations do not apply directly. However we can obtain a simple

polyhedron by making a small random perturbation of all vertices. In the first

diagram of Figure 3 we present the twenty eigenvalues of forteen different random

perturbations of the same polyhedron just described. In the second diagram the y-

axis has been magnified. It is apparent that there are two positive eigenvalues which

correspond to two different directions of instability. With respect to the hexagonal

prism (which has eigenvalues: 1, 0, 0,−1), we find an additional positive eigenvalue,

which is due to the fact that we split in two the vertical facets of the prism. The

result of the numerical computations is in agreement with the discussion in8.

In Figure 4 we consider a family of dodecahedra depending on a parameter h.

All dodecahedra have two parallel horizontal facets while the angle between the

other ten facets and the vertical is given by h radians. For h = 0 the two horizontal

facets are regular pentagons while the other ten facets are triangles. For small h the

two horizontal facets are decagons and the other facets are quadrilaterals. For the

other values of h the dodecahedron is composed by pentagons. The value h ∼ 0.47

gives the regular dodecahedron which has two different negative eigenvalues with

multiplicities 5 and 3, hence it is stable. Moreover, close enough to the regular

dodecahedron, all the eigenvalues are still negative, hence the corresponding poly-

hedra are stable. This fact suggests that all polyhedra which are close enough to

the sphere should be stable. We also notice that when the dodecahedron changes

geometry (for h ∼ 0.1) the curve of eigenvalues has an angle, while for all the other

values this curve is smooth.
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