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Abstract. We consider a convex polygonal heat conductor whose inscribed
circle touches every side of the conductor. Initially, the conductor has constant
temperature and, at every time, the temperature of its boundary is kept at zero.
The hot spot is the point at which temperature attains its maximum at each given
time. It is proved that, if the hot spot is stationary, then the conductor must satisfy
two geometric conditions. In particular, we prove that these geometric conditions
yield some symmetries provided the conductor is either pentagonal or hexagonal.

1 Introduction

A hot spot in a heat conductor is a point at which temperature attains its maximum
at each given time. Let Ω be a bounded convex domain in the Euclidean space
R

N , N ≥ 2, and consider a heat conductor Ω having initial constant temperature and
zero boundary temperature at every time. The physical situation can be modeled
as the following initial-boundary value problem for the heat equation:

ut = ∆u in Ω × (0,∞),(1.1)

u = 0 on ∂Ω × (0,∞),(1.2)

u = 1 on Ω × {0},(1.3)

where u = u(x, t) denotes the normalized temperature at a point x ∈ Ω at a time
t > 0.

Since Ω is convex, a result of [BL] shows that log u(x, t) is concave in x; this
fact together with the analyticity of u in the spatial variable x, implies that for each
time t > 0, there exists a unique point x(t) ∈ Ω satisfying

(1.4) {x ∈ Ω : ∇u(x, t) = 0} = {x(t)},
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where ∇ denotes the spatial gradient. The point x(t) is the unique hot spot for each
time t > 0. Put M = {x ∈ Ω : d(x) = maxz∈Ω d(z)}, where d(z) is the distance of
z to ∂Ω, defined by

(1.5) d(z) = dist(z, ∂Ω) (= inf{|z − y| : y ∈ ∂Ω}) for z ∈ Ω.

Then we have

(1.6) dist(x(t),M) → 0 as t → 0+,

since the function −4t log[1−u(x, t)] attains its maximum at x = x(t) for each t > 0

and a result of Varadhan [V] shows that

(1.7) −4t log[1 − u(x, t)] → d(x)2 as t → 0+ uniformly on Ω.

In conclusion, the hot spot x(t) starts from M. Also, as t → ∞, x(t) tends to the
point at which the positive first eigenfunction of −∆ with homogeneous Dirichlet
boundary condition attains its maximum (see [MS 3], Introduction, for details).

From now on, without loss of generality, we assume that Ω contains the origin 0.
A conjecture of Klamkin [Kl] stated that if the origin is a stationary hot spot,

that is, if x(t) ≡ 0, then Ω must be centro-symmetric with respect to 0. This was
disproved by Gulliver–Willms [GW] and Kawohl [Ka]. A typical counterexample
is an equilateral triangle in the plane. After that, Chamberland–Siegel [CS] posed
the following conjecture.

Conjecture 1.1 (Chamberland–Siegel). If 0 is a stationary hot spot in a

bounded convex domain Ω, then Ω is invariant under the action of an essential

subgroup G of orthogonal transformations.

A subgroup G of orthogonal transformations is said to be essential if for every
x 6= 0, there exists an element g ∈ G such that gx 6= x. As observed in [CS], it is
quite easy to prove that, if Ω is invariant under the action of an essential subgroup
G of orthogonal transformations, then the origin must be a stationary hot spot.
Indeed, if Ω enjoys that invariance, then by the unique solvability of the initial-
Dirichlet problem (1.1)–(1.3), the solution u itself is invariant under the action of
G. Namely, we have u(x, t) ≡ u(gx, t) (x ∈ Ω, t > 0, g ∈ G). Taking the gradient
of both sides of the last identity, together with the assumption that G is essential,
implies that ∇u(0, t) = 0 (t > 0); and then it follows from (1.4) that the origin is a
stationary hot spot.

A proof of Conjecture 1.1 appears to be a much harder task. So far, the only
progress in this direction is the following theorem, that was proved by the authors
in [MS 3] as a consequence of a more general result.
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Theorem 1.2. Let Ω be a bounded domain in R
2.

(1) If Ω is a triangle and 0 is a stationary hot spot, then Ω must be an equilateral
triangle centered at 0.

(2) If Ω is a convex quadrangle and 0 is a stationary hot spot, then Ω must be a
parallelogram centered at 0.

(3) If Ω is a non-convex quadrangle, then there is no stationary critical point of

u in Ω. In particular, there is no stationary hot spot.

In (1) of Theorem 1.2, G is the cyclic group generated by the rotation of the
angle (2π)/3; and in (2), G = {I,−I}, where I is the identity mapping. The proof
is based on two ingredients: the balance law around stationary critical points of
the heat flow (see [MS 1]) and the asymptotic behavior as t → 0+ of solutions of
the heat equation, due to Varadhan [V].

In the present paper, we treat the case of certain pentagons and hexagons.

Theorem 1.3. Let Ω be a convex polygon in R
2 and suppose that its inscribed

circle touches every side of Ω.

(1) If Ω is a pentagon and 0 is a stationary hot spot, then Ω must be a regular

pentagon centered at 0.

(2) If Ω is a hexagon and 0 is a stationary hot spot, then Ω is invariant under the
action of the rotation of one of angles π/3, (2π)/3, π.

This theorem is a consequence of the following general statement.

Theorem 1.4. Let Ω be a convex polygon in R
2 with m sides, m ≥ 5, and let

BR(0) be the open disk with radius R > 0 centered at 0.

Suppose that 0 is a stationary hot spot and the circle ∂BR(0) touches every side

of Ω at the points p1, . . . , pm ∈ ∂Ω ∩ ∂BR(0). Let q1, . . . , qk be the k (1 ≤ k ≤ m)

nearest vertices of Ω to 0.

Then

(1.8)
m

∑

i=1

pi = 0

and

(1.9)
k

∑

j=1

qj = 0.

We observe that in the special case in which the vertices q1, . . . , qk are consec-
utive, equation (1.9) easily implies that k = m and Ω must be a regular polygon.
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While (1.8) was already obtained in [MS 3], (1.9) is new; it is derived by
coupling a suitable extension argument to a careful analysis of the short-time
behavior of u(x, t) near the vertices of Ω.

The present paper is organized as follows. Sections 2 and 3 are devoted to the
proof of Theorem 1.4. In Section 2, we introduce the function v = 1 − u and give
sub- and supersolutions v−, v+ for the initial-boundary value problem solved by
v. Then, by folding back v with respect to each side of Ω, we extend v to a solution
of the heat equation in a domain larger than Ω and by using the balance law around
a stationary critical point, we obtain (1.8) and the main identity (2.13). In Section
3, with the aid of v−, v+, we exploit a more detailed initial behavior of v and
eventually obtain (1.9). Finally, in Section 4, we prove Theorem 1.3.

2 Barriers for an extension of the solution

In this section, we extend the solution of (1.1)–(1.3) to a larger domain, in order to
prove (1.8) and prepare the proof of (1.9).

Let Ω be a convex m-gon in R
2 with m ≥ 5. Suppose that the circle ∂BR(0)

touches every side of Ω, say ∂Ω ∩ ∂BR(0) = {p1, . . . , pm}. Let q1, . . . , qk be the
k (1 ≤ k ≤ m) nearest vertices of Ω to the origin; we can set R∗ = |q1| = |q2| =

· · · = |qk|, and hence R∗ > R.
Denote by ν1, . . . , νm the interior normal unit vectors to ∂Ω at the points

p1, . . . , pm, respectively. Note that

(2.1) pi = −Rνi (i = 1, . . . , m).

For notational convenience, we deal with the function v = 1 − u instead of u

and consider the cold spot of v instead of the hot spot of u; so v satisfies

vt = ∆v in Ω × (0,∞),(2.2)

v = 1 on ∂Ω × (0,∞),(2.3)

v = 0 on Ω × {0}.(2.4)

We now introduce a subsolution v− = v−(x, t) and a supersolution v+ = v+(x, t)

for problem (2.2)–(2.4).
Define

(2.5) f(ξ) =
1√
π

∫ ∞

ξ

e−
1
4
η2

dη for all ξ ∈ R;

and note that

(2.6)
∫ ∞

0

ξf(ξ) dξ = 1.



HEAT CONDUCTORS WITH A STATIONARY HOT SPOT 5

The function w = w(s, t) given by

(2.7) w(s, t) = f
(

t−1/2s
)

for (s, t) ∈ R × (0,∞)

satisfies the one-dimensional heat equation wt = wss in R × (0,∞). Hence, we
easily see that the functions

v−(x, t) = max
1≤i≤m

f
(

t−1/2(x − pi) · νi

)

,(2.8)

v+(x, t) =

m
∑

i=1

f
(

t−1/2(x − pi) · νi

)

.(2.9)

are, respectively, a sub- and a supersolution for problem (2.2)–(2.4). By the
comparison principle, it follows that

(2.10) v− ≤ v ≤ v+ in Ω × (0,∞).

The following result is used in Section 3.

Lemma 2.1. For any compact set K contained in Ω, there exist two positive
constants A > 0, B > 0 satisfying

0 < v(x, t) ≤ Ae−B/t for all (x, t) ∈ K × (0,∞).

Proof. This follows directly from (2.10) and the convexity of Ω. �

Note that Lemma 2.1 holds for general (not necessarily convex) domains
Ω ⊂ R

N (N ≥ 2) because of Varadhan’s result (1.7).
By following the procedure employed in [MS 3], we extend v to a solution v∗ =

v∗(x, t) of the heat equation in a larger domain domain Ω∗ × (0,∞) ⊃ Ω × (0,∞).
Here Ω∗ is obtained by putting together Ω and all its reflections with respect to
each of its sides and by eliminating possible overlaps; v∗ equals 1 − u∗, where u∗

is obtained by odd reflections of u with respect to each side of Ω. It is clear that
BR∗(0) ⊂ Ω∗ (see Fig. 1 (a)).

Since 0 is a stationary cold spot of v, we infer that it is a stationary critical point
of v∗.

Therefore we can use the balance law obtained in [MS 1], Theorem 2 (see also
[MS 2], Corollary 2.2, for another proof) to infer that

(2.11)
∫

BR∗ (0)

xv∗(x, t) dx = 0 for any t > 0.

Letting t → 0+ yields

(2.12) 2

∫

BR∗(0)\Ω

x dx = 0,
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D i
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i

Ω ∗

Ω ∗

Ω ∗

Ω ∗

Ω ∗

Ω ∗

(a) (b)

E
Ω

Figure 1: (a) The construction of the set Ω∗ and (b) the sets E, Di and D =
⋃

Di.

since v∗ tends to 0 inside Ω and to 2 outside; (2.12) easily implies (1.8).

Denote by D the region obtained as the union of the reflections of each connected
component of BR∗(0)\Ω with respect to each relevant side of Ω; let Dj , 1 ≤ j ≤ m,

be the connected components of D; and put E = (BR∗(0) ∩ Ω) \ D. Note that both
D and E are contained in Ω. For x ∈ Dj , 1 ≤ j ≤ m, denote by x∗ the reflection of
x with respect to the side of Ω containing Dj ∩ ∂Ω. Then v∗(x, t) ≡ 2 − v∗(x∗, t)

because of (2.3) (see Fig. 1 (b)). Since

∫

BR∗ (0)

xv∗(x, t) dx =

∫

E

xv(x, t) dx +

∫

D

xv(x, t) dx +

∫

BR∗ (0)\(D∪E)

xv(x, t) dx

=

∫

E

xv(x, t) dx +

∫

D

xv(x, t) dx +

∫

D

x∗[2 − v(x, t)] dx,

it follows from (2.11) and (2.12) that for any t > 0,

(2.13)
∫

E

xv(x, t) dx +

∫

D

(x − x∗) v(x, t) dx = 0.

In the next section, in order to prove (1.9), we calculate

(2.14) lim
t→0+

1

t

{
∫

E

xv(x, t) dx +

∫

D

(x − x∗) v(x, t) dx

}

.

in a different way.
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3 Proof of Theorem 1.4: asymptotic lemmas

When k < m, let s1, . . . , s` (` = 2m − 2k) be all the points such that

(3.1) ∂Ω ∩ ∂BR∗(0) = {q1, . . . , qk, s1, . . . , s`}.

Since each pi is the midpoint of a pair of points in ∂Ω∩∂BR∗(0), we have from (1.8)

(3.2) 2

k
∑

j=1

qj +
∑̀

j=1

sj = 2

m
∑

i=1

pi = 0.

Notice that when k = m, the definition of q1, . . . , qm implies that all the angles of
the m-gon Ω are equal, so that Ω must be a regular polygon. Thus (1.9) holds when
k = m. In the sequel,we assume that k < m.

Since the circle ∂BR(0) touches every side of Ω, all the angles between the
circle ∂BR∗(0) and the sides of Ω at qj or at sj are equal. Denote by α ∈ (0, π/2)

the measure of these angles.
In view of Lemma 2.1, it is enough to replace the sets in the integrals in (2.14)

with small neighborhoods of the points qj , sj , and small neighborhoods of ∂Ω in
Dj. Choose a number δ0 > 0 so small that, for any x ∈ {q1, . . . , qk, s1, . . . , s`},

Bδ0
(x) ∩ ({p1, . . . , pm, s1, . . . , s`} ∪ { vertices of Ω}) = {x}.

Lemma 3.1. For ε > 0 and 1 ≤ j ≤ `, set

Eε(sj) = {x ∈ E : 0 < (x − sj) · νi < ε} ∩ Bδ0
(sj),

where νi is the interior unit normal vector to the side of Ω containing the point sj

(see Fig. 2).

Then, if ε is sufficiently small, we have

(3.3) lim
t→0+

1

t

∫

Eε(sj)

x v(x, t) dx = 2 cotα sj for 1 ≤ j ≤ `.

Proof. Since Ω is convex and sj is not a vertex of Ω, (2.8), (2.9), and (2.10)
imply that there exist positive constants Aj and Bj such that

(3.4)
∣

∣v(x, t) − f
(

t−1/2(x − sj) · νi

)
∣

∣ ≤ Aje
−

Bj

t for all x ∈ Ω ∩ Bδ0
(sj), t > 0.

Here we have used the fact that (x − sj) · νi = (x − pi) · νi.
Set ei = (pi − sj)/|pi − sj |; if ε > 0 is sufficiently small, we can write

Eε(sj) = {x = sj + z1 νi + z2 ei : 0 < z1 < ε, ϕ−(z1) < z2 < ϕ+(z1)},
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where ϕ−(z1) < 0 < ϕ+(z1) for z1 ∈ (0, ε) and the functions ϕ− and ϕ+ represent
∂Eε(sj) ∩ ∂BR∗(0) and ∂Eε(sj) ∩ ∂D, respectively. Note that ϕ′

−(0) = − cotα and
ϕ′

+(0) = cotα.

In view of (3.4), we calculate

1

t

∫

Eε(sj)

f
(

t−
1
2 (x − sj) · νi

)

dx =
1

t

∫ ε

0

[

f
(

t−
1
2 z1

)

∫ ϕ+(z1)

ϕ−(z1)

dz2

]

dz1

=

∫ t−
1
2 ε

0

ϕ+(t
1
2 ξ) − ϕ−(t

1
2 ξ)

t
1
2 ξ

ξf(ξ)dξ.

Since

lim
t→0+

ϕ+(t
1
2 ξ) − ϕ−(t

1
2 ξ)

t
1
2 ξ

= ϕ′
+(0) − ϕ′

−(0) = 2 cotα for ξ > 0,

by Lebesgue’s dominated convergence theorem we get

(3.5) lim
t→0+

1

t

∫

Eε(sj)

f
(

t−
1
2 (x − sj) · νi

)

dx = 2 cotα

∫ ∞

0

ξf(ξ) dξ.

In a similar way, we obtain

(3.6) lim
t→0+

1

t

∫

Eε(sj)

(x − sj) f
(

t−
1
2 (x − sj) · νi

)

dx = 0,

since

lim
t→0+

1

t

∫ ε

0

[

f
(

t−
1
2 z1

)

∫ ϕ+(z1)

ϕ−(z1)

zi dz2

]

dz1 = 0 for i = 1, 2.

With the aid of (3.4), (3.5), (3.6), and (2.6), we then get (3.3). �

Lemma 3.2. For ε > 0 and 1 ≤ j ≤ k, set

Eε(qj) = {x ∈ E : 0 < (x − qj) · νi < ε or 0 < (x − qj) · νi+1 < ε} ∩ Bδ0
(qj),

where νi and νi+1 are the interior unit normal vectors to the two sides of Ω

containing the vertex qj (see Fig. 2).
Then, if ε is sufficiently small, we have

(3.7) 4 cot 2α ≤ lim sup
t→0+

1

t

∫

Eε(qj)

v(x, t) dx ≤ 8 cot 2α

and

(3.8) lim
t→0+

1

t

∫

Eε(qj)

(x − qj) v(x, t) dx = 0,

for 1 ≤ j ≤ k.
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Proof. Let β be the angle of Ω at the vertex qj; observe that β +2 α = π. Since
β is the largest angle in Ω, we have π(1 − 2/m) < β < π, α < π/m and hence

β − 2 α > 0,

for every m ≥ 4.

Let γ be the bisectrix of the angle of Ω at qj ; γ divides Eε(qj) into two parts,
Eε

i (qj) and Eε
i+1(qj), corresponding to νi and νi+1, respectively.

Since qj is a vertex of Ω, (2.8), (2.9), and (2.10) imply that there exist positive
constants Aj and Bj such that

(3.9) 0 < f
(

t−1/2(x − qj) · νi

)

≤ v(x, t) ≤ 2 f
(

t−1/2(x − qj) · νi

)

+ Aje
−Bj/t

for all x ∈ Eε
i (qj), t > 0.

Here we have used the fact that (x − qj) · νi = (x − pi) · νi.

Set ei = (pi − qj)/|pi − qj |. If ε is sufficiently small, we can write

Eε
i (qj) = {x = qj + z1 νi + z2 ei : 0 < z1 < ε, z1 tanα < z2 < ϕ(z1)}.

Note that ϕ′(0) = cotα and ϕ′(z1) > 0 for z1 > 0.

We now write

1

t

∫

Eε
i (qj)

f
(

t−
1
2 (x − qj) · νi

)

dx =
1

t

∫ ε

0

[

f
(

t−
1
2 z1

)

∫ ϕ(z1)

z1 tan α

dz2

]

dz1

=
1

t

∫ ε

0

f
(

t−
1
2 z1

)

[ϕ(z1)−z1 tanα] dz1

=

∫ t−
1
2 ε

0

ξf(ξ)
ϕ(t

1
2 ξ) − t

1
2 ξ tanα

t
1
2 ξ

dξ.

Thus, since
lim

t→0+
ϕ(t

1
2 ξ)/(t

1
2 ξ) = ϕ′(0) = cotα for ξ > 0,

by Lebesgue’s dominated convergence theorem we get

(3.10) lim
t→0+

1

t

∫

Eε
i (qj)

f
(

t−
1
2 (x − qj) · νi

)

dx = 2 cot 2α

∫ ∞

0

ξf(ξ) dξ.

By a similar calculation, we have

(3.11) lim
t→0+

1

t

∫

Eε
i (qj)

|x − qj | f
(

t−
1
2 (x − qj) · νi

)

dx = 0,

since

lim
t→0+

1

t

∫ ε

0

[

f
(

t−
1
2 z1

)

∫ ϕ(z1)

z1 tan α

zi dz2

]

dz1 = 0 for i = 1, 2.
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From (3.9), (3.10), and (2.6), it follows that

(3.12) 2 cot 2α ≤ lim sup
t→0+

1

t

∫

Eε
i (qj)

v(x, t) dx ≤ 4 cot 2α.

Also, since
∣

∣

∣

∣

1

t

∫

Eε
i (qj)

(x − qj) v(x, t) dx

∣

∣

∣

∣

≤ 1

t

∫

Eε
i (qj)

|x − qj | v(x, t) dx,

we have from (3.9) and (3.11)

lim
t→0+

1

t

∫

Eε
i (qj)

(x − qj) v(x, t) dx = 0.

By the same arguments, we obtain the last two formulas with Eε
i (qj) replaced

by Eε
i+1(qj); and hence (3.7) and (3.8) follow at once. �

Lemma 3.3. For any j, s ∈ {1, . . . , k},

(3.13) lim
t→0+

1

t

[
∫

Eε(qj)

v(x, t) dx −
∫

Eε(qs)

v(x, t) dx

]

= 0.

Proof. Since the angles of Ω at two distinct vertices qj and qs are equal, by a
translation and an orthogonal transformation we can superpose one angle on the
other. Thus, there exists an orthogonal matrix T such that the function

w(x, t) = v(x, t) − v(qs + T (x − qj), t)

satisfies

wt = ∆w in
(

Ω ∩ Bδ0
(qj)

)

× (0,∞),(3.14)

w = 0 on
(

∂Ω ∩ Bδ0
(qj)

)

× (0,∞),(3.15)

w = 0 on
(

Ω ∩ Bδ0
(qj)

)

× {0}.(3.16)

Since Ω ∩ ∂Bδ0
(qj) does not contain any vertices of Ω, it follows from (2.8), (2.9),

and (2.10) that there exist positive constants G > 0, H > 0 satisfying

(3.17) |w(x, t)| ≤ Ge−
H
t for all (x, t) ∈

(

Ω ∩ ∂Bδ0
(qj)

)

× (0,∞).

Observe that

(3.18) (∂t − ∆)
(

Ge−
H
t

)

= GHt−2e−
H
t > 0 for (x, t) ∈ R

2 × (0,∞).
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Therefore, in view of (3.14)–(3.18), we obtain by the comparison principle

(3.19) |w(x, t)| ≤ Ge−
H
t for all (x, t) ∈ (Ω ∩ Bδ0

(qj)) × (0,∞).

Since for t > 0,

1

t

∣

∣

∣

∣

∣

∫

Eε(qj)

v(y, t) dy −
∫

Eε(qs)

v(y, t) dy

∣

∣

∣

∣

∣

=
1

t

∣

∣

∣

∣

∣

∫

Eε(qj)

v(y, t) dy −
∫

Eε(qj)

v(qs + T (x − qj), t) dx

∣

∣

∣

∣

∣

≤ 1

t

∫

Ω∩Bδ0
(qj)

|w(x, t)| dx,

(3.19) implies (3.13). �

jq

jqE  (    )i
ε

γ
εE  (s  )j

js

ip

εD  (p  ) i

js

Figure 2: The sets Eε(sj), Eε(qj), and Dε(pi).

Lemma 3.4. If ε > 0 is sufficiently small, then there exist a positive sequence
{tn}n∈N with tn → 0 as n → ∞ and a number λ ∈ [4 cot 2α, 8 cot 2α] such that for
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any j ∈ {1, . . . , k},

(3.20) lim
n→∞

1

tn

∫

Eε(qj)

v(x, tn) dx = λ.

Proof. It is clear that (3.7) guarantees the existence of a positive sequence
{tn}n∈N with tn → 0 as n → ∞ and a number λ ∈ [4 cot 2α, 8 cot 2α] such that
(3.20) holds for j = 1. Thus it follows from Lemma 3.3 that (3.20) holds for any
j ∈ {1, . . . , k}. �

Lemma 3.5. Let

(3.21) ρ =
√

(R∗)2 − R2 > 0

and, for ε > 0 and 1 ≤ i ≤ m, set

Dε(pi) = { x ∈ Di : 0 < (x − pi) · νi < ε },

where νi is the interior unit normal vector to the side of Ω containing pi (see Fig. 2).

Then if ε is sufficiently small, we have for 1 ≤ i ≤ m,

(3.22) lim
t→0+

1

t

∫

Dε(pi)

(x − x∗) v(x, t) dx = 4ρνi = −4ρ

R
pi.

Proof. We consider three cases: (a) the set ∂Di ∩ {q1, . . . , qk} is empty; (b)
the set ∂Di ∩ {q1, . . . , qk} has exactly one point; (c) the set ∂Di ∩ {q1, . . . , qk} has
exactly two points. The treatment of case (c) is completely similar to that of case
(b), so, its proof is omitted.

(a) Since Di does not contain any vertex of Ω, (2.8), (2.9), and (2.10) imply that
there exist positive constants Ai and Bi such that

(3.23)
∣

∣v(x, t) − f
(

t−1/2(x − pi) · νi

)∣

∣ ≤ Ai e−Bi/t for all x ∈ Di, t > 0.

Let ei be a unit vector orthogonal to νi. If ε is sufficiently small, we can
parametrize Dε(pi) as

(3.24) Dε(pi) = {x = pi + z1 νi + z2 ei : 0 < z1 < ε, ϕ−(z1) < z2 < ϕ+(z1)},

where now ϕ−(0) = −ρ, ϕ+(0) = ρ, and ϕ′
−(0) = cotα, ϕ′

+(0) = − cotα. Note
that x∗, the reflection of x ∈ Dε(pi), is given by

x∗ = pi − z1 νi + z2 ei.
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We compute

1

t

∫

Dε(pi)

(x − x∗) f
(

t−
1
2 (x − pi) · νi

)

dx =
1

t

∫ ε

0

[

2z1νif
(

t−
1
2 z1

)

∫ ϕ+(z1)

ϕ−(z1)

dz2

]

dz1

= 2νi

∫ t−
1
2 ε

0

[ϕ+(t
1
2 ξ) − ϕ−(t

1
2 ξ)] ξf(ξ) dξ,

so by Lebesgue’s dominated convergence theorem,

lim
t→0+

1

t

∫

Dε(pi)

(x − x∗) f
(

t−
1
2 (x − pi) · νi

)

dx = 4ρνi

∫ ∞

0

ξf(ξ) dξ.

With the aid of (3.23) and (2.6), we obtain (3.22).
(b) As in case (a), we consider the parametrization x = pi + z1 νi + z2 ei of a

point in the set Dε(pi) given in (3.24); additionally, we assume that pi − ρei is the
point of ∂Di ∩ {q1, . . . , qk}.

Take a small number δ ∈ (0, ϕ−(ε) + ρ) and set

Dε
+(pi) = {x : 0 < z1 < ε, max(ϕ−(z1), δ − ρ) < z2 < ϕ+(z1)},

Dε
−(pi) = {x : 0 < z1 < ε, min(ϕ−(z1), δ − ρ) < z2 ≤ δ − ρ}.(3.25)

Then Dε(pi) = Dε
+(pi) ∪ Dε

−(pi).

Since Dε
+(pi) does not contain any vertex of Ω, from (2.8), (2.9) and (2.10) it

follows that for some positive constants A+
i and B+

i

(3.26)
∣

∣v(x, t) − f
(

t−1/2(x − pi) · νi

)∣

∣ ≤ A+
i e−B+

i /t for all x ∈ Dε
+(pi), t > 0.

Since the point pi − ρ ei is a vertex of Ω, we have from (2.9) and (2.10) that for
some positive constants A−

i and B−
i ,

(3.27) 0 < v(x, t) ≤ 2 f
(

t−1/2(x−pi)·νi

)

+A−
i e−B−

i /t for all x ∈ Dε
−(pi), t > 0.

We now compute

1

t

∫

Dε
+

(pi)

(x − x∗) f
(

t−
1
2 (x − pi) · νi

)

dx

=
2νi

t

∫ ε

0

z1f
(

t−
1
2 z1

)

[ϕ+(z1) − max(ϕ−(z1), δ − ρ)] dz1

= 2νi

∫ t−
1
2 ε

0

[ϕ+(t
1
2 ξ) − max(ϕ−(t

1
2 ξ), δ − ρ)] ξf(ξ) dξ;

hence, by Lebesgue’s dominated convergence theorem and (2.6),

lim
t→0+

1

t

∫

Dε
+

(pi)

(x − x∗) f
(

t−
1
2 (x − pi) · νi

)

dx = 2(2ρ − δ)νi.
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As before, we conclude that

(3.28) lim
t→0+

1

t

∫

Dε
+

(pi)

(x − x∗) v(x, t) dx = 2(2ρ− δ)νi.

On the other hand, we have

1

t

∫

Dε
−

(pi)

|x − x∗| f
(

t−
1
2 (x − pi) · νi

)

dx

=
2

t

∫ ε

0

z1f
(

t−
1
2 z1

)

[δ − ρ − min(ϕ−(z1), δ − ρ)] dz1

= 2

∫ t−
1
2 ε

0

[δ − ρ − min(ϕ−(t
1
2 ξ), δ − ρ)] ξf(ξ) dξ,

so by Lebesgue’s dominated convergence theorem,

lim
t→0+

1

t

∫

Dε
−

(pi)

|x − x∗| f
(

t−
1
2 (x − pi) · νi

)

dx = 2δ.

Therefore, (3.27) implies that

lim sup
t→0+

∣

∣

∣

∣

1

t

∫

Dε
−

(pi)

(x − x∗) v(x, t) dx

∣

∣

∣

∣

≤ 4δ

and thus, by (3.28), we have

lim sup
t→0+

∣

∣

∣

∣

1

t

∫

Dε(pi)

(x − x∗) v(x, t) dx − 4ρνi

∣

∣

∣

∣

≤ 6δ.

Since δ > 0 is chosen arbitrarily small, we again obtain (3.22). �

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. In view of Lemma 2.1, it suffices to consider
the integrals in (2.14) over the unions of the sets Eε(sj) ∪ Eε(qj) and Dε(pi),

respectively, for ε > 0 sufficiently small. Lemma 2.1 thus guarantees that

lim
n→∞

1

tn

[
∫

E

xv(x, tn) dx +

∫

D

(x − x∗) v(x, tn) dx

]

= lim
n→∞

1

tn

∑̀

j=1

∫

Eε(sj)

xv(x, tn) dx + lim
n→∞

1

tn

k
∑

j=1

∫

Eε(qj)

xv(x, tn) dx

+ lim
n→∞

1

tn

m
∑

i=1

∫

Dε(pi)

(x − x∗)v(x, tn) dx.
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Lemmas 3.1, 3.2, 3.4, and 3.5 yield that

lim
n→∞

1

tn

[
∫

E

xv(x, tn) dx +

∫

D

(x − x∗) v(x, tn) dx

]

= 2 cotα
∑̀

j=1

sj + λ
k

∑

j=1

qj −
4ρ

R

m
∑

i=1

pi.

Therefore, (2.13) implies

2 cotα
∑̀

j=1

sj + λ
k

∑

j=1

qj −
4ρ

R

m
∑

i=1

pi = 0,

so using (1.8) and (3.2), we get

(λ − 4 cotα)
k

∑

j=1

qj = 0.

Therefore, since λ ∈ [4 cot 2α, 8 cot 2α], we obtain (1.9). This completes the proof
of Theorem 1.4. �

4 The proof of Theorem 1.3

Let Cp = ∂BR(0) and Cq = ∂BR∗(0) be the circles containing the points p1, . . . , pm

and q1, . . . , qk respectively. As already observed, since ∂Ω is circumscribed to Cp,

the angles of Ω at the vertices q1, . . . , qk are all equal. Also, notice that (1.9) directly
implies that k ≥ 2.

(1) We distinguish four cases (see Fig. 3). (i) Let k = 2; then q1 and q2 are
opposite. Label by p1, p2, p3 and p4 the points in ∂Ω ∩ Cp lying on the sides of
Ω issuing from q1 and q2. They must be the vertices of a rectangle centered at 0;

hence
∑4

i=1 pi = 0 and, by (1.8), p5 = 0 — a contradiction.

(ii) If k = 3, q1, q2 and q3 are the vertices of an equilateral triangle, which we
call T ; and Ω and T have at least one side in common. Then Cp must be the
inscribed circle of T and any side of Ω issuing from any vertex of Ω lying outside
Cq cannot intersect Cp, since it must lie outside T — a contradiction.

(iii) Let k = 4. Since (1.9) holds, the qj’s must be pairwise opposite and also
be the vertices of a rectangle, for they all lie on Cq. Such a rectangle and Ω must
have at least three sides in common (tangent to Cp); this fact implies that the qj’s
are the vertices of a square. Hence, two sides of Ω issuing from the vertex of Ω

lying outside Cq cannot intersect Cp — a contradiction.
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q1
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4p 3

21 q2

q 4

p 1
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3
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q 5

q1

q 3

T

q 1

q 3

q 4 q 2

Figure 3: Proof of Theorem 1.3, item (1), cases (i), (ii) and (iii).

(iv) If k = 5, all the vertices of Ω lie on Cq, and hence all the angles of Ω must
all be equal to one other. The fact that ∂Ω is circumscribed to Cp also implies that
all the sides of Ω have equal length, that is Ω must be regular.

(2) We distinguish five cases (see Fig. 4). (i) If k = 2, then q1 and q2 are
opposite. As in the proof of (1), k = 2, we let p1, p2, p3 and p4 be the points in
∂Ω ∩ Cp lying on the sides of Ω issuing from q1 and q2. We have that

∑4
i=1 pi = 0,

and it follows by (1.8) that p5 + p6 = 0. Therefore, all the points pi’s are pairwise
opposite and so are vertices of Ω; hence, Ω is centrally symmetric. In other words,
Ω is invariant under a rotation of an angle π.

(ii) If k = 3, q1, q2 and q3 are the vertices of an equilateral triangle, which we
call T . If Ω and T have a side in common, then we get a contradiction, by the same
argument used in the proof of (1), k = 3. If Ω and T have no side in common, then
the vertices of Ω lying outside Cq must also be the vertices of an equilateral triangle.
In fact, since ∂Ω is circumscribed to Cp, such vertices lie on the three half-lines
through the origin and the points q1 + q2, q2 + q3, and q3 + q1, respectively, and have
the same distance from the origin. Therefore, Ω is invariant under a rotation of an
angle 2π/3.

(iii) Let k = 4. Since (1.9) holds, the qj’s must be pairwise opposite and also
be the vertices of a rectangle R, for they all lie on Cq. Now Ω and R have at least
one side in common. Call such a side σ1; σ1 must be a shorter side of R, since
otherwise Cp would be contained in R, and hence at least one side of Ω would not
intersect Cp. Thus, the side σ2 of R opposite to σ1 must also be a side of Ω, and
the midpoints p1 and p2 of σ1 and σ2 are such that p1 + p2 = 0. By (1.8), we have
∑6

i=3 pi = 0. Therefore, the pi’s are pairwise opposite and, as in the case k = 2, Ω

is invariant under a rotation of angle π.
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q1

q2

p1 p2

p3 p4

q1
q2

q3

q1 q2

q3q4

σ2

σ1

Figure 4: Proof of Theorem 1.3, item (2), cases (i), (ii) and (iii).

(iv) The case k = 5 cannot occur. We can assume that the segments joining q1

to q2, q2 to q3, q3 to q4, and q4 to q5 are sides of Ω. Since the angles of Ω at the points
qj’s are all equal, we can suppose that qj = R∗(cos(j−1)θ, sin(j−1)θ), j = 1, . . . , 5

for some positive angle θ. Then (1.9) implies that θ = 2π/5, that is the qj’s are the
vertices of a regular pentagon that contains Cp. Therefore, the sides of Ω issuing
from the vertex of Ω outside Cq cannot intersect Cp because they lie outside the
pentagon — a contradiction.

(v) If k = 6, all the vertices of Ω lie on Cq and hence the angles of Ω must all
be equal. The fact that ∂Ω is circumscribed to Cp also implies that all the sides of
Ω have equal length, that is, Ω must be regular.
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