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ABSTRACT

We solve for the time-dependent dynamics of axisymmetric, general relativistic magnetohy-

drodynamic winds from rotating neutron stars. The mass-loss rate as a function of latitude is

obtained self-consistently as a solution to the magnetohydrodynamics equations, subject to

a finite thermal pressure at the stellar surface. We consider both monopole and dipole mag-

netic field geometries and we explore the parameter regime extending from low magnetization

(low σ 0), almost thermally driven winds to high magnetization (high σ 0), relativistic Poynting-

flux-dominated outflows (σ = B2/4πργ c2β2 ≈ σ 0/γ ∞,β = v/c with σ0 = ω2�2/Ṁ , where

ω is the rotation rate, � is the open magnetic flux, and Ṁ is the mass flux). We compute

the angular momentum and rotational energy-loss rates as a function of σ 0 and compare with

analytic expectations from the classical theory of pulsars and magnetized stellar winds. In the

case of the monopole, our high-σ 0 calculations asymptotically approach the analytic force-free

limit. If we define the spindown rate in terms of the open magnetic flux, we similarly reproduce

the spindown rate from recent force-free calculations of the aligned dipole. However, even for

σ 0 as high as ∼20, we find that the location of the Y-type point (rY), which specifies the

radius of the last closed field line in the equatorial plane, is not the radius of the Light Cylinder

RL = c/ω (R = cylindrical radius), as has previously been assumed in most estimates and

force-free calculations. Instead, although the Alfvén radius at intermediate latitudes quickly

approaches RL as σ 0 exceeds unity, rY remains significantly less than RL. In addition, rY is

a weak function of σ 0, suggesting that high magnetizations may be required to quantitatively

approach the force-free magnetospheric structure, with r Y = RL. Because r Y < RL, our cal-

culated spindown rates thus exceed the classic ‘vacuum dipole’ rate: equivalently, for a given

spindown rate, the corresponding dipole field is smaller than traditionally inferred. In addition,

our results suggest a braking index generically less than 3. We discuss the implications of our

results for models of rotation-powered pulsars and magnetars, both in their observed states and

in their hypothesized rapidly rotating initial states.
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1 I N T RO D U C T I O N

Magnetically dominated winds from stars and accretion discs are

central to the angular momentum evolution of these objects. Because

they can efficiently extract rotational energy – transforming stored

gravitational binding energy into asymptotic wind kinetic energy

– magnetic outflows are ubiquitous in powering a wide variety of

astrophysical systems. Schatzman (1962) first introduced the key

idea that a magnetic field anchored in a rotating star with a wind can
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enforce plasma corotation out to radii large compared to the stellar

radius, thus greatly increasing the angular momentum lost per unit

mass.

Ideas of Schatzman (1962) were formalized in the steady non-

relativistic flow model of Weber & Davis (1967), who assumed a

pure monopole field geometry, and then by Mestel (1968a,b) who

assumed a more realistic dipole magnetic field configuration. For

strong dipole fields, a closed zone forms at low latitudes and the

mass-loss is concentrated at high latitudes in regions where the field

lines can be opened. If the extent and shape of the open field line

region is known, then the physics of the magnetic wind is similar

to that in the monopole geometry: the flow emerges along the open

flux tubes and its character is determined by passing through the

slow-magnetosonic (SM), Alfvén (AL) and fast-magnetosonic (FM)

surfaces. If the thermal sound speed is small, the flow is driven
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primarily by magnetocentrifugal forces and the asymptotic outflow

velocity is approximately vA(RA) ≈ RAω, where R refers to the

cylindrical radius, ω is the stellar angular velocity, and RA is the AL

radius. Because RA is the point at which B2(RA)/4π = ρv2
A(RA),

the outflow kinetic energy is roughly equal to the magnetic energy.

This remains true in the asymptotic wind.

The theory of magnetic winds has been greatly extended and

applied in its non-relativistic form to a wide variety of problems

in stellar astrophysics. Gosling (1996) and Aschwanden, Poland &

Rabin (2001) provide reasonably modern reviews in the solar con-

text, where many of the recent developments in non-relativistic wind

modelling have occurred. Multidimensional models have been mo-

tivated in part by the fact that toroidal magnetic fields can collimate

the flow along the rotation axis via hoop stress into jets, a topic

of much interest in the modelling of the bipolar outflows observed

from protostars (e.g. Smith 1998).

The discovery of rotation-powered pulsars motivated the exten-

sion of these ideas to relativistic flows and relativistically strong

magnetic fields (B2/4π ≫ ρc2 at the source), in order to account

for the observed spindown of pulsars. Michel (1969) and Goldreich

& Julian (1970) made the first extensions of the model of Weber &

Davis (1967) to relativistic outflows, recovering the same sequence

of critical points in the flow. As reviewed in Section 2, these studies

yielded estimates of the spindown torque of

T‖ = k
µ2ω3

c3
, k ∼ 1. (1)

The dipole moment of the star, µ, was assumed to be related to

the monopole moment m appearing in the magnetohydrodynamics

(MHD) theory via m = µ/RL, a relation equivalent to assuming

that the AL radius RA was equal to the radius of the Light Cylinder

RL = c/ω. Since these monopole models only treated the flow in the

rotational equator, the numerical coefficient k ∼ 1 in equation (1)

could not be determined accurately.

These simplified theoretical models revealed important differ-

ences between relativistic and non-relativistic winds. First, instead

of reaching approximate energy equipartition between flow kinetic

energy and magnetic energy, the asymptotic flow remains strongly

magnetized. The asymptotic Lorentz factor is given by γ ∞ ≈ σ
1/3

0 ,

where σ0 = �2ω2/Ṁc = B2
φ/4πρc2, � is the magnetic flux, and

Ṁ is the mass-loss rate. Thus, γ ∞ ≪ σ 0. For a highly relativistic

outflow (σ 0 ≫ 1) the asymptotic magnetization σ ∞ = σ 0/γ ∞ ≈
σ

2/3

0 ≫ 1. A second important difference is that in relativistic mag-

netized flows the electric force cannot be neglected.1 Although it is

absent by symmetry in the Michel and Goldreich & Julian models,

the electric force almost exactly cancels the focusing hoop stress in

multidimensional monopole models, thus undermining the useful-

ness of these flows for the understanding of relativistic collimated

1 In relativistic MHD, the electric field arises because of motion of the con-

ducting fluid across the magnetic field. Equivalently, the fluid moves with

the single particle E ×B drift velocity. Therefore, one can eliminate the elec-

tric field by putting oneself in the local fluid rest frame and describing the

electromagnetic stress as being solely due to the comoving magnetic field.

Occasionally, debate occurs about which is the ‘correct’ frame in which to

describe the forces, since workers used to non-relativistic MHD are some-

times uncomfortable with the explicit appearance of the electric field. When

the fluid dynamics is expressed in covariant form (the electrodynamics is

already covariant), as we have done in this paper, the forces are well defined

and unambiguously described in every reference frame. The choice is dic-

tated only by convenience in describing the physics, or in actually carrying

out the calculations.

jets. This is a problem generic to all relativistic outflows (Lyubarsky

& Eichler 2001) not focused by some external medium (e.g. a disc

or external channel).

Much effort has gone into relaxing the simplifications of these

early models, and in particular, on understanding what is required

for an ideal MHD flow to have γ ∞ → σ 0. Observations and models

of pulsar wind nebulae suggest that at the termination shock of the

outflows of young rotation-powered pulsars, the magnetic energy

has been almost completely converted into flow kinetic energy (the

‘σ problem’) and the flow 4-velocity has reached γ ≈ σ 0 (the ‘γ

problem’), in contradiction with the predictions of the 1D monopole

treatments. If the magnetic surfaces retain an almost monopolar

shape the acceleration of the flow is only logarithmic (Begelman &

Li 1994). However, various asymptotic solutions (Begelman & Li

1994; Heyvaerts & Norman 2003 and references therein) and simi-

larity solutions (Vlahakis & Königl 2003; Vlahakis 2004) of parts of

the full axisymmetric flow problem suggest that if the poloidal mag-

netic field is sufficiently non-monopolar beyond the FM point, the

largely radial current that supports the toroidal magnetic field, might

cross field lines toward the equator, causing a transfer of electro-

magnetic energy to flow kinetic energy. However, both a numerical

solution in axisymmetric non-relativistic MHD (Sakurai 1985) and

a perturbative calculation of relativistically magnetized MHD flow

from the exact force-free solution (Beskin, Kuznetsova & Rafikov

1998) yield a poloidal magnetic field which hews closely to the

exact monopolar form. Thus, the monopole puzzle of asymptotic

winds with magnetic energy that is never converted to flow kinetic

energy persists, suggesting that ideal MHD expansion of the wind

contradicts the observations.

The monopole geometry for the poloidal field has long been rec-

ognized as a singular case. A dipole magnetic field aligned with the

stellar rotation axis presents the simplest realistic alternative field

geometry. Because the open field, where outflow occurs, has a noz-

zle shape that expands faster than r2 at distances comparable to the

radius of the last closed field line (rY), there is a possibility of faster

acceleration and larger conversion of magnetic energy into kinetic

energy than occurs in the monopole geometry. However, complete

solutions in axisymmetric steady flow have only been possible for

the monopole; the change of topology between closed and open field

lines required in the dipole case has so far escaped solution of the

Grad–Shafranov equation that describes the magnetic structure in

MHD flows with inertia and pressure included.

The location of the AL radius in the outflow, and its relation to the

maximum equatorial radius of the last closed field line rY, where

typically a Y-type neutral point occurs in the magnetic field, is a

problem of equal significance. As outlined in Section 2, if r Y < RL,

and if r Y/RL is an appropriate function of ω, one might be able

to account for the observed fact that in rotation-powered pulsars

T ‖ ∝ ωn , with n < 3. The strong inferred magnetization of pulsars

has always suggested that the outflow structure should be treated

as a problem in force-free relativistic MHD, with inertial and pres-

sure forces completely neglected (Goldreich & Julian 1969). The

force-free Grad–Shafranov equation for the case of an aligned dipole

(Michel 1973; Scharlemann & Wagoner 1973) resisted solution un-

til recently (Contopoulos, Kazanas & Fendt 1999; Gruzinov 2005

assumed strictly force-free conditions everywhere, whereas Good-

win et al. 2004 included pressure effects near the Y-point). Gruzinov

found that the torque is indeed given by equation (1), with k = 1 ±
0.1, while Contopoulos et al. (1999) found k = 1.85. All of these

authors assumed r Y = RL, as is physically plausible.

However, subsequent work by Timokhin (2005) has found that

force-free MHD allows a family of solutions with rY of the last field
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line within RL, contrary to naive expectations. He found that k ≈
0.47 (RL/r Y)2, which, when r Y = RL, is close to the force-free

monopole result of Michel (1969). Importantly, these solutions in-

dicate that beyond a few Light Cylinder radii, the poloidal magnetic

field assumes a monopolar form, which suggests that acceleration

in the asymptotic wind never reaches equipartition energies (the σ

problem). However, since inertial forces are important beyond the

FM surface (r ≈ σ
1/3

0 RL) the force-free approximation breaks down

(Beskin et al. 1998; Arons 2004) and no strong conclusions may be

drawn.

The ambiguities of the steady force-free models, and the diffi-

culty of solving the magnetospheric structure in MHD with inertia

and pressure included, suggest that an evolutionary approach to the

problem would be useful. A time-dependent solution can then be

sought for specified boundary conditions at the stellar surface (such

as pressure or injection velocity). The system can then relax to a

self-consistent steady state (if one exists) and this approach allows

one to find the last closed flux surface unambiguously, for specified

injection conditions. Furthermore, such a treatment allows for the

possibility of intrinsic time dependence (including either limit cycle

or chaotic behaviour) of the magnetosphere. The time dependence

of individual radio pulses from rotation-powered pulsars, showing

systematic drifting through the pulse window for many objects near

the pulsar death line, and chaotic rotation phase over wider regions

of the P − Ṗ diagram (Rankin 1986; Deshpandhe & Rankin 1999)

have time-scales consistent with global magnetospheric variability

causing changes in the polar current system underlying pulsar emis-

sion (Arons 1981; Wright 2001). Indeed, the torque noise exhibited

by many pulsars (Cordes & Helfand 1980) may also owe its origin

to instabilities of the magnetospheric current system (Arons 1981;

Cheng 1987a,b).

In this paper, we carry out time-dependent relativistic MHD

(RMHD) modelling of both highly magnetized Poynting-flux-

dominated winds (σ 0 ≫ 1) in which RA ≈ RL, as well as mag-

netized neutron star winds in which RA is significantly less than RL

(σ 0 ≪ 1).

Large σ 0 MHD models draw their motivation from studies of

rotation-powered pulsars and of magnetars (soft gamma ray re-

peaters and anomalous X-ray pulsars). More broadly, analogous

problems appear in Poynting-flux-dominated models of jets from

black holes and neutron stars. Low-σ 0 (but still magnetized) neu-

tron star winds are of interest primarily in understanding the physics

of very young neutron stars. In the seconds after collapse and explo-

sion, the neutron star is hot (surface temperatures of ∼2–5 MeV) and

extended. This proto-neutron star cools and contracts on its Kelvin–

Helmholtz time-scale (τ KH ∼ 10–100 s), radiating its gravitational

binding energy (∼1053 erg) in neutrinos of all species (Burrows &

Lattimer 1986; Pons et al. 1999). The cooling epoch is accompanied

by a thermal wind, driven by neutrino energy deposition (primar-

ily ν en → pe− and ν̄e p → ne+), which emerges into the post-

supernova-shock ejecta (e.g. Duncan, Shapiro & Wasserman 1986;

Qian & Woosley 1996; Thompson, Burrows & Meyer 2001).

A second or two after birth, the thermal pressure at the edge of the

proto-neutron star surface, where the exponential atmosphere joins

the wind (r ν), is of order ∼1028 erg cm−3 and decreases sharply

as the neutrino luminosity (L ν) decreases on a time-scale τ KH, as

the star cools and deleptonizes. The thermal pressure at the stellar

surface is set by L ν . If the proto-neutron star has a surface magnetic

field of strength B0, then at some point during the cooling epoch the

magnetic energy density will exceed the thermal pressure. For fixed

B0, the wind region becomes increasingly magnetically dominated

as L ν decreases. For larger B0 the magnetic field dominates at earlier

times. For magnetar-strength surface fields (B 0 ∼ 1014–1015 G) the

magnetic field dominates the wind dynamics from just a few seconds

after the supernova (Thompson 2003).

Magnetars are thought to be born with millisecond rotation pe-

riods (Duncan & Thompson 1992; Thompson & Duncan 1993),

in which case the combination of rapid rotation and strong mag-

netic fields makes the proto-neutron star wind magnetocentrifugally

driven. Because the rotational energy of a millisecond magnetar

is very large (∼2 × 1052 erg) relative to the energy of the super-

nova explosion (∼1051 erg) and because the spindown time-scale

τJ ∼ ω/ω̇ ∼ (2/5)(M/Ṁ)(rNS/rA)2 (where rNS is the neutron star

radius) can be short for large rA, these proto-magnetar winds have

been considered as a mechanism for producing hyperenergetic su-

pernovae (Thompson, Chang & Quataert 2004). Because the wind

becomes increasingly magnetically dominated and the flow eventu-

ally becomes Poynting-flux-dominated as the neutrino luminosity

abates, the outflow must become relativistic. For this reason, proto-

magnetar winds have also been considered as a possible central

engine for long-duration gamma ray bursts (GRBs) (Usov 1992;

Thompson 1994; Wheeler et al. 2000; Thompson et al. 2004). They

may also be the source of ultrahigh energy cosmic rays (Blasi,

Epstein & Olinto 2000; Arons 2003). The time dependent RMHD

models of neutron star winds calculated in this paper provide a sig-

nificantly improved understanding of proto-magnetar winds, and

their possible role in hyperenergetic supernovae and GRBs.

1.1 This paper

With these goals in mind, in Section 2 we first outline some order-

of-magnitude estimates for the spindown of neutron stars in both

the low- and high-σ 0 limits. In Sections 3 and 4, we describe the

details of our numerical model. In Section 5, we present our numer-

ical results for the 1D monopole (Section 5.1), the 2D monopole

(Section 5.2) and the aligned dipole (Section 5.3). In each case, we

present a set of models for both low- and high-σ 0 winds. Finally,

in Section 6 we present a discussion of our results and speculate on

their implications for the spindown of rotation-powered pulsars and

very young, rapidly rotating magnetars.

2 P H Y S I C A L M O D E L

As a guide to the numerical models, we describe here several simple

order-of-magnitude estimates of the properties of both high- and

low-σ 0 winds from neutron stars.

2.1 Poynting-flux-dominated spindown

Consider a star with a magnetic dipole moment µ. For simplicity,

assume µ ‖ ω. Suppose there is an outflow of plasma along open

field lines which connect to the star in a polar cap, with the magnetic

flux of the open field lines being �o. The expected poloidal magnetic

structure is shown in Fig. 1. In the closed zone, plasma corotates,

and the toroidal currents, composed of corotating charge density

and pressure and inertial drifts across the magnetic field, cause the

distortions from the ‘vacuum dipole’ field, which are of importance

at radii comparable to rY. Assume the AL radius RA is comparable to

rY. The Poynting flux is S = (c/4π) E × B, whose radial component

is, with the poloidal electric field E = −(ω × r ) × B p, Sr =
−(ωrsin θ/c)B p. With B p(r A) ≈ B dipole(r A) and Bφ(r A sin θ ) ≈
−B p(RA), Sr (RA) ∼ (ωRA/4π) µ2/R6

A, where subscripts p and φ

denote the poloidal and toroidal components, respectively. Then the
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Figure 1. Force-free poloidal magnetic field lines from a magnetized star

with dipole axis aligned with the rotation axis. The distances are scaled in

units of the radius of the Light Cylinder, RLC. From Gruzinov (2005).

EM spindown torque is approximately

T‖ ∼
4πr 2

A

ω

2

3
Sr (RA) ∼

2

3

µ2

r 3
A

=
2

3

ω3µ2

c3

(

RL

RA

)3

; (2)

the evaluation of the constant k in equation (1) to be equal to 2/3

is the exact result for the EM torque on the force-free monopole

(Michel 1973), which has no closed zone or Y-point. Since the open

magnetic flux is �o ≈ (µω/c) (RL/r Y), the torque can also be

written as T ‖ ≈ (2/3) (�2
oω/c) (r y/RL)2.

If mass loading (inertial forces) and pressure are negligible,

the long-standing expectation has been r Y = RA = RL = c/ω

(Goldreich & Julian 1969), and MHD spindown torques then should

have braking index n = ω̇ω̈/ω̇2 = 3, if µ and the stellar moment of

inertia are constant. Two numerical solutions for steady flow from

the force-free aligned dipole rotator have found k = 1.85 (Contopou-

los et al. 1999) and, at higher resolution, k = 1 ± 0.1 (Gruzinov

2005), rather than 2/3. The equality r Y = RL = RA was assumed

in both of these calculations.

A long-standing empirical puzzle has been that in the four ob-

servations of braking indices not requiring major corrections for

glitches in the timing, the braking index lies between 2.5 and 2.9

(Lyne, Pritchard & Graham-Smith 1993; Kaspi et al. 1994; Deeter,

Nagase & Boynton 1999; Camilo et al. 2000; Livingstone et al.

2005). This reduction of the braking index for fixed µ and ω, in

comparison to our simple estimate, is tantamount to r Y < RL. That

is, the closed zone ends within the Light Cylinder, 2 and, as the

star ages (ω decreases), r Y/RA also decreases – the magnetosphere

becomes more open with decreasing spindown power. One way to

state this is to simply assert that RA = r Y < RL and that r Y/RL ∝
ωα (e.g. r Y/RL = (ωr NS/c)α; Arons 1983). This implies a change

2 An alternate possibility is an increasing magnetic moment (Blandford &

Romani 1988). Still another option is evolution of the angle between ω and

µ, in the still unassessed dependence of the electromagnetic torque on the

oblique rotator, in either force-free or RMHD models.

in the polar cap size from r NS(r NS/RL)1/2 to the larger value (larger

�o) of r NS(r NS/RL)(1−α)/2. Using this expression, the braking index

data require 1/6 � α � 1/30, with the largest value for the Crab

pulsar and the smallest for the 407-ms pulsar J1119−6157.

Assuming α > 0 is equivalent to the last closed field line of the

dipole having equatorial radius rY less than RA ≈ RL. Accord-

ing to our estimate (2), the electromagnetic torque depends on the

field strength at RA, which is noticeably larger than that estimated

by using a pure dipole filed, since the poloidal field becomes pro-

gressively more monopolar for r > r Y. Thus, one obtains a better

estimate of the torque by using a simplified model of the poloidal

magnetic field which has the correct asymptotic form shown by the

force-free aligned rotator models – dipolar at r ≪ r Y and monopolar

at r ≫ r Y. Our RMHD results have the same asymptotic behaviour.

Thus, with B p = (µ/r 3) + κ(µ/r Yr 2), the same order-of-magnitude

argument that led to (2) yields

T‖ = k
ω3µ2

c3

(

RL

RA

)3

(1 + f )2, (3)

f ≡ κ
RA

rY

. (4)

Assuming the magnetic moment and the stellar moment of inertia

(and i = � (ω, µ) are constant, and that RA = RL, a correspondence

assumed in most force-free models and also found in the RMHD

results we report below, one readily finds

n =
�ω̈

ω̇2
= 3 + 2

∂ ln(1 + f )

∂ ln ω
. (5)

Thus, a braking index less than 3 requires RA/r Y to depend on

ω (more generally, to depend on time). If the time dependence

of r Y/RA enters solely through dependence on ω, n < 3 requires

RA/r Y = RL/r Y to increase as the star spins down – the magneto-

sphere becomes more open with time, and the magnetic field at the

Light Cylinder to remain larger, than is expected in the traditional

model. Such behaviour requires transformation of closed field lines

to open, which can occur if magnetic dissipation at and near the

Y-point allows reconnection to enable this transformation.

Our RMHD numerical results presented in Section 5.3 show that

although RA → RL as soon as σ 0 exceeds unity, r Y/RL remains

substantially less than unity for σ 0 as large as ∼20. We also find

that, for σ 0 of order a few, the ratio r Y/RL decreases as ω decreases

– the braking index in our models is less than 3. This suggests that

seemingly small inertial and pressure forces can have a large effect

on the magnetospheric structure and, in turn, the magnitude of the

spindown torque and the braking index.

The work of Mestel & Spruit (1987) may provide an explana-

tion for our numerical results. In their isothermal, non-relativistic

analysis of the magnetohydrostatic equilibrium of the closed zone,

they find that RY/r NS depends crucially on the ratios V 2
e/2c2

T and

ω2 r 2
Y/V 2

e , where V e is the escape velocity from the stellar surface

(see their section 2 and equation 8). For rY a few times rNS one finds

an approximate implicit equation for rY:

(

rY

rNS

)6

=
(B2

0 /8π)

ρNSc2
T

exp

[

V 2
e

2c2
T

(

1 −
ω2r 2

Y

V 2
e

)]

. (6)

One sees that for fixed isothermal sound speed cT , if (ωr Y/V e) is

greater than unity, then it becomes exponentially harder to increase

RY/r NS by increasing B2
0/ρNS.

However, since electromagnetic stresses alone can lead to Y-point

formation, as is clear from the solutions of the force-free Grad–

Shafranov equation, one should treat these estimates of RY as a
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function of plasma stress alone with caution, when applied to the

magnetically dominated regime. Simplified models along the lines

pioneered by Goodwin et al. (2004) may be helpful, but at present,

the best results are the simulations themselves (Section 5.3). We

defer a relativistic generalization of Mestel & Spruit (1987) with

a polytropic (p ∝ ρŴ) equation of state (more appropriate to our

simulations) to a future paper.

2.2 Spindown by magnetized mass-loaded winds

Stresses due to mass loading become significant in the thermally

driven winds of newly born neutron stars. These stars may have

strongly mass-loaded winds which have rA large in comparison

to rNS, but significantly smaller than RL (Thompson et al. 2004).

Conditions for such winds in the presence of thermally driven mass-

loss generally obtain when the isothermal sound speed cT is smaller

than, or of order, the AL speed, vA.3

The torque on the star by the magnetized wind is easily estimated

for a strictly monopolar field geometry (B p ∝ r−2). At rA we expect

the poloidal magnetic energy density to be of order the radial kinetic

energy density, B2
p/8π ≃ ρv2

r /2, and if cT is much smaller than vA,

then we further expect that vr (r A) should be of order vφ(r A). A

simple estimate for vφ(r A), which again requires that vA ≫ cT , is

vφ ∼ r A ω. We combine the above ingredients to obtain an expres-

sion for the AL point:

rA = B
2/3

0 r
4/3

NS (Ṁω)−1/3, (7)

where we have assumed that Ṁ = 4πr 2ρvr and B0 is the magnetic

field strength at the stellar surface. The time evolution of the spin

period of the star is then governed by the equation

J̇ = −Ṁr 2
Aω = −B

4/3

0 r
8/3

NS (Ṁω)1/3. (8)

The rotational energy-loss rate is Ė = Iωω̇ ∝ Ṁ1/3. In this limit

(vA ≫ cT ) the sonic point is approximately

rs =
(

G M

ω2

)1/3

=
(

rSch R2
L

2

)1/3

≃ 17 M
1/3

1.4 P
2/3

1 km, (9)

where we have scaled the spin period P to 1 ms and rSch is the

Schwarzschild radius. In the cT ≪ vA limit, the radial velocity

reaches its asymptotic value of v∞ ≈ (3/2)vA at the FM point

(e.g. Belcher & MacGregor 1976).

In the regime we are interested in this paper we always have a

supersonic outflows at the AL surface. In this case, according to the

standard parameterization of MHD winds (Sakurai 1985; Daigne &

Drenkhahn 2002), all solution should be considered centrifugally or

marginally centrifugally driven.

A similar set of estimates for a dipole magnetic field is consid-

erably more complicated, particularly since, as in Section 2.1, the

position of the Y-point is not known a priori. In addition, since the

areal function along open flux tubes adjacent to the closed zone devi-

ates significantly from radial, a full numerical solution is required to

address spindown in this context (Section 5.3). However, as a rough

guide in understanding the expected differences between monopole

and dipole spindown it is sufficient to imagine the scalings for the

dipole as essentially those for the monopole, but with the surface

magnetic field strength normalized to just the open magnetic flux.

3 For very high mass-loss rates and/or high thermal pressures, ρc2
T ≫ B2/8π.

In this limit, the magnetic field is not important in accelerating matter off of

the stellar surface, the wind is driven thermally, and spindown is negligible

unless the star rotates at a significant fraction of breakup.

2.3 Parametrization

These estimates and those of Section 2.1 reveal the parameters which

specify the physical regimes of relevance to our models of rotating

magnetospheres. Mass-loss is thermally and centrifugally driven in

these models, depending upon the ratio of pressure and centrifugal

forces to the gravitational force, parametrized at the injection sur-

face (r in) by (c2
T /V 2

e)r=rin
and by (�r in/V e)

2
r=rin

. All of the models

considered in this paper have the first of these parameters between

0.01 and 0.1, while the second is between 0.05 and 0.3. The val-

ues adopted can be derived from the parameter shown in Tables 1

(Section 4.1). For all of the 2D monopole and dipole models, mag-

netic pressure dominates gas pressure, as expressed by B2/4πc2
s >

1. This is true for most of the 1D monopole models also. Again,

these parameters are listed in Table 1. In all cases, the thermal en-

ergy density is smaller than the rest-mass density (p < ρc2). Thus,

pressure forces do not lead to relativistic motion. The values of the

ratios between the characteristic speeds at the base of the wind, for

all our simulations, are provided in Appendix A.

The distinction between pressure-driven and centrifugally driven

wind, can be also done based on the conditions at the AL surface. In

Daigne & Drenkhahn (2002) (following Sakurai (1985)) the distinc-

tion is based on the value of the ratio Ŵ p/ρ(�r )2 at the AL surfaces

(Ŵ is the adiabatic coefficient). In all our cases this ratio is less than

0.1.

The most significant parameter is Michel’s magnetization param-

eter, σ 0, defined just after expression (1). When the magnetic energy

density exceeds the rest-mass density (σ 0 > 1), magnetic pressure

can accelerate the flow to relativistic velocities. This parameter is

listed for all the models, as our major goal is to span the regimes from

highly mass loaded, pressure-driven, non-relativistic outflow (σ 0 ≪
1) to lightly mass loaded, magnetically driven relativistic outflow

(σ 0 ≫ 1) in both monopole and dipole geometry. The values of σ 0

for the various models are given in the tables in Sections 5.1–5.3.

We do not consider outflows driven by relativistically high tem-

perature (p > ρc2), a regime more relevant to fireball models of

GRBs.

3 M AT H E M AT I C A L F O R M U L AT I O N

The laws of mass and momentum–energy conservation, together

with Maxwell equations in general relativity, are (Landau & Lifshitz

1971; Weinberg 1972; Misner, Thorne & Wheeler 1973; Anile 1989)

∇ν(ρuν) = 0, (10)

∇ν(T µν) = 0, (11)

∂µ Fνλ + ∂ν Fλµ + ∂λ Fµν = 0, (12)

∇µ(Fµν) = −J ν, (13)

where ρ is the proper rest-mass density, uν and J ν are the 4-velocity

and the 4-current density, and Fµν is the Faraday tensor of the

electromagnetic field. The momentum–energy tensor is given by

T µν = ρhuµuν + gµν p + Fνσ Fµ
σ −

gµν Fλκ Fλκ

4
, (14)

where gµν is the metric, p is the gas pressure, and we have chosen a

system of units in which c = 1. In the case of Ŵ-law equation of state

for a perfect gas the specific enthalpy is h = 1 + Ŵ/(Ŵ − 1)p/ρ. In

order to close the system, the current density J ν must be specified in

terms of the other known quantities, through an additional equation,

Ohm’s law. In the MHD approximation, Ohm’s law becomes the
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Table 1. Parameters of the numerical models (unit with c = 1).

Model Parameters

1D model A0 A B C D E F G H I

c2
T (r in) 0.033 0.033 0.028 0.025 0.021 0.018 0.033 0.030 0.030 0.030

B r (r in)2/ρ(r in) 0.004 0.04 0.04 0.04 0.04 0.04 4 8 32 80

2D monopolar model A B B1 C D E

c2
T (r in) 0.033 0.033 0.033 0.033 0.033 0.033

B r (r in)2/ρ(r in) 0.04 0.4 0.4 4 40 200

2D dipolar model A B B1 B2 C

c2
T (r in) 0.033 0.033 0.033 0.033 0.033

B r (r in, θ = 0)2/ρ(r in) 0.64 6.4 6.4 6.4 64

In all models � = 0.143 except model B1 which have � = 0.214 and model B2 which has � = 0.0715. See equation (24)

for the corresponding value of the rotation period. c2
T = Ŵ p/(ρh). Case A0 is a reference case for an almost thermally driven

wind. In term of the standard wind parametrization (Sakurai 1985; Daigne & Drenkhahn 2002) all our cases are centrifugally

driven: the value of Ŵ p/ρ(�r )2 at the AL surfaces, is always less than 0.1 except in case A0 where it is 0.5. The value of the

lapse at the injection radius is α(r in) = 0.79 corresponding to an escape speed 0.6 c. The unit of length corresponds to the

radius of the neutron star rNS, the unit of time is r NS/c.

condition that the net electric field in the fluid frame must vanish,

which in covariant form reads

Fµνuν = 0. (15)

With this approximation, equations (10)–(13) can be rewritten in

term of proper density, pressure, 4-velocity and magnetic field, re-

ducing to a system of eight equations for eight variables, plus the

solenoidal condition on the magnetic field, ∇ · B = 0.

Although we consider winds from neutron stars with centrifugal

forces large enough to affect the mass-loss, we only consider rotation

rates slow enough to allow us to neglect rotational modifications of

the metric. Therefore, we employ the Schwarzschild instead of the

Kerr metric. The use of a diagonal metric allows one to simplify

the equations and to implement them easily in any code for special

relativistic MHD, as shown by Koide, Shibata & Kudoh (1999).

In Boyer–Lindquist coordinates (t, r, θ , φ) the diagonal elements

of the metric are

−g00 = (g11)−1 = (1 − 2G M/r ) = α2;

g22 = r 2; g33 = r 2 sin θ2; (16)

where M is the mass of the central object (1.44 M⊙).

In axisymmetry and steady state, equations (10)–(13) admit six

integrals of motion along stream lines (flux tubes) (Camenzind

1986a,b, 1987; Daigne & Drenkhahn 2002):

F = αργ vp A, (17)

� = Bp A, (18)

� =
α(vφ − Bφ/Bpvp)

R
, (19)

L = R

(

hγ vφ −
α�Bφ

F

)

, (20)

H = α

(

hγ −
��R Bφ

F

)

, (21)

S =
p

ρŴ
, (22)

where subscript p and φ indicate poloidal and azimuthal compo-

nents, respectively, γ is the Lorentz factor, A is the area of the flux

tube (A = r 2 in the case of radial outflow), and R = r sin θ the

cylindrical radius. Again note that we have chosen units in which

c = 1.

If the value of the six integrals is known on a stream line, then

equations (17)–(22) can be solved for the value of primitive quan-

tities like density, velocity and pressure. In general, quantities like

�,S and � are assumed to be known and given by the physical

conditions at the surface of the central object, while the values of

the remaining integrals are derived by requiring the solution to pass

smoothly the SM, AL and FM points. In 2D, one also requires an

additional equation for the area of the flux tube, and this is provided

by requiring equilibrium across streamlines.

4 N U M E R I C A L M E T H O D

Equations (10)–(13) are solved using the shock-capturing code

for relativistic MHD developed by Del Zanna, Bucciantini &

Londrillo (2003). The code has been modified to solve the equations

in the Schwarzschild metric following the recipes by Koide et al.

(1999). The scheme is particularly simple and efficient, since solvers

based on characteristic waves are avoided in favour of central-type

component-wise techniques (Harten–Lax–van Leer solver based

only on the FM speed). In the axisymmetric 2D approximation the

equation for the evolution of Bφ can be written in conservative form

and only one component of the vector potential, Aφ , is used in the

evolution of the poloidal magnetic field. Moreover, we replace the

energy conservation equation with the constant entropy condition,

S = constant. Of course, this condition cannot be satisfied during

the evolution when shocks form in the flow. However, if the wind

evolves toward steady state, shocks propagate outside the compu-

tational domain, and the condition S = constant can be satisfied.

There are various numerical reasons for our choice of S = constant.

Most importantly, enforcing constant entropy significantly enhances

code stability. For example, it is known that in strongly magnetized

flows or in the supersonic regime, in deriving the thermal pressure

from the conserved quantities, small errors can lead to unphysical

states. In non-relativistic MHD, these unphysical states correspond

to solutions with negative pressure. A common fix is to set a mini-

mum pressure ‘floor’ that allows the computation to proceed. How-

ever, in RMHD it is possible that no state can be found (not even

one with negative pressure) and the computation stops. This usu-

ally happens for high Lorentz factor γ ∼ 10–100, depending on

the grid-flow geometry, or in the case of high magnetization, B2/

(ρh) � 100. When the magnetization at the Light Cylinder is high,
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close to the central object it will be above this stability threshold,

which prevents us from using the full equation of energy. The use of

a constant entropy condition also greatly simplifies the derivation

of primitive variables from the conserved quantities, thus increasing

the efficiency of the code.

Lastly, by specifying the value of the entropy we remove entropy

waves from the system. Entropy waves travel at the advection speed

(and are dissipated in an advection time). If the sound speed is

much smaller than c, the advection speed vr , close to the surface of

the central object, is much smaller than the speed of light and the

advection time can be extremely long. By removing entropy waves,

perturbations are dissipated at the SM speed, which in our regime

is of the order of 0.1 c.

Simulations were performed on a logarithmic spherical grid with

200 points per decade in the radial direction, and a uniform resolu-

tion on the θ direction with 100 grid points between the pole and

the equator (Courant–Friedrichs–Lewy factor equal to 0.4). Higher

resolutions were used in a few cases, to test convergence and accu-

racy. In order to model the heating and cooling processes using an

ideal gas equation of state we adopt an adiabatic coefficient Ŵ =
1.1 (almost isothermal wind), which is reasonably representative of

the wind solution by, e.g. Qian & Woosley (1996). It can be shown

that in order to have a transonic outflow the thermal pressure cannot

be too high (above a critical value depending on Ŵ the sonic point

moves inside the surface of the star) nor too low (the Bernoulli in-

tegral H must be positive), as shown by Koide et al. (1999) in the

hydrodynamical case. The available parameter space increases for

smaller Ŵ. The value we choose allows us to investigate easily cases

with p/ρ ∼ 0.05, especially in the dipole case where the strong flux

divergence at the base is more important.

4.1 Initial and boundary conditions, and model parameters

Simulations in both 1D and 2D were initialized by using a hydro-

dynamical 1D radial solution obtained on a much finer grid (the

relativistic extension of the Parker solution (Parker 1958), and pro-

jecting it on the initial magnetic field lines. In the monopole cases,

initial poloidal magnetic field lines are assumed to be strictly radial

while for the dipole cases we adopt the solution for the vacuum

dipole in the Schwarzschild metric (i.e. Muslimov & Tsygan 1992;

Wasserman & Shapiro 1983). Density and pressure were interpo-

lated from the hydrodynamical solution, vr was derived by project-

ing the radial velocity on the magnetic field lines, and we set vθ =
0. We also impose corotation in the inner region vφ = min (�R/α,

0.6c), in order to avoid sharp temporal transients in the vicinity of

the inner boundary.

Standard reflection conditions are imposed on the axis, and sym-

metric conditions are imposed on the equator. At the outer radial

boundary, we apply standard zeroth order extrapolation for all the

variables. Initial conditions are chosen in order to guarantee that

during the evolution the FM surface is inside the computational

domain so that no information is propagated back from the outer

boundary.

Unfortunately, as we will discuss in the following section, in the

2D case such a constraint can not be satisfied close to the axis,

unless one uses an excessively large computational domain. In a

few cases, using larger grids that allow the FM surface to be inside

the computational domain, we find that the results do not change

appreciably except along the axis itself. That is, the global solution

at all but the highest latitudes is not significantly affected by the fact

that the FM surface is outside the computational domain very near

the polar axis.

Particular care has to be taken for the inner boundary conditions.

As pointed out in Section 1, we are here interested in the transition

from mass loaded (σ 0 ≪ 1) to high-σ 0 winds, and our injection

conditions are tuned to be as close as possible to the neutrino-driven

proto-neutron star case. We chose the inner radius r in to be located

at 11 km (1.1 radii of the neutron star rNS), which corresponds to

the outer edge of the exponential atmosphere for a thermally driven

wind (e.g. Thompson et al. 2001). The modelling of such a steep at-

mosphere requires very high resolution in order to avoid numerical

diffusion, and the problem becomes prohibitive in terms of compu-

tational time in 2D. At the inner boundary the flow speed is smaller

than the SM speed, implying that all wave modes can have incoming

and outgoing characteristics. This constrains the number of physical

quantities that can be specified. Density and pressure at the inner

radius are set to be p/ρ ∼ 0.04, thus fixing the entropy for the over-

all wind. The radial velocity is derived using linear extrapolation.

We also fixed the value of �/α(r in), typically at �r in/α(r in) = 0.2,

corresponding to a millisecond period (in the neutron star proper

frame, see also equation 24), which implies RL = 6.8 r NS.

The frozen-in condition (15) requires that the electric field in the

comoving frame at the inner radius vanishes: vp ‖ B p → E φ = 0

and E p = �R in B p/α(r in). The condition on E φ implies that the

radial component of the magnetic field remains constant. We chose

for B r (r in) different values to investigate both cases with low mag-

netizations and high magnetization. B θ and Bφ where extrapolated

using zeroth order reconstruction (we found that linear interpola-

tion can lead to spurious oscillations). The value of the tangential

velocities were derived using the remaining constraint of the frozen-

in condition: vθ = vr B θ/B r and vφ = �R in/α(r in) − vr Bφ/B r .

Given that the three components of the velocity are derived inde-

pendently, there is no guarantee that v2 < 1; so care has to be taken

to avoid sharp transients and spurious oscillations in the tangential

magnetic field near the inner boundary.

In Table 1 the parameters of our various models are given. Equa-

tions (17)–(22) show that the problem can be parametrized in terms

of the ratio �2/F (assuming Bφ scales as B r ) and not on the specific

value of density and magnetic field; more generally the parameter

governing the properties of the system is σ0 = �2�2/F (Michel

1969). The bulk of our simulations have been done using a fixed

value for �, in order to allow a more straightforward comparison

among the various results; however in a few cases (B1 of the 2D

monopole, and B1, B2 of the 2D dipole) we use a different rotation

rate to check whether the energy and angular momentum loss rates

indeed only scale with σ 0. We note that it is computationally more

efficient to increase the magnetic flux than to drop the mass flux in

order to achieve higher σ 0. Only in the 1D case, where resolution

is not a constraint, are we able to investigate the behaviour of the

system for different values of S.

5 R E S U LT S

5.1 The 1D monopole

As a starting point for our investigation, we consider the simple

case of a relativistic monopolar wind in 1D. This is the relativistic

extension of the classic Weber–Davis solution for a magnetized wind

(Weber & Davis 1967), and represents a simplified model for the

flow in the equatorial plane. The 1D model can also be used both to

verify the accuracy of the code and as a guide in understanding the

2D simulations (Section 5.2 and 5.3). Here we assume vθ = B θ =
0. The solenoidal condition on the poloidal magnetic field reduces

to B r ∝ r−2.
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Table 2. Results of the 1D models.

Model σ 0 F J̇/�2� Ḣ/�2�2 γ (100r NS) r A/RL

A0 0.013 101 10.6 99.0 1.12 0.30

A 0.084 142 4.17 18.0 1.20 0.46

B 0.164 74 3.34 9.98 1.22 0.56

C 0.307 39 2.71 6.06 1.32 0.65

D 0.634 19 2.18 3.75 1.42 0.75

E 2.81 4.25 1.52 1.86 1.87 0.89

F 6.85 175 1.31 1.49 2.30 0.93

G 18.4 130 1.17 1.24 2.94 0.96

H 61.4 155 1.08 1.10 4.00 0.98

I 127 188 1.06 1.06 4.84 0.99

J̇ = LF and Ḣ = HF . Values of F are given in code units, see

equations (23)–(27) for conversion to physical units. In all cases � =
0.143.

We calculate a number of wind solutions for different values of

the flux � and the entropy S. The results are summarized in Table 2.

Case A0 is a reference case for an almost unmagnetized wind, and

it will be used for comparison with the weakly magnetized regime

(A–D). As stated above, the solution can be parametrized in terms of

σ0 = �2�2/F . We have verified that the mass-loss rate F depends

strongly on the value of the sound speed at r in, and drops rapidly

as the pressure approaches the critical value for H > 0, which also

depends on the magnetic field strength. In contrast, over the range

of parameters studied, F has a relatively minor dependence on the

value of the magnetic field at fixed S: increasing B r (r in)2 by three

orders of magnitude corresponds to an increase in F by just a factor

of ∼1.7 (compare models A0 and F in Table 2). The reason for this

is that in all cases listed in Table 2 the AL point is larger than the SM

point. Thus, the magnetocentrifugal effect of increasing the density

scale height in the region interior to the SM point, where the mass-

loss rate is set, is already maximized. For all the cases investigated,

the value of Ŵ p/ρ(�r )2 at the AL point is always less than 0.1 (in

Case A it is ≃0.1 while in case E it is ≃0.02). All the solution can

thus be considered centrifugally driven. We expect and find a sharp

drop in F as we go to yet smaller magnetization. For example, in

the purely hydrodynamical case without magnetic fields, F ≈ 30,

six times lower than F for Case F.

Note that the value of γ reported in Table 2 is at a fixed position,

r = 100r NS, which is generally outside the FM point (see Fig. 2).

Case I is an exception. For reference, the Lorentz factor at ∼300 r NS

is 7.8 for this model.

All values in Table 2 are given in code units. The following rela-

tions can be used to scale to physical units, in terms of the value of

density and magnetic field at the injection radius r in. The mass-loss

rate is

Ṁ = 1.9 · 10−4
F

(

ρ(rin)

1010g cm−3

)

(

rin

11 km

)2

M⊙ s−1; (23)

the rotation period is

P = 2.3 · 10−4�−1

(

rin

11 km

)

s; (24)

the surface magnetic field strength is

Br (rin) = 4.25 · 1015 σ
1/2

0

(

Ṁ

1.9 · 10−4 M⊙ s−1

)1/2

×
(

P

1.6 · 10−3s

)1/2 [

ρ(rin)

1010 g cm−3

]−1/2
(

rin

11 km

)−1

G;

(25)

Figure 2. Radial velocity, and position of the SM (plus), AL (diamond) and

FM (triangle) points, in the 1D monopole case. From bottom to top lines

refer to Cases F, G, H and I.

the total energy-loss rate is

Ė = 6.95 · 1048

(

Ḣ

�2�2

)[

Br (Rin)

8.7 · 1013 G

]2

×
(

Rin

11 km

)2 (

P

1.6 · 10−3 s

)−2

erg s−1;
(26)

the angular momentum loss rate is

L̇ = 1.57 · 1045

(

J̇

�2�

)[

Br (rin)

8.7 · 1013 G

]2
(

rin

11 km

)3

×
(

P

1.6 · 10−3 s

)−1

erg, (27)

where J̇ = LF and Ḣ = HF .

In Fig. 2, we plot the velocity profiles for Cases F, G, H and I,

together with the location of the SM, AL and FM points. Note that

the position of the SM point does not change significantly and is

given roughly by equation (9). In Fig. 3, the angular momentum

loss rate and energy-loss rate are plotted as a function of σ 0. The

convergence to the force-free solution is evident (see also Table 2).

An alternative way to parametrize how close the solution is to the

force-free limit is by considering r A/RL (Daigne & Drenkhahn

Figure 3. Loss rates for the 1D monopole calculations in non-dimensional

units (Table 2). Upper panel: angular momentum loss rate. Lower panel:

total energy-loss rate. Dashed curves represent the theoretical expectation

for the losses in the mass loaded cases J̇ ∝ Ṁ1/3 and Ḣ ∝ Ṁ . Continuous

curves represent the best power-low fit given in the text. Dotted lines are the

force-free solution.
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2002), as shown in Table 2. In the mass-loaded cases (σ 0 < 1; models

A–D) we find that J̇/�2� ∝ Ṁ1/3 in accord with the expectations

from Section 2.2. We find that all the points (we excluded case A0

because we are interested in case where r A > r SM , typical of the

transition from mass-loaded to force-free) can be approximated by

a relation of the form J̇/�2� = Co +C1(1/σ0)1/2, where Co should

correspond to the force-free limit J̇/�2� = 1. A fit to our results

gives C o = 0.98 and C 1 = 0.93. A similar expression can be written

for the energy losses. At low σ 0 the total energy loss rate scales

as the mass-loss rate, as expected, Ḣ/�2�2 ∝ Ṁ . For large σ 0,

the solution converges to the force-free limit, Ḣ/�2�2 = 1 (see

Fig. 3). We find that the transition between the two limits can be

fit with Ḣ/�2� = Co + C1(1/σ0)0.77, where C o = 0.98 and C 1 =
2.16. We also consider the reduced energy-loss rate (the difference

between the total energy and the rest-mass energy), and find that

this too can be approximated with a power law: (Ḣ − F )/�2�2 =
Co + C1(1/σ0)0.61, with C o = 0.98 and C 1 = 0.965. We stress

that these power law relations have been determined by fitting the

results of our simulations. As such, there is no guarantee that these

trends can be extended outside the range we investigated, but they

do correspond well to the estimates given in Section 2.

Our simulations focus on the region close to the neutron star and

so the problem of the acceleration of the outflow at large distances

cannot be properly addressed. However, as shown, for example,

by Daigne & Drenkhahn (2002) the efficiency of conversion from

magnetic to kinetic energy in the strict monopole limit is very low.

Faster than radial divergence in the flux tubes is required after the

FM point to increase the acceleration significantly (Section 2.1).

Within our computational domain in Case I we find that the ratio

of particle kinetic energy flux to electromagnetic energy flux scales

approximately as r 1/3 and shows a tendency towards saturation. At

a radius of 300r NS in Case I, the ratio is still less than 5 per cent.

5.2 The 2D monopole

The 1D monopole discussed above does not take into account de-

formations of the poloidal field lines by the moving plasma. As a

consequence, the conversion of magnetic energy into kinetic en-

ergy of the accelerated wind is inefficient. To understand if and how

deviations from a strict monopole may affect the dynamics of the

outflow it is necessary to perform 2D simulations. We focus only

on the region close to the star, within 100–200r NS, and we consider

both mass-loaded (σ 0 < 1) and Poynting-flux-dominated (σ 0 > 1)

regimes (see Tables 1 and 3). In contrast to the cases considered

by Bogovalov (2001), where the mass flux was fixed at r in and a

Table 3. Results of the 2D monopole models.

Model σ 0 Ft J̇/�2
t � Ḣ/�2

t �
2 r A,equat/RL

A 0.121 98 1.23 11.9 0.40

B 1.00 119 1.11 2.28 0.68

B1 1.22 217 1.05 1.99 0.70

C 9.67 122 0.755 0.875 0.92

D 68.5 173 0.678 0.699 0.98

E 211.5 280 0.671 0.679 0.99

J̇ = (4π)−1
∫

s
LF ds; Ḣ = (4π)−1

∫

s
HF ds; �t = (4π)−1

∫

s
� ds;

Ft = (4π)−1
∫

s
F ds and σ0 = �2

t �
2/Ft . Values are given in code units,

see equations (23)–(27) for conversion to physical units. The value of S

in all cases is 0.018. In all cases � = 0.143, except case B1 which has

� = 0.214. r A,equat is the radial distance of the AL surface on the equatorial

plane.

cold wind (p = 0) was assumed, here the mass flux is derived self-

consistently, with pressure at the base of the wind being the control

parameter for the flow. Even if cT (r in) ∼ 0.1c, the difference with

the pressureless case is not trivial. For example, the location of the

FM point in the 1D monopole is at infinity if p = 0, so, in princi-

ple, one might expect a higher efficiency also in the 2D case. More

important, in our case, the velocity at the base is much smaller that

c, so that collimation in the region close to the star could be more

efficient.

5.2.1 Magnetic, mass-loaded winds

In Fig. 4 we show the results for a heavily mass-loaded case (Case

A) corresponding to a σ0 = (4π)−1
∫

S
�2�2/F ds = 0.121, where

the integration is performed over 4π solid angle.

At r in the mass flux profile scales approximately as sin2 θ , and is

minimal at the pole. As a result of magnetic acceleration and cen-

trifugal support at the equator, the mass flux is higher than in the

corresponding 1D hydrodynamical non-rotating case and it is about

the same as in the 1D monopole. However, at the pole the mass

flux is lower because of magnetic collimation on the axis (Kopp &

Holzer 1976). The large difference in mass flux between pole and

equator is manifest in the elongated shape of the FM surface. The

upper left-hand panel of Fig. 4 shows that the field lines are very

close to radial and that Bφ scales approximately as sin θ . At the pole,

the FM surface falls outside of the computational domain, whereas

the FM surface intersects the equatorial plane at 5.2r NS(r in =
1.1r NS).

The SM surface also has a large axis ratio: it intersects the pole

at a distance of 11r NS and it intersects the equator at 1.8r NS. It

is interesting to look also at the position of the AL surface. Its

distance from the Light Cylinder RL is an indicator of how close the

solution is to the force-free limit and it strongly reflects the degree

of magnetization. While on the axis where Bφ = 0 the AL and

FM surfaces are coincident, away from the pole the toroidal field

component does not vanish and the two critical curves separate. The

AL surface intersects the equator at a distance of about 2.7r NS (to

be compared with RL = 6.8r NS).

One might expect the Lorentz factor to be largest in the equato-

rial region, as a result of stronger magnetocentrifugal effects there.

However, contrary to this expectation, we observe that γ peaks at

about 70◦. Such a result was also obtained by Bogovalov (2001) for

cold flows. This effect is stronger in our calculations because of the

lower overall Lorentz factor. We also notice the existence of a very

slow channel along the axis. We want to stress that the FM surface

is outside the computational domain within 3◦ of the axis, and so

the solution has not converged fully in this region. However, by

increasing the radial computational domain, we find that the main

effect of failing to capture the FM surface at the pole is that the wind

in this region is less collimated and somewhat faster than it should

be. So we expect the wind to be more collimated and slower, with

yet larger computational grids. Whether the FM surface is inside the

computational domain at the pole or not has relatively little effect

on those streamlines at lower latitudes that do pass through the FM

point. Typical deviations are found to be less than 1 per cent.

As the lower panels of Fig. 4 show, we find that both the en-

ergy flux (which is mainly kinetic) and the angular momentum flux

peak at high latitudes. In addition, the mass flux at large distance

from the neutron star is higher close to the axis because of mag-

netic collimation. In contrast, the conversion of electromagnetic

energy to kinetic energy is maximal along the equator, even though
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Figure 4. Results for the 2D monopole in the weakly magnetized Case A (Table 3). Upper left-hand panel: contours represent poloidal magnetic field lines,

while colours represent the ratio |Bφ/B r |. Upper right-hand panel: colours and contour represent the Lorentz factor. Notice the presence of a slow channel on

the axis and the peak in velocity at about 70◦. Lower left-hand panel: angular momentum flux in adimensional units LF/(4π�2
t �). Lower right-hand panel:

total energy flux HF/(4π�2
t �

2) in non-dimensional units (see equations 23–27 for conversion in physical units). Note that these fluxes peak at high latitudes

(compare with Fig. 5).

in this mass-loaded low-σ 0 case the electromagnetic energy flux is

lower than kinetic energy flux, and the wind terminal Lorentz fac-

tor is mainly given by the conversion of internal energy to kinetic

energy.

5.2.2 Poynting-flux-dominated winds

In Fig. 5, we show the results for a Poynting-flux-dominated flow

(Case E), corresponding to a ratio σ0 = (4π)−1
∫

S
�2�2/F ds =

211.5, where the integration is again performed over 4π solid angle.

In this case the solution is mostly magnetically driven, and plasma

effects lead to small deviations with respect to the force-free limit.

Similar to the mass-loaded Case A, at the neutron star surface

we find that the mass flux is higher at the equator than at the pole,

and that the AL and FM surfaces are extended in the direction of

the pole. Here, the FM and AL surfaces intersect the equatorial

plane at a distance of 46r NS (to be compared with 40.5 = σ
1/3

0 RL)

and 6.7r NS, respectively, while the SM surface is more spherical

than Case A and intersects the pole and the equator at a distance

of 2.5r NS and 1.7r NS, respectively. Magnetic field lines are again

monopolar, but while in the mass-loaded Case A this was a con-

sequence of a originally centrifugally driven wind, now this is due

to electromagnetic force balance. The dynamics of a magnetized

outflow are governed by the combination of Lorentz and Coulomb

forces. In the relativistic regime the Coulomb force cannot be ne-

glected and, as the flow speed approaches c, the Coulomb force

balances the Lorentz force, suppressing collimation. As a conse-

quence, the flux tubes in a Poynting-flux-dominated wind have an

areal cross-section that scales as r2. It is known that the efficiency of

conversion of magnetic energy to kinetic energy increases when the
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Figure 5. Results for the 2D monopole in the highly magnetized Case E (Table 3). Upper left-hand panel: contours represent poloidal magnetic field lines,

while colours represent the ratio |Bφ/B r |. The FM surface (dotted line) is more distant from the axis while the AL surface (dashed line) is very close to the

Light Cylinder. Upper right-hand panel: colours and contours represent the Lorentz factor. There is no evidence here of the relatively slow channel on the axis

as in Case A (see Fig. 4) and the Lorentz factor scales as sin (θ ). Lower left-hand panel: angular momentum flux in non-dimensional units LF/(4π�2
t �).

Lower right-hand panel: total energy flux HF/(4π�2
t �

2) in non-dimensional units (see equations 23–27 for conversion in physical units). Here, these fluxes

are higher at the equator than at the pole (compare with Fig. 4), as expected when the flow is relativistic and Poynting-flux-dominated.

flow divergence becomes more than radial (Daigne & Drenkhahn

2002). In the high-σ 0 simulation presented here, at least within the

limited computational domain employed, we do not see evidence

for efficient conversion and acceleration. As found by (Bogovalov

2001) there is evidence for a narrow collimated channel very close

to the axis, but in our case, where the mass flux at the injection is

not imposed, the mass flux in the channel is not strongly enhanced.

However, the FM surface on the axis does not close in our compu-

tational box so no strong conclusion can be drawn.

The upper right-hand panel of Fig. 5 shows that the Lorentz fac-

tor in the wind scales approximately as sin θ . The maximum value

achieved in the computational domain is 8. The latitude dependence

is not appreciable, probably because our solution does not extend

far enough away from the star. As in the 1D models, for the range

of parameters investigated, the total mass flux from the star is not

much affected by the value of the surface magnetic field. For the

Poynting-flux-dominated Case E it is about three times higher than

in the mass-loaded Case A, despite the fact that the magnetic energy

density is 5000 times higher. This again follows from the fact that

the AL surface is larger than the SM surface. However, there are

important qualitative differences between Cases A and E. In Case

E, we find that on large scales magnetic acceleration is dominant

and the mass flux is maximal on the equator, instead of on the axis.

In addition, the lower panels of Fig. 5 show that the energy and

angular momentum fluxes increase toward the equatorial plane and

are almost completely magnetically dominated. In fact, the energy

and angular momentum loss rates scale as sin2 θ , as expected in the

force-free limit. This strong transition in the angular dependence
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Figure 6. Loss rates for a 2D monopole in non-dimensional units. Upper

panel: angular momentum loss rate. Lower panel: total energy-loss rate.

Dashed curves represent the theoretical expectation for the losses in the

mass loaded cases J̇ ∝ Ṁ1/3 (Section 2.2) and Ḣ ∝ Ṁ . Continuous curves

represent the best power-low fit given in the text. The dotted lines are the

force-free limits. The square mark indicates Case B1, which has a different

rotation rate (Table 1).

of the energy and momentum fluxes, from strongly collimated to

equatorial, occurs at σ 0 ∼ 1.

Fig. 6 shows the behaviour of the angular momentum and en-

ergy losses as σ 0 increases. We again observe the convergence to

the force-free limit (see also Table 3) and recover the expected be-

haviour J̇/�2� ∝ Ṁ1/3 in the mass-loaded cases. The conver-

gence to the force-free solution can be approximated, as in the 1D

case, with a power law of the form C o + C 1(1/σ 0)β . The fits are

different than the 1D models because the flux tubes deviate from

being strictly monopolar. We find for the angular momentum loss

rate J̇/�2� = 0.664 + 0.42(1/σ0)0.67, for the total energy losses

Ḣ/�2�2 = 0.660 + 1.66(1/σ0)0.87, and for the reduced energy

(Ḣ −F )/�2�2 = 0.66 + 0.60(1/σ0)0.74. As mentioned before, we

have derived these fits within the parameter range of our simula-

tions, and there is no guarantee that they can be extrapolated for

much higher or lower magnetizations. We stress that in the highly

magnetized Case E our results are very close to the force-free so-

lution: J̇/�2� = Ḣ/�2�2 = 2/3 (Michel 1991). Note also that

such a value is lower than what would be expected from a trivial 2D

extension of the 1D monopole (0.78 =
∫

π/2

o
sin (θ )2 dθ ).

The efficiency of conversion of the magnetic energy to kinetic

energy is maximal on the equator, but it does not exceed 10 per

cent at the outer boundary. We note that conversion is faster than

logarithmic in radius and at the edge of the computational box it

scales as R1/3, similar to our 1D results. However, we cannot draw

strong conclusions on the terminal efficiency far outside of the FM

surface because of the limited size of our computational domain.

As shown by Bogovalov (2001), γ seems to increase after the FM

point and then saturates at larger distances.

5.3 The aligned dipole

To lowest order, currents in the neutron star should generate a dipole

magnetic field. This field configuration is much more realistic than

the monopolar models considered in Sections 5.1 and 5.2. A dipole

field may also have interesting consequences for the asymptotic

character of the outflow. For example, it is possible that the pres-

ence of a closed zone, outside of which the open field lines at first

expand much more rapidly than radially, might provide for a more

efficient conversion of magnetic energy into kinetic energy, leading

to a higher terminal Lorentz factor (Section 1). Below, we review

several numerical issues associated with our dipole wind solutions

and then we present our results, which again bridge the transition

from low- to high-σ 0 outflows.

5.3.1 Numerical challenges

The modelling of a magnetic wind with a closed zone and an equa-

torial current sheet presents a number of numerical difficulties. We

have encountered two problems in particular that bear mention. The

first is that the outer edge of the closed zone rotates faster than what

is required by equation (19). We believe this ‘supercorotation’ is

connected with numerical dissipation in the equation for the evolu-

tion of Bφ and that it stems from the fact that the boundary between

the closed and open field regions is not grid-aligned.4 By suppress-

ing the upwinding term in the HLL flux we were able to reduce

the deviation from the corotation condition from 10–20 per cent to

∼5 per cent, but at the price of making the code less stable when the

flow is highly magnetized. Unfortunately, of the previous papers

dealing with winds in the presence of a closed zone in the MHD

regime, only Keppens & Goedbloed (2000) discuss deviations from

corotation in the closed zone. In their paper these amount to ∼10–20

per cent, and they consider only parameters appropriate to the Sun,

a slow rotator.

The second problem is that the magnetic field undergoes recon-

nection at the neutral current sheet on the equator close to the posi-

tion of the Y-point, where the last closed field line intersects the equa-

torial plane. As a consequence, plasmoids are formed and advected

away, thus preventing the system from reaching a steady-state con-

figuration.5 At the current sheet B r and Bφ change sign, the MHD

approximation fails, and a sharp discontinuity develops that cannot

be well resolved. Fig. 7 shows an example of plasmoid formation.

Although it is well known that current sheets in the presence of a

Y-type point are subject to reconnection and the continuous forma-

tion of plasmoids (Yin et al. 2000; Endeve & Leer 2003; Tanuma &

Shibata 2005), in our case the high value of σ 0 does not allow us to

properly resolve the current sheet. For this reason, the reconnection

processes are dominated by the intrinsic numerical resistivity of our

numerical scheme.

We have found that the formation and growth of plasmoids de-

pends on two terms in the definition of the HLL electric field (see

equation 44 of Del Zanna et al. 2003): ∂B r/∂ θ and B rvθ . The first

behaves like an explicit resistivity and seems responsible for the

evolution of the plasmoids as they are advected off the grid along

the equator. The second term behaves like forced reconnection and

controls the initiation of plasmoid formation (given that the current

sheet is not resolved, vθ is not reconstructed to zero on the equator).

Setting both terms to zero causes the closed zone to disappear en-

tirely and the system evolves toward a modified split monopole. To

deal with this issue and explicitly enforce a steady state, we opt for

the following procedure: in a calculation with plasmoids we note the

position of the Y-point and we then impose the conditions ∂B r/∂θ =
0 and Brvθ = 0 on the equator outside the position of the Y-point

as inferred from the calculation without these boundary conditions.

4 Increasing the resolution of the simulation or using a characteristics-based

solver (Komissarov 1999, private communication) does not improve the

accuracy of the solution.
5 Wind calculations performed over a full 180◦ show that the formation of

plasmoids is not an artefact of our 90◦ computational domain.
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Figure 7. Magnetic structure of a magnetically dominated flow (Case C).

The upper panel shows the poloidal magnetic field structure, with a snapshot

of outflowing plasmoids forming along the equatorial current sheet outside

the closed zone. The lower panel shows a blow up of these plasmoids, which

travel out at close to the speed of light. The colour indicates the angular

momentum density, with roughly 20 per cent of the angular momentum

loss being carried by these intermittent structures. Values are in code units

(equations 23–27). As stated in the text, the numerical values in the plasmoids

depend on numerical resistivity.

The condition ∂B r/∂θ = 0 can be justified because of the struc-

ture of the characteristic waves and because the solution should

be symmetric about the equatorial plane. The equator is a contact

discontinuity, so only the total pressure is important as a boundary

conditions and not the sign of the parallel magnetic field, in fact for

infinite conductivity a pure monopole and a split monopole have the

same solution. The condition B rvθ = 0 corresponds to enforcing

vθ = 0.

Table 4. Results of the dipole models.

Model σ 0 Ft J̇/�2
t � Ḣ/�2

t �
2 r Y /RL

A 0.298 66 1.53 5.28 0.26

B2 1.34 7.8 0.965 1.81 0.32

B 2.77 43 0.853 1.27 0.37

B1 3.91 114 0.816 1.10 0.48

C 17.5 42 0.701 0.73 0.47

J̇ = (4π)−1
∫

s
LF ds; Ḣ = (4π)−1

∫

s
HF ds; �t =

(4π)−1
∫

s
�o ds; Ft = (4π)−1

∫

s
F ds and σ0 = �2

t �
2/Ft .

Values are given in code units, see equations (23)–(27) for conver-

sion to physical units. Cases B1 and B2 have different rotation rates

(Table 1). All cases have S = 0.018.

Figure 8. Loss rates for a 2D dipole in non-dimensional units. Upper panel:

angular momentum loss rate. Lower panel: total energy-loss rate. Dashed

curves represent the theoretical expectation for the losses in the mass loaded

cases J̇ ∝ Ṁ1/3 and Ḣ ∝ Ṁ . Continuous curves represent the best power-

law fit of the 2D monopole of Fig. 6. The dotted lines are the force-free

solution. The squares mark cases B1 and B2, which have different rotation

rates (see Table 1).

We note that the steady state solution need not be the physically

correct solution found in nature. The equatorial current sheet in the

vicinity of a neutron star is undoubtedly dissipative, and is thus

subject to reconnection and plasmoid formation. However, a full

understanding of this behaviour requires – at the very least – the use

of resistive RMHD, so that the dissipation can be controlled, rather

than being fully numerical, as in our current calculations. Such a

treatment is beyond the scope of this paper. Thus, we focus our at-

tention here on the forced steady state solutions described above.

As a test, we have compared the global energy and angular momen-

tum loss rates between time-dependent calculations with plasmoids

and those with our forced steady state boundary conditions outside

the Y-point. In general, losses are higher in the latter calculations

because the open magnetic flux is larger. In Case A the difference is

less than 5 per cent, while in Case C it is about 15–20 per cent (see

Table 4 and Fig. 8). In the time-dependent calculations the individ-

ual plasmoids represent fractional deviations in J̇ and Ḣ from the

average of up to 15 per cent in Case C, and less for lower σ 0 flows.

Thus, the plasmoids do not appear to be that dynamically signifi-

cant for the overall energy and angular momentum losses from the

neutron star.
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5.3.2 Results

In Table 4, we show the results of our simulations using the pre-

scription described above. In the monopole models the magnetic

field lines are open so that normalizing to the surface magnetic field

or to the total magnetic flux �t is equivalent. In the dipole case,

because of the closed zone, the two quantities are not proportional.

We find it useful to normalize in terms of the magnetic flux eval-

uated on open field lines, �o, where equations (17)–(22) hold. As

a consequence, we can define an equivalent surface magnetic field

B r−equiv(r in) as the surface magnetic field of a monopole that has the

same amount of open magnetic flux. Contrary to the monopole case,

increasing the magnetic field strength at the stellar surface reduces

the mass-loss rate because the size of the closed zone increases. Sim-

ilarly, for the parameters explored here, an increase in the magnetic

field strength by a factor of, say, ∼3 at the stellar surface leads to an

increase in the open magnetic flux �t by a factor of just ∼2.5, rather

than the one-to-one behaviour for the monopole. We can derive an

approximate relation between the magnetic field at the pole on the

surface of the star (rNS), and the equivalent surface magnetic field,

that can easily be computed if Ḣ and � are known. We find that in

all our cases the relation is

Br (rNS, θ = 0) ≃ 1.6 Br−equiv(rNS) × (rY/rNS). (28)

Thus, the problem of relating the surface magnetic field to the loss

rates is reduced to the problem of determining the size of the closed

zone.

In Fig. 8, the angular momentum and energy-loss rates are plotted.

The continuous lines in this figure are not a fit to our dipole results,

but are simply the same curves as in Fig. 6 for the 2D monopole. In

addition, as in Fig. 6, the dashed lines are the analytic expectation for

the loss rates in the mass-loaded limit for the monopole (Section 2.2).

This shows that if the solutions are parametrized in terms of the

open magnetic flux, then the dipole and monopole winds have very

similar behaviour within the parameter space we have investigated.

This can be easily understood if one considers the structure of the

outflow in the far region. Given that Ḣ and J̇ are integrals, they

can be evaluated at any distance from the star. Even if the field is

dipolar close to the star it is nearly monopolar outside RL. Even

when we do not impose our steady-state boundary conditions at

the equator, and plasmoids are present during the evolution, Ḣ and

J̇ closely follow our results for the monopole (again, as long as

these losses are written in terms of the open magnetic flux). Note

also that in Fig. 8, we find that Ḣ/�2
t �

2 and J̇/�2
t � converge to

the expected value of 2/3 in the force-free limit (Contopoulos et al.

1999; Gruzinov 2005). However, as we discuss below, r Y < RL in

all of our calculations, contrary to the assumption that r Y = RL in

the above force-free treatments.

We can extrapolate our results to the force-free limit for the spin-

down rate. In terms of the equivalent surface magnetic field, and

using equation (28) with r Y = RL and B o = 0.5B r (r NS, θ = 0) we

have

Ḣ =
2

3
�2r 4

NS Br−equiv(rNS)2

≈
2

3
�2rNS4B2

o

(

3

5

rNS

RL

)2

≈
24

25
µ2�4, (29)

in agreement with Gruzinov (2005).

The flow structure for both low σ 0 (Case A) and high σ 0 (Case C)

are shown in Fig. 9. These figures show that the poloidal magnetic

field for R > RL has a structure very similar to that obtained from the

monopole calculations. Also, Bφ scales as sin θ , except in a region

close to the equatorial plane where it changes sign. This agrees with

the results of Fig. 8 showing that the energy and angular momentum

losses scale as for a monopole.

As expected, we find that the size of the closed region increases

with magnetization. The position of the Y-point moves from 1.8r NS

in Case A, to 2.5r NS in Case B, to 3.1r NS in Case C. Thus, an increase

in σ 0 of a factor of ∼60 corresponds to a ∼70 per cent increase

in the size of the closed zone. Importantly, even at relatively high

σ 0 (∼18 for Case C), these values are significantly smaller than

the Light Cylinder radius RL = 6.8r NS. In order to understand the

systematics of the Y-point, we have calculated several models with

different rotation rates � (see Tables 1 and 4). The radius of the

Y-point changes from 2.2r NS in Case B1, to 2.5r NS in Case B, to 4.3

r NS in Case B2. Although rY is largest in the model with slowest

rotation (Case B2), this model has the smallest ratio r Y/RL. Indeed,

we find that r Y/RL decreases as � decreases. This trend yields a

braking index less than 3. If one takes Cases B1, B and B2 as a

time-series in the life of a neutron star, one would infer a braking

index ∼2.2.

In general, the size of the closed zone will depend on the physical

conditions at the stellar surface, including the thermal sound speed

and the mass density, which govern the mass-loss rate on each open

streamline (see Section 2.1; Mestel & Spruit 1987). This shows that

even a small thermal pressure can have an important effect on the

torque. Fig. 9 shows that in Case A both the AL and the FM surfaces

are inside the radius of the Light Cylinder. However, in the high-

σ 0 Case C the AL surface is very close to RL. This suggests that

although the AL surface rapidly approaches RL as σ 0 increases, the

position of the Y-point remains inside RL and is a weak function

of σ 0. It is thus possible to produce a relativistic outflow, even if

the Y-point is well inside RL. Because the range of parameters we

have explored is fairly limited, we can only conclude that quite large

magnetization is required to achieve r Y = RL. A rough extrapolation

of our results implies that B r (r in, θ = 0)2/ρ(r in) must be of order

105–106 to achieve r Y ≈ RL, but at the moment we deem premature

to draw strong conclusions.

We stress here that the magnetization parameter σ 0 is defined as

an integral average. It is known that in a dipolar field geometry with

sub-SM injection, the mass flux at the edge of the closed zone is

higher than the average integrated value over the entire star (Kopp

& Holzer 1976). Thus, the magnetization varies from high to low

latitudes. For example, in our Case C the magnetization on the open

flux tubes immediately adjacent to the closed zone is less than 7,

while the σ 0 parameter for this model is 17.5. Because the position

of the Y-point and the shape of the magnetosphere depend on local

equilibrium between the closed and open zones, this strong variation

in magnetization in latitude may help explain why even if the global

flow has σ 0 ≫ 1, r Y is less than RL.

The upper and lower far right-hand panels of Fig. 9 show that for

the Lorentz factor we recover similar behaviour as for the monopole

(compare with Figs 4 and 5). In Case A, the Lorentz factor reaches

its maximum at about 70◦ from the equator. We also notice that there

is now a slower equatorial flow corresponding to what is known as

the ‘slow solar wind’ in models of the Sun’s outflow. In Case C

the Lorentz factor appears to scale mostly as the cylindrical radius.

This again was found for the monopole. The slow-wind region is

still present, but now the boundary conditions we have imposed on

the equator to suppress the plasmoids cause a noisy structure in v r.

The shape of the field lines outside the FM surface does show

significant differences between the monopole and the dipole. In
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Figure 9. Result of the 2D dipole. Upper panels represent Case A, lower panels Case C. Left-hand panel: contours represents poloidal magnetic field lines,

while colours represent the ratio Bφ/B r . The dotted line is the FM surface, the dashed line the AL surface. In Case C the AL surface is close to RL. Middle

panel: contours represents poloidal magnetic field lines, while colours represent the ratio Bφ/B r , in a region closer to the star. Now the dotted line represents

the SM surface. Right-hand panel: colours and contour represent the Lorentz factor.

the dipolar Case C at r = 50r NS the maximum value of B θ/B r =
−0.06. Such a value for this ratio is in between Cases C (−0.08) and

D (−0.03) for the 2D monopole. Our limited computational domain

prohibits a more quantitative study of the poloidal field line shape

at still larger distances from the neutron star.

Lastly, the angular distribution of the energy and momentum loss

rates in our dipole models are qualitatively similar to those we ob-

tained for the 2D monopole (see the bottom panels of Figs 4 and 5).

For low-σ 0 outflows, because of hoop stress, Ḣ and J̇ far from the

neutron star are peaked at high latitudes, along the axis of rotation.

In contrast, for high-σ 0 outflows, Ḣ and J̇ are maximum near the

equator, similar to Fig. 5 (Case E).

6 D I S C U S S I O N A N D C O N C L U S I O N S

We have solved for the dynamics of time-dependent relativistic

MHD winds from rotating neutron stars, including the effects of

general relativity on the gravitational force. The mass-loss rate

along open field lines is derived self-consistently as a solution to

the RMHD equations, subject to the boundary conditions at the

stellar surface (finite thermal pressure) and a polytropic equation of

state. We consider 1D and 2D monopole field geometries and the

aligned dipole, and we explore solutions that cover the parameter

regime from non-relativistic mass-loaded low-σ 0 outflows to rel-

ativistic Poynting-flux-dominated high-σ 0 outflows. Our primary

results are

(i) In the 1D and 2D monopole calculations, we reproduce the

expected analytic trends in both the high- and low-σ 0 limits. In

particular, the solutions asymptotically approach the force-free limit

when σ 0 ≫ 1.

(ii) In both the dipole and 2D monopole solutions, when σ 0 <

1, the energy and momentum losses far from the neutron star are

highly directed along the axis of rotation. The zenith angle at which

these fluxes are maximized is an increasing function of σ 0 so that

for σ 0 > 1, the losses are primarily equatorial.

(iii) In both the dipole and 2D monopole solutions, for winds

with σ 0 < 1, the Lorentz factor peaks at high latitudes.

(iv) For the aligned dipole, the equatorial current sheet may be

unstable to the formation of plasmoids, leading to time-dependent

spindown of the neutron star. A proper treatment of dissipative

RMHD in the equatorial region is needed to explore this issue more

completely.

(v) If the energy and angular momentum losses from the aligned

dipole are parametrized in terms of the open magnetic flux, then

the results are nearly identical to those from the 2D monopole solu-

tions in both the mass-loaded and Poynting flux-dominated regimes.
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In particular, the dipole calculations quantitatively approach the

force-free limit when σ 0 ≫ 1. The normalization for the angular

momentum loss rate is k ≈ 24/25 (equation 29), in good agreement

with the force-free results found by Gruzinov (2005) and Spitkovsky

(2006).

(vi) For average integrated magnetization parameters as high as

σ 0 ≈ 20, the radial position of the Y-point (rY), which bounds the

closed zone in the dipole models, is significantly less than the Light

Cylinder distance. This result obtains despite the fact that the AL

point rapidly approaches RL for σ > 1. The ratio r Y/RL is a very

slowly increasing function of the surface magnetic field strength.

An extrapolation of our results indicates that σ 0 must be very large,

σ 0 ≫ 100, for the Y-point to reach the Light Cylinder. That rY is

generically much less than RL in our calculations is due in part to

the fact that although σ 0 ≈ 20 globally (Case C, Section 5.3) the

magnetization along the open field lines nearest the closed zone is

less than 7.

(vii) Over limited dynamic range, the ratio r Y/RL decreases as

ω decreases in the dipole models. This behaviour is consistent with

a braking index less than 3 (see Sections 2.1 and 6.1).

Concerning the acceleration of the wind, we do not find any evidence

for efficient magnetic to kinetic energy conversion. However, we

want to stress again that our computational box does not extend far

enough from the star to appreciably probe the asymptotic behaviour

of the wind.

6.1 Rotation-powered pulsars

Our results have several possible implications for rotation-powered

pulsars, where σ 0 is high. The fact that the Y-point is interior to

the Light Cylinder (and the Alfven radius) suggests that observed

braking indices less than 3 might be a consequence of equilibrium

magnetospheric structure. We emphasize that the position of the

Y-point depends on a local equilibrium between the surface of the

closed zone and the wind region. As a consequence, the value of

the mass flux along the open field lines closest to the closed zone

directly affects the position of the Y-point. The mass flux, in turn,

depends on the boundary conditions at the stellar surface. In our

simulations, the mass-loss rate is derived self-consistently, subject

to a finite thermal pressure at rNS. In the case of a pulsar, the injection

of matter at rNS is thought to be due to non-MHD pair creation pro-

cesses (Hibschman & Arons 2001) in a ‘gap’ just above the stellar

surface which, in an otherwise MHD flow, act to inject plasma with

velocity already exceeding the sound speed. Then the mass-loss rate

is determined by the gap physics, not by the requirement of mak-

ing a smooth transition from subsonic to supersonic flow. Thus, in

principle rY depends upon the injection law determined by the pair

creation physics at the surface. For this reason, we caution against

overinterpreting our results (vi) and (vii) in the pulsar context. In-

deed, thermal pressure of the magnitude employed here is not likely

to be relevant for classical pulsars.6 On the other hand, magnetic

dissipation and reconnection at and near the Y-point might cause

pressure and inertial forces to be significant in this localized region.

In any case, our primary conclusions, that r Y/RL is generally less

than unity and that r Y/RL decreases as � decreases, are intriguing

6 If the surface magnetic field is not highly stressed, the plasma in the closed

zone is likely to be non-neutral and it will fill the magnetosphere via cross-

field transport driven by shear flow turbulence (Spitkovsky & Arons 2002),

not via pressure, which alters the force balance at the Y-point.

possibilities now open to investigation with the advent of dynami-

cal, large σ models of neutron star magnetopsheres. A more general

study of the effect of the injection conditions on the structure of the

magnetosphere and the accompanying wind is under way.7

The appearance of outwardly propagating plasmoids at and be-

yond the Y-point as a consequence of (numerical) magnetic dissi-

pation raises the intriguing possibility that noise in pulsar spindown

(Cordes & Helfand 1980) might arise from instability of the mag-

netospheric currents due to real magnetic dissipation (e.g. via the

collisionless tearing instability). Our results show the possibility of

20 per cent or more torque fluctuations that could in principle give

rise to a random walk in the rotation frequencies of pulsars, as is

observed. Likewise, such torque fluctuations might give rise to noise

and limit cycles in the observed phase of the subpulses of pulsars,

as is seen in many systems (Rankin 1986; Deshpandhe & Rankin

1999). Determining whether these observed phenomena could be

due to magnetospheric dissipation requires treating the dissipation

with a consistent physical model, which is an investigation beyond

that reported in this paper.

6.2 Proto-neutron stars and proto-magnetars

High thermal pressure at the neutron star surface is thought to be a

generic feature of neutron star birth and so the calculations presented

in this paper are directly relevant to young neutron stars, particularly

in the hypothesized rapidly rotating and highly magnetic initial state

of magnetars.

We identify five separate phases in the life of any very young neu-

tron star: (1) a pressure-dominated essentially non-magnetic phase

in which the wind is driven by neutrino-heating (as in e.g. Qian

& Woosley 1996); (2) a phase in which magnetic field effects are

present, but not dominant so that r Aω < 0.1c ≈ cT , where cT is

the isothermal sound speed at the proto-neutron star surface; (3) a

non-relativistic magnetically dominated phase when RA is greater

than rNS, but less than RL; (4) a relativistic phase in which RA ∼
RL, but r Y < RL, and lastly (5) an epoch when the force-free limit

is applicable and r Y ≃ RA ≃ RL. Phases (1)–(5) represent a time

evolution starting immediately after the supernova explosion com-

mences. The time-scale for the evolution from phase (1) to phase

(4) is set by the Kelvin–Helmholtz time-scale for cooling of the

proto-neutron star, τ KH ∼ 10–100 s. The transition from phase (4)

to phase (5) may occur on a longer time-scale, or not at all, depend-

ing upon the applicability of our results to classical pulsars as the

MHD approximation breaks down.

For parameters appropriate to a proto-magnetar, phase (3) lasts

of the order of τ KH. Our simulations show that in this phase, the

wind is energetic and that the energetic flux is highly directed along

the axis of rotation. The characteristic rotational energy-loss rate

in this phase is Ė ≈ 4 × 1049 B2
14 P

−5/3

1 erg s−1, where B 14 =
B(r NS)/1014 G is the ‘equivalent’ monopole field (equation 28),

and P 1 = P/1 ms. On the time-scale τ KH, the total amount of en-

ergy extracted is comparable to the asymptotic supernova energy,

∼1051 erg. The magnitude of the rotational energy extracted in this

7 We are aware of the recent work of Komissarov (2006) who obtains

r Y ≈ RL for σ ≈ 100. Because the injection conditions used by Komis-

sarov (2006) are qualitatively different from the self-consistent calculation

of the mass-loss rate as a function of latitude obtained here, we do not be-

lieve our two results are mutually contradictory. Instead, our finding that r Y

≈ RL only when σ ≫ 100 serves to emphasize the point that the injection

conditions are critical in determining rY.
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phase and its collimation along the rotational axis should have pro-

found implications both for the spindown of millisecond magnetars

and for the supernova remnants that accompany their birth. We save

a detailed discussion for a future paper.
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A P P E N D I X A : PA R A M E T R I Z AT I O N O F T H E
M O D E L S

All the simulations can be parametrized in terms of the ratios of char-

acteristic velocities at the injection radius (r in), see Table A1. Fol-

lowing the work by Mestel (1968a) and Goldreich & Julian (1970),

these are essentially the sound speed cT , the rotational velocity vφ ,

the non relativistic AL velocity
√

B2/8πρ, and the escape speed√
2G M/r . For the 2D cases we consider the value of the rotational
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Table A1. Parametrization of the numerical models.

Model Parameters

1D model A0 A B C D E F G H I
2G M

rinc2
T

11.44 11.44 6.74 7.54 8.98 10.45 11.44 6.29 6.29 6.29

B2
r

8πρc2
T

0.061 0.61 0.71 0.80 0.95 1.11 60.6 133 533 1330

2G M

v2
φ

rin
9.43 9.43 9.43 9.43 9.43 9.43 9.43 9.43 9.43 9.43

2D monopolar model A B B1 C D E

2G M

rinc2
T

11.44 11.44 11.44 11.44 11.44 11.44

B2
r

8πρc2
T

0.61 6.1 6.1 60.6 606 3030

2G M

v2
φ

rin
9.43 9.43 4.20 9.43 9.43 9.43

2D dipolar model A B B1 B2 C

2G M

rinc2
T

11.44 11.44 11.44 11.44 11.44

B2
θ

8πρc2
T

1.22 12.2 12.2 12.2 122

2G M

v2
φ

rin
9.43 9.43 4.20 38.5 9.43

velocity and the magnetic field at the equator. Note that the char-

acteristic velocities defined above do not coincide with the cited

works in Newtonian gravity. For example, the escape speed differs

by a factor of
√

2, and in the definition of vφ one must include

the effect of time delay. These are corrections due to the general

relativistic metric which are not present in the above cited papers

(α(r in) = 0.79).

Notice that for the dipole, where the open field lines originate

close to the pole, the base value of the magnetic field is about twice

stronger than at the equator, and the rotational velocity is much

smaller than the equatorial speed.
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